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Abstract

We present the first study on provably efficient randomized exploration in coop-
erative multi-agent reinforcement learning (MARL). We propose a unified algo-
rithm framework for randomized exploration in parallel Markov Decision Processes
(MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and
CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and
the Langevin Monte Carlo exploration (LMC) strategy respectively, which are flex-
ible in design and easy to implement in practice. For a special class of parallel
MDPs where the transition is (approximately) linear, we theoretically prove that
both CoopTS-PHE and CoopTS-LMC achieve a O(d3/2H2v/MEK) regret bound
with communication complexity O(dHM?2), where d is the feature dimension, H is
the horizon length, M is the number of agents, and K is the number of episodes.
This is the first theoretical result for randomized exploration in cooperative MARL.
We evaluate our proposed method on multiple parallel RL environments, including
a deep exploration problem (i.e., N-chain), a video game, and a real-world prob-
lem in energy systems. Our experimental results support that our framework can
achieve better performance, even under conditions of misspecified transition mod-
els. Additionally, we establish a connection between our unified framework and the
practical application of federated learning.

1 Introduction

Multi-agent Reinforcement Learning (MARL) has emerged as a potent tool with wide-ranging ap-
plications in diverse fields including robotics (Ding et al., 2020; Liu et al., 2019), gaming (Tsay
et al., 2011; Zhao et al., 2019; Ye et al., 2020), and numerous real-world systems (Bazzan, 2009;
Fei & Xu, 2022; Yeh et al., 2023). This is particularly evident in cooperative scenarios, where the
effectiveness of MARL is enhanced through the implementation of both direct and indirect commu-
nication channels among agents. This requires MARL algorithms to adeptly and flexibly coordinate
communications to optimize the benefits of cooperation. One of the classical challenges in MARL
is to balance between exploration and exploitation, i.e., ensuring that agents not only effectively
utilize existing information but also acquire new knowledge. Recent literature, such as the works
on cooperative exploration strategies (Hao et al., 2023) and on dynamic exploitation tactics (Rojas-
Cordova et al., 2023) in MARL highlight the intricacies and importance of balancing such trade-off.
As indicated by Hao et al. (2023); Chalkiadakis & Boutilier (2003); Liu et al. (2023), achieving this
equilibrium is crucial for the practical deployment of MARL systems in real-world scenarios, where
unpredictability and the need for rapid adaptation are prevalent.

Optimism in the Face of Uncertainty (OFU) is a popular strategy to address the exploration-
exploitation problem (Abbasi-Yadkori et al., 2011). OFU strategy leads to numerous upper confi-
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dence bound (UCB)-type algorithms in contextual bandits (Chu et al., 2011; Abbasi-Yadkori et al.,
2011; Li et al., 2017), single-agent reinforcement learning (Jin et al., 2020; Wang et al., 2020a),
and more recently multi-agent reinforcement learning (Dubey & Pentland, 2021; Min et al., 2023).
These algorithms compute statistical confidence regions for the model or the value function, given
the observed history, and perform the greedy policy with respect to these regions, or upper con-
fidence bounds. Though UCB-based methods give out strong theoretical results, they often have
poor performance in practice (Osband et al., 2013; Osband & Van Roy, 2017). For example, Wang
et al. (2020a) demonstrates that computing the confidence bonus necessitates advanced sensitivity
sampling and the expensive computation makes the practical applications inefficient. It is worth
noting that UCB is mostly constructed based on a linear structure (Chu et al., 2011; Jin et al.,
2020). NeuralUCB is a notable attempt at a nonlinear version while it is infeasible in terms of
computational complexity (Zhou et al., 2020; Xu et al., 2021).

Inspired by Thompson Sampling (TS) (Thompson, 1933), posterior sampling for reinforcement learn-
ing (RL) (Agrawal & Jia, 2017; Zhou et al., 2019) involves maintaining a posterior distribution over
the parameters of the Markov Decision Processes (MDP) model parameters. Although conceptually
simple, most existing T'S methods require the exact posterior or a good Laplacian approximation (Xu
et al., 2022). Recently, there have been advancements in randomized exploration with approximate
sampling. One important method is perturb-history exploration (PHE) strategy, which involves
introducing random perturbations in the action history of the agent (Kveton et al., 2019; 2020b; Ish-
faq et al., 2021). This randomized exploration approach diversifies the agent’s experience, aiding in
learning more robust strategies in environments with uncertainty and variability. Another effective
method is Langevin Monte Carlo (LMC) method (Xu et al., 2022; Ishfaq et al., 2024; Huix et al.,
2023; Karbasi et al., 2023; Mousavi-Hosseini et al., 2023). Notably, Ishfaq et al. (2024) maintains
the simplicity and scalability of LMC, making it applicable in deep RL algorithms by approximating
the posterior distribution of the @} function.

Despite the aforementioned advancements of randomized exploration in bandits and single-agent
RL, there remains a scarcity of research on randomized exploration within cooperative MARL,
which motivates us to present the first investigation into provably efficient randomized exploration
in cooperative MARL, with both theoretical and empirical evidence. We specifically focus on the
applicability in parallel MDPs, aiming to facilitate faster learning and to improve policy optimiza-
tion with the same state and action spaces, allowing for leveraging similarities across MDPs. We
theoretically and empirically demonstrate that randomized exploration strategies can be extended to
the multi-agent setting and the benefit of randomized exploration instead of UCB can be significant
from single-agent to multi-agent setting.

In summary, our contributions are as follows:

e We propose a unified algorithm framework for learning parallel MDPs, and apply two TS-related
strategies PHE and LMC for exploration, which leads to the CoopTS-PHE and CoopTS-LMC
algorithms. Different from conventional TS where the computation of posterior is expensive and
the Laplace approximation causes sampling errors (Riquelme et al., 2018; Kveton et al., 2020a),
our proposed algorithms only require adding standard Gaussian noises to the dataset (CoopTS-
PHE) or to the gradient (CoopTS-LMC) when performing Least-Square Value Iteration, which
is efficient in computation and avoids sampling bias due to the Laplace approximation. Notably,
both algorithms can be easily implemented with deep neural networks which are more practical
than UCB-based algorithms in deep MARL.

e When reduced to linear parallel MDPs, we theoretically prove that both CoopTS-
PHE and CoopTS-LMC with linear function approximation can achieve a regret bound
O(d*?H?*VM (v/dM~ + VK)) with communication complexity O((d + K/v)MH), where d is
the feature dimension, H is the horizon length, M is the number of agents, K is the number of
episodes for each agent, and v is a parameter controlling the communication frequency. When
v = O(K/dM), our algorithms attain O(d*?H?VMK) regret with O(dHM?) communication
complexity. This result matches the best communication complexity in cooperative MARL (Min
et al., 2023), and the best regret bounds for randomized RL in the single-agent setting (M = 1)
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Table 1: Comparison on episodic, non-stationary, linear MDPs. We define the average regret as
the cumulative regret divided by the total number of samples used by the algorithm. Here d is the
feature dimension, H is the episode length, K is the number of episodes, and M is the number of
agents in a multi-agent setting.

Setting  Algorithm Regret Average Regret Randomized Generalizable Communication

Exploration  to Deep RL Complexity
OPT-RLSVI (Zanette ct al., 2020) O(d*H3VE)  O(dzH3\/1/K) v X
single-  LSVI-UCB (Jin et al., 2020) O(d? H*VEK) Q(d%H\/l/K) b X -
agent [ SVI-PHE (Ishfaq et al., 2021) O(d? H2VE) O(d?H\/1/K) v v -
LMC-LSVI (Ishfaq et al., 2024) O(dz H*VEK) O(d2 H\/1/K) v v -
Coop-LSVI (Dubey & Pentland, 2021)  O(d3 H2VMK) O(d? H\/T/MK) X X dHM?
multi-  Asyn-LSVI (Min et al., 2023) O(dzHZ\F ) O(d?H\/1/K) X X dHM?
agent  CoopTS-PHE (Ours) O(d2H*VMEK) O(d*H\/T/MK) v v dHM?
CoopTS-LMC (Ours) O(d:H*V/MK) O(diH\/T/MK) v v dHM?

(Ishfaq et al., 2021; 2024). A comprehensive comparison with baseline algorithms on episodic,
non-sationary, linear MDPs is presented in Table 1.

o We further extend our theoretical analysis to the misspecified setting where both the transition
and reward are approximately linear up to an error ¢ and the MDPs could be heterogeneous
across agents, which is a generalized notion of misspecification (Jin et al., 2020). We theoretically
prove when ¢ = O(\/d/M K )7 the cumulative regret for CoopTS-PHE matches the result in

the linear homogeneous MDP setting. Simultaneously, when ¢ = O(y/1/MK), the cumulative
regret for CoopTS-LMC matches the result in the linear homogeneous MDP setting. This result
indicates that CoopTS-PHE has a slightly higher tolerance on the model misspecification than
CoopTS-LMC.

e We conduct extensive experiments on various benchmarks with comprehensive ablation studies,
including N-chain that requires deep exploration, Super Mario Bros task in a misspecified setting,
and a real-world problem in thermal control of building energy systems. Through empirical
evaluation, we demonstrate that our randomized exploration strategies outperform existing deep
Q-network (DQN)-based baselines. We also show that our random exploration strategies in
cooperative MARL can be adapted to the existing federated RL framework when data transitions
are not shared.

2 Preliminary

In parallel Markov Decision Processes (MDPs), M agents interact independently with their respec-
tive discrete-time MDPs. All agents have the same but independent state and action spaces. Each
agent might have its unique reward functions and transition probabilities. Specifically, for agent
m € M, the associated MDP is defined by the tuple MDP(S, A, H,P,,,r,,). Here S and A are
the state and action spaces respectively. The transition probabilities for agent m are denoted by
P, = {Pu n}nem), where Py 0 S x A — S is the transition probability at step h, and H is
the horizon length. r,, = {7 n}ne(m) are the reward functions, with 7., 5 : & x A — [0,1]. The
policy for agent m is represented by 7, = {7m n}re[n), consisting of a set of H functions where
Tt S = A

In each episode k = 1,2,..., each agent m € M adopts a fixed policy ¥ = {ﬂﬁ%h}he[m and begins
in an initial state sfn 1 chosen arbitrarily by the environment. During each step h € [H] in this

episode, the agent observes its current state sm n» Selects an action a’fn n~ 7r e |s n)s receives

a reward 7, p(s" S @ ﬁz h), and then transitions to the next state sm’hJrl based on the transition

probability Py, p (- |s m k ). The reward defaults to 0 when the episode terminates at step H + 1.

mh’

The effectiveness of any policy = in the m'™ MDP is evaluated by the value function

Ta(s) 0§ — R, for any s € S,h € [H],m € M, which is defined as follows

m,h

7::7,1(3) = EW[Zg:hrm,h/(smyh/,am,h/)|sm’h = s]. Furthermore, the state-action value func-
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tion @7, ,(s,a) : S x A — R, which calculates the total expected reward from an action-state
pair at step h for any (s,a) € S x A in the m' MDP, is defined as follows Qnn(s,a) =
EW[Zg:h Tonohe (Smon/s @mont)|Smon = 8,am,, = a]. The optimal policy for the m'" MDP is de-

and we denote V*

*
noted as m b

m?

is defined as

(s) = v (s). The cumulative group regret for total K episodes

m,h

Regret(K) = 3,,c m Zszl [Vn*z,l (3511) - mefk (anl)]
3 Algorithm Design

In this section, we first present a unified algorithm framework for conducting randomized exploration
in cooperative MARL. Then we introduce two practical randomized exploration strategies.

3.1 Unified Algorithm Framework

A unified algorithm framework is presented in Algorithm 1. The core idea is that each agent
executes Least-Square Value Iteration (LSVI) in parallel and makes decisions based on collective
data obtained from communication between each agent and the server. Before we describe the
details of our algorithm, we first define notations about the datasets stored on each agent’s local
machine and the server.

Algorithm 1 Unified Algorithm Framework for Randomized Exploration in Parallel MDPs
1: Initialization: set Uzer(k),U}th(k) =.
2: for episode k =1, ..., K do
3:  for agent m € M do

4: Receive initial state s’fn,l.

5: Vn]i,H-i-l(') <~ 0.

6: {Q,’fmh(-, )} | +Randomized Exploration < Algorithm 2 or Algorithm 3
7 for step h=1,..., H do

8: aﬁ%h — argmax,c 4 Qﬁ%h(s’ﬁmh,a).

9: Receive 5§n,h+1 and rp,.

10: lefffh(k) — leyc{fh(k) U (an,h,a%m an,hﬂ)'
11: if Condition then

12: SYNCHRONIZE <« True.

13: end if

14: end for

15:  end for
16: if SYNCHRONIZE then

17: for step h=H,...,1 do

18: V AGENT: Send U,lgfh(k‘) to SERVER.
19: SERVER: Uj°¢(k) + Unmem U;‘l"’h(k)

20: SERVER: Up** (k) « Up** (k) U U}L"C(k).
21: SERVER: Send U;** (k) to each AGENT.
22: V AGENT: Set UL¢ (k) « 0.

23: end for ’

24: end if

25: end for

Index notation We define k4(k) (denoted as ks when no ambiguity arises) as the last episode
before episode k where synchronization happens. For episode k and step h, we define three datasets
as follows.

Un (k) = {(stn> @ n Smn1) Y et re i) (3.1)
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s, (k) = {(s:n b T ST hH)}’:;;SH, (3.1b)

Unm,n (k) = U (k) | URS, (k) (3.1¢)

By definition, U3 (k) is the dataset that is shared across all agents due to the latest synchronization
at episode kj. U}‘L)Ch( ) is the unique data collected by agent m since episode ks. Then Uy, 5 (k) is the
total dataset available for agent m at the current time. Let K(k) = |Up, 1 ()| be the total number of
data points. For the simplicity of notation, we also re-order the data points in U,, h(k) and rename

the tuple (s}, ,, a7, 1,85, pi1) @8 (Sl7al,s’l) such that we have U, n(k) = U’C(k)(s al, s’ ) In fact,

this can be done by the following one-to-one mapping

o (. 7) = (T=1)M+n 1<k, (3.2)
RIS N M — Dk 47 ke <7<k -1 '

Therefore, we use indices (s, a, s') € Uy, n(k) and [ € [K(k)] interchangeably for the summation over
set Up, (k).

Algorithm interpretation At a high level, each episode k in Algorithm 1 consists of two stages.
The first stage (Lines 3-15) is parallelly executed by all agents and the second stage (Lines 16-24)
involves the communication among agents and the server.

In the first stage (Lines 3-15) of Algorithm 1, each agent m operates in two parts. The first part
(Line 6) updates estimated @ functions {QF, ,}_, through LSVI with a randomized exploration
strategy (Algorithm 2 or Algorithm 3, which will be introduced in Section 3.2). In particular, given
the estimated value functions V% , .\ (-) = maxaca QF, ,(-,a) at step h + 1, we perform one step
robust backward Bellman update to obtain V¥, (-) at step h. And we initialize Vm g+1(-) tobe 0
(Line 5). In the second part (Lines 7-14), after obtamlng the estimated @ functions, in each step h
we execute the greedy policy with respect to Qm 5, and collect new data points which are added to
the local dataset U (k) (Lines 8-10). Then we verify the synchronization condition (Lines 11-13).
In this paper, we méinly use three types of synchronization rules. (1) We can synchronize every ¢
episode where c is a user-defined constant, which is easy to implement in practice. (2) We can also
synchronize at the episode of b', b2, ...,b", with b representing the base of the exponential function.
This is guided by the intuition that agents require more transitions urgently at the early learning
stages. (3) Additionally, if we have a feature mapping ¢(s,a) : S x A — R, based on (3.1), we
define the following empirical covariance matrices.

AR = Do (stat ) eUser (k) (s, a)op(s',al)
A = 2 (st al s EUIS, () (s a)o(s!,al) ",
A, = STAf + °°Ak 4L
We synchronize as long as the following condition is met,
dot (AL + Ay +AD) o

det (serA¥ + AI) ~(k—ks)

log (3.3)

where 7 is a communication control factor. In our experiments, we try all three rules and compare
their performance, which is discussed in detail in Appendix M.1.

The second stage (Lines 16-24) is executed only when the synchronization condition is satisfied. First,
all the agents upload their local transition set U, loc 1 (k), i.e., the newly collected local data after the
last synchronization, to the server. Then, the server gathers all information together in U;®" (k) and
sends it back to each agent. Finally, each agent resets the local transition set Urlr‘zc (k) < 0. Now
agent m can access the dataset Uy, (k) = U™ (k) U U},‘:fh(k), which contains the historical data of
all agents up to last synchronization and its local dataset.
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3.2 Randomized Exploration Strategies

When we update the model parameter and estimate @ functions in Algorithm 1 (Line 6), we use
exploration strategies to avoid suboptimal policies. Previous work adopted Upper Confidence Bound
(UCB) exploration in the linear function class (Dubey & Pentland, 2021; Min et al., 2023) to estimate
the @ function {Q’fn WL . Although UCB-based methods come with strong theoretical guarantees,
they often perform poorly in practice (Chapelle & Li, 2011; Osband et al., 2013; Osband & Van Roy,
2017). Moreover, UCB requires a precise computation of the confidence set, which is usually hard to
be implemented beyond the linear structure. In contrast, randomized exploration strategies exhibit
more robust performance, are flexible in design and easy to implement, and do not require a linear
structure.

We approximate the @ functions with the following function class F = {fw : S x A = R|fw(s,a) =
f(w;¢(s,a))}, where w € R? is the parameter and ¢p € R? is a feature mapping associated with
state-action pairs. Now we define the loss function for estimating the @) functions.

K(k)
:Z (rh + VE paa (87, F(wi @) + A [w]?, (3.4)

where rh =7y (s a ) o = qS( al), and L is a user-specified loss function.

Perturbed-History Exploration The first strategy we use in Algorithm 1 is called the
perturbed-history exploration (Kveton et al., 2019; 2020b; Ishfaq et al., 2021), displayed in Al-
gorithm 2. We refer to the resulting algorithm as CoopTS-PHE. In particular, we optimize the
following randomized loss function, where we add random Gaussian noises to the rewards and reg-
ularizer in (3.4).

K(k)
LE" (w ZL b4 Y R VE (), F(wsd) + Al 61, (3.5)

where e’;’l’" il N(0,02), E’” ~ N(0,0%T), and n € [N]. Then we obtain the following perturbed
estimated parameter

W]:n”h = argmin,, cpa Lfr’fh(w). (3.6)

Note that we repeat the above steps for n = 1,..., N to obtain independent copies of parameters,
which is referred to as the multi-sampling process (Ishfaq et al., 2021; 2024). Then we obtain the
estimated @ function an’ » based on Line 7 in Algorithm 2. Finally, by maximizing an’ ;, Over action

space A, we obtain the estimated value function th h

Algorithm 2 Perturbed-History Exploration

1: Input: multi-sampling number N € N7, function class F = {fw : S x A = R|fw(s,a) =

f(w;d(s,a))}-
2: for step h=H,...,1 do

3: forn=1,...N do

4: Sample {elfl’l’n}le[;c(k)] ) N(0,0%) and £ ~ N(0, 02I) independently.
5: Solve wf ', according to (3.6).

6: end for

7 anh%mln{maxnejv]f( h,qb) H - h—l—l}

8: VTﬁ’ ()emaxaeAQm’h(, )

9: end for

10: Output {th( ) m, h( )}h 1
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Langevin Monte Carlo Exploration Next we introduce the Langevin Monte Carlo exploration
strategy (Xu et al., 2022; Ishfaq et al., 2024) (displayed in Algorithm 3), which stems from the
Langevin dynamics (Roberts & Tweedie, 1996; Bakry et al., 2014; Dalalyan, 2017; Xu et al., 2018;
Zou et al., 2021). Combining it with Algorithm 1 leads to our second proposed algorithm, CoopTS-
LMC. Specifically, we update the model parameter iteratively. For iterate j = 1,..., Ji, the update
is given by

Wit = W = kL (Wl ) 2B e (3.7)
where Lfn’ 5 is defined in (3.4), ef;f,’z" € R? is a standard Gaussian noise, 7, 5 is the learning rate,
and B,k is the inverse temperature parameter. We again use the multi-sampling trick to obtain N
independent estimators and similarly obtain the estimated @ function Qﬁu 5, by truncation based on
Line 10 in Algorithm 3.

Algorithm 3 Langevin Monte Carlo Exploration
1: Input: multi-sampling number N € NT, function class F = {fw : S x A = R|fw(s,a) =

f(w;@(s,a))}, step sizes {Nm k }mem, ke(k], inverse temperature parameters {Sm k fmem, ke[K]-
2: for step h=H,...,1 do

3 forn=1,...,N do

L

5 for j=1,...,J; do

6: Sample efnjh" N0, T).
7 Update wf,;?,’l" by (3.7).

8 end for

9: end for

10: Q’;@,h < min { max,,c[N] f(wfﬁ{,’;’”;q&%H —h+ 1}

11: V'nli,h(')  maXgea anyh(ya).
12: end for

13: Output: {Qﬁw,h('v')vvﬁ,h('v')}thl'

+

4 Theoretical Analysis

In this section, we provide theoretical analyses of our algorithms in the linear structure, which is
under the assumption of linear function approximation and linear MDP setting. We first present
the definition of linear MDPs.

Definition 4.1 (Linear MDP (Jin et al., 2020)). An MDP(S, A, H,P,,,r,,) is a linear MDP with
feature map ¢ : S x A — R, if for any h € [H], there exist d unknown measures p, = (up, ..., us)
over S and an unknown vector 6, € R? such that for any (s,a) € S x A,

Ph('lsaa’) = <¢(Saa)7lj’h<')>a Th(87a’> = <¢(57a)70h>-

Without loss of generality, we assume that for all (s,a) € S x A, |¢(s,a) < 1 and
max{ || n(S)], [6nll} < V.

Throughout the analyses in this section, we assume the homogeneous parallel MDPs setting where
all agents share the same linear MDP defined in Definition 4.1. We also provide the results when the
MDPs across agents are approximately linear and heterogeneous, which is deferred to Appendix E
due to the space limit. Next, we first have the following regret bound for CoopTS-PHE.
Theorem 4.2. In CoopTS-PHE (Algorithm 1+Algorithm 2), let N = C'log(d)/log(co) where C =
O(d) and ¢y = ®(1), ®(-) is the cumulative distribution function (CDF) of the standard normal
distribution. Let A = 1 and 0 < 6 < 1. Under the determinant synchronization condition (3.3), we
obtain the following cumulative regret

Regret(K) = (5(d%H2\/M(\/M+ \/E))»
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with probability at least 1 — §.

Remark 4.3. When we choose v = O(K/dM) in the synchronization condition (3.3), the cumula-
tive regret of CoopTS-PHE becomes (5(d3/ 2H?V/MK), which matches the result of UCB exploration
(Dubey & Pentland, 2021). When M = 1, the regret becomes O(d3/2H2/K), which matches the
existing best single-agent result (Jin et al., 2020; Ishfaq et al., 2021; 2024). Note that if there is
no communication at all and agents act independently, with the same number of learning rounds
(or samples), the cumulative regret becomes O(M - d*/? H*v/K). By incorporating communication,
our regret bound in Theorem 4.2 is lower than that of the independent setting by a factor v M. A
similar strategy called rare-switching update with a determinant synchronization condition has also
been adopted in parallel bandit problems (Ruan et al., 2021; Chan et al., 2021).

Similarly, we have the following result for CoopTS-LMC.

Theorem 4.4. In CoopTS-LMC (Algorithm 14Algorithm 3), let N = Clog(d)/log(ch) where
ch =1-1/2y/2em and C = O(d). Let 1/\/Brm = O(HVd) forallm € M, A = 1,and 0 < § < 1. For
any episode k € [K] and agent m € M, let the learning rate 7, 1 = 1/(4Amax (Afﬁ’h)), the update
number Ji, = 2y, log(4H K Md) where . = Amax (A, ) /Amin (AL, 1) is the condition number of
A’fm - Under the determinant synchronization condition (3.3), we have

Regret(K) = 6(d%H2\/M(\/M+ \/I?))7

with probability at least 1 — 4.

Remark 4.5. Note that CoopTS-PHE and CoopTS-LMC have the same order of regret. Hence
the discussion in Remark 4.3 also applies to CoopTS-LMC. We would also like to highlight that our
results are the first rigorous regret bounds for randomized MARL algorithms.

From the perspective of technical novelty, our analysis of randomized MARL algorithms is differ-
ent from that of UCB-based algorithms (Dubey & Pentland, 2021) because the model prediction
error here contains randomness, causing a more complex probability analysis and an additional
approximation error. We would also like to point out that in proofs for both CoopTS-LMC and
CoopTS-PHE we use a new e-covering technique to prove that the optimism lemma holds for all
(s,a) € S x A instead of just the state-action pairs encountered by the algorithm, which is essential
for the regret analysis. This was ignored by previous works (Cai et al., 2020) and its follow-up works
(Zhong & Zhang, 2024; Ishfaq et al., 2024) that use the same regret decomposition technique. Fur-
thermore, the multi-agent setting and the communications from synchronization in our algorithms
also significantly increase the challenges in our analysis compared to randomized exploration in the
single-agent setting (Ishfaq et al., 2021; 2024).

5 Conclusion

We proposed a unified algorithm framework for provably efficient randomized exploration in par-
allel MDPs. By combining this unified algorithm framework with two TS-type randomized explo-
ration strategies, PHE and LMC, we obtained two algorithms for parallel MDPs: CoopTS-PHE and
CoopTS-LMC. These two algorithms are both flexible in design and easy to implement in practice.
Under the linear MDP setting, we derived the theoretical regret bounds and communication com-
plexities of CoopTS-PHE and CoopTS-LMC. This is the first result for randomized exploration in
cooperative MARL, matching the best existing regret bounds for single-agent RL (Ishfaq et al., 2021;
2024). We also extended our theoretical analysis to the misspecified setting. Our experiments on di-
verse RL parallel environments verified that randomized exploration improves the balance between
exploration and exploitation in both homogeneous and heterogeneous settings. Future research
could explore extending our randomized exploration algorithm to a fully decentralized or advanced
federated learning setting. Additionally, developing a more communication-efficient algorithm to
reduce the substantial communication costs in the general function class setting is another potential
direction.
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A Experiments

We present an empirical evaluation of our proposed randomized exploration strategies (i.e., CoopTS-
PHE and CoopTS-LMC) with deep @-networks (DQNs) (Mnih et al., 2015) as the core algorithm
on varying tasks under multi-agent settings compared with several baselines: vanilla DQN, Double
DQN (Hasselt et al., 2016), Bootstrapped DQN (Osband et al., 2016a), and Noisy-Net (Fortunato
et al., 2018)). Given that all experiments are conducted under multi-agent settings unless explicitly
specified as a single-agent or centralized scenario, we denote CoopTS-PHE as "PHE" and CoopT'S-
LMC as "LMC" in both experimental contexts and figures.
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Figure 1: Comparison among different exploration strategies in (a)-(b): N-chain with N = 25 and
(¢)-(d): Super Mario Bros. All results are averaged over 10 runs.

A.1 N-chain

The N-chain (Osband et al., 2016a) comprises a sequence of N states denoted as s;, V1 <1 < N.
Assuming the existence of m agents, all initiating their trajectories from ss, this study explores the
dynamics of their movement within the chain. At each time step, agents face the decision to move
either left or right. Notably, each agent incurs a nominal reward of » = 0.001 upon reaching state
s1, while a more substantial reward of » = 1 is obtained upon reaching the terminal state sy. The
illustration of N-chain environment is shown in Appendix M.1. With a horizon length of N + 9,
the optimal return is 10. We consider N = 25 with the communication among agents in Figure 1
following the synchronization approach in Algorithm 1. Note that the total training episodes in the
x-axis are shared among m agents. In Figure 1(a), we show that PHE and Bootstrapped DQN result
in better performance while LMC can also eventually converge to a similar reward. Upon increasing
the number of agents to m = 3, we show in Figure 1(b) that our randomized exploration methods
outperform all other baselines. Notably, the fluctuation in PHE is observed to be less pronounced
against LMC. This observation lends support to our theoretical framework regarding performance
tolerance in the misspecified setting, as detailed in Appendix E. The complete results for N-chain
and ablation studies can be found in Appendix M.1.

A.2 Super Mario Bros

Environmental heterogeneity, arising from various sources, is a prevalent challenge in practical sce-
narios. In Appendix E, we illustrate the extension of homogeneous parallel MDP to the misspecified
setting. In the Super Mario Bros task (Tsay et al., 2011), we examine a scenario where four agents,
denoted as m = 4, engage in learning within distinct environments. Despite these environments shar-
ing the same state space S, action space A, and reward function, their characteristics are different
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described in Appendix M.2. The primary objective of the Super Mario Bros task is to train an agent
capable of advancing as far-right and rapidly as possible without collisions or falls. Figure 1(c) visu-
ally depicts that both randomized exploration strategies outperform other baselines in cooperative
parallel learning. Notably, We observe that the superiority of LMC gets significant against PHE un-
like the results in N-chain in Figures 1(a) and 1(b). In the case of PHE, Gaussian noise is introduced
to the reward before applying the Bellman update, which can be viewed as a method empirically
approximating the posterior distribution of the @) function using a Gaussian distribution. However,
it is crucial to note that in practical scenarios, unlike the N-chain setting, Gaussian distributions
may not always provide an accurate approximation of the true posterior of the @ function (Ishfaq
et al., 2024). Here, transitions are shared among the four agents whenever the synchronization
condition in (3.3) is met. We also conducted extra experiments in this task extending our proposed
method to federated learning shown in Figure 1(d) with details in Appendix M.2.

A.3 Thermal Control of Building Energy Systems

Finally, we assess the efficacy of our randomized exploration strategies through their application to
a practical task within a sustainable energy system: BuildingEnv, as outlined by Yeh et al. (2023).
BuildingEnv is designed to manage the heating supply in a multi-zone building, which involves
addressing real-world physical constraints and accounting for environmental shifts over time. The
objective is to meet user-defined temperature specifications while simultaneously minimizing overall
electricity consumption. We defer the environment details to Appendix M.3. With the availability
of different cities in varying weather types, we conduct experiments on multiple cities in parallel
and share their data following Algorithm 1 for each exploration strategy. We deploy those trained
policies to the environment of each city/weather respectively in evaluation. We include all methods
and random action (i.e., sample action randomly from action space) in Figure 13 in Appendix M.3
for a fair comparison. We display the distribution of the return with probability density in violin
plots, indicating that our PHE and LMC can perform better with a higher mean.

B Related Work

Cooperative Multi-Agent Reinforcement Learning Cooperative MARL is closely inter-
twined with the domain of multi-agent multi-armed bandits, exemplified by decentralized algorithms
featuring communication across a network or hypergraphs (Landgren et al., 2016; Zhang et al., 2023;
Jin et al., 2024) and distributed settings (Hillel et al., 2013; Wang et al., 2020b). Cooperative MARL
manifests primarily in two categories: multi-agent MDPs (Boutilier, 1996; Zhang et al., 2018; Xie
et al., 2020; Dubey & Pentland, 2021) and parallel MDPs (Bernstein et al., 2002; Dubey & Pent-
land, 2021; Lidard et al., 2022; Bernstein et al., 2002; Min et al., 2023). In the realm of cooperative
multi-agent robotics, the former is employed to formulate optimal multi-agent policies across the
distributed system (Yu et al., 2022; 2023). On the other hand, homogeneous parallel MDPs leverage
inter-agent communication to expedite learning processes (Kretchmar, 2002). Additionally, hetero-
geneous parallel MDPs establish connections to heterogeneous federated learning (Li et al., 2020)
and exhibit improved generalizability in transfer learning scenarios (Taylor & Stone, 2009).

We focus on parallel MDPs in this paper, where agents interact with the environment simulta-
neously to tackle shared challenges within extensive and distributed systems (Kretchmar, 2002).
Recently, Dubey & Pentland (2021) proposed the Coop-LSVI algorithm, extending the LSVI-UCB
algorithm (Jin et al., 2020) in single-agent RL to MARL with linear MDPs. In a parallel RL setting
with asynchronous communication, Min et al. (2023) builds upon Coop-LSVI while relinquishing
compatibility with heterogeneous MDPs. Meanwhile, Lidard et al. (2022) focuses on fully decen-
tralized multi-agent UCB Q-learning in a tabular setting, maintaining polynomial space complexity
even as the number of agents increases. However, it is worth noting that neither of the previous
works (Dubey & Pentland, 2021; Min et al., 2023) in non-tabular cooperative MRAL provides ex-
perimental validation for the efficacy of their proposed communication strategies. The gap arises
from their reliance on LSVI-UCB as the core algorithm, wherein optimism is instantiated through
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UCB. Empirical evidence suggests that UCB-based approaches tend to underperform in practical
scenarios (Osband et al., 2013; Osband & Van Roy, 2017; Ishfaq et al., 2024). Moreover, the compu-
tational demands of LSVI-UCB become untenable due to the necessity of recurrently computing the
feature covariance matrix for updating the UCB bonus function. Therefore, randomized exploration
in this work is critical to make these algorithm designs practical.

Randomized Exploration The roots of randomized exploration, particularly TS, can be traced
back to its success in bandit problems (Thompson, 1933). Randomized exploration strategies can
typically exhibit superior performance in practical applications due to avoidance of early convergence
to suboptimal actions (Jin et al., 2021; 2022b; 2023). Furthermore, these strategies demonstrate ro-
bustness in the face of noise and uncertainty, particularly within non-stationary environments (Wang
& Zhou, 2020; Bakshi et al., 2023). This success has extended to Langevin Monte Carlo Thompson
Sampling (LMCTS), which has been applied to various domains, including linear bandits, general-
ized linear bandits, and neural contextual bandits (Xu et al., 2022). The exploration of posterior
sampling techniques in RL has gained prominence, building upon the foundation laid by TS (Strens,
2000; Agrawal & Jia, 2017). Randomized Least-Square Value Iteration (RLSVI) is an approach
that leverages random perturbations to approximate the posterior, with frequentist regret analysis
applied under the tabular MDP setting (Osband et al., 2016b), inspiring subsequent works focusing
on theoretical analyses aimed at improving worst-case regret under tabular MDPs (Russo, 2019;
Agrawal et al., 2021), with extensions to the linear setting (Zanette et al., 2020; Ishfaq et al., 2021;
Dann et al., 2021). In addition to theoretical advancements, several practical algorithms have been
proposed based on RLSVI to approximate posterior samples of () functions in deep RL. These ap-
proaches involve ensembles of randomly initialized neural networks (Osband et al., 2016a; 2018) and
noise injection into the parameters of the neural network (Fortunato et al., 2018; Li et al., 2022).
With the success of LMCTS (Xu et al., 2022) in bandit domains, the exploration of randomized
methods has expanded to alternative approaches like LMC in tabular RL (Karbasi et al., 2023) and
linear MDPs with neural network approximation (Ishfaq et al., 2024). Further works delve into the
realm of random exploration from the perspectives of delayed feedback (Kuang et al., 2023) and
offline RL (Nguyen-Tang & Arora, 2023).

While posterior sampling demonstrates superiority in various contexts, its theoretical foundations
in the multi-agent setting remain underexplored. Existing research predominantly focuses on two-
player zero-sum games, considering both Bayesian (Zhou et al., 2019; Jafarnia-Jahromi et al., 2023)
and frequentist regrets (Xiong et al., 2022; Qiu et al., 2023). There is no existing work studying
randomized exploration for cooperative multi-agent settings.

C Instantiation in the Linear Function Class

In this section, we specifically discuss our TS-related algorithms in the linear structure, which is
under the assumption of linear function approximation and linear MDP setting.

Recall from the loss function in (3.4), here we choose L to be I3 loss and linear function class
f(w;9!) = w'@¢!. By solving this least-square regression problem, we obtain the unperturbed
regression estimator vAvfm h- In the linear setting, we have the closed-form solution

Wyon = (A )05 s (C.1)
where Afn,h and bffmh are defined as follows

K(k)

Afn,h = Z ¢)(sl,al)¢(sl,al)T + M,
=1
K(k)

O = 3 (s o) + Vi nsa (57)] (5", ).

=1
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A natural way of doing randomized exploration is to add a noise N'(0,0%(AL, ,)~") to Wk , and

k

get the estimated parameter wy ;. Then we can construct estimated ) function an’h(, ) =
min{d)('v ')T‘Tvk

mH — h+ 1}*. We call this method as CoopTS, which is aligned with other
linear TS algorithms (Agrawal & Goyal, 2013b; Abeille & Lazaric, 2017). In what follows, we
theoretically show that our proposed algorithms are equivalent or approximately converge to the
CoopTS8 algorithm in the linear function approximation setting.

For CoopTS-PHE (Algorithm 14 Algorithm 2), let the function approximation in (3.5) be linear
and choose L to be the squared loss. By solving this least-square regression problem, we obtain
the perturbed regression estimator Wﬁl"h in CoopTS-PHE. The following proposition conveys that
CoopTS-PHE is actually equivalent to CoopTS.

Proposition C.1 (Equivalent to CoopTS). The output v~vfn"h by CoopTS-PHE is equivalent to

k,n k,n

. . . . /\k . ~ o 5
adding a Gaussian vector to the unperturbed regression estimator w Le, W) =Wy, + Cm’ o

m,h?
where gjj;j; ~N(0,0%(Ak ).

For CoopTS-LMC (Algorithm 1+Algorithm 3), let function approximation in (3.4) be linear and
choose L to be l5 loss to get the loss function. Then after finishing the LMC update, we get the

estimated parameter wh k™ and construct the model approximation of () function. The follow-

m,h
ing proposition conveys that the distribution of wﬁ’b‘]}’; converges to the posterior distribution of

Thompson Sampling exploration. The proof of this proposition is given in Xu et al. (2022).
Proposition C.2 (Approximately equivalent to CoopTS (Xu et al., 2022)). If the epoch length

Ji in Algorithm 3 is sufficiently large, the distribution of wa;‘]}’j converges to Gaussian distribution

N(WE, o B (AR 7.

m,h
Propositions C.1 and C.2 indicate that the results of our two randomized exploration strategies
are closely related to CoopTS. As we have mentioned above, in CoopTS, the estimated param-
eter wF, , is sampled from the normal distribution N'(WF, ,,0?(AF, ,)~"). However, in prac-
tice, this sampling is often executed in this way: we sample 8 ~ N(0,I) first, then we calcu-

late v’vffmh = vAvfn’h + U(Afj%h)’%ﬂ and obtain the estimated parameter. Nevertheless, computing

(Afmh)fé can be computationally expensive, often requiring at least O(d®) operations with the
Cholesky decomposition, making it impractical for high-dimensional machine learning challenges.
Additionally, the Gaussian distribution used in Thompson Sampling may not effectively approxi-
mate the posterior distribution in more complex bandit models than the linear MDP due to their
intricate structures.

Moreover, as pointed out by recent work (Chapelle & Li, 2011; Riquelme et al., 2018; Kveton et al.,
2020a; Xu et al., 2022), the Laplace approximation-based Thompson Sampling exhibits a constant
approximation error in the estimation of the posterior distribution. Therefore, it necessitates a
careful redesign of the covariance matrix to ensure effective performance.

Advantages of PHE and LMC As mentioned above, computing (Afn’h)fé can be computa-
tionally expensive. However, Perturbed-History exploration and Langevin Monte Carlo exploration
can avoid this. For PHE, by only adding i.i.d random Gaussian noise to perturb reward and reg-
ularizer, its performance will be equivalent to TS. For LMC, by only performing noisy gradient
descent, we can do the randomized exploration, resulting in similar performance compared with TS.
Additionally, these two methods can easily be implemented to general function class while Thomp-
son Sampling usually cannot be generalized except for the linear setting. In summary, these two
methods are both flexible in design and easy to implement in practice.

Communication cost We emphasize that agents can just send compressed statistics to the server
under the linear setting, which can largely reduce communication cost. In the linear function class,
we can calculate the closed-form solution of the regression problem (C.1). In this case, when synchro-

nization process is met, all the agents will only need to send their calculated local statistics IOCAfn’ h
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and °°b* , to help solve the regression problem. This communication cost is much smaller because

A is only a d x d matrix and b is only a d-dimensional vector, where d is the feature dimension in
linear MDP assumption. This can also avoid privacy disclosure through communications.

Nevertheless, in the general function class setting, our proposed algorithms still require sharing
all the collected datasets, which will cause relatively large communication cost. Additionally, in
Appendix M.2, we also propose a federated setting algorithm Algorithm 4. In this setting, instead
of sharing collected datasets, agents can just share the weight of the collected estimated @) functions,
which can largely reduce the communication cost.

D Analysis of the Communication Complexity of Algorithm 1

Next we present the communication complexity of Algorithm 1 with synchronization condition (3.3).

Lemma D.1. The total number of communication rounds between the agents and the server in
Algorithm 1 is bounded by CPX = O((d + K/vy)M H).

Remark D.2. We provide a refined analysis in Appendix D to get this improved result based on
that of Dubey & Pentland (2021), which studied the same communication procedure as ours. When
we choose v = O(K/dM), the communication complexity reduces to O(dHM?). Note that Min
et al. (2023) studied the asynchronous setting where only one agent is active in each episode, giving
out the regret O(d*2H?V/K) with the communication complexity O(dH M?). It is interesting to see
that our algorithm, though in the synchronous setting, has the same communication complexity as
the asynchronous variant. This implies that the asynchronous algorithm can only circumvent current
communication by delaying it to the future but does not decrease the communication complexity.
In fact, the synchronous setting can learn the policy better in our work, which is indicated by
comparison of the average regret (the cumulative regret divided by the total number of samples
used by the algorithm) in Table 1. By achieving a matched communication complexity, we find that
synchronous and asynchronous settings have their own advantages and cannot replace each other.
This phenomenon can help us better understand the properties of these two communication schemes.

The proof of this lemma is largely inspired by that in Dubey & Pentland (2021). However, we
provide a refined analysis here, and thus obtain an improved communication complexity O(dH M?),
in contrast with the O(dH M?) complexity in their paper. We also discussed this in Remark D.2
and showed that our result matches that of a recently proposed asynchronous algorithm.

Proof of Lemma D.1. We assume o = {51, ...,0,} as the synchronization episodes, where o; € [K],
we also denote oy = 0. To bound the number of synchronization n, we separate ¢ into two parts
with an undetermined term «
I ={i € [n]lo; — 0s-1 < a},
= {’L S [n]|al —0;-1 > Oé}.
Then we have n = |I;| + |I2|. Note that

n

K>o, = Z(O’i — Uz’—l) > Z(O’i — O'i—l) > |IQ|O[.

i=1 i€l
Then we have |Iz| < K/a. Then note that

S () - (105

iel m,h

>ZO—Z*O—1 1

i€l

> |Il|a- (D.1)
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Define AKX = Y mem Zszl qb(zijlyh)(ﬁ(zfj%h)T + AI where zf;hh = (sﬁhh,aﬁ%h). On the other hand,

we have
S (2052) - (252)

i=1 m,h

det(AX)
<os (o)
< dlog(1+ MK/d), (D.2)

where the first inequality holds due to the trivial fact that A < B = det(A) < det(B), the second
inequality follow from Lemma L.2 and the fact that ||¢(-)||2 < 1. Combine (D.1) and (D.2), then
we have |I1| < da/vlog(l + MK/d). Finally, we choose a = K/d, then we have

A (10 25) (2 ) 4 2.

When one synchronization occurs, communications between agents and the server will occur M
times because we have M agents in total. Recall from Lines 16-24 in Algorithm 1, also note that
in one synchronization episode, communications will happen H times between every agent and the
server. Finally, the upper bound of communication complexity is

CPX = O((d+ K/y)MH).

This completes the proof. O

E Misspecified Setting

In this part, we extend our theoretical analysis to the misspecified setting. In this setting, the
transition functions P, 5, and the reward functions r,,  are heterogeneous across different MDPs,
which is slightly more complicated than the homogeneous setting. Moreover, instead of assuming
the transition and reward are linear, we only require each individual MDP is a (-approximate linear
MDP (Jin et al., 2020) where both the transition and reward are approximately linear up to an
controlled error (.

Definition E.1 (Misspecified Parallel MDPs). For any 0 < ¢ < 1, and for any agent m € M,
the corresponding MDP(S, A, H,P,,,r,,) is a (-approximate linear MDP with a feature map ¢ :

S x A — R4, for any h € [H], there exist d unknown (signed) measures pj, = (uS% . ,/151 )) over
S and an unknown vector 65, € R? such that for any (s,a) € S x A, we have

[Prn (- | 5,0) = (@(s, a), ()| py <€,

|rm,h(sva) - <¢( S, ),0h>| < C,
where || - |y is the total variation norm, for two distributions P; and P», we define it as: ||P, —

Prllrv = 3 Y xeq | P1(x) — P2(x)]. Without loss of generality, we assume that [|¢(s,a)| < 1 for all
(s,a) € S x A, and max {||pn(S)|, |6x]} < Vd for all h € [H] and m € M.

Remark E.2. Note that our misspecified setting defined in Definition E.1 is a generalized notion of
misspecification in Jin et al. (2020). Moreover, our misspecified setting is also more general and cover

the small heterogeneous setting mentioned in Dubey & Pentland (2021). The triangle inequality can
easily be used to derive small heterogeneous setting from our misspecified setting, but not vice versa.

Next we state our regret bound for CoopTS-PHE in the misspecified setting.

Theorem E.3 (Misspecified Regret Bound for CoopTS-PHE). In CoopTS-PHE (Algorithm 1+Al-
gorithm 2), under Definition E.1 and determinant synchronization condition (3.3), with the same
initialization with Theorem 4.2, we obtain the following cumulative regret
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Regret(K) = O(d} HVM (\/dMy + VE) + dH2MVE (\/dMy + VE)C),

with probability at least 1 — §.
Remark E.4. When we choose ( = (’)(\/d/MK), the cumulative regret becomes
(5(d% H2\/M(\/dM7 + \/E)) This matches the result of Theorem 4.2 in the linear MDP setting.

Similarly, we can have the following result for CoopTS-LMC.

Theorem E.5 (Misspecified Regret Bound for CoopTS-LMC). In CoopTS-LMC (Algorithm 1+Al-
gorithm 3), under Definition E.1 and determinant synchronization condition (3.3), with the same

initialization with Theorem 4.4 except that 1/4/Bm .k = (H\f + HvVvM C) we obtain the fol-
lowing cumulative regret

Regret(K) = (5<d%H2\/M(\/dey +VE) + d* HMVE (VdMAy + VE) c),

with probability at least 1 — §.
Remark E.6. When we choose ( = (’)(\/ 1/MK )7 the cumulative regret becomes
(5(d% H2\/M(\/dM7 + \/E)) This matches the result of Theorem 4.4 in the linear MDP set-

ting. By comparing Theorems E.3 and E.5, we find the result of CoopTS-LMC has an extra v/d
factor worse than that of CoopTS-PHE, causing the chosen ¢ in CoopTS-PHE has an extra v/d order
over that in CoopTS-LMC. This indicates that CoopTS-PHE has better performance tolerance for
the misspecified setting.

F Proof of the Regret Bound for CoopTS-LMC

The general framework for CoopTS-LMC and CoopTS-PHE is closely similar. To make the article
more concise, we first prove CoopTS-LMC completely, which is a bit more complicated. Then we
can simplify the following similar proof for CoopTS-PHE in Appendix I.

F.1 Supporting Lemmas

Before deriving the regret bound for CoopTS-LMC, we first provide the necessary technical lemmas
for our regret analysis. Note that the loop (Line 3-9) in Algorithm 3 is to do multi-sampling for N
times. To simplify the notations, we eliminate the index n before Lemma F.7 because the previous
lemmas have nothing to do with multi-sampling.

Definition F.1 (Model prediction error). For any (m,k,h) € M x [K]| x [H], we define the model
error associated with the reward ry,

L (5,0) = 1(s,0) + PuViy o (s,0) = Q@ (s, 0).
Definition F.2 (Filtration). For any (m,k, h) € M x [K] x [H], we define the filtration F, x5 as

Fm kb = ‘7({ (SrTL,ia afm)}(n,r,i)eMx[kq]x[H] U {(Slfm aﬁ,i>}(n,i)€[mfl]x[H] U {(85”, afn,i>}ie[h])'

K, Jy

b satisfies the Gaussian distribution

Proposition F.3. In Algorithm 3, the parameter w

N (ufn‘];: , Ek J’“ ) where mean vector and the covariance matrix are defined as

pll = Al Alw +ZAJk Al (I - AW,

5;";—25 A AT (T AP (AL ) THI A TTAT LAY,

where A; =1—2n,,,A for i € [k].

m h
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Lemma F.4. For any (m,k,h) € M x [K] x [H], the unperturbed estimated parameter vAvﬁl’h
satisfies

Wk |l < 2H\/Mkd/.

Lemma F.5. Let A = 1 in Algorithm 3. For any fixed 0 < § < 1, with probability at least 1 — §2,
for any (m,k,h) € M x [K] x [H] and for any (s,a) € S x A, we have

2dlog(1/6) | 4
gi(/)+3>¢(s7a)||(m )t

m,h
Lemma F.6. Let A =1 in Algorithm 3. For any fixed 0 < § < 1, with probability at least 1 — §,
for any (m,k,h) € M x [K] x [H], we have

lwi | < 5 HdVME + \/;dg/g ot g

Lemma F.7. Let A =1 in Algorithm 3. For any fixed 0 < § < 1, with probability at least 1 — d,
for all (m,k,h) € M x [K] x [H], we have

gi)(s,a)—rwf,;;],f - d)(saa)—rwﬁz,h’ < (5

> #(s',a") [(VE oy —PRVE L) (51 dY)] < 3HVdCs,

(st,al,s’Y)EUm,n (k)

O

1/2
where Cs5 = B log(K + 1) + log (M) + log %} and By is defined in Lemma F.6.

Lemma F.8. Let A = 1 in Algorithm 3. Under Definition 4.1, for any fixed 0 < § < 1, with

probability at least 1 — §, for all (m, k, h) € M x [K] x [H] and for any (s,a) € S x A, we have
[B(s,0) "W, = 7(5,0) = PuVih i (5,0)| < SHVACs9(5,a) s, -1

Lemma F.9 (Error bound). Let A = 1 in Algorithm 3. Under Definition 4.1, for any fixed 0 < § < 1,

with probability at least 1 — § — &2, for any (m,k,h) € M x [K] x [H] and for any (s,a) € S x A,

we have

0 0
—l’;l’h(s,a)<<5H\/<§C¢s+5 W+§>||¢<s,a>|w oo

m,h

where Cy is defined in Lemma F.7.

Lemma F.10 (Optimism). Let A = 1 in Algorithm 3 and ¢ =1 — 2\/%2? Under Definition 4.1,

for any fixed 0 < § < 1, with probability at least 1 — |C(€)|66N — 26 where |C(g)] < (3/¢)?, for all
(m,h,k) € M x [H] x [K] and for all (s,a) € S x A, we have

L (5,0) < e,

where as = vV MK(?H\/&+ B&/NMHK)-

Remark F.11. Here we point out that in our proofs for both CoopTS-LMC and CoopTS-PHE,
we use a new e-covering technique to prove that the optimism lemma holds for all (s,a) € S x A
instead of just the state-action pairs encountered by the algorithm, which is essential in applying
this lemma to bound the term E,- [lfmh(sm’h,am,hﬂsm,l = sk 1] in (F.2) in the regret analysis.
This was ignored by previous works (Cai et al., 2020; Ishfaq et al., 2024) that use the same regret
decomposition technique in the single-agent setting.

The following lemma gives the upper bound of self-normalized term summation in the multi-agent
setting, which is first introduced by Lemma 9 in Dubey & Pentland (2021). To make our analysis
complete, we give out the proof in the Appendix G.9 where we make some necessary modifications
compared with Lemma 9 in Dubey & Pentland (2021).
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Lemma F.12. Let Algorithm 2 run for any K > 0, M > 1, and v as the communication control
T
factor. Define AfX = S G (sE, pak, ) (sE, ak, ) + AL then we have

det (ALK det(AK
> Z||¢ S, @) (log(;tt((u))>“)M\f”\/MKlO dett(()\}IL)))

meM k=1

The following lemma shows that we can decompose the regret of Algorithm 2 into three different
components. The proof of this lemma closely resembles Lemma 4.2 in Cai et al. (2020) for the
single-agent setting. When we fix the agent m € M, it is totally same as Lemma 4.2 in Cai et al.
(2020).

Lemma F.13 (Lemma 4.2 in Cai et al. (2020)). Define the operators and the following terms:

(Jm,hf)(s) = <f(87 '), 7Tr*n h(|s)>> (Jm,k,hf)(s) = <f(s7 -),an’h('|8)>,
Dot = T pn (@ = Qi) (8mn) = (@ = @il (S @) (F.1)

D jo,h2 = (Pm,h (sz,hﬂ - Vn?;zil)) (Sﬁz,maﬁq,h) - (VTZ,thl - meZL) (Szz,thl)'

Then we can decompose the regret into the following form:

K
Regret(K) = Z Z Vrz’l(sfﬁ%l) — Vn?'i'“ (an’l)

K H
= DD B (@b n(Smans )y [5m,) = T Cl8man))sma = s3]

(4i4)
F.2 Regret Analysis

In this part, we give out the proof of Theorem 4.4, the regret bound for CoopTS-LMC.

Proof of Theorem 4.4. Based on the result from Lemma F.13, we do the regret decomposition first

K
Regret(K) = Z Z Vi (sﬁ%l) — V:f’{k (sfnyl)

K H
= Z Z Erx [<an,h(sm,ha )s 7r:n,h('a |Sm.n) — an,h('|3m,h)>‘5m,l = an,l]

(1)
K H
+ Z Z(Dm,k,h,1 + D ken2)

(44)
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H

K
+ Z Z ﬂ* mh (Smhs Gm,h) | Smo1 —s }—lfﬁ’h(sﬁl’h,afn’h)). (F.2)

meM k=1 h:l

(#i)

Next, we will bound the above three terms respectively.

Bounding Term (i) in (F.2): for the policy 7rm n, We have
K H
Z Z Z <Qm w\Sm,h; )y T, (s |5m,h) - Wvljz,h('|5m,h)>‘3m,1 = Sicn,l] <0. (F.3)
meM k=1h=1

This is because by definition 7rm , is the greedy policy for Q¥

m,h*

Bounding Term (ii) in (F.2): note that 0 < Q¥ , < H —h+1 < H, based on (F.1), for any
(m,k,h) € M x [K] x [H], we have |Dy, g.p.1]| < 2H and |Dy, kn2| < 2H. Note that Dy, k.1 1S
a martingale difference sequence E[Dy, i n.1|Fm.k,r] = 0. By applying Azuma-Hoeffding inequality,
with probability at least 1 — §/3, we have

K H
S 3 Dk < 2V2MH3K log(6/0).

meM k=1 h=1

Note that Dy, j p2 is also a martingale difference sequence. By applying Azuma-Hoeffding inequality,
with probability at least 1 — §/3, we have

K H
S 3 Dk < 2V2MH3K log(6/0).

meM k=1 h=1

By taking union bound, with probability at least 1 — 2§/3, we have

Z Z Z Do oh1 + Z Z Z Dinen2 < 4/2M H3K 1og(6/9). (F.4)

meM k=1 h=1 meM k=1 h=1

Bounding Term (iii) in (F.2): based on Lemma F.9 and Lemma F.10, by taking union bound,
with probability at least 1 — |C(e)|cy™ — 26’ — MHK (&' 4 6'%), we have

K H
Z ZZ " mh(s’m hy Gm, h)|sm1 - Sk 1] _lfnah(sfn’h’aﬁl’h))
eM
K H
k k
< ZZ 015/5_lmh miuam,h)

< HMKaze+ Y ZZ SHVACy + 5| 2HsVN/8) | 4 e )
o’ &' 3 Sm,h> mh (Ak ,h)71

3
meM k=1 h=1 ﬂK

2d log( /5’ 4 u i
= HMKagse + | 5BHVACs + 5 TP +3 >y ||¢ ,nyh,am7h)||(A,:M)_l
h=1meM k=1
2d1 ) A
< HMKage+ | 5HVdCy +5 2d10g(VN/3') | 4
38k t3
H
det(AK) det AK)
log | ——22 1 M 2,/ MK
> ( o8 ( devan ) TH)MVTE o8 d T

h=1
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2dlog(VN/5') 4
< HMKage + <5H\/&05,+5 w+)

36 3
X H(d(log(l + MK/d) + 1)M/5 + 2¢/MKdlog(1 + MK/d)).

The first inequality follows from Lemma F.10, the second inequality follows from Lemma F.9, the
third inequality follows from Lemma F.12, the last inequality holds due to Lemma L.2 and the fact
that [[@(-)[l2 < 1.

Here we choose ¢ = dH+\/d/MK Jos: = O(\/1/dHM3K*N) and choose \/}jf = 20HVdCs + 18,
K

we have

K H
SO (B [0 St @) St = 55 1] = U (55, vk, 1)) < O(dH? (dM /7 + VAMK)),

meM k=1h=1

(F.5)
occurs with probability at least 1 — |C(8)|66N —20' — MHK(8' + 6'%).
We set & = 0/12(MHK + 1) and choose N = C'log(6)/log(c}) where C' = O(d), then we have
1—1C(e)|epN — 26" = MHK(8' +6°) >1—6/3.

Combining Terms (i) (ii) (iii) together: Based on (F.3), (F.4) and (F.5). By taking union bound,
we get that the final regret bound for CoopTS-LMC is O(dH?(dM /5 + VdMK)) with probability
at least 1 — 4. O

G Proof of Supporting Lemmas in Appendix F

G.1 Proof of Proposition F.3

Recall from Algorithm 3, the LMC update rule is

kj k. k, 1 /
Wm-,?h :Wm]h — TNim, kvLm h( J ) + 277?71 kﬁm kem h?

where we have VLfn’h(wi;j,Zl) = 2(A7’§%h :@Jh - b"’ ) Plug in the above formula, then we can
calculate that

k,J k, ] k k,Jr—1 k k J,
Wm,l); =W - 27]m k (Am hwm fl; bm, ) \/ 277m kﬂm kSm, i);
k,J—1 k‘ J,
(I - 277m kAm h) m }I; + 277m7kbfn,h + \/ 277m kﬂm kSm, }I;

Ji—1

J - _
= (T = 20m kAL ) Wil + > (1= 2 kAL, ) (277m7kb1]:1,h + 4/ 2m kB e l)

1=0

J any !

= (I - 277m,kAfn,h) kWI:rl?h + 20k Z (I - an,kA]:n,h) bfn,h
1=0
Jp—1

\/2nmk5mk2 IfznmkA )lka :

where the third equality follows from iteration. Denote that A; = I — 27, ;A’

m.n- Moreover, we
choose the step size such that 0 < 0, ; < 1/(2/\max( . h)) Thus we have

Jk 1 Jk 1
k,J Ji kljkl l 1k, Jp—1
Wmh_A +2nmk:§ A hwmh+ 2nmkﬁmk E :Ak mh
=0 =0
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Jip—1

= Agkwfn_,;’]k (I AT+ A+ AR+ \/ 20m kB Z Ale fan]: :
Je—1
= Aikwﬁ;;’h L (1A Whon + \/ 27, kﬁm k Z Ajepi!
1=0
Ji—1
A A S AL AT (- AT Y A A Y A
1=0
where the first equality holds because bfn,h = Aﬁz_’ thvffnﬁ and Wﬁ;;"]k’l = Wm 1> the third equality

follows from the fact that T+ A + ... + A" = (I - A")(I — A)~!, and the fourth equality holds
because of iteration.

Note that €

wfnJ}’; ~N (u’fn‘]}’;,Ek J") Then we can directly get the mean vector

m, h ~ N(0,1), based on the property of multivariate Gaussian distribution, we have

= M AT AL AL (1 A

m,h

Next we will calculate the covariance matrix Efn‘]}f For simplicity, we define M; =

WAJ" Alﬁl, thus we have
Ji—1 Ji—1
M, Z Alehlim (0 > M-Al-(M-Al.)T> ~N(o M( 3 A21>MT>
7 mh ’ 143 1434 3 7 i i .
1=0

=0

Thus we get the covariance matrix Efn"‘]ﬁ,

k Ji—1
X :ZMZ( > A?l> M,

i=1 =0
k i
o =1 A Jk J1+1 21 Jit1 Jk
= E 277m,zﬂm,iAk A E , A AL A
i=1

k

> 2B AL AL (T AP (- A TIALY A
i=1
k

D g, AL ALY (- AP (4),) 0 A AL AL

where the third equality follows from the fact that T+ A + ... + A1 = (I — A?)(I - A)~!. Here
we complete the proof.

G.2 Proof of Lemma F.4

Proof. Note that G\V’fmh = (Afn k>_1b£€n,h> we can calculate that
[l = || (A%0) 7 0k

H(Afn’h)l l Z [rn(s' a') + Vi (s s (s, d)

(st,al,s'Y)EUm,n (k)

1/2
IC(k)( Z || [T}L(S a ) + Vm h1(8 l)]‘?b( )H(Am ,L)—1>

(st,al, s’V )€U, 1 (k)

IA

-
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1/2
2H
N (D S TR N

(sh,al,s"1)€Um,n (k)

< 2H/K(k)d/X

< 2H+\/Mkd/\,

where the first inequality follows from Lemma L.3, the second inequality is due to 0 < anfb n <

H—h+1,0<r, <1and ||¢(s,a)| <1, the third inequality follows from Lemma L.4, and the 1ast
inequality holds because K(k) = (M — 1)ks +k — 1 < Mk. O

G.3 Proof of Lemma F.5

Proof. We separate the error into two terms and bound them respectively,
k,J ~ k,J k,J ke | o
[B(s,0) Wik = (s, @) TWh | < s, a) T (WhTE = )|+ |ots )T (il - Wh)[ (@)

Il 12

Bounding Term I; in (G.1): by Cauchy-Schwarz inequality, we have

ot (v - )| = ote

k,Jk k,Jk

ko Jy H m,h m,h
S

(=
By choosing 7y, 1 < 1/(4>\maX(Afn,h)) for all £ and m, then we have
1
5I < Ap=T— 20,6 A8 | < (1= 200 1 Amin (AL )L (G.2)

< T+ Ap =2L— 2, A" oI

mh\

l\D\C»D

Recall the definition of Eil‘],f in Proposition F.3. By choosing 8,,; = Bk for all ¢ € [k] and m € M,
then we have
k

B(s,a) S0k (s, a) =

—1 i
(s,a) AL LA (T = AV (Ady) (T4 A) AL LA (s, a)

< 3[3 qu s,a)  AJELLAT (( on) A (Ain,h)‘lA;’i)Alfll AJkp(s,a)

k—1
2 i i (3 k3
:Tﬁ;§:¢@“fA?mAﬁTﬁ )= (ML) T AL AT s, @)
- 357]{@5(5 La) A AT (A, ) AT LA (s, a)

+£%M&®WAQQ”Ma®,

where the first inequality follows from (G.2). By the definition of Afn, ,, and Woodbury formula, we
have

~1
i\t i+1)~1 i L i T
(80 D = ) (Mt T aldeta))
(Slvalvs/l)eUWL,h(k)
= (Apun) o+ (M) le) e T (AL )T
where ¢ is a matrix with the dimension of d x n, n is the number difference of ¢(s',a') between

(AL, h)_l and (Ai%)_l (i.e. we concatenate all ¢(s',a') into the matrix ¢). Note that n < M,
then we have

Sls.0) AL AL (ML) T = (M) T AL AT (s, 0)
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= ¢(s,0) AL ALY (M) e+ 0T (ML) T e) e (AL ) ALY A (s, )
< ¢(s,a) AT AT (AL L) e (AL, ) AT LA ¢ (s, )
= [lp(s.0) T AL AL (ML) el

1+1
< [|AJ AL AL )T 2B (s 0)| - [|(AL,) T 2|
k . 2.J; T et ,
< TT (1= 2mmshan(82,0)) (@7 (Al ) T ) (s, )
j=i+1

where ||-||  is Frobenius norm and the last inequality is due to [[A~2X |2 = tr(XTA~1X) and (G.2).
Thus we have

. 2.J;
H<z><s,a>uif,gk_35KZ H( ~ 2w (A2,) ) e (2T (Al ) ) 95 ) 7

1=1j=1+1

+ w7||¢(s,a)l|%Ak

Using the inequality va? + b < a4+ for a,b > 0, we get

Jj ; 1
(5. 5.0 _,/ (Z H (1= 20 Amin(A2, 1)) trlp T (A1) M) (5, @) s, )0

=1 j=1i+1
18 lag -1 )
dcf,\
= gﬁz }L(¢($7a))'

~1/2
Note that (Eﬁf,f) (wk 1Tk Ni@ J}’;) ~ N(0,1;). By the Gaussian concentration property, we

have
1/2
(]| (i) (i - i)

] > «/4dlog(1/5)> < 8.
Then we have

P(|o(s, ) TwhT = pls.a) Tl | = 265, (6(s,0)v/dlog(1/9) )

< P(|o(s.0) Wik - o(s.0) Tl | 2 2/ d1og(1/8) (5, ) e )

S(E) e Zf,;:’/; =i | g 2 2V AR 905 0) 5z )
:P(H(EZJ/;) 1/2(wk T ‘ > 24/dlog( 1/5)

< 62 (G.3)

Bounding Term I in (G.1): Recall from Proposition F.3, we have
k
pn = AL AP w0 YA AT (T AW,
i=1
1+1 s m,h

k—1
oA Jdk Ji...1,0 T Jiv1 i ~i+1 Jk Jial ~k
= AR AW+ g Ar AL (W W) — A LATTW, W,
i=1

_ Ji Ji Jk +1 ~i+1 ~k
- Ak Al (W W + E A zjrl m,h Wm,h) + Wm,h'
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Then we can get

k-1
~ 1 X Ji ~7 ~q
B(s,a) " (T — W) = d(s,0) AL LA (W = W)+ d(s,a)T Y AT LAL (W, — W)
=1

Iao

L= (AL h) b}, »n = 0. Thus we have Io; = 0. To

In Algorithm 3, we choose w': Oh =0 and W! 7
bound term I3, we use the inequalities in (G.2) and Lemma F 4 we have

P
I <[ Y ¢ls, ) AL AT (W, - W)

s;ﬁl(l—znmxm ) s, I (5 all + I57541)
<3 T (1= 2o () 66001 251+ 2/ G070
<4H\/K—d/z; Hl( — 2 in (A,)) 18G50
Thus we get o
Blo.) (s — 5,0 < 4HVATRAD Y [ (1 2 2ein(82,,)) ” I(s.0)]. (G)

i=1 j=i+1

Substituting (G.3) and (G.4) into (G.1), with probability at least 1 — §2, we have

@(s,0)Twhils - ¢<s,a>T€vfn,h\

2d1og(1/6
< atr/FRARY. TT (1= 200w )) " te -+ 20 2B Dy
1=1 j=1+1
dl 5) i i \1ovE
PWE gi (1/6) Z H (1—277mj mm(Aﬁnh)> tr (o' (AL L) I‘P)anb(sya)H(Ainh)*l
K i=1 j=i+1 ’
dch (G5)

Here we choose 1, j = 1/(4)\max(A£"7h)) and set K; = Amax (Ain,,h)/)‘min (Afmh), then we have

: Jj
(1= 205 Amin (A3, ) = (1= 1/26;)"
We want to have (1 —1/2r;)7 < ¢, it suffices to choose J; such that

1> 1og(1<6) -

log (1—1/2@-)
Note that 1/2x; < 1/2, we have log(1/(1 — 1/2k;)) > 1/2k; because e™* > 1 —z for 0 < z < 1.
Therefore, we only need to pick J; > 2k log(1/e).

Also note that 1 > ||¢(s,a)|| > VX||o(s, a)ll(ai D and tr ((pT(Afn’h)_l

that n < M. By setting e = 1/(4HM Kd) and A= 1, we obtain

cp) < M due to the fact

k—1

k—1
< X ARaN ool + 2 2T (o )l w0+ 3 VTG00
=1
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k—
< " s TR TR (5.

=1
2dlog(1/6 il -
2 @”(ws,a)n(%)wzek MVEN$(5,0)as, -
=1
k—1
e 2dlog(1/6 i
< o alwg o+ 2y 2 (el 1+Z 0l - )
=1
2dlog(1/6) 4
§<5 3571(4_5 (s, a)ll(ar )1,

1/VE(E) +1]p(s,a)] =
1/VMK]| ¢(s,a)|, the fourth inequality follows from Zk ’ k =l = Zf;oz e < 1/(1—¢€) < 4/3.
Finally we have

. 2dlog(1/8) 4
P (fots. i - s, 7wk < (520 1 D jgte.aling,, - )

where the second inequality follows from |¢(s,a)ll( AE )1

v

> P(|o(s, ) Wi — bs,0) W, < W)
> 162

This completes the proof. O
G.4 Proof of Lemma F.6
Proof. Recall that Wk J’“ /\/’(,u:l‘],f7 an‘]’“) Let {k ‘Z“ = wk J’“ /,Lfn‘],f ~ N(0, Eﬁl‘],’;), thus we have

b = ks + € < ke + k| (@)

k,Jk
m,h

Bounding ||p, || in (G.6): Based on Proposition F.3, we have
e [ AT+ 3 A A 1 Al

< Z HAJk z-ﬁil (I - AJL)

P

< 2H+\/MKd/\ Z||AJk Al (I A

B
< 2Hd\/MK/AZ Akl [ A

S - af)

B

< 2Hd\/T/Z H — 2 A (A, 1)) ( )
i= 13 i+1

< 2Hd\/T/Z H 277771] min (A] ))Jj (1 + (1 = 20m,i Amin (Afn,h))h)’
=1 j=i+1

where the second inequality holds from Lemma F.4, the third inequality follows from the fact that
rank (AJF ... A (I— A7) < dand |X]s < [|X]|r < rank(X)|X]|2 where [|X]j2 = omax(X).

30



Reinforcement Learning Conference (August 2024)

Recall that in Lemma F.5, we set J; > 2k;log(1/€) where r; = /\maX(A%’h)/)\mm (Afmh), € =
1/(AHMKd) and A = 1, thus we get

HHk Jk“ <2Hd\/T/Z k—i k—i+1)

< 4Hd\/MK/X Z ¢
=0
16
< 5 HdVME.

Bounding Hé‘k J’“H in (G.6): Note that ﬁk i ./\/(O7 EZ;J/L‘), using Gaussian concentration
Lemma L.5, we have

(Hgk Jk” < %tr (E:;:]f’:)) >1-0.

Recall from Proposition F.3, we have
k

tr (ZpF) = Z

: m,i
i=1 ’

tr (AfF AT (I - AP (AL )T A TEAS LA

r (ALYt (AL e (D= A2 o (A, ) ) e (T4 A7)

X tr (A;]jrﬁl) Lo tr (Ai’“),

where the inequality holds due to Lemma L.6. Recall from (G.2) that, when 7, ; < 1/(4/\max(Afﬁ,h))
for all k and m, we have A" < (1 — 217m,k)\min(Afn,h))JjI, set A = 1, then we obtain

(A7) < tr (1= 2o dmin (A%,1)) "T) < (1= 20 Ain (A, 1)) " < de < 1.
Similarly, we have I — A?Ji < (1 22J )I then we get
. 1
tr(I — A27) < (1 - 22Ji>d <d.
Also, based on (I+A;)~! < 21, we have

tr ((I+A;)7") < 2d.

[SVRN )

Note that )\max((Afmh)fl) < 1, we have

tr (M) ™) < Y A(ALL) ) <d

Combine the above results together and choose §,,; = Bk for all i € [K] and m € M, we have

r(Zp7) 2= Lgae
Z /Bm i 3 36K

<H€k 7 < \/7“3) > p(Hgk < %tr (2’;;;’,5)) >1-06.

Combine above results together: with probability at least 1 — §, we have

H ka|<—Hd\/7—|— / ;K5d3/2
K

This completes the proof. O

Then we have
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G.5 Proof of Lemma F.7

Proof. Based on Lemma F.6, for any fixed n € [N], with probability at least 1—4¢, for any (m, k, h) €

M x [K] x [H], we have
kan < in d3/2
el < S mavar + | 2

By taking union over n,m, k, h, we have for all (m, k,h) € M x [K] x [H] and for all n € [N], with
probability 1 — §/2, we have

2
|wh e < —Hd\/ K + ANMBAR jsr2 Bsjanmak- (G.7)
3BKk6

Based on Lemma L.7 and Lemma 1.9, we have that for any € > 0 and § > 0, with probability at
least 1 —§/2,

Yo o) [(Vinner —BaVinpsd) (51, a')]

(st,al,s"V)E€Um n (k)

B 2.2\ 1/2
< (am2[ 1o (B 4 qrog ((Borznvmnx 3], 8K
2 DY € ) A

d k+ A Bsjonvmuk V2 9\ /oke
<2H|-1 1 I — log
< [ og ( i\ ) + dlog < . + 6 + — I

(A% )

Here we set A =1, = 3 fk’ with probability at least 1 — §/2, we have

Z #(s',a) [(Vrﬁ,hﬂ - thn]z,h+1) (s,a")]

(st,al,s"")€Um, n (k)

Ay )

B 1/2
< QHW{ log(k + 1) + log <5/2]LMHK) + log 6] +H

22k
2V2K Bsjan vk ) Tl

H

371/2
gl - (G.8)

1
< 3H\/g{210g(K +1) + log (

By applying union bound between (G.7) and (G.8), and define that C5 = {% log(K + 1) + log% +

1/2
log (M)] , finally we obtain that for all (m, k,h) € M x [K] x [H],

H
> B(s',a ) [(VE i = PuVE 1) (s, ah)] < 3HVdCs,
(st,al s’V )€U, n (k) (Afn D
with probability at least 1 — 4. O

G.6 Proof of Lemma F.8

Proof. We denote the inner product over S by (-,-)s. Based on Py(:|s,a) = <¢(s,a),uh(-)>s in
Definition 4.1, we have

]P)hanz,h%»l(s? CL) = ¢)(87 G)T<Hh7 Vn]z,h+1>8
= ¢(s, G)T (Afn,h) o (Afn,h) <Nha sz,h+1>5
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=¢<s,a>T(Aﬁ,h>‘1< > ¢<s’7al)¢(s%al)T+AI><uh,Vn’ih+l>s

(Sl_’alﬁs’l)GUm“h(k)

= (b(sva)T(Afn,h)il ( Z ¢(5lval)(]thrlri,h+l)(slaal) + )‘I<Hhvvrlri,h+1>3) .
(st,a

I’,S’Z)EUm’h(}i))
(G.9)

Here the last equality uses Py, (-|s, a) = (¢(s, a), ”h(')>s again. Then we can separate the following
error into three parts,

¢(57 a’)Tﬁ’l':n,h - Th(S’ a) - th’fz,h+1(sa Cl)
= ¢p(s,a)" (Aﬁ%h)_1 Z [7h (sl, al) + Vn’i)hﬂ(s’l)]d)(sl, al) — (s, )

(sh,al,s"1)€Um 1 (k)

¢(s,a>T(Ai‘;,,h)1< > ¢(sl,a’)(PhV£,h,+1)(sl,al)+A1<uh,vﬁ,h+1>s>

(sh,al,s' )€U (k)

= (s, a)T (Afn,h)_l ( Z ¢(317 fll) [(VTZ,thl - ]P)hvrﬁ,thl) (Sl> al)]>

(Slvalas/l)EUnz,h(k)

()
+¢(sva)T(Aﬁ1,h)l< Z Th(slval)d)(slval)) _rh(sva)
(sl,al,s’l)eUm,h(k)
(i1)
- )\¢(57a)T(Aﬁz,h)71<ﬂh>Vnﬁ,h+l>s . (GIO)
(iii)

Here the first equality holds due to (G.9). We now provide an upper bound for each of the terms in
(G.10).

Bounding Term (i) in (G.10): using Cauchy-Schwarz inequality and Lemma F.7, with probability
at least 1 — 4, for all (m,k,h) € M x [K] x [H] and for any (s,a) € S x A, we have

o (s, G)T(Aﬁz,h)il < Z ¢(3lv al) [(Vn}i,h%»l - thvﬁ,hﬂ) (Sl, al)]>
(st,al

,$"V)EUm, n (k)

< > o(s',a') [(Vinnir = PrVis i) (57, 0')] lé(s, )l ear, )
(Slvalvs,l)eUm,h(k) (Af;z,h)il
< BHVACs|d(s,0) | (ax )-1- (G.11)

Bounding Term (ii) in (G.10): we first note that

¢(s,a)T(Afn7h)_l ( Z rh(sl,al)qﬁ(sl,al)) —rp(s,a)
(syal,

s'D)E€Um 1 (k)

= ¢(s, a)T(Alfn?h)f1 ( Z Th (sl, al)q’)(sl, al)> — ¢(s,a) Oy

(st,al ') €U n (k)

= ¢(s, a)T (A]fn7h)71 ( Z Th (sl, al)qﬁ(sl, al) — Afn’h9h>

(st,al,s"V) €U, 1 (k)
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= ¢(8,a)T(Afn,h)_1 ( Z Th (sl,al)¢(sl,al) — Z d)(sl,al)cﬁ(sl,al)TOh — /\10h>
(sl,al,

S/l>€U7n,h(k) (Slvalvs/l)ern,h(k>

= (j)(s,a)T(Afn’h)_l ( Z Th (sl,al)(ﬁ(sl,al) — Z (j)(sl,al)rh (sl,al) — )\0h>

(sh,al,s") €U, 1 (k) (sh,al,s'DEU, 1 (k)

= —Ao(s,a)" (AL, 1) O, (G.12)

where the first and fourth equality holds due to the definition 7 (s, a) = <(,z’)(s7 a), 0h> from Defini-
tion 4.1, the third equality uses the definition of Afn, n- Next we can obtain that

-1
—)\qb(s,a)T(Aﬁ%h) 0, < >\||¢(3aa)||(A,’;L,,L

< V85, 0)(ar)-110nl]
< VAd|d(s,0)[(ar )1 (G.13)

)1t H0h||(Af”JL)*1

where we use the fact that )\max((Afmh)fl) < 1/X and [|0;]| < V/d from Definition 4.1. By Com-
bining (G.12) and (G.13), we obtain

¢<s,a>T<A’:ﬂ,h>‘l( > m(s%a%(s%al)) = ra(s,a) < VAdl(s.a)las, )

(shal,s" )€U n (k)

(G.14)
Bounding Term (iii) in (G.10): we have
Ap(s,a) T (A% ) T (pn Ve n)g < Alo(s; a)llar, -1 ||</“L7Vn]i,h+1>s||(Afn,h)*1
< ﬁH(ﬁ(Saa)”(Afﬁ’h)leNh, V'nli,h+1>3’|
< BVAI@(s, @)l ar -+ l1anl
< HVAd (s ) s, )0 (G.15)

where the second inequality holds due to the fact that /\max((Afm n) _1) < 1/A, the third inequality
uses the fact that Vvi,h +1 < H and the last inequality follows from ||| < v/d in Definition 4.1.

Combine Terms (i)(ii)(iii) together: combine (G.11), (G.14) and (G.15), then set A = 1, with
probability at least 1 — d, we get

d)(sa a’)wan,h - Th(s’a) - Pthlz,thl(sa a)’ < <3HC§ + VAd+ Hv /\d) H(ﬁ(sa a)”(Afn W)t
< 5H\/&06||¢(57a)||(1v;n7h)71,

This completes the proof. O

G.7 Proof of Lemma F.9
Proof. Recall from Definition F.1,
_lfn}h(sﬁ a) = an,h(s’ CL) - Th(87 a) - thﬁz,h+1(5’ a)
: T kJen + k
= mln{ m?g[{] o(s,a) w, " H—h+ 1} —ru(s,a) = PRV, 1 11(s,a)
ne ’ ’

< Hé?lsf(] ¢(3’ a)valj;:]i’;m —Th (57 a) - thﬂ]z,h-&-l(s’ CL)
n
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k,Jk,
- TIIIGR[?/'(] ¢(3 a)T m, }f - ¢(8 a)T m,h + ¢(3 CL) ’IVCVL h — ’/‘h(S, CL) - thjx,h—i—l(sﬁ Cl)
< T?é?‘]i[(] |¢ s a)Tny;:]}fm - ¢(S, a)Twlfn,h} + |¢(57 a’)T‘/’\V]:n,h - Th(sa a) - ]P)hvfz,h—i-l(sa a)| :
T f2
1

Bounding Term I;: based on Lemma F.5, for any fixed n € [N], for any (m, h, k) € M x [H| x [K]
and for any (s,a) € S x A, with probability at least 1 — §2, we have

2d1log(1/9)

B (s, a) "Wl — g(s,a)TWE W < |5
’ ’ 30K

4
+ 3> l#(s, a)llar )1
By taking union bound over n, we have for all n € [N], with probability 1 — §2, we have

2dlog (VN /)
3Bk

This indicates, for any (m, h, k) € M x [H] x [K] and (s,a) € S x A, with probability at least 1 — 42,
we have

,n A 4
|p(s,0) Wi — (s, a) W, | < Qs +3>H¢@¢0MA3ML

2dlog (\/N/(S)
38K

1, h

(G.16)

Term I; = m%( |¢ s a)wan»J/;m _ ¢(5,a)TvAvf§1 h| < (5
ne ) ’

4
+ 3) lo(s,a)llar y-1-

Bounding Term I5: based on Lemma F.8, with probability at least 1 — 4, for any (m,h, k) €
M x [H] x [K] and (s,a) € S x A, we have

’qb(s, a)TG\Vﬁ%h — rﬁ(&a) — PhVnﬁ’hH(s,aﬂ < 5H\/g05||d)(s, a)||(A5-mh)_1.

Combine the two result above, by taking union bound, with probability at least 1 — § — §2, for any
(m,h,k) € M x [H] x [K] and (s,a) € S x A, we have

2d 1 N/ 4
—ik ,(s,a) < 5HVACs + 5 M—i—f ||(Z)(S,CL)H(Ak )-1-
’ 3Bk 3 m,h

This completes the proof. O

G.8 Proof of Lemma F.10
Proof. Recall from Definition F.1,

on(s,a) = ra(s,a) + PRV 1 (s,a0) — Qy, (s, a).
Note that

kon(s,a) = min{ max qb(s,a)TWk SO ; gy 1} < max ¢(z,a) whE".
’ n€e[N] n€[N] )

Note that ||¢(s a H(Ak D < V1/A|@(s,a)]] < 1 for all ¢(s,a). Define C(e) to be a e-cover of
{o | ll9llar -1 <1}. Based on Lemma L.8, we have |C(e)] < (3/e)?.

First, for any fixed ¢(s,a) € C(e), based on the results in Proposition F.3, we have that
gb(s,a)ka r e, N(¢( )Tufn‘];f, (s,a)T Xk (s7a)> for any fixed n € [N]. Now we define

m,h

ra(s,a) + PRVE i (s,a) — @(s, Wﬁﬁ

Zy =
\/¢ (s,a) TE’;L],’; (s,a)
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When |Z;| < 1, by Gaussian concentration Lemma L.10, we have

P((,b(S,(L)TWk s Jk,m >’)"h(8 a)—i—]P’hV h+1(87a))
- P<¢<s,a>Twﬁ;f;’" — B(s,0) T pt s @)+ PRV i (5,0) — $(s.0) Tt )
(s, a) TSh T (s,0) Vs, a) =5 6(s,a)
P<¢<s @)W — gl a) T Zk)
\o(5.0)T=E T 6 (5.0)

exp(—Z;/2)

1
24/ 2m
1

> .
T 2V 2em

Consider the numerator of Z:

P (s,a) + BRVE i (s,a) — (s, a) T plt
< |rn(s,a) + PRVE i (s,a) — (s,a)TWE, |+ |d(s,a) TWE, , — d(s,a) T b |

Based on Lemma F.8, with probablity at least 1 — d, we have
I7h(5,0) + PaVig i (5,0) — @(s,0) 79, 1| < BHVACs||@(s,0) | ax )1,

From (G.4), we have

¢( ) (ufanffAlfnh)<4H\/ Kd/ Z H (1*277mj mln( mh)> ||(b($ a)H

1=1 j=1i+1

Recall the proof of Lemma F.5, we set 0y, ; = 1/(4)‘maX(Azn,h)), J; > 2k;log(1/€), then we have for
all j € [K], (1 = 20 jAmin (A2, )7 <€, set € = 1/AHMKd and A = 1, we have

|p(s,a)TWE, , — d(s,a) k| < AHVME Z’“||¢>sa>\|

k-1

,;6 4MHKd4Hv dVMK||¢(s,a)ll(a
4

< §H¢(S a)ll(ar -1

So, with probablity at least 1 — §, we have
|rh(s,a) +thyﬁ,h+1(57a) _ ¢($ a T k, ch| < (5H\[O§ + )|¢(S a)||(Ak DRt (G17)

Consider the denominator of Zj: recall from the definition of Eﬁ;J,f from Proposition F.3, then
we have

(s,0)TAYE AT (T - AP (ML) T A+ A)TTAL AT (s, a)

> Z s 3 a)TA]" Azril( _ A2 )( i h)flA;Iril ---A}jk(ﬁ(s,a),
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where we used the fact that I < (I+ Aj)~". Then we have

P(s,a) Sk ¢(s,a >Z

ZBW B(s,a) A AT (ML) T = AT (AL ) AT AL AT (s, a)

25K Z¢> (s,0)TALE AT (ML) T = (S THAL AT (s, a)
- ”%Kas,a)TA;jk AT (AL A AT (s, a)

1 _
+ 55 0(50) (AL) T (s a).

By the definition of A}, ; and Woodbury formula, we have

-1
W)= 0D = ) (M T st
(st,al,s" ) EUm n(k)
= (Ah ) Mo+ @ (AL ') T (AL )

where ¢ is a matrix with the dimension of d X n, n is the number difference of ¢(sl7al) between
(Ajmh)f1 and (Ai;;}b)fl (i.e. we concatenate all ¢(sl,al) in to the matrix ¢). Note that n < M,
we have

os.0) AL AL (ML) T = (ML) T )AL AT (s, 0)

= p(s,0) AL AT (Adn) oM+ T (Al a) T 0) e T (AL) T )AL LA (s, )

S ¢(S7Q)TAikAjiﬁl( jn h) PP ( m h)ilAzj:Ll' AJk¢(S a)

= [lp(s.0)TAL ALY (AL ) el

1+1
< Al AL AL (s )l (AL e
k , 2J L
< TT (1= 20mdmin(A2,0)) b (@7 (Ads) ™ @) (s, ) 120
j=i+1

where ||-|| ¢ is Frobenius norm and the last inequality is due to [|A~2X||% = tr(XTA~'X) and (G.2).
Therefore, we have

(5,0)I{ar )

T s k,J 2 i i
$(s:0) B, (s, 0) 2 g llbs, lias o - 26 H — 20m,iAmin (A7, 1))

k-1 k

- 2ﬂ7[( Z H (1 - 277m,j)\min(Azn7h))2Jj tr ((’OT (Am h) )H¢(S a)” Al h )—t-

i=1 j=i+1

Similar to the proof of Lemma F.5, note that tr (o' (AL, ) ') < M, when we choose J; >
2k log(3kM), we have

||¢(Saa)||2"’~7hk >

L |9 a)ll N~ VM
sy (190Dl ~ ieape ~ 2 grapyee ool )

1 1
2B <||¢’(S,a)|(A§mh)1 - 3\/WH(b(s,a)H - (i\/m”(b(s’a)')

1
W\I(ﬁ(s,a)llmwﬂ, (G.18)

v

Y]
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where we used the fact that )\min((Afmh)_l) > 1/kM and [|¢(s,a)||ax o1 = 1/VEM||o(s,a)l.
Therefore, according to (G.17) and (G.18), with probablity at least 1 — 4, it holds that

rn(s,a) + thn]i,hﬂ(sva) — ¢(s,a) ",y

Ko
\6(s.a)TSE T (s, a)
_ 5HVACs + g)
4 1BK

| Z| =

. . . 1 16
which implies |Zj| < 1 when T 20HVdCs + 1.

Till now we have proved that for any fixed ¢(s,a) € C(e) and for all (m, h,k) € M x [H] x [K], for
any fixed n € [N], with probablity at least 1 — §, we have

n 1
P((ﬁ(s’a)—rwfr;"]hk’ —rp(s,a) — IP’hV,ﬁ’hH(s,a) > 0) >

2v2em’
By taking union bound over n € [N], with probablity at least 1 — §, we have

PQ2%ﬁ¢wﬂfwﬁﬁmera@—wmumwmaM}zo)21f(1f

71 )N —1-aN
2v/2er 0

where ¢ =1 — 2\/% Therefore, for any fixed ¢(s,a) € C(¢) and for all (m,h, k) € M x [H] x [K],
with probability at least (1 —6)(1 —cp™) >1 -8 — )™, we have

)

751615[%(] {o(s, a)Twﬁ;{,f’7l —ra(s,a) = PRV pii(s,a)} > 0. (G.19)

Next for any ¢ = ¢(s,a), we can find ¢’ € C(e) such that [|¢ — @'[|(ox -1 < e We define
A¢p = ¢ — ¢'. Recall from Definition 4.1, we have '

def
Th(sv CL) + thrlri,h—‘rl(sv a) = ¢(57 a)TOh + ¢(3a a)T<:u'h’ V’fx,h—i—l>3 ¢(8’ a)Twﬁa,h’
where an,h =

On+ (pn, V7§7h+1>8. Note that max{||us(S)||,]|0x]|} < Vd and V* o1 SH—-h<H,
thus we have

Wil < 1001+ [ Cpons Vi) || < Vi o+ HV < 20V
Then we define the regression error Awﬁ% h= me h— Wﬁ;J}I:’n. Thus we have
max {¢(s, a)TWﬁjLJ,’;’" —rp(s,a) — JP’hVn]i)hH(s,a)} = max { — (s, a)TAwfn,h}.
n€e[N] K ne[N]
Then by Cauchy-Schwarz inequality, we have

¢TAW51,h = ¢,TAW'I:7LJL + AQSTAW'Ifn,h

> @' Awl — [AG] - [[Aws, ]
> d)’TAan’h — \/WEHAan’hH.

By triangle inequality, with probability at least 1 — §, we have

wh, ) < ol + (W25 < 2HVA+ By s

Denote a5 = VMK (2HVd+ Bs/narmi)- Then, for all (m, h, k) € M x [H] x [K], with probability
at least 1 — 8, we have

mia&(] {QSTAW,’fn h} > max {¢’TAwfn h} — age.

ne ’ ’

n€[N]
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Recall from (G.19), by taking union bound, with probability at least 1 — |C(e)|ch” — 20, for all
(m,h,k) € M x [H| x [K] and for all (s,a) € S x A, we have

7{161?13[(] {qb Aw h} > —age.

Finally, with probability at least 1 — |C(¢)|ch™ — 26, for all (m,h, k) € M x [H] x [K] and for all
(s,a) € S x A, we have

lfn,h(s, a) < ase.
This completes the proof. O

G.9 Proof of Lemma F.12

Proof. For simplicity, we denote (s’;l’h,afnyh) as an,h- Then we consider the following mappings
(var,vie) - [MK] — [M] x [K],

vy (1) = 7(mod M), VK = L\;-‘,
where we set vpr(7) = M if M|7. Next, for any 7 > 0, we define
T

— AL+ qu( vl ) ( ZZ((Z)),h) , forT >0,

AY) =\, for 7 =0.

We denote o = {01, ...,0,} as the synchronization episodes, where o; € [K], we also denote oy = 0.
Then we separate the episodes k£ = 1,..., K into two groups based on the following condition,
det(A7
1< ( ’1) < 3. (G.20)

Note that the left inequality always holds due to AUL ! Aii and the trivial fact that A < B =
det(A) < det(B). Then we define that Iy = {k € N+,k € [0i-1,0:), Vi € [n]|(G.20) is true} and
Iy = {k S N+,k S [O'Z‘_l,O'i),Vi S [n]|(G20) is false}, then [K] = 11UI2U{K} For any ke [O'i—lao'i)
and k € I, note that j_XZi‘l < Afn,h < [Xﬁ =< Azi, thus for any m € M, we have

det(Ajf
oG las - = 120ty g

det(A7")
||¢( )||(A’“) 1 de t(A i— 1)
< 2||¢(Zm,h)||(]\ﬁ)—1a (G.21)
where the first inequality follows from Lemma L.12, the second inequality follows from the trivial
fact that A < B = det(A) < det(B), and the final inequality holds because k € I;. Then we will
bound the summation for k € I; and k € I, respectively.

> > leGhmlay, < ME ST 30 (e ) )

kelLU{K}meM meM kel U{K}

< 2 IMK ||¢(z7§1,h)||2_k -1
(AF)
mGM k€I1U{K}
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K
<2 ME Y > N6 I+

meM k=1
det (AE)
<24/ MK log
o (S22,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequal-
ity holds due to (G.21), the final equality follows from Lemma L.I and AKX =

> meM EkKﬂ ¢(an,ha aﬁ,h)¢(5ﬁ1,h7 a’]:n,h)—r + AL

For any interval [o;_1,0;), define A; = 0; — 0;,_1 — 1, we calculate that

o;—1 o;—1
Z H¢(zrkn,h)H(Al;;h)fl < A Z ||¢ mh ||(A’C h -1
k=o0;_1 o k=0;_1 ’
det(A%:51)
< Azlog (d t(A0i7%1))
m,
<V

where the last inequality follows from the synchronization condition (3.3).

K
Define R, = [log (ddc;(a’i)))], note that o, < K, then we can find that

det(A"")) - ( det([&”i) )
Ry >log | —=2 2 = log [ ————"——
ek (det(A;;O) ; ®\det(A7 )
We can claim that I has at most Rj synchronization episodes, otherwise
- det(AJ") det (]&‘”)
Ry, > Zlog (071) > Z log <n,1 > Ry log 3,
‘ det(A,) i) det(A )
which causes the contradiction. Thus I5 has at most Ry, intervals, then we get
det(ALK)
k
5 5 [0kl o = Rdtv7 < (10 (Goitid) 4 1)ar s
kel meM
Finally, we can bound the total summation,

Z ZH¢ Zm,h H(Ak L= Z Z H¢ Zm,h H(Ak ) -t Z Z ||¢(Zs%h)”(/&"

meM k=1 meM kel meM kel U{K}
det(AL) det(A{f )
< (1 1 M 2/ MKlog [ —22).
= ( o8 ( det(AD) > LMYy \/ o8 det()\I)

This completes the proof. O]

H Proof of the Regret Bound for CoopTS-LMC in Misspecified Setting

In this section, we prove the regret bound for CoopTS-LMC in the misspecified setting. The regret
analysis, the essential supporting lemmas and their corresponding proofs are almost same as what
we have presented in Appendix F and Appendix G. Here we mainly point out the differences of
proof between these two settings.
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H.1 Supporting Lemmas

Definition H.1 (Model prediction error). For any (m,k, h) € M x [K] x [H], we define the model
error associated with the reward 7, p,

Zﬁm,h(sv a) = Tm,h(sv CL) + Pm,hvnli,thl(sv a) - fn,h(s’ a‘)’
Lemma H.2. Let A = 1 in Algorithm 3. Under Definition E.1, for any fixed 0 < ¢ < 1, with
probability at least 1 — §, for all (m, k,h) € M x [K] x [H] and for any (s,a) € S x A, we have
‘d)(s, &) TRE = T n(5,0) = Py nVIE i1 (s, a)‘ < (5HVACs + 3HCVMEd) (s, a) | ar -1 +3HC,

where Cy is defined in Lemma F.7.

Proof of Lemma H.2. Recall from Definition E.1, we have

|Pm,hvrﬁ,h+1(s7a) - ¢(37G)T<Nh7 Vnﬁ,h+1>5‘ < Hth( | s,a) — <¢>(87a)7ﬂh(')>||1||vn]fb,h+1||oo
< 2I{H]P)m,h( ‘ 57a) - <¢(57a)a H’h()>HTV
< 2HC,
where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows from
the fact that ||V7§,h+1“00 < Hand Py, |PL—Py|lrv = 13, |P1(x) = Pa(x)| = || Py — Py ||y for two
distributions P; and P», note that here we regard distribution as infinite dimensional vector, the third

inequality follows from Definition E.1. Define A,,; = Pm)hVn’j,h+1(s,a) — ¢(s,a)" (g, V£7h+1>
thus |A, 1| < 2H(. Then we have

Pm,hvrfz,h—i—l(sv a) = ¢(s, a)T<Mh, Vyﬁ,h+1>5 + Am,l

= (s, a)T(Aﬁl,h)*1 ( Z o(s',a") (s, al)T + AI) (B Vo ni1) g + A

(st,al,s"Y)EUm n (k)

$7

:qs(s,a)T(A’;,h)‘l( 3 ¢(sl,al)qb(sl,al)T<uh,V£,h+l>$>

(sh,al,s"1)€Um (k)

+ \o(s, Q)T<Alﬁn,h)71<“hv Vinhi1)s T A

= ¢(5,a)T(A,]f,L7h)l< Z q&(sl,al)(Pm,thhhH)(sl,al)>
(st,at,

"V €Um,n (k)

—¢<s7a>T<Afﬁ,h>-1( > Am,1¢<sz,az>>

(st,al,5' )€U 1 (k)
+AG(5.0) T (Ak )" (s Vit ) s + Dt (H.1)
Based on (H.1), we can separate the following error into four parts,
d(s,a) Wy = T (8,0) = PV i (5,0)

= ¢(s, a)T(A’ﬁmh)fl Z [Tmﬁ (sl, al) + V£7h+1(s’l)]q§(sl, al) — Tm.n(8,a)

(st,at,s'V)E€Um n (k)

- ¢(5aa)T(Afn,h)_l< Z ¢(3l7al)(Pm,hVn]i,thﬁ(Slval))

(slvalvs/l)EUnz,h(k)

+ A 10(s, a)T(Afth1 ( Z o(s, al)> — AP(s, a)T(Af,hh)flOth? V,ﬁ,hH)S — Ay

(st,al,s" )€U 1 (k)
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= ¢(s, a)T(Afn,h)_l < Z ¢(Slv al) [(Vrfz,h-‘rl - ]P)m,hvrfz,h-&-l) (Sl, al)])

(Slwal 13,1)€U7n,h(k)

®

+¢<s,a>T<Afn,h>‘1( 5 rm,h<s%al>¢<s%al>)—rm,h<s,a>

(sh,al,s"1)€Um (k)

(ii)
- Ad)(sv a‘)T (Aﬁm,h) - </J’h7 V'rf],,h+1>$
(iii)
+ A 19(s, a)T(AﬁL’h)f1 < Z o(s, al)> — A (H.2)
( l

st,al, s )€U, 1 (k)

(iv)
We now provide an upper bound for each of the terms in (H.2).

Bounding Term (i) in (H.2): same as (G.11) in Appendix G.6, with probability at least 1 — 9,
we have

|Term (i)| < 3H\/gC5H¢(S’a)”(Afn,h)—l- (H.3)

Bounding Term (ii) + Term (iv) in (H.2): define A, 2 = rp, 1(s,a) — @(s,a) " 6}, then we have
|Ap,.2| < ¢ due to Definition E.1. Next we have

(ﬁ(s,a)T(Af'n,h)_l ( Z rmyh(sl,al)cﬁ(sl,al)) — Tm,n(S,a)
(st,al,

S/L)eUﬂl,h(k)

Z Tm,h (sl, al)tj)(sl, al)> — d)(s,a)TBh A

(sh,al,s") €U, (k)

= d)(sv a)T (Afn,h)il ( Z T'm,h (sl’ al)¢<sl7 al) - Afn,heh> - Am,Z

(st,al ') €U 1 (k) (sh,al,s'H) €U, 1 (K)

(/)(Sl, al)Am’z — )\Igh> — Amg

(st,al,s"V) €U, 1 (k)

= 2Ap(s,a)" (AL ) 7100 + Aad(s,a)T (AR ) ( Z o(s', al)> — Ao, (H.4)

(st,al,s'V) €U 1 (k)

(v)

where the third equality uses the definition of A,’fn,h. By Combining (H.4) and (G.13) in Ap-
pendix G.6, we obtain

|Term (ii) + Term (iv)| < vV/Ad||o(s, a)ll(ax_,y-+ +|Term (iv) + Term (v)|. (H.5)

Then we calculate that

|Term (iv) + Term (v)| = |(Am1 + Am.2)d(s, a)T (Afmh)il ( Z qﬁ(sl, al)> —(Ami1+Am2)
(st,al,s

s'V) €U, p (k)
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S |Am,1 + Am,Z‘ : ‘d)(S»a)T(Afmh)_l ( Z ¢(Sl7al)> + |Am,1 + Am,g‘
(Slvalvsll>€U7n,h(k)

< ) B ! l

SN ORI VNI DR G VL

(sh,al,s") €U, (k)

1
2

<3H<||¢(s,a)||m5n,h>1(K<k> > |\¢(s’,al)|\fM,)1> +3HC

(sl,al,s’l)EUm,h(k)
< BHCYMEKd| (s, )| (ar -1 + 3H, (H.6)
where the second inequality follows from Cauchy-Schwarz inequality and the fact that |A,, 1 +
Apo| <|Apma| + |Am2| <2H(+ ¢ < 3H(, the third inequality holds because of Cauchy-Schwarz

inequality, and the last inequality holds because (k) < M K and Lemma L.4. Substitute (H.6) into
(H.5), we have

|Term (ii) + Term (iv)| < (3H(VMKd + \/)\d)”d)(S,CI,)H(Ak -1 H3HC (H.7)
Bounding Term (iii) in (H.2): same as (G.15) in Appendix G.6, we have
|Term (iii)| < HVAd|[@(s,a)ll(ax -t (H.8)

Combine all the terms in (H.2) together: by using triangle inequality in (H.2), we combine
(H.3), (H.7) and (H.8), then set A = 1, with probability at least 1 — J, we get

[6(5.0) E s = T (5,0) = PVl (5.)|
< <3H¢&Cg +Vd+ HVd + 3HC\/MKd> p(s, @)ll(ax )1 +3HC
< (BHVAC; +3H(VMKA) (s, )l (ax )1 + 3HC.

This completes the proof. O

Lemma H.3 (Error bound). Let A = 1 in Algorithm 3. Under Definition E.1, for any fixed
0 < § < 1, with probability at least 1 — § — §2, for any (m,k,h) € M x [K] x [H] and for any
(s,a) € S x A, we have

2dlog (VN/6) 4

—ly p(s,0) < <5H\/505 +3H(VMKd+5 P 3> lp(s, a)llar, )1 + 3HC,

where Cy is defined in Lemma F.7.

Proof of Lemma H.3. We do the same process as that in Appendix G.7, and we have

k,J, ~ .
—ly n(s,0) < max |p(s,a) Ty ™ = @(s,a) W |+ |D(s,0) TR, = Tmn(s,a) = P nVih 0 (s,0)]
(i7)

(@)

Bounding Term (i): based on (G.16), for any (m,h,k) € M x [H] x [K] and (s,a) € S x A, with
probability at least 1 — §2, we have

2dlog (VN/5) 4
3(5}()+3> 165,y

max |¢(s,a)war’LJ,f’” — d)(s,a)TvAs/f,l’h| < (5
ne[N] ’
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Bounding Term (ii): based on Lemma H.2, for all (m,h, k) € M x [H] x [K] and (s,a) € S x A,
we have

(s, a)TvAVfihh —r¥(s,a) — PhVTZ,hH(S, a)| < (5H\f05 + 3H(VMKA) || (s, a)lla )T 3H(,

Combine the two result above, by taking union bound, with probability at least 1 — § — §2, we have

2dlog (VN /5)

—1F a(s,a) < <5H\/&05 +3H(VMKd+5 3
l K

4
+ 3> 1¢(s, a)ll(ax -+ +3HC.

This completes the proof. O
Lemma H.4 (Optimism). Let A = 1 in Algorithm 3 and ¢, = 1 — 2\/12?. Under Definition E.1,
for any fixed 0 < § < 1, with probability at least 1 — |C(5)|06N — 26 where |C(g)] < (3/¢)?, for all
(m,h,k) € M x [H] x [K] and for all (s,a) € S x A, we have

1%, (s, a) < ase + 3HC,
where a5 = VMK (QH\/g + Bs/NMHK)-

Proof of Lemma H.j. This proof is similar to the proof in Appendix G.8, we just prove the part
that for fixed ¢ € C(g). Recall from Definition H.1,

lfn,h(sv a) = rm,n(s,a) + Pm,thz,hH(Sa a) — Q,’ﬁ@ n(s,a).

Note that

k : T P ch T ke smn
- a , T H—h+ 1} < ma .
. (8,a) = min { irel[]z]{] o(s,a) w,’ 7{161[13[(] ¢z, a) wop

Here we define

VA T'm h(s a) + P, hV h+1( a) — ¢(s, )Tuiz]if — (A + Am,2)
k = )

V(s a)TSE (s, 0)

where A1 = ]P’mthfhh_i_l(s,a) — ¢(s,a)T<uh,V£7h+1>S,Am,2 = Tm.n(s,a) —

¢(s,a)"0,. Based on the results in Proposition F.3, we have that ci)(s,a)—rwﬁ;‘],’;’"

N(qb(s,a)—ruﬁl‘]}’;, (s,a)TxF J’”d)(s a)), for any fixed n € [N]. When |Z;| < 1, by Gaussian
concentration Lemma L.10, we have
P (s (5,0) + PtV (5,0) = 3(5,0) WhE™ < (B + Am))
= ]P’(gb(s, a)TWI:nJ’c > rn(8,0) + P p Ve pia(5,0) — (A + Am,g))

P(qs(s,afwi;%" —9(5,0) Tt rmn(5,0) + P Vi (5,0) — (Ama + Amz) — (s, )Wﬁ;i’:)

Vs ) S 6ls, ) Vs =6 (s, 0)
<¢(S va) W — (s, a) > Zk)
\/¢ (s,a TEmhq’)(s a)

exp(—Zi;/2)

<

1
>
T 2427
> ! .
2V 2em
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Consider the numerator of Z;:

’rm7h(8’ a) + Pmﬁvnlfb,h«kl (S? a’) - d)(S, a)Tan:]}I; - (Am,l + A771,2)|
< ‘Tm,h(sv a) + Pm,hvrfz,h-&-l(sv a) - ¢(Sa a’)wan,h - (Am71 + Am@)’ + |¢(5’ a)Twﬁz,h - d)(sv a)TN’:,;:]}I; .

I, Ip)

(H.9)

Bounding Term [; in (H.9): recall the proof of Lemma H.2, we do the almost same error decom-
position as (H.2) with the only difference of adding term (A1 + Ay 2)

o(s, a)TVAan,h = Tmn(s,a) — Pm,thﬁ,h-s-l(sa a) + (Am,1 + Am2)

¢<s,a>T<A'fn,h>1( 3 ¢<s%al>[<v£,h+lRn,hvﬁ,h,H)(s%al)])
(st,at,

Sll)eUm'h(k))

@

+ ¢(57Q)T(Ai€n,h)_l < Z Tm,h (Slaal)¢(slaal)> - T'm,h(saa)

(st,al,s' )€U 1 (k)

(W
— )\d)(s, a)T (Af;hh) _1<Hh7 Vrﬁ,h+1>3
(iif)
+Am,1¢)(87a)T(Aﬁl,h)71 ( Z ¢(Sl7al)> +Am,2 (H]'O)
(st,al

:8"1) €U, n (k)

(iv)
We now provide an upper bound for each of the terms in (H.10).

Bounding Term (i) in (H.10): almost same as (G.11) in Appendix G.6 with the only difference
between Pj, and P, 5, with probability at least 1 — d, we have

|Term (i)| < 3H\/&05H¢(s,a)||(A5;W),1. (H.11)

Bounding Term (ii) + Term (iv) in (H.10): we do the same calculation as that in the proof of
Lemma H.2, based on (H.4), we have

Term (ii) = ¢ (s, a)T(Afj%h)_l ( Z T (84, @) (s, al)> — Tm,n (5, @)

(st,al,s'V) €U, 1 (k)

= Ap(s,a)T (AL )T 0n + Apogp(s,a) T (AL )7 ( 3 o(s, al)) YN
(st,al,s

”’)EU‘m,h,(k)
™)
(H.12)
By Combining (H.12) and (G.13) in Appendix G.6, we obtain
|Term (ii) + Term (iv)| < VAd|[é(s, a)| (ax s |Term (iv) + Term (v)|. (H.13)

Then we calculate that

|Term (iv) + Term (v)| = |Ap 1+ Ao - ‘q&(s,a)T(Aﬁ%h)l( Z ¢(sl,al)> |

(st,al,s' )€U (k)
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< 3HC|¢(s, a)ll(ax )1 > &' ) pr s

B )
(st,al,s")€Um, n(k)

< 3HC||6(s,a) | ar, ) (IC(k) 3 H‘b(shal)H?Afmh)l)

(st,al,s"V)EUm,n (k)

< 3HCVMEA|¢(s,0) [ (as. )11 (H14)
where the first inequality follows from Cauchy-Schwarz inequality and the fact that |A,, 1 + Ay, 2] <
3H(, the second inequality holds because of Cauchy-Schwarz inequality, and the last inequality holds
because K(k) < MK and Lemma L.4. Substitute (H.14) into (H.13), we have
[Term (ii) + Term (iv)| < (3H(VMEKd + VAd)||d(s, a)|[(ar -1 (H.15)
Bounding Term (iii) in (H.10): same as (G.15) in Appendix G.6, we have
[Term (iii)| < HVAd|p(s, a)l|ar -1 (H.16)

Combine all the terms in (H.10) together: by using triangle inequality in (H.10), we combine
(H.11), (H.15) and (H.16), then set A = 1, with probability at least 1 — J, we get

’qﬁ(s, a)ka o Tm h(s,a) — m,th]Z,h-H(Sa a) + (Am,l + Am,Z)

< (5H\/21C’5 + 3HCW> llé(s,a) H(Afﬁ,h)A'

Bounding Term I in (H.9): same as the proof in Appendix G.8, we have

~ 4
|6(s,0) "5 = B(s,0) T | < Slld(s,a)llar )

So, with probability at least 1 — d, we have

P (5,0) + P Vi 1 (s.0) — @(s,a) Tl 78] < <5Hf Cs +3HCVMKd + >||¢<s a)ll(ak )1
(H.17)

Consider the denominator of Z: same as the proof in Appendix G.8, with (G.18), we have

165, a)ll g = ==l (s a)ll (H.18)

-m h

4\/
where we used the fact that )\min((Afn,h)fl) > 1/k and ||p(s, a)[ ax -1 2 1/Vk||p(s,a)|2. There-
fore, according to (H.17) and (H.18), with probability at least 1 — 4, it holds that

‘Z | T'm h(S a) +]P)m hV }L+1(8 a’) _d)( S, )TIJ’ZJ}I;
k
(s, a) TSh T (s, 0)
_ (BHVACs + 3HCVMEd + §) (5, )

WW’(S, a)llak, )1
5HVACs + 3H(VMEKd + 4

1
Bx

which implies |Z;,| < 1 when \/% =20HVdCs + 12H(VMEKd + 38
K
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Now we have already proved that, for any fixed n € [N], with probability at least 1 — §, we have

1

k,Jk,n
]P)(Tm,h(sva) + Pm,hvn}i,h+1(57 a) - ¢(5, a)Tme’; < (Am,l + Amﬂ)) > m-

By taking union bound over n € [N], with probablity at least 1 — §, we have

]P)(TILIGIaX {d) S U,)T ;J;l;m - Tm,h(sa CL) - P’rrl,hvv'lfz,h-i-l(sa Cl)} > _(A’H’L,l + Am,Q))

1 N
>1- (1 - )
o 2v/2em

/N
=1l-c ,

where ¢ =1 — Finally, with probability at least (1 — 4)(1 — cgN), for all (s,a) € S x A, we

1
2v2erm”
have

lfn’h(s, a) < 3H(.
Till now we have completed the proof of fixed ¢ € C(g). Follow the proof in Appendix G.8, we can
get the final result. O

H.2 Regret Analysis

In this part, we give out the proof of Theorem E.5, the regret bound for CoopTS-LMC in the
misspecified setting.

Proof of Theorem E.5. This proof is almost same as the proof in Appendix F.2. We do the same
regret decomposition (F.2) and obtain the same bound for Term(i) (F.3) and Term(ii) (F.4). Next
we bound Term (iii) with new lemmas in the misspecified setting.

Bounding Term (iii) in (F.2): based on Lemma H.3 and Lemma H.4, by taking union bound,
with probability at least 1 — |C(e)|cy™ — 26’ — MHK (&' 4 6'%), we have

Z Z Z * m h S’m hy Om h)ISnL 1= Sk 1} - lfn,h (Sfmh)afmh))

meM k=1 h=1

<y

M=

( — Uy (S @) + e + 3HC)

ERIEE

meM h=1
H
2dlog (VN/§') 4
< Y DY > | | 5HVACs + 3H(VMEd + 5 2dlog (VN/&) + o Gkl )l oar
3[3}( 3 ’ ’ ( m,h)
meM k=1 h=1
+ age + 6HC>
2d 1 N/§') 4
= HMKage +6H>*MK( + <5H\/&05, +3H(VMKd+5 Ogg(ﬂ‘m + 3>
K

H K
X Z Z Z H¢(Si€n,h’aﬁ1,h)|‘(Ak

h=1meM k=1

< HMKaogse+6H*MK( + <5H VdCys + 3H(VMEKd + 5 35 3
K

X i ( (ditt(l}\f))) i 1) My 2\/MK . d(i:éa%))
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_’_7

2d1og (VN5
< HMKage + 6H>MK(C + <5H¢EC5, 4 3HCVMEd+5 Ogg(ﬁ/) g)
K

X H(d(log(l + MK/d) + 1)M /7 + 2¢/MKdlog(1 + MK/d))
= O(a* H*VM (\/AMy + VE) + d H*MVE (aMy + VE)C). (H.19)

The first inequality follows from Lemma H.4, the second inequality follows from Lemma H.3, the
third inequality follows from Lemma F.12; the last inequality holds due to Lemma L.2 and the fact

that ||¢(-)||2 < 1, the last equality follows from \/% = 20H\dCs + 12H(VMEKd + 18 which we
K

define in Lemma H.4.

The probability calculation is same as that in Appendix F.2. By combining Terms (i)(ii) (iii)
together, we get that the final regret bound for CoopTS-LMC in misspecified setting is

O(d# H*VM (v/dMy + VE) + d* H2MVE (\/dMy + VE)C),

with probability at least 1 — §. Here we finish the proof. O

I Proof of the Regret Bound for CoopTS-PHE

Before getting the regret bound for CoopTS-PHE, we first present some essential technical lemmas
required for our analysis.

I.1 Supporting Lemmas

Proposition I.1. The difference between the perturbed estimated parameter vT/fr;”h and unper-
turbed estimated parameter VAvffnh satisfies the Gaussian distribution,

kn _ ~kmn ~k 2/ Ak -1
C‘7n,h - wm,h - Wm,h ~ N<07 o (Am,h) )7

where v?/fn’h = (Afn,h)il(Z(sl,al,s/l)EU,n,;L(k) [Th + Vﬂli)h+1 (s’l)]qﬁ(sl,al)) is the unperturbed esti-
mated parameter.

Next we will define some good events that hold with high probability to help prove the critical
lemmas in this section.

Lemma I.2 (Good events). For any fixed 0 < § < 1, with some constant ¢ > 0, we define the
following random events

Ghn(¢.0) = { max [[Ch | < eroVdl,

n€([N]

g(MvK’H’(;) d:ef ﬂ ﬂ ﬂ gnkm,h(Ca(;)v

meM k<K h<H

where ¢; = ¢y/log(dNM K H/5). Then the event G(M, K, H, §) occurs with probability at least 1—4.

Lemma I.3. Let A = 1 in Algorithm 2. For any fixed 0 < § < 1, conditioned on the event
G(M, K, H,)), with probability 1 — 4, for all (m,k, h) € M x [K] x [H]|, we have

> #(s',a' ) [(Vik iy = PRV 1) (54 dY)] < 3HVdDs,
(s’,a’,s’z)EUm,h(k) (A‘Ifn,h -1
—— 1/2
where we define D5 = [% log(K 4+ 1) + log (6\/§K(2H A;KCHCW\/E)) + log %}
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Lemma I.4. Let A =1 in Algorithm 2. Under Definition 4.1, for any fixed 0 < § < 1, conditioned
on the event G(M, K, H,§), with probability 1 — §, for all (m,k,h) € M x [K] x [H| and for any
(s,a) € S x A, we have

B(5,0) FE, 1 — ru(5,0) — PaVE 01 (5,0)| < SHVADs||6(5, @)l ar -1 (L1)
Lemma I.5 (Optimism). Let A = 1 in Algorithm 2 and set ¢y = ®(1). Under Definition 4.1,
conditioned on the event G(M, K, H,§), with probability at least 1 — |C(e)|c)’ — § where |C(g)| <
(3/¢)?, for all (m,k,h) € M x [K] x [H] and for all (s,a) € S x A, we have

lfkn,h(sa a) < A5€a

where As = cyoV/d + 5HVdDs = O(Hd).

Lemma I.6 (Error bound). Let A = 1 in Algorithm 2. Under Definition 4.1, for any fixed 0 < § < 1,
conditioned on the event G(M, K, H, ), with probability 1 — ¢, for all (m,k,h) € M x [K] x [H|
and for any (s,a) € S x A, we have

_l]:n,h(s,a) < CQHd”(ﬁ(s’a')H(A?n,h)il’
where ¢y = 6(1)

I.2 Regret Analysis

In this part, we give out the proof of Theorem 4.2, the regret bound for CoopTS-PHE.

Proof of Theorem 4.2. Based on the result from Lemma F.13, we do the regret decomposition first

K

Regret(K) = Z Z Vo 1(87]?,1,1) - Vn?ik (an,l)

meM k=1
K H
- Z Z Z B [<an,h(5m,h7 ')7 an,h( |sm h) - 7T ( |Sm h)>‘sm,1 = an,l}
(1)
K H
+ Z Z(Dm,k,h,1 + Do ieoh2)
(i)

K H
+ Z Z (Eﬂ* [lfn,h(sm,hv am,h)lsm,l = an,l} - lfn,h (an,h7a5n,h)) . (L.2)

(i)

Next, we will bound the above three terms respectively.

Bounding Term (i) in (I.2): for the policy 7rm n, we have
K H
Z Z Z <Qm r\Sm,h; ')a T, h( |5m,h) - an,h('|s77l,h)>|sm,1 = an,l] <0. (13)
meM k=1 h=1

This is because by definition 7Tm , is the greedy policy for Q¥

m,h*

Bounding Term (ii) in (I.2): note that 0 < QF , < H —h+1 < H, based on (F.1), for any
(m,k,h) € M x [K] x [H], we have |Dy, g.p.1]| < 2H and |D,, kn2| < 2H. Note that Dy, gp1 is

49



Reinforcement Learning Conference (August 2024)

a martingale difference sequence E[D,, . n,
with probability at least 1 — 6/3, we have

m.k,n) = 0. By applying Azuma-Hoeffding inequality,

K H
3 33 Dupna < 2V2MH?K log(6/5).

meM k=1h=1

Note that Dy, 2 is also a martingale difference sequence. By applying Azuma-Hoeffding inequality,
with probability at least 1 — 0/3, we have

K H
3 33 Dupne < 2V/2MHK log(6/5).

meM k=1h=1

By taking union bound, with probability at least 1 — 2§/3, we have

Z Z Z Do oh1 + Z Z Z Do en2 < 4/2MH3K 1og(6/9). (1.4)

meM k=1h=1 meM k=1h=1

Bounding Term (iii) in (I.2): conditioned on the event G(M, K, H, '), based on Lemma 1.6 and
Lemma 1.5, by taking union bound, with probability at least 1 — |C(¢)|c) — ' — MHKJ', we have

SN B [ (St @) [t = s 1] = 15, 4 (s 0 )
K H
Z Z Z <A6’5 - lfn,h (sfn,haafn,h>)

meM k=1 h=1

K H
<HMKAse + Z ZZC2dHH¢ Sm,ho mh ||(Ak W)t
meM k=1 h=1

IN

H
det(AK) det(A})
< HMKA515+02de_:< ( Tot(0D) > +1 Mf+2\/MK1 det(m

< HMKAye + codH - H(d(log(l + MK/d) +1)M /7 + 2/ MKdlog(1 + MK/d)).

The first inequality follows from Lemma 1.5, the second inequality holds due to Lemma 1.6, the third
inequality follows from Lemma F.12, the last inequality holds due to Lemma L.2 and the fact that

lo()l2 < 1.
Here we choose ¢ = dH\/d/MK /Ay = O(y/d/MK). Conditioned on the event G(M, K, H, '), we

have

K H
SN B [ (Smhs @mp)[5ma = sk, 1] = 15, (sh, oak, ) < O(dH? (dM /A + VAMK)),

meM k=1h=1
(L5)

with probability at least 1 — |C(g)|c)Y — ¢’ — M HKJ'. Based on Lemma 1.2, the event G(M, K, H, §")
occurs with probability at least 1 — ¢’. Therefore, (I1.5) occurs with probability at least

(1=8)(1—|C(e)|ey =6 — MHKS').
We set & = 0/6(MHK + 2) and choose N = Clog(8)/log(co) where C = O(d), then we have
(1=¢8)(1—|C(e)|eyy =6 — MHKG') >1—§/3.

Combining Terms (i)(ii)(iii) together: Based on (I1.3), (I.4) and (I.5). By taking union bound,
we get that the final regret bound for CoopTS-PHE is (Q(dH2 (dM\ﬁ +V dMK)) with probability
at least 1 — 4. O
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J Proof of Supporting Lemmas in Appendix I

J.1 Proof of Proposition 1.1
Proof. Based on (3.5), we can calculate that

e = <Afn,h>‘1( S [lnleha) + ) 1V ()] 6 a) Ae’;v")

(Sl-,alvs/l)eUWL‘h(k)

=%k, (AR )T ( > el (st al) - Agﬁ*"), (J.1)

(st,al,s'V) €U, 1 (k)

where WF = (Aﬁz,h)_l(E(suaus'l)eUm,h(k) [rn + Vn’j_’hﬂ(s’l)]gb(sl,al)) is the unperturbed es-

timated parameter. Since ei’l’" ~ N(0,0?), for | € [K(k)], based on the property of Gaussian
distribution, we have

et (s al) ~ N(O,02¢(sl,al)¢(sl,al)T),
Since {,’jn ~ N(0,0%T), we can calculate the covariance matrix of the second term in (J.1),

(A%, )7 Cov ( 3 Flreg (st al) — Agf;") (Ak )7

(st,al,s'V)E€Um, n (k)

= (Aiz,hflf*( > eha)e(sha) + ”) (ak)"
(st,al,s'V)YEUm, 1 (k)
-1

o’ (Afn,h)_lAﬁz,h(Afn,h)

UQ(Afn’h)_l.

It is obvious that the mean of the second term in (J.1) is 0. Thus, we have
k, =k, =k 20ak 1
sz = wm% —Won ™~ N(O,a (Am’h) )
This completes the proof. O]

J.2 Proof of Lemma 1.2

Proof. Recall that in Proposition 1.1, we have
{eint ~n(0.02(ak,) 7).
By Lemma L.10, for fixed n € [N], with probability at least 1 — §, we have
HCLZT;LHA,C < cy/do?log(d/9).
m,h
By applying union bound over N samples, we have

P(T?é% [¢hallas < ev/do? log(d/2)) = 1 - N6.

Now we define ¢; = c\/log(dNM K H/5), and we define the event

def

G (€. 0) = {7{2% 1<l | < crovd}.
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Thus for any fixed m, h and k, the event g,’;,h(c, d) occurs with a probability of at least 1 —§/MKH.
By taking union bound over all (m, h, k) € M x [H] x [K], we have

P(G(M, K, H,J)) :IP’< N NN gﬁ,h(¢,5)> >1-04.

mEME<K h<H
This completes the proof. O
J.3 Proof of Lemma 1.3
Proof. Based on the result in Lemma F.4, for any (m, h, k) € M x [H| x [K]|, we have

|WE, Ll < 2H\/Mkd/X.

By recalling the construction of Afn’h, it is trivial to find that Ani, (Afn’h) > . Conditioned on the
event G(M, K, H,0), we have

VG < I6iills,, < eV,

Then by triangle inequality, for all n € [N], we obtain the upper bound

[WE || = ([ W5 + ¢ || < 2H/MEA/A + cro/d/.

Based on the result from Lemma L.7 and Lemma L.9, we have that, for any £ > 0, and for all
(m,k,h) € M x |[K] x [H], with probability at least 1 — §, we have

Z ¢(s',d) [(Vrﬁ,thl - thrﬁ,thl) (s',a")]

(st,al,s'Y )€U 1 (k) (Ak )1
1/2
3(2H\/Mkd/\ A d/A 1 22
§<4H2l;lbg<kj\—)\)+dbg< ( \/7/6—'_010 / )>+log5 +8k)\€>

0

1/2
d k 3(2H/ Mkd/\ Vd/A 1 2V 2k
SQH[2log<+)\>+dlog< ( /€+CIU / )>+log ] + \\[[\5.

Here we set A\ =1, = with probability at least 1 — §, we have

_H
2v/2k’

> o) [(Vimner = BaVinnsd) (51, a')]

(st,al,s'V)EUm,n (k) (A’:ﬂvh)*1
1/2
1 6v2K (2HVMKd + d 1
<2H\/ﬁ[210g(K+1)+log< V2K i Cla[))—f—logd +H

< 3HVdDjy,

— 1/2
where we define Ds = [% log(K + 1) + log (GﬂK@H A;K‘Hc“’ﬂ)) + log ﬂ . Here we finish the
proof. [

J.4 Proof of Lemma 1.4

Proof. This proof is almost same as the proof of Lemma F.8 in Appendix G.6. The only difference
is the Term (i) in (G.10). Here based on Lemma 1.6, conditioned on the event G(M, K, H,d), with
probability 1 — §, we have

Term (i) < 3HVADs | d(s.0)]|ax )+
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Finally, conditioned on the event G(M, K, H, ), with probability 1 — ¢, for all (m, k, h) € M x [K] x
[H] and for any (s,a) € S x A, we have

D(s,a) "W, — (s, a) = PaVig 4 (s,a ‘ (3BHVAD;s + HVd + \/g)||¢(57a)||(1v;m)—1
<5H \/aDallqb(&a)H(M )1

n,k

Here we finish the proof. O

J.5 Proof of Lemma 1.5

Proof. Recall from Definition 4.1, we have

def
Th(sv a) + PhV£7h+l(sa (1) = ¢(57 a)Tah + ¢)(57 a)T<p‘hv ani,h+1>5 = ¢(S, a)TWﬁi,ha

where wh ;= 9h+<ﬂhavnﬁ,h+1>5- Note that max{||u(S)|, |0x]]} < v/d and VE i <H-h<H,
thus we have

||W'lr€nh|| < 6wl + ||<uhvvnli,h+1>3||
<Vd+ HVd
< 2HVd.

Then we define the regression error Awfmh = an,h - VAmeh. For any (m, h,k) € M x [H] x [K] and

any (s,a) € S x A, we have
Ly (s:0) = 1 (s,0) +PaVis iy (s,0) = Q1 (s, 0)
+
= ru(s,a) +IP’hVn’2 ny1(s,a) —min {H —h+1, m%{] ¢(S,G)T (6\"5@ L+ C:;T;L)}
' ne ’ )

< e {(s,0) Tk~ (H — ot 1),0(s,0) Twh — max 9(s.)” (W04 €473) }

< max {0, ¢(s, a) TAWS,  — max ¢(s,0) T | (1.2)

where the last inequality holds because |r,| < 1 and Vn’i)hﬂ < H — h, this indicates rp(s,a) +
P,VE hi1(s,a) = @(s, a)'wk . < H —h+1. Note that ||¢(s a)||(Ak -1 < V1/A|o(s,a)|| <1 for
all ¢(s,a). Define C(e) to be a e-cover of {¢ | [&llar -1 < 1}. Based on Lemma L. 8, we have

Ce)] < (3/e)™.
First, for any fixed ¢(s,a) € C(e), we have
{oT¢hn} ~ N (0,0 gl20s )0)-
Use the property of Gaussian distribution, we obtain
k,n
P(@TCN — olldliar ) = 0) = @(-1).
By taking union bound over n € [N], we obtain

}P’( max {o7¢En — ollllar, )1}>0) >1-(1-o(-1))N =1-a(1)N =1 .

ne[N
By applying union bound over C(¢), with probability 1 — |C(e)|c}, for all ¢ € C(g), we have

max {67¢nh —oldllar )1} =0. (1.3)
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Then, for any ¢ = ¢(s,a), we can find ¢’ € C(e) such that [[¢—¢'|| (ax -1 < €. Define Ap =p—¢/,
we have 1

¢Tck n ¢TAWW h = ¢’TC§£’ (ﬁ/TAWm nt A¢TC A¢TAWm h
> ¢k~ llef lea, ) HAWthAk 1Al - I HAk
—1Agllar )]l AwW

1, h

bl

> ¢’TCk S ”(A’;’Yh)*lHAWm,hHAk

m,h

(¢S + 8wkl )

1, h

(3.4)
Conditioned on the event G(M, K, H,§), we have
[rss) hHAk LS croVd.
For any vector x € R?, we have
XTAmeh =x! (an,h — ﬁ\vfmh)
=x' (Alﬁn,h)il (Afn,hwlfn,h - ( Z [rh + V,’,fhh_,_l (s/l)} ¢(sl, al))>
(st,al,s'V)YEUm,n (k)
) K (k) . K (k) l
B ( Z ¢(sl,al)¢(sl,al) meh + )\Wﬁ%h — ( Z [rh + Vn]i)h_ﬂ (s’ )]qb(sl,al)))
1=1 =1
K(k)
=x' (Aﬁq,h)_l (an,h + ( [thyﬁ,hﬂ - ani,h+1 (3/1)]¢(Sl’ al)>>,
=1
where the third equality holds due to the definition of A% ,. We set x = A% , AwF . By using
Cauchy-Schwarz inequality, we have
2 T W
awh, 2 = Awk,, <wffmh ; ( S [BaVh gt - vgg,hﬂ(slz)w(sz,al)))
" =1
K(k)
< HAwlfn,hHAk L wan,h + (Z [thrﬁ,hﬂ - Vrlri,h+1(5/l)]¢($l;al)> ar ) .
e =1 Am,h, -

This indicates that with probability at least 1 — 4, for all (m, h, k) € M x [H| x |K], we have

K(k)

Z [th’fz,h+l - Vvﬁ,h+1(31l)]¢(5l,al)

=1

1A% allax

< Hw
m,h

mwllar T

(A%, )
< ||wk, .|| + 3HVdD;
< 5HVdDs,

where the second inequality holds because of Lemma I1.3. Then for all (m,h, k) € M x [H] x [K],
with probability at least 1 — d, (J.4) becomes

max {¢T ¢TAW h} > max {d)/TC —||¢ ”(Am - 1HAwthAk } —g(cla\/g+5H\/gD6)_

ne[N €[N] v, h

Now we choose o = O(H+/d) and guarantee that o > 5HVdDs > ||AwE,, || ar » this is achievable
h

through calculation. Define As = ¢io0v/d+ 5HVdDy = (Hd) Then, for all (m, h, k) € M x [H] x
[K], with probability at least 1 — ¢, we have

n T
max {p7¢ —pTAWE ) > max {¢' C - a||¢’||(A;:M)71} — Agse.
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Recall from (J.3), by taking union bound, with probability at least 1—|C(g)|c) — 4, for all (m, h, k) €
M x [H] x [K] and for all (s,a) € S x A, we have

max {&7 ¢~ STAW ) > e

Finally, recall from (J.2), we have, with probability at least 1 — |C(g)|c)Y — &, for all (m,h, k) €
M x [H] x [K] and for all (s,a) € S x A, we have

Zﬁ%h(s,a) < Agse.

This completes the proof. O

J.6 Proof of Lemma 1.6

Proof. Recall the definition of model prediction error in Definition F.1, we get

_llrcn,h(sv a) = Qﬁz,h(sv a) - Th(S, a) - thrﬁ,h—i—l(& a)

+
= min{ mz[iji](] ¢(s,a)" (VAan nt Cfn’rz),H —h+ 1} —rp(s,a) =P VE 1 (s,a)
ne ’ ? ?

k,n

< max 3(s,0) " (W + G ) — (s @)~ BaVik (s, 0)
ne ’ ’ ’

max (5, )" €5 — (7n(s,0) + PaV i (5,0) = (s, 0) ')

ri(s,0) + BV (s @) = bls,0) T+ max [0(s,0) T¢I

IN

Based on Lemma 1.4, conditioned on the event G(M, K, H, §), with probability 1—4, for all (m, k, h) €
M x [K] x [H] and for any (s,a) € S x A, we have

‘¢(5,G)T"A"§n,h —rn(s,a) = PuVoy (s, a)‘ < 5HVdDs||(s, G)H(A';M)—l (J.5)

Conditioned on the event G(M, K, H, ), for all (m, h, k) € M x [H] x [K] and for any (s,a) € S x A,

we have

max |p(s,a)T¢iT] < 010\/(7i||¢(87a)||(1\';mh)71~ (J.6)

Combine (J.5) and (J.6), then use o defined in Lemma 1.5. Conditioned on the event G(M, K, H, ¢),
with probability 1 — 4§, for all (m, h, k) € M x [H] x [K] and for any (s,a) € S x A, we get

,lfn,h(S, a) < (5H\/QD5 + Cl”ﬁ) (s, a)”(A'fn W
< coHd| (s, a)ll(ax ,)-1s

where ¢; = O(1). Here we completes the proof. O

K Proof of the Regret Bound for CoopTS-PHE in Misspecified Setting

In this section, we prove the regret bound for CoopTS-PHE in the misspecified setting. The regret
analysis, the essential supporting lemmas and their corresponding proofs are very similar to what
we have presented in Appendix I and Appendix J. Here we mainly point out the differences of proof
between these two settings.
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K.1 Supporting Lemmas
Lemma K.1. Let A =1 in Algorithm 2. Under Definition E.1, for any fixed 0 < § < 1, conditioned

on the event G(M, K, H,9), with probability 1 — §, for all (m,k,h) € M x [K] x [H| and for any
(s,a) € S x A, we have

b(5,a)TWE, = ri(s,a) — PAVE 41 (s, a)’ < (SHVAD; + 3HCVMEA)||(s,a)l|ax ) +3HC,
(K.1)

where Dy is defined in Lemma, I.3.

Proof of Lemma K.1. This proof is almost same as the proof of Lemma H.2, with the only difference
in bounding Term(i) in (H.2). Here (H.3) becomes

Term(i)| < 3HVdDs|¢(s,a)ll(ax )1-

Finally we can get the desired result. O
Lemma K.2 (Optimism). Let A\ = 1 in Algorithm 2 and set ¢ = ®(1). Under Definition E.1,
conditioned on the event G(M, K, H,§), with probability at least 1 — |C(¢)|c)’ — § where |C(g)| <
(3/¢)?, for all (m,k,h) € M x [K] x [H] and for all (s,a) € S x A, we have

1%, n < Ase + 3HC,
where A5 = cyov/d + 5H\dDs = O(Hd).

Proof of Lemma K.2. This proof is similar to the proof in Appendix J.5. In the previous part, we
have defined

Am,l = Pm,hvrthrl(sa a) - ()b(sv a)T<ll’hv Vnﬁ,h+1>5’
A171,2 = Tm,h(sv CL) - ¢(8a a)T0h7

where |Ay, 1] < 2H( and |Ay, 2| < ¢. Thus we have
vah(s’ a) + Pmﬁvnlfb,h«kl (S? (L) = ¢<s7 a)wan,h + ATH,I + Am,Qa

where w’;@’h = <ll’h7vn’2,h+1>5 + 6. Then we define Aw’;@,h = w’;@’h — Wk .. For any (m,h,k) €
M x [H] x [K] and any (s,a) € S x A, we have

Lo (5,0) = P n(5,0) + P n Vi v (s,0) — Q4 (s,a)
+
=rmn(s,a)+ ]P’thfoL ha1(s,a) — min {H —h+1, m?g[(] o (s, a)T (vAv’ﬁn nt+ CZZ)}
? ne ’ ?
< max {¢(s,a)—rwfmh —(H—=h+1),¢(s, a)Twﬁ%h — max ¢(s, a)T(VAvfn’h + Cﬁﬁl)}

n€e[N]
+ Am,l + Am,Q

< max {0, ¢(s, ) TAw}, , — max 6(s, )¢ |+ BHC (K.2)

In Appendix J.5, we have proved that with probability at least 1 — |C(g)|c)Y — 6, for all (m, h, k) €
M x [H| x [K] and for all (s,a) € S x A, we have

max {(Z)TC:{T; — ¢ AwF, h} > —Ase.
ne[N] ’ ’
Substitute it into (K.2), we can get the final result. O
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Lemma K.3 (Error bound). Let A = 1 in Algorithm 2. Under Definition E.1, for any fixed 0 < ¢ <
1, conditioned on the event G(M, K, H,§), with probability 1 — 4, for all (m,k,h) € M x [K]| x [H]
and for any (s,a) € S x A, we have

—1% 4(s,a) < (coHd+ 3H(VMEKA) || (s, a)ll(ary-r + 3HC,
where ¢, = O(1) is same as that in Lemma L.6.

Proof of Lemma K.3. Similar to the proof in Appendix J.6, using (J.6) in Appendix J.6 and (K.1),
we have

k,n
m,h

) < | )+ BV i (5,0) = bls,0) W, | + ma [ (s, )¢
< (5HVADs + 3H(VMKd + ¢10Vd) || (s, a)||w) 4+ 3H(

< (c2Hd+3HCVMEA)||$(s,a) || (ar)-1 + 3HC,
where ¢, = O(1) is same as that in Lemma 1.6. Here we completes the proof. O

K.2 Regret Analysis

In this part, we give out the proof of Theorem E.3, the regret bound for CoopTS-PHE in the
misspecified setting.

Proof of Theorem E.3. This proof is almost same as the proof in Appendix 1.2. We do the same
regret decomposition (I.2) and obtain the same bound for Term (i) (I.3) and Term (ii) (I.4). Next
we bound Term (iii) with new lemmas in misspecified setting.

Bounding Term (iii) in (I.2): conditioned on the event G(M, K, H,§’), based on Lemma K.3 and
Lemma K.2, by taking union bound, with probability at least 1 — \C(s)|c6N — ¢ — MHKY', we have

Z ZZ L mh(sm By Q)| Sm,1 *Sk 1] *lﬁz,h(sfn,haafn,h))

= HMKAge +6H*MK( + (c2dH + 3H(VMK Z > ZH¢ S ak ||(Ak »

h=1meM k=1 )
< HMKAge+6H*MKC + (codH + 3H(VMKd)

X Z ( (‘fiig) +1 Mf+2\/MKlog d(ftt((j;?)
< HMKA(;/s +6H2MKC + (codH + 3H(VMKA)
H(d(log(l + MK/d) + 1)M /7 + 2¢/MKdlog(1 + MK/d))
= O(a} HAVM (Va7 + VE) + dH* MVE (Va7 + VE)C).

The first inequality follows from Lemma K.2, the second inequality holds due to Lemma K.3, the
third inequality follows from Lemma F.12, the last inequality holds due to Lemma L.2 and the fact

that || (-)||2 < 1, and again we choose ¢ = dH/d/MK /A5 = O(\/d/MK).
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The probability calculation is same as that in Appendix 1.2. By combining Terms (i)(ii)(iii)
together, we get that the final regret bound for CoopTS-PHE in misspecified setting is

Regret(K) = O(d} H*VM (\/aMr + VE) + dH2MVE (\/aMy + VE)C),

with probability at least 1 — §. Here we finish the proof. O

L Auxiliary Lemmas

Lemma L.1. (Abbasi-Yadkori et al., 2011, Lemma 11) Let {X;}§2, be a sequence in R, V is d x d
positive definite matrix and define V, =V + ZZ=1 X, X/[. Then, we have that

det(V,,) ~ 9
1 —— | < Xe|ls-1 -
(v ) < 2 Xl
Further, if ||X¢||2 < L for all ¢, then
n —
Zmin {1, X135 } < 2(logdet(V,) — logdet V) < 2(dlog ((trace(V) + nL?)/d) — log det V),
t—1
t=1

and finally, if Ay (V) > max (1, L2) then

" det(V,,)
2 . < = n
2Pl = 2108 5,

t=1

Lemma L.2. (Abbasi-Yadkori et al., 2011, Lemma 10) Suppose X1, Xo,...,X; € R? and for any
1<s<t, || Xslla <L Let Vi = XTI+ ', X X for some A > 0. Then,

det (Vi) < (A +¢L?/d)*.

Lemma L.3. (Ishfaq et al., 2021, Lemma D.5) Let A € R%? be a positive definite matrix where
its largest eigenvalue Apax(A) < A. Let x1,...,xi be k vectors in R<. Then it holds that

k
i=1

Lemma L.4. (Jin et al., 2020, Lemma D.1) Let A; = AI+ Z’;:l ¢id; , where ¢; € R? and X\ > 0.
Then it holds that

k 1/2
< m(z ||xi||ii) .
=1

t

> é] (M) < d.
i=1
Lemma L.5. (Ishfaq et al., 2024, Lemma D.1) Given a multivariate normal distribution X ~
N (0, %), we have,
1
Pl < Fu®) 215
Lemma L.6. (Horn & Johnson, 2012) If A and B are positive semi-definite square matrices of the

same size, then

0 < [tr(AB)]? < tr (A?) tr (B?) < [tr(A)]*[tr(B)]*.
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Lemma L.7. (Jin et al., 2020, Lemma D.4) Let {s;}52, be a stochastic process on state space
S with corresponding filtration {F;}°;. Let {¢;}3°; be an R?-valued stochastic process where
¢; € Fi—1, and ||¢;]| < 1. Let Ay = NI+ Zle ¢i¢; . Then for any § > 0, with probability at least
1—4, forall £ >0, and any V € V with sup,cs |V (s)| < H, we have

2

d k4 N. 8k2e2
< 4H?| =1 _ log —=

ATl {2og( A >+Og5}+ A

k

k
Z di{V(si) —E[V(s;) | Fi-1]}

where N is the e-covering number of V with respect to the distance dist(V, V') = sup,cg |V (s)—
Vi(s)|-

Lemma L.8. (Vershynin, 2018, Covering number of Euclidean ball) For any ¢ > 0, A, the e-
covering number of the Euclidean ball of radius B > 0 in R¢ satisfies

d d
2B 3B
Ne < <1+> < () :
€ €
Lemma L.9. Let V denote a class of functions mapping from S to R with the following parametric
form

V() = rgleaj( { min { 7{2?137(] d)(a a)Twn’ H—h+ 1}+}’

where the parameter w” satisifies [|[w”|| < B for all n € [N] and for all (z,a) € S x A, we
have ||¢(z,a)|| < 1. Let Ny, be the e-covering number of V with respect to the distance dist

(V,V') = sup,es |V(s) — V'(s)|. Then
3B\"
<|— .
NV7E - ( € >

Proof. Consider any two functions V1, V2 € V with parameters {w{ },c;n) and {wh},,c|n] respec-
tively. Then we have

dist(Vi, Va) < sup | max ¢(s,a) ' wt — max ¢(s,a) wh
s,a | n€[N] née[N]
< T J—
< s:li) 7?61?13[(] (d)(&a) wi — ¢(s,a) W2>

< sup max |¢Tw? — ¢Tw§|
gl <1 mEN]

= max sup ’QST(W’{—W’;M

n€[N]|p)<1

n _ n
Sﬁ?ﬁ]uiﬂglﬂwﬂwl w3 ||

< max [[wi — w3

Let Ny . denote the e-covering number of {w € R? | |[w| < B}. Then, Lemma L.8 implies

d d
2B 3B
ez (1+28)' < (32"
€ €
For any V; € V, we consider its corresponding parameters {W?}ne[ N7~ For any n € [N], we can find

wi such that ||[w] —wy|| < ¢, then we can get V, € V with parameters {w} },,c(x]. Then we have
dist(V1, Vo) < max, ey [W] — wi|| < e. Thus, we have,

d d
NV,E SNW,E < <1+2(;:B) < (?)-B> .

€

This completes the proof. O
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“Somsmce =

Figure 2: The N-Chain environment (Osband et al., 2016a).

Lemma L.10. (Abramowitz & Stegun, 1968) Suppose Z is a Gaussian random variable Z ~
N (p,0?), where o > 0. For 0 < z < 1, we have

1 22 1 22
P(Z >u+ zo) > e 2, PZ<pu—=zo)> ez .
(Z > p+20) T (Z <p—zo) Wi

And for z > 1, we have

e—z2/2 - P(|Z | - ) - e—z2/2
— zo .
227 T K T o7
Lemma L.11. (Ishfaq et al., 2021, Lemma D.2) Consider a d-dimensional multivariate normal
distribution N(O,AA’l) where A is a scalar. Let m1,19,...,mny be N independent samples from
the distribution. Then for any § > 0

P (max mjlly < chAlog(d/é)) >1— Mo,

JE[M]

where ¢ is some absolute constant.

Lemma L.12. (Abbasi-Yadkori et al., 2011, Lemma 12) Let A, B and C be positive semi-definite
matrices such that A = B + C. Then we have that

< x " Ax < det(A)
u .
x;é% xBx ~ det(B)

M Additional Experimental Details

We conduct comprehensive experiments investigating the exploration strategies for DQN under a
multi-agent setting. For all the @ networks in our experiments, we use ReLU as our activation
function. Given that all experiments are conducted under multi-agent settings unless explicitly
specified as a single-agent or centralized scenario, we denote our methods: CoopTS-PHE as "PHE'
and CoopTS-LMC as "LMC" in experimental contexts and figures. In addition to our methods,
the baselines we selected are either commonly used (DQN (Mnih et al., 2015), DDQN (Hasselt
et al., 2016)) or with competitive empirical performance (Bootstrapped DQN (Osband et al., 2016a),
NoisyNet DQN (Fortunato et al., 2018)). Both Bootstrapped DQN and NoisyNet DQN are ran-
domized exploration methods. Bootstrapped DQN uses finite ensembles to generate the randomized
value functions and views them as approximate posterior samples of @-value functions. NoisyNet
DQN injects noise into the parameters of neural networks to aid efficient exploration. Note that we
run all our experiments on Nvidia RTX A5000 with 24GB RAM.

M.1 N-chain

We commence by presenting the comprehensive results for N = 25 in Figure 3, illustrating that
our randomized exploration methods exhibit greater suitability in realistic scenarios characterized
by an increasing number of agents. This superiority is particularly evident under two potential
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Table 2: The swept hyper-parameters in N-Chain for PHE

Hyper-parameter Values

Learning Rate 7 {1071,3x1072,1072,3x 1073,1073,3 x 107*, 10~}
No Target Networks {1,2,4,8}

Noise std {0,10741073,1072,101, 1.0}

Noise Regularization {0,107%1073,1072,1071, 1.0}

Table 3: The swept hyper-parameters in N-Chain for LMC

Hyper-parameter Values

Learning Rate 7, {1071,3x1072,1072,3x 1073,1073,3 x 1074, 10~}
Bias Factor « {1.0,0.1,0.01}

Inverse  Temperature {102, 10*,10°,10%,101°}

Br

No Update Jj, {1,4,16, 32}

Table 4: Hyper-parameters used in the N-chain

Hyper-parameter PHE LMC DQN BootstrappedNoisy DDQN
DQN DQN
NN size 32 x 32 32 x 32 32 x 32 32 x 32 32 x 32 32 x 32
Task Horizon 19/34 19/34 19/34 19/34 19/34 19/34
Discount Factor A 0.99 0.99 0.99 0.99 0.99 0.99
Learning Rate 3 x 1072 1074 3x1072 3x107?2 3x1072 3x1072
Hidden Activation  Relu Relu Relu Relu Relu Relu
Output Activation  Linear Linear Linear Linear Linear Linear
No Update Ji 1 4 1 1 1 1
No Target Net- 2 1 1 4 1 1
works
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Figure 3: Comparison among different exploration strategies in N-chain with N = 25. All results
are averaged over 10 runs.
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Figure 4: Rewards with averaged over 10 independent runs for different numbers of agents among
algorithms without communication. Note that when m = 1, one agent indicates a centralized setting.

circumstances: (1) where there are more limitations on computation or data access from each source
in the real world, and (2) when parallel learning from multiple sources can significantly enhance
runtime efficiency.

Subsequently, we provide a more comprehensive study to investigate the exploration capabilities
facilitated by parallel training. Preliminary experiments are conducted with a reduced state space,
specifically considering N = 10. The study aims to investigate exploration capabilities across varying
agent counts, specifically within the set m € {1,2,3,4}.

Performance Consistency with Varying m In the investigation detailed in Figure 4, we explore
parallel learning without inter-agent communication. Consequently, while multiple agents engage in
simultaneous policy learning, each agent independently formulates its policies without the exchange
of transition information. The discernible trend in this scenario is that an increase in the number
of agents sharing the total episodes results in a slower rate of policy learning. Notably, despite

this temporal discrepancy, all learning trajectories eventually approximate convergence towards the
optimal dashed line.

Different Synchronization Conditions To further demonstrate the efficiency of parallel learn-
ing with communication, we compare different synchronization conditions in Section 3.1. Specifically,
we denote synchronization (1) in every constant step as constant, (2) following exponential function
as exponential, and (3) based on (3.3) as linear. To have a fair comparison among different synchro-
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Figure 5: Different number of agents m with different synchronization strategies as well as the
single-agent and no communication settings in N = 10. Top: PHE, Bottom: LMC
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Figure 6: Performance with different number of agents m compared with bandit-inspired exploration
in N = 10.
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Figure 7: Computation time with different exploration strategies.
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Figure 8: Hyper-parameter tuning of inverse temperature (inv temp) S, for LMC with N = 25:
(a) centralized setting m =1 (b) 2 agents without communication m = 2.

nization conditions, we firstly record the empirical number of synchronization via linear condition
in average, and then we consider constant value for constant condition and select proper base b
for exponential condition with a similar number of synchronization. Figure 5 illustrates that any
synchronization condition can improve learning efficiency but still with centralized learning as an
upper bound.

Performance Compared with Bandit-inspired Methods Since one of our proposed random
exploration strategies, PHE is a variant of approximation TS, it is fair for us to investigate the
performance of other exploration methods from bandit algorithms with the integration of DQN. We
mainly compare both TS and UCB under neural network (i.e., NeuralTS (Zhang et al., 2021) and
NeuralUCB (Zhou et al., 2020)) and linear (i.e., LinTS (Agrawal & Goyal, 2013a) and LinUCB (Li
et al., 2010)) settings. We show that a performance gap exists between linear approaches and other
neural-based methods even in a small-scale exploration problem with N = 10 in Figure 6.
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Figure 9: Different buffer size with N = 25 between single agent (centralized) and 2 agents (no
communication). Note that the full buffer indicates the size of the total episodes. Each agent in no

communication setting only occupies half of the total episodes. Therefore, two curves (full buffer,
half buffer) in no communication are consistent.
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Figure 10: Different synchronization strategies as well as the single-agent and no communication
settings in N = 25.
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Figure 11: Gap reduction improvement with prioritized experience replay for parallel learning with-
out communication. Note that the same settings with standard and prioritized experience replay
are in the same-ish color.

Computational Time We have demonstrated that both NeuralTS and NeuralUCB exhibit con-
vergence to performance levels comparable to our proposed randomized exploration strategies (i.e.,
PHE and LMC) when considering the case of N = 10 with m = 4 under the synchronization condi-
tion (linear), as outlined in (3.3). However, we argue that the scalability of both methods is limited
due to their associated computational costs. To substantiate this assertion, we conduct experiments
across all methods including DQN baselines with N = 10 and m = 4 over 10* steps with varying
neural network sizes, such as [32, 32, 32], which signifies three layers with 32 neurons in each layer.
Importantly, the length of the chain N has no bearing on the running time.

In Figure 7, we show the computational time of all methods under different neural network sizes.
The solid lines represent the average computational time over 10 random seeds and the shaded area
represents the standard deviation. We observe that NeuralTS and NeuralUCB have heavy running
time consistently with varying network sizes. Although the computation time of LMC is still higher
than other remaining approaches, we observe that it maintains a similar computation time with
different neural network sizes, which can still be scaled up to more complex problems with larger
neural networks.

Hyper-parameter Tuning of Inverse Temperature 5,, ; Subsequently, we scale the problem
to N = 25. Given the extended horizon, the demand for exploration intensifies, leading us to
conduct hyper-parameter tuning for the inverse temperature parameter 3, ; in LMC, as illustrated
in Figure 8. It is crucial to note that the efficacy of learning is significantly influenced by the
exploration capacity in both centralized learning and parallel learning without communication. Our
observations reveal a discernible gap between centralized and parallel learning, a departure from the
pattern observed in Figure 4. We posit that the disparity may stem from issues associated with
the replay buffer size in off-policy RL algorithms. Specifically, when the replay buffer exhausts its
capacity for new transitions, the incoming transition replaces the oldest one.

Hyper-parameter Tuning of Buffer Size Therefore, we present a performance comparison
between a solitary agent (m = 1) and a scenario involving two agents (m = 2) in Figure 9 with
different buffer sizes. Full buffer and half buffer indicate the replay buffer’s capacity to store the
complete set and half of the transitions during training, respectively. We observe that the learning
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Figure 12: Illustrations of 4 different environments in Super Mario Bros task.

process is more efficient with less buffer size in a centralized setting because having an excessively
large replay buffer may potentially impede the efficiency of the learning process. Furthermore, the
gap between centralized setting and paralleling learning still exists among different buffer sizes.
Therefore, we focus on the setting of less buffer size with different synchronization conditions in
Figure 10. We conclude that linear condition results in competitive performance in both PHE
and LMC in the N-chain problem and we report all exploration strategies with linear condition in
Appendix A.1.

Ablation Study of Sampling Mechanism To reduce the reward gap, we adopt a better sam-
pling mechanism in the replay buffer with prioritized experience replay (PER). In Figure 11, parallel
learning without inter-agent communication can increase reward with PER. However, centralized
learning with PER improves faster convergence with similar performance and the trends for linear
condition curves are similar. Therefore, the gap between centralized and parallel learning without
communication is reduced with PER. Note that the main experimental results in Figure 1 are based
on standard experience replay because standard sampling in linear condition has similar performance
against PER with faster training time.

M.2 Super Mario Bros

While cooperative parallel learning enhances training efficiency through data sharing, challenges
emerge when handling data from devices capturing images or audio due to privacy concerns in
real-world applications. In response, our approach extends randomized exploration strategies to a
federated reinforcement learning framework as shown in Algorithm 4, from Algorithm 1, which incor-
porates parameter synchronization among ) neural networks rather than relying on the conventional
practice of sharing agents’ transitions in Line 14 in Algorithm 4. Note that the synchronization fol-
lows the format as in Algorithm 1 to update Q functions with horizon h € H. However, in practice,
we can directly update the weight of the neural network to reduce the communication cost.

The training process unfolds within a federated reinforcement learning framework, wherein local
updates and global aggregations are iteratively executed (Jin et al., 2022a). Specifically, each agent
iterates through multiple local updates of its value function, followed by server-mediated averaging
of these functions across all agents, constituting a form of parameter sharing. Note that the transi-
tions are not accessible among agents, leading us to directly synchronize all agents with parameter
sharing every constant local iteration instead of synchronization condition in (3.3). We use the same
architecture for all the experiments in the Super Mario Bros task with the preprocessed images as
the input states and 7 discrete actions in action space.

Particularly, we construct 3 convolutional neural network layers with width [32, 64, 32], followed by
2 linear layers with the output of action space in the @ network.

67



Reinforcement Learning Conference (August 2024)

Algorithm 4 Unified Algorithm Framework for Randomized Exploration in Federated Learning

1: for episode k =1,..., K do
2:  for agent m € M do
3 Receive initial state s’fn,l.
k
4 Vo me1(0) < 0.
5: {QF ,.(-,)}HL, «+Randomized Exploration < Algorithm 2 or Algorithm 3
6 for step h=1,..., H do
Kk k k
7 Ay, 4 ATGMAX e 4 Qm’h(smyh,a).
8 Receive sF ;1 and ry.
9: if Condition then
10: SYNCHRONIZE <« True.
11: end if
12: end for
13:  end for
14:  if SYNCHRONIZE then
15: for step h=H,...,1 do
~k 1 M k
16: Qm — M Zm:l Qm7h
k Yk
17: moh & Qmops VM
18: end for
19:  end if
20: end for
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Figure 13: Evaluation performance at different cities in building energy systems
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M.3 Thermal Control of Building Energy Systems

BuildingEnv encompasses the regulation of heat flow in a multi-zone building to sustain a desired
temperature setpoint. We focus on one pre-defined building called "office small" in different cities
with varying weather types, i.e., Tampa (Hot Humid), Tucson (Hot Dry), Rochester (Cold Humid),
and Great Falls (Cold Dry). Each episode is designed to span a single day, comprising 5-minute
time intervals (H = 288, 7 = 5/60 hours).

Observation Space The state at time step t, denoted as s(t) € RM*+4, encompasses the tem-
peratures Tj(t) of each zone, where i € M, along with four additional properties: Q“H!(t), QP(t),
Tg(t), and Tg(t). Specifically, Q1 (t) represents the heat gain from solar irradiance, QP () denotes
the heat acquired from occupant activities, while T¢(t) and Tg(t) signify the ground and outdoor
environment temperatures, respectively.

Action Space The continuous version of the action a(t) € [~1,1]* controls the heating of M
zones. However, since our randomized exploration strategies use DQN (Mnih et al., 2015) as the
backbone, we adopt the multi-discrete action space defined in Yeh et al. (2023), which is a vector
of action spaces. Then we convert the multi-discrete action space to a single discrete action space
with action mapping.

Reward Function The primary objective is to minimize energy consumption while ensuring the
maintenance of temperature within a specified comfort range. Therefore, the reward is penalized
with both temperature deviations and HVAC energy consumption as follows:

r(t) = =(1 = B)lla(®)ll2 = BIT o< (t) = T(t)l2,

where Tte79¢t(t) = [T1*"9°(t), Ty"" 9 (t), ..., Tha" 9 (t)] are the target temperatures and T(t) =
[Ty (t), Ta(t), ..., Tar (t)] are the actual zonal temperatures. The parameter § is the trade-off between
the energy consumption and temperature deviation penalties.

We execute experiments following the united framework in Algorithm 1, synchronizing every constant
number of steps across diverse weather conditions in varying cities. We choose a 2-hidden layer neural
network with width [64,64] for the @ network. Subsequently, we evaluate the performance of all
methods in distinct cities respectively, as illustrated in Figure 13. Notably, our proposed random
exploration strategies demonstrate a consistently higher mean return across all cities. However,
it is worth highlighting that DQN in Figure 13(c) and Noisy-Net in Figure 13(d) exhibit lower
returns compared to random actions. This outcome can be attributed to the discrete action space
configuration (Yeh et al., 2023). In addition, we observe that maintaining thermal control of buildings
is more challenging in cold weather conditions compared to hot weather conditions.
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