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Abstract— As robots become increasingly capable, users will
want to describe high-level missions and have robots infer
the relevant details. Because pre-built maps are difficult to
obtain in many realistic settings, accomplishing such missions
will require the robot to map and plan online. While many
semantic planning methods operate online, they are typically
designed for well specified missions such as object search or
exploration. Recently, Large Language Models (LLMs) have
demonstrated powerful contextual reasoning abilities over a
range of robotic tasks described in natural language. However,
existing LLM-enabled planners typically do not consider online
planning or complex missions; rather, relevant subtasks and
semantics are provided by a pre-built map or a user. We address
these limitations via SPINE, an online planner for missions with
incomplete mission specifications provided in natural language.
The planner uses an LLM to reason about subtasks implied by
the mission specification and then realizes these subtasks in a
receding horizon framework. Tasks are automatically validated
for safety and refined online with new map observations. We
evaluate SPINE in simulation and real-world settings with mis-
sions that require multiple steps of semantic reasoning and ex-
ploration in cluttered outdoor environments of over 20,000m2.
Compared to baselines that use existing LLM-enabled planning
approaches, our method is over twice as efficient in terms of
time and distance, requires less user interactions, and does
not require a full map. Additional resources are provided at
https://zacravichandran.github.io/SPINE.

I. INTRODUCTION

Consider an inspection robot operating after a heavy storm.
A user may provide the following mission specification:
Communications are down. Why? The robot will have to ex-
plore missing or changed regions of the map, locate relevant
semantic entities (e.g., communication infrastructure), and
collect precise mission-relevant information to assess infras-
tructure damage. We refer to these mission specifications as
incomplete because they imply subtasks and semantic targets
that are not directly given to the robot; rather, they must be
inferred from context. Because such missions often occur
in partially-known environments, an autonomous robot must
actively map its surroundings and refine its plan online.

Semantic planning methods have made progress on tasks
such as object search, inspection, exploration, and mobile
manipulation [1]–[9]. These methods typically maintain a
semantic map of the environment such as a metric-semantic
grid, object-oriented map, or scene graph, which the planner
reasons over in search of its goal [4], [7], [10]. With
advances in semantic mapping, these representations can
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Fig. 1. (A) SPINE takes as input a mission with incomplete specifications
and prior map. (B) SPINE then reasons about the goals and semantics
required to achieve the mission. (C) SPINE’s plan generator uses an LLM
to generate subtasks, while its validation module ensures those subtasks
are realizable. (D) SPINE then actively explores and reasons over acquired
information in order to complete its mission.

be built in real-time, which enables online planning [11]–
[14], and some of these approaches are robust enough to
be fielded in large scale environments [15]–[17]. However,
online semantic planners typically require a well-specified
mission (e.g., inspect all the antennas in Zone A). And
while formal planning languages enable complex mission-
level specifications [18]–[20], they still require a human
operator to explicitly compose subtasks.

Recent work has addressed these limitations by using
Large Language Models (LLMs) – which have demonstrated
powerful contextual reasoning over many domains – to
plan over tasks described in natural language [21]–[24].
Researchers have applied LLM-enabled planners to prob-
lems including mobile manipulation, navigation, and fault
detection [23], [25]–[30]. However, LLM-enabled planners
typically require a pre-built map [25], [26], [29], [31],
[32], and these methods generally consider well-specified
missions [23], [29], [33]–[35]. These assumptions prevent
current LLM-enabled planning methods from operating in
partially-known and unstructured environments, such as
large-scale outdoor settings.

To address these limitations, we present SPINE, an online
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semantic planner for missions with incomplete specifications
described in natural language. As shown in Fig. 1, SPINE
receives as input a specification and incomplete prior map.
SPINE then uses an LLM to reason about mission-level
goals and relevant semantics, and then infers appropriate
subtasks comprising navigation, active mapping, and user
interaction. These LLM-generated subtasks are validated for
physical safety and syntactic correctness, which prevents
unsafe actions from being executed by the robot. Validated
subtasks are realized in a receding horizon manner and are
refined online as SPINE actively builds a semantic map. By
leveraging external data sources such as satellite imagery
or UAV-generated maps, SPINE can operate in partially-
known and unstructured environments. To summarize, the
contributions of the paper are:

1. An online semantic planner for language-specified mis-
sions in partially-known, unstructured environments.

2. A plan generation module to infer subtasks from in-
complete specifications and refine the subtasks online.

3. A verification module that enables an LLM to safely
propose navigation and exploration goals in unstruc-
tured and partially-known environments.

We evaluate our method in large-scale outdoor simulated
and real-world environments with missions that include se-
mantic route inspection, multi-object search, and air-ground
teaming. Compared to LLM-enabled planning baselines that
use either fully-known prior maps or receive explicit mission
specifications, SPINE achieves comparable mission success
while requiring significantly less time and user input.
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Status and 
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Fig. 2. SPINE architecture. A user provides SPINE with a mission spec-
ification. SPINE plans via behaviors for user interaction, active mapping,
and robot control. SPINE’s plan generator infers a task sequence which is
validated online for correctness and feasibility; if necessary, feedback and
corrections are provided in real-time. Actions are sent to the appropriate
module, and the planner refines its plan as new information is acquired.

II. RELATED WORK

Representations for Semantic Planning. Effective plan-
ning representations capture traversability, semantics, and
spatial relationships needed for reasoning over contextual
goals. Advances in semantic mapping have enabled online

planning for tasks such as active exploration or object
search [1], [4], [15], [17], [36]. Scene graphs are a com-
mon representation for semantic planning, as they concisely
represent objects, topology, and traversable regions [11],
[14]. Semantic topological maps also provide a graphical
scene representation but do not include a hierarchy [37],
[38]. Recent work incorporates foundation models into map-
ping pipelines in order to create open-vocabulary represen-
tations. For example, ConceptGraphs [39], HOVSG [40],
and Clio [41] assign semantic feature vectors to entities in
the map, then task-relevant labels are assigned at runtime.
SPINE is compatible with such state of the art mapping
methods. In our experiments, we use an open-vocabulary
semantic-topological mapper, which allows the planner to
configure mission-specific semantics at runtime and operate
in unstructured outdoor environments.

Online Semantic Planning. Semantic planners reason over
objects, regions, or other contextual information to solve
tasks such as object search, inspection, and semantic explo-
ration [1], [3], [5], [6], [42]. Many works address online
planning in partially-known environments, the planner’s ini-
tial action sequence is informed by priors and refined online
with new observations [3], [3], [7]. Beyond object-level
reasoning, semantic information also accelerates exploration
of partially-known or unknown environments [1], [43], [44].
Fusing semantic knowledge from foundation models with
classical search methods such as frontier exploration has
been shown to an especially effective exploration strat-
egy [8], [43]. Structured or formal planning languages, such
as Linear Temporal Logic (LTL), may be used to compose
more complex missions [10], [19], [20], [45], [46]. Notably,
these methods require detailed mission specifications from a
user, whereas our method infers mission details.

LLMs for Planning. Language has emerged as a powerful
representation for specifying tasks, and LLM-enabled plan-
ners have been applied to domains including mobile manip-
ulation [25], [26], [47], service robotics [48], autonomous
driving [49], navigation [29], [50]–[52], and fault detec-
tion [27], [28] These methods typically configure an LLM via
in-context or system prompts with a problem description and
a set of action primitives such as graph navigation goals [49],
lower-level application programming interface (API) for code
generation [23], [53], [54], or learned behaviors [25]. At run-
time, the LLM is given an task specification and a map, such
as a graph [26] or semantic regions [30], then produces an
action sequence. A line of research develops LLM-enabled
planners that translate mission specifications to a formal
language such as Linear Temporal Logic (LTL) or Planning
Domain Definition Language (PDDL) [31]–[33], [35], [55]–
[57]. While these instructions are complex, they explicitly
state subtasks and semantic referents [34]. Other research
relaxes the requirement of a pre-built semantic map by
incorporating feedback from perception systems [27], [30],
[47] or specifying semantics at runtime [24], [34]. However,
perception is limited to object detection or designed for small
room-centric environments where the planner can leverage



clear hierarchy and natural bounds on the environment.
In contrast, SPINE reasons over under-specified missions,
does not require a pre-built map, and can operate in large
unstructured environments.

III. SPINE
A. Problem Statement

We consider a robot that operates in an unstructured
environment and is capable of performing behaviors such
point navigation or area exploration. The robot’s planner is
provided with a mission specification in natural language,
S. Importantly, this specification is incomplete, meaning it
implies a goal and corresponding action sequences (i.e.,
subtasks) which are unknown to the planner, thus planner
must infer an action sequence that fulfills that goal with
minimal planning iterations. The planner is also provided
with a map, Mk which is updated at each planning iteration,
k, by an onboard mapper, and its previous actions, a1:k.
At each iteration, the planner provides an action sequence,
π(S,Mk, a1:k) → ak+1:H , where H denotes a planning
horizon greater than k. This plan is realized in a receding
horizon manner and refined online.

B. SPINE Overview
SPINE comprises two modules – a plan generator and

plan validator – as outlined in Fig. 2. Along with the
mission specification, online map, and action history, the
plan generator receives online feedback, f , and proposes
candidate actions πg(S,Mk, a1:k, f) → a′k+1:H′ (§III-D).
The plan validator ensures that these actions are syntactically
correct and physically realizable given the current map,
πv(a

′
k+1:H ,Mk) → (f, ak+1:H′), where and ak+1:H is a

validated action sequence and f denotes feedback that may
be used by the generator to correct erroneous action sequence
(§III-E). We outline SPINE’s inference process in Alg. 1.

C. Semantic Mapper
Our architecture assumes a topological graph-based se-

mantic mapper, where nodes are of type region or object.
Regions indicate traversable points in freespace, and objects
represent semantic entities. Edges in the graph are defined
between either two regions (“region edges”) or an object
and a region (“object edges”). Regions edges denote paths
traversable by the robot, while object edges denote that
an object is visible from a certain region. Nodes may be
enriched with additional semantic information (e.g.,“this
region is in a busy parking lot”, “this car is damaged”),
which provides SPINE with additional cues for planning.
The mapper also maintains a local occupancy map which
SPINE uses for action validation (§III-E). The mapper is
initialized with priors from satellite imagery, UAV maps, or
previous mission data and is updated at each iteration.

D. Plan Generator
The plan generator must infer action sequences that best

fulfill the incomplete mission specification, which may re-
quire exploring previously unknown portions of the envi-
ronment. We instantiate the plan generator with an LLM,

given their contextual reasoning abilities. We configure the
LLM via a system prompt that describes its role, a definition
of the mapping interface, and a description of the robot’s
behaviors. At each iteration, the plan generator’s four inputs
– the specification S, map Mk, action sequence a1:k, and
feedback f – are serialized into a textual representation and
provided to the LLM via in-context prompts.
Textual mapping interface. The plan generator receive the
prior semantic map in the following JSON schema:

{"regions": [{"name": "node_name",
"coordinates": "..."}, "..."],

"objects": ["..."],
"region_edges": [["source", "target"], "..."],
"object_edges": ["..."]}

Nodes are defined as a dictionary of attributes; this dictionary
must contain the node’s name and coordinates, but
may be enriched with additional information such as a
response to a mission-specify query (example in Fig. 5).
Edges are simply defined by tuples of source and tar-
get nodes. At each planning iteration, all map updates
are provided to the plan generator via in-context prompts
which utilize the following API for high-level graph ma-
nipulation: add_nodes, remove_nodes, add_edges,
remove_edges, update_nodes.
Reasoning for planning. The plan generator provides an
action sequence drawn from a predefined library of atomic
behaviors (Alg. 1 line 2). Our implementation uses behav-
iors for navigation, active perception, and user interaction
(Tab. I), though in general these may include any feasible
robot action. The generator parameterizes these behaviors
with arguments that refer to the current semantic map or
mission specification, and this process employs chain-of-
thought (CoT) reasoning which explicitly states SPINE’s
primary goal, the relevant semantic graph for the mission,
and a justification for the proposed action sequence [58].
During the first planning iteration, generator also provides
relevant semantics which may be used used to configure an
open-vocabulary semantic mapping framework. We find that
enforcing reasoning at multiple levels of abstraction helps
the LLM to maintain a focus on its high-level goal while
iteratively planning over shorter horizons. We illustrate one
step of this process with a simplified example:

Example III.1 Consider a robot provided with the mission
specification I need to cross the river. and a semantic map
containing two regions – region_1 located at (0, 0) and
dock located at (0, 1) – and one edge that connects these
two regions. There is also a boat located at (0, 2) and
connected to the dock, but that boat is initially unknown.
SPINE would receive the following map representation:

{"regions": [
{"name": "region_1", "coordinates": [0, 0]}
{"name": "dock", "coordinates": [0, 1]}],

"objects": [],
"region_edges": [["region_1", "dock"]],
"object_edges": []}



Purpose Function Arguments Behavior Constraints

Navigation
map_region region node navigate to goal and find objects syntax, reachable

exlore_region goal region, exploration radius explore around goal syntax, reachable, explorable
extend_map 2D coordinate add frontier at coordinate syntax, explorable

goto region navigate to region syntax, reachable

Active Mapping inspect object and query Inspect object syntax
set_labels list of labels Configure object detection syntax

User interaction clarify question ask for clarification from user syntax
answer provides answer denotes task is complete syntax

TABLE I
AVAILABLE BEHAVIORS USED BY THE SEMANTIC PLANNER TO COMPOSE ACTION SEQUENCES.

Because a boat would enable the user to cross the river, and
boats are often found near docks, a reasonable output from
the plan generator would be as follows:

{"primary goal": "find the user something
with which to cross the river",

"relevant semantics": ["boat"],
"relevant graph": "dock_1"
"justification": "boats are often found near

docks, so I should map that region",
"plan": "map_regin(dock_1), replan()"}

The robot’s semantic mapper would be configured to look
for boats, and the robot would then map the dock, upon
which the semantic mapper would discover the boat and
provide SPINE with the following update

add_node(boat,
attributes={"coordinates": [0, 2]},
aedges=["dock"])

SPINE would then provide the user with the answer “I found
a boat near the dock that you could use to cross the river.”

E. Plan validation

Valid action sequences require that all actions correctly
invoke the behavior library while respecting constraints such
as traversability; while LLMs provide powerful contextual
reasoning abilities, they may hallucinate these details. The
plan validation module ensures that all actions satisfy pre-
defined constraints before being realized by the robot (Alg. 1
line 3). Any feedback provided by the validator is appended
to the mission history (line 4), and SPINE returns its first
valid plan sequence (line 5-6). If the plan generator exceeds
a predefined iteration limit (MAX ATTEMPTS), the user is
notified and invited to re-task SPINE (lines 7-8).

The validation module defines three types of constraints:
syntax, reachability, and explorable. Syntax constraints re-
quire that behaviors are invoked with the correct argument
type. Reachability constraints apply to navigation behaviors,
and they require that a path to the navigation target exist
within the current map. These first two constraints are en-
forced upfront (lines 9-15); if violated, the validation module
will provide specific feedback about the offending action, and
the generator will produce a new task sequence. Explorable
constraints are assigned to behaviors where the robot dis-
covers new regions in the map. We implement this con-

straint via frontier-style exploration to iteratively search for a
traversable path towards a given goal. The exploration termi-
nates after reaching the goal or encountering an obstacle. For
each breaking condition, semantic feedback is provided to the
planner such as exploration terminated after
encountering an obstacle (lines 16-21, see Fig. 3).

Algorithm 1: SPINE inference procedure
Input: SPECIFICATION S, MAP Mk,
ACTION HISTORY a1:k FEEDBACK f

1 for ATTEMPT in MAX ATTEMPTS do
2 a′

k+1:H′ ← πg(S,Mk, a1:k, f) ▷ generate actions
3 (ak+1:H , fk)← πv(a

′
k+1:H′ ,Mk) ▷ validate actions

4 f ← f + [fk]
5 if ak+1:H ̸= ∅ then
6 return ak+1:H ▷ return first valid sequence

7 return NotifyUser ▷ if unable to create plan

8 function πv(a
′
k+1:H′ ,Mk)

9 VALIDATED ACTIONS ak = []
10 GENERATOR FEEDBACK f = []
11 for ai in a′

k do
12 if not SYNTACTIALLYVALID(ai,Mk) then
13 f ← GETERRORFEEDBACK(ai,Mk)
14 return ak, f

15 for ai in a′
k+1:H′ do

16 if not EXPLORABLE(ai) then
17 ak → ak + [ai]

18 ai, result← EXPLORE(ai,Mk)
19 ak ← ak + [ai]
20 f ← f + [result]

21 return ak, f

IV. EXPERIMENTS

We design experiments to assess our contributions (§I):

Q1. Does SPINE provide time and distance savings com-
pared to offline LLM-enabled planning approaches?

Q2. Can SPINE achieve missions competitively compared
to methods that are explicitly given a full prior map
and mission specifications?

Q3. How important is validation for online planning?

We use simulation and real robot experiments to answer Q1
and Q2, and we design an ablation study to answer Q3.
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Fig. 3. Online validation enables exploration. SPINE’s plan generator may
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navigates to that point. Procedure terminates once robot reaches its goal

A. Implementation Details

Both simulated and real robot experiments assume a
mobile robot equipped with a Lidar and RGB-D cam-
era. We implement the behaviors from §III-D using ROS
MoveBase [?], and the plan generator uses the base GPT-
4 model [59]. We implement a semantic mapper that pro-
vides the graph-base representation described in §III-C.
The mapper uses Faster-LIO to estimate odometry [60]
and GroundGrid [61] to estimate free-space and establish
region nodes. GroundingDino [61] provides open-vocabulary
object detections, and these detections are associated using
a multiple-hypothesis tracker. The mapper uses the LLaVA
vision-language model to enrich the map with mission-
relevant semantic descriptions [62]. All autonomy runs on-
board, except for the LLM which makes API queries over
an internet connection. We conduct simulation experiments
in photorealistic Unity testbed, which provides sensor and
control feeds for a ClearPath Husky. We then perform real
robot experiments using a Clearpath Jackal equipped with a
Ouster Lidar, Realsense RGB-D Camera, Nvidia RTX 4000
GPU, and Ryzen 5 3600 CPU.

B. Experimental Setup

Baselines. We compare against two baselines: Explicit Task-
ing and LLM-as-planner. Explicit Tasking receives step-
by-step instructions and resembles existing LLM-enabled
planning methods where the user provides explicit mission
instructions, such as those using formal methods, [33], [55].
LLM-as-planner resembles approaches which receive a full
map upfront along with a mission specification [23], [25],
[26], [34]; following previous work, this baseline can still
discover new objects in the scene. [25], [30].

Experimental 
platform

3D view

<- 100 meters ->

Priors derived from satellite image during 
construction may be  missing or wrong.
 Sample task: I need to gather supplies 
from my boat. Has recent construction 

impacted that?

Fig. 4. Experimental platform, 3D view of environment, and example prior
and corresponding task used for real-world experiments. The prior map is
derived from outdated satellite imagery or obstructed due to trees and other
coverings. The prior map is thus incomplete and partially incorrect, which
requires the planner to reason about information acquired online.

Metrics. We report five metrics: mission success, time re-
quired for mission completion, distance traveled for mission
completion, LLM queries, and user interactions during the
mission. User interactions capture the complexity of the
mission, as more complex missions will require more in-
structions from the user.

Evaluation Environments. We perform simulation exper-
iments in a rural outdoor space of over 40,000m2 where
missions require the robot to travel over 400m (example in
Fig 5). Real experiments are conducted in an office park of
over 20,000m2 where missions require the robot to travel
over 250m (Example in Fig 4). We construct prior maps
for both environments based on information that could be
acquired from satellite imagery or UAV-generated maps.

Mission Specifications. We consider missions with the fol-
lowing linguistic specifications:

1. There was a storm last night. I am worried that
impacted logistics, because I need to drop off supplies
today. Can I still do that?

2. I sent a robot out to collect supplies from an incoming
boat. I have not heard back. What happened?

3. Communications are down, why?
4. I need to gather supplies from my boat. Has recent

construction impacted that?
5. You’re assisting a UAV in response to a chemical spill.

Triage regions not visible from the air.
Each mission requires completing 2-8 subtasks of semantic
reasoning and exploration. We run each mission one to three
times and vary the prior map and initial conditions. See
Fig. 1, Fig. 4, and Fig. 5 for examples.

C. Simulation Results

As reported in Tab. II, Explicit Tasking completes 100%
of missions while taking on average 532s, traveling 292m,
making 8.6 API calls, and 4 user interacting. Despite re-
ceiving only a partial map and incomplete specification,
SPINE achieves a 94.3% mission success while requiring



TABLE II
SIMULATION EXPERIMENT RESULTS.

Method Metrics

Success Time Distance Interactions Queries

SPINE 94.3% 536.6s 312.4m 1 6.6
LLM-as-planner 100% 1244.7 677.4 1 1.7
Explicit Tasking 100% 523s 292m 4 8.6

similar time and distance. Notably, SPINE makes a similar
number of LLM queries, which indicates it’s iteratively
inferring and realizing the subtasks given to Explicit Tasking
(Q2). Imperfect success rate comes from the third mission,
where SPINE must inspect multiple communication towers
for damage. After finding that the first tower is damaged,
instead of inspecting the next tower, SPINE declares the
mission complete. While the LLM-as-planner approach is
competitive in terms of success, because it must fully map
the environment it requires over twice the time and traversal
distance required (Q1). This method does require less LLM
queries as compared to SPINE; because it receives a full
map, this planner can generate a near-complete task sequence
at the first planning iteration.

      SPINE

Semantic 
mapper

Inspect(radio_tower, 
is this radio    

tower damaged?)

update_node(radio_tower 
is rusted, indicating 

damage)

Communications are 
down. Why? 

answer(radio tower is 
likely damaged) 

1

2

34

Environment explored 
by SPINE

Sensor data

Fig. 5. Given a mission and prior map, SPINE must (2) explore and
(3, 4) visit and inspect communication infrastructure. SPINE then forms
an appropriate inspection query for the mapper’s vision language model
(VLM), and it uses the acquired information to solve the mission.

D. Real Robot Results
As reported in Tab. III, Explicit Tasking takes 1035s,

travels 202m, 8.6 API calls, and requires 5 user interactions
to complete a mission on average. SPINE still compares
favorably to Explicit Tasking in terms of time, distance,
and user interactions required (Q2). Interestingly, SPINE’s
mission success rate was higher than in simulation, which
is likely due to the increased scale of the simulated envi-
ronment. Also due to increased environmental scale, there
is a comparatively larger gap between the LLM-as-Planner
approach and SPINE (Q1); SPINE requires less than one
third of the time and 2.5 less distance to complete a mission.
We noticed that average robot speed was slower across all
methods, which was due to more complex perception input,
greater actuation noise, and increased obstacles as compared
to simulation. See Fig. 1 for an example mission.

TABLE III
REAL-WORLD EXPERIMENT RESULTS.

Method Metrics

Success Time Distance Interactions Queries

SPINE 100% 1126.0s 224.0m 1 8.3
LLM-as-planner 100% 3701.1s 570.8m 1 1.42
Explicit Tasking 100% 1035.0s 202m 5 8.6

E. Validation module ablation

We assess the importance of online validation by compar-
ing our method to a variant without validation (Q3). We pro-
vide an identical specification to each method, and we mea-
sure mission success rate as we randomly remove portions
of the prior map, averaged over four trials. Results, shown in
Fig. 6, indicate that verification is increasingly important as
the environment becomes less certain. Qualitatively, the LLM
is prone to hallucinate connections and exploration goals.
Validation prevents hallucinated goals from being realized on
the robot and offers an alternative plan instead (See Fig. 3).
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Fig. 6. Validation ablation experiment results (mean and variance).

V. CONCLUSION

We present SPINE, an online planner for missions with in-
complete specifications in partially-known and unstructured
environments. SPINE uses an LLM to decompose speci-
fications in natural language into a sequence of subtasks,
comprising navigation, active mapping, and user interaction,
which are automatically validated and refined online. Simu-
lation and real-world experiments demonstrate that SPINE
performs comparably to methods that receive step-by-step
instructions from an expert user. SPINE is also more efficient
in terms of distance and time required to complete a mission
as compared to the two step process of first mapping and
then using an LLM-enabled planner, and does not require
full a priori knowledge of the environment.

Future work may take several directions. SPINE requires
an internet connection for LLM queries, which requires a
network infrastructure. Going forward, we would like to
mitigate this limitation by adapting smaller, open-sourced
LLMs such as Llama [63] or Gemma [64] variants that
are efficient enough to run onboard a robot. And while
this paper focuses on single-robot planning, we believe
that extending SPINE for online and distributed multi-robot
planning applications a natural extension this work.
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APPENDIX I
SUMMARY

In this appendix we provide further detail on our proposed
method. Subsection A2-A provides details on the LLM
system prompt, including the perception api and planning
interface. Subsection A2-B describes the behavior library im-
plementation including the controller used. Subsection A2-
C provides more details and visualizations on teh semantic
mapping components traversability estimation, object de-
tection, and VLM results. Section A3 provides details on
the experimental setup. We provide more details on the
experimental missions, including subtasks required and prior
maps given to the planner and provide further discussion on
results (Subsection A3-F), including why the performance
of SPINE was 6% lower than baselines in the simulation
experiments (see Tab. II)

APPENDIX II
FURTHER METHOD DETAILS

We provide details on the implementation of the LLM
configuration, semantic mapper, and behavior library.

A. LLM configuration

The LLM configuration consists of four main parts:
main system configuration, perception API, planning API,
and planning advice. The system configuration provides an
overview of the LLM’s role in the planning framework and
defines interfaces (see Listing A2-C). The perception API
defines how the LLM will receive updates from the semantic
mapper (see Listing A2-C). The planning API defines how
the LLM will compose subtasks sequences (see Listing A2-
C). Finally, the advice portion of the configuration preempts
common mistakes we observed the LLM making during
development (see Listing A2-C). We also provide five in-
context examples of canonical planning behavior, and exam-
ple of which is detailed in Listing A2-C, and we refer the
reader to our software for a complete list. At runtime, the
user-provided mission and current scene graph is appended
to the context.

B. Behavior library and Constraint Feedback

We provide further details on the behaviors listed in Tab. I.
goto takes a string, which is interpreted as a region node.
The planner with find the shortest path to that node over the
current graph, and it will then navigate to that node. The
following behaviors call goto for navigation to a particular
node, where applicable. map_region takes a string, which
is interpreted as a region node. The robot will navigate to
that node and report any objects detected along the way.
explore_region takes a string and float, which is inter-
preted as a region node and exploration radius, r, in meters.
The robot will navigate to that node, then explore the circle
of radius r around that region node. extend_map takes two
floats, which is interpreted a 2D coordinate. The robot will
attempt to navigate to that coordinate. inspect takes two
strings, which is interpreted as an object node and inspection
query. The robot will navigate to that object, which is obtain

an image of that object, pass that image and query to a
VLM, and report the VLM answer. set_labels takes a
set of strings, which is interpreted as class labels. These
labels are used to configure the object detector. clarify
takes a string, interpreted as a question and provided to
the user. The user can respond. answer takes a string,
which is interpreted as an answer to the user’s mission. This
terminates the mission. For all navigation behaviors, we use
the controller implemented by ROS Move Base 1 with a
target velocity of 0.5m/s.

Each constraint provides tailored feedback, if violated.

Syntax is defined over the previously described behaviors.
The feedback associated with this constraint highlights of-
fending variables and function spelling.

Reachable is defined over region nodes. There must be a
path to the region node in the current map. Feedback asso-
ciated with this constraint lists unreachable nodes. Feedback
will then suggest exploration objectives based on the closest
reachable node to the goal point.

Explorable is defined over exploration goals. There must
be a obstacle-free path between the robot’s current location
and the goal. If such a path cannot be found, feedback will
provide the reason why (e.g.,, exploration hit an obstacle
boundary).

C. Semantic Mapper

The architecture for the semantic mapper used by SPINE
is shown in Fig. A1. The mapper takes RGB + Depth,
LiDAR, and semantic configuration as inputs. LiDAR is
used for odometry estimation (Faser-LIO [60]) and local
occupancy map construction (GroundGrid [61]). The occu-
pancy map is used to add and remove regions and edges
from the map based on connectivity. RGB+D is used for
object localization and captioning. Objects are detected
using GroundingDino [65]). Detections are then clustered
and localized with a multiple-hypothesis tracker. A vision-
language model (LLaVA [62]) provides enriches the semantic
information available to the planner (see Fig. A2, Fig. 5).
Outputs from these modules are used to add and remove
nodes and enrich them with semantic information. Semantic
configuration is provided by the planner and is used to set
the labels of the object detector and provide queries to the
vision language model. The detection and tracking modules
runs at roughly 5Hz, and the vision-language model runs at
roughly 1Hz, and occupancy map construction runs well over
10Hz, all onboard. Taken together, the semantic mapper runs
sufficiently fast for real-time planning and control.

1http://wiki.ros.org/move base

http://wiki.ros.org/move_base
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Fig. A1. Semantic mapping architecture used by SPINE. The mapper takes LiDAR, RGB + Depth (RGB+D) sensor streams, and semantic configuration
provided by the semantic planner. Odometry provides pose estimation. Occupancy mapping uses a traversability estimator to build a local map of obstacles,
which is used to add and remove regions or edges to the map. Object localization uses an open-vocabulary object detector and multiple-hypothesis tracker
to identify and ground objects in physical space. The captioning module provides further semantic detail to detected objects or regions. Information from
these modules is uses to added and remove nodes and edges. Semantic configuration is used to set labels for the Object Localization module or provide
queries for the Captioning module.

VLM query: You are a robot. Describe where you are so you can plan. 
        Provide your answer as a noun with a short description. For example: empty sidewalk, road, park with 

trees and benches, empty parking lot, patio. Answer: 

VLM Answer: Patio VLM Answer: A large room with a red and yellow 
cylinder, a television, and several chairs.

Fig. A2. Examples of Vision-Language Model captioning during exploration. Captions provide brief semantic descriptions of the scene which may be
useful for planning.



Fig. A3. Example prior graph used by SPINE (right). Edges in blue and nodes in red. Semantic labels omitted for clarity. Third person view of robot is
overlaid on overhead imagery (top left). Camera view from the robot is shown in the bottom left. Because this graph was derived from overhead imagery,
registration was imperfect, and the planner must adjust in real-time (note edges that cross the building intersection).



Agent Role: You are an excellent graph planner. You must fulfill a given task provided by
the user given an incomplete graph representation of an environment.

You will generate a step-by-step plan that a robot can follow to solve a given task.
You are only allowed to use the defined API and nodes observed in the scene graph for planning.
Your plan will provide a list of actions, which will be realized in a receding-horizon manner.
At each step, only the first action in the plan will be executed.
You will then receive updates, and you have the opportunity to replan.
Updates may include discovered objects or new regions in the scene graph.
The graph may be missing objects and connections, so some tasks may require you to explore.
Exploration means mapping existing regions to find objects, or adding a new region to find paths.

The graph is given the in the following json format:
```
{

"objects": [{"name": "object_1_name",
"coords": [west_east_coordinate, south_north_coordinate]}, ...],
"regions": [{"name": "region_1_name",
"coords": [west_east_coordinate, south_north_coordinate]}, ...],
"object_connections: [["object_name", "region_name"], ...],
"region_connections": [["some_region_name", "other_region_name"], ...]
"robot_location": "region_of_robot_location

}
```

Each entry of the graph contains the following types:
- "regions" is a list of spatial regions.
The regions are traversable ONLY IF they appear in the "region_connections" list
- "object_connections" is a list of edges connecting objects to regions in the graph.
An edge between an object and a region implies that the robot can see
the given object from the given region
- "region_connections" is list of edges connecting regions in the graph.
An edge between two regions implies that the robot can traverse between those regions.

Provide you plan as a valid JSON string (it will be parsed by the `json.loads` function in python):
```
{
"primary_goal": "Explain your primary goal as provided by the user.
Reference portions of graph, coordinates, user hints, or anything else that may be useful.",
"relevant_graph": "List nodes or connections in the graph needed to complete your goal.
If you need to explore, say unobserved_node(description). List ALL relevant nodes.",
"reasoning": "Explain how you are trying to accomplish this task in detail.",
"plan": "Your intended sequence of actions.",
}
```

Listing 1: LLM system prompt: role description



def remove(node: str) -> None:
"""Remove `node` and associated edges from graph."""

def add_node(type: str, name: str) -> None:
"""Add `node` of `type` to graph."""

def add_connection(type: str, node_1: str, node_2: str) -> None:
"""Add connection of `type`
(either `region_connection` or `object_connection`) between `node_1` and `node_2`."""

def update_robot_location(region_node: str) -> None:
"""Update robot's location in the graph to `region_node`."""

def update_node_attributes(region_node, **attributes) -> None:
"""Update node's attributes, where attributes are key-value pairs of attributes
and updated values."""

def no_updates() -> None:
"""There have been no updates."""

Listing 2: LLM system prompt: perception API



def goto(region_node: str) -> None:
"""Navigate to `region_node`."""

def map_region(region_node: str) -> List[str]:
"""Navigate to region in the graph and look for new objects.
- region_node must be currently observed in graph and reachable from the robot's location.
- This CANNOT be used to add connections in the graph.

Will return updates to graph (if any).
"""

def extend_map(x_coordinate: int, y_coordinate: int) -> List[str]:
"""Try to add region node to graph at the coordinates (x_coordinate, y_coordinate).

You should call this when your goal is far away (over 10 meters, for example).

NOTE: if the proposed region is not physically feasible
(because of an obstacle, for example), the closest feasible region will
be added instead.

Will return updates to graph (if any).
"""

def explore_region(region_node: str, exploration_radius_meters: float) -> List[str]:
"""Explore within `exploration_radius_meters` around `region_node`
If (x, y) are the coordinates of `region_node` and `r` is the exploration radius.
This will try to add regions at (x + r, y), (x - r, y), (x, y + r), (x, y - r).
The robot will then map the discovered regions to find any unobserved objects.

You should only call this if you are close to your goal (within exploration radius).

Will return updates to graph (if any).
"""

def replan() -> None:
"""You will update your plan with newly acquired information.
This is a placeholder command, and cannot be directly executed.
"""

def inspect(object_node: str, vlm_query: str) -> List[str]:
"""Gather more information about `object_node` by
querying a vision-language model with `vlm_query`. Be concise in
your query. The robot will also navigate to the
region connected to `object_node`.

Will return updates to graph (if any).
"""

def answer(answer: str) -> None:
"""Provide an answer to the instruction"""

def clarify(question: str) -> None:
"""Ask for clarification. Only ask if the instruction is too vague to make a plan."""

Listing 3: LLM system prompt: planning API



The user given task with be prefaced by `task: `, and updates will be prefaced by `updates: `.

Remember the following when constructing a plan:
- You will receive feedback if your plan is infeasible.
The feedback will discuss the problematic parts of your plan and reference specific regions of the
graph. You will be expected to replan.

Remember the following at each planning iteration:
- When given an update, replan over the most recent instruction and updated scene graph.
- When given feedback, you must provide a plan that corrects the issues with your previous plan.

Planning Advice:
- Carefully explain your reasoning and all information used to
create your plan in a step-by-step manner.
- Recall the scene may be incomplete.
You may need to add regions or map existing regions to complete your task.
- Reason over connections, coordinates, and semantic relationships between objects and regions
in the scene. For example, if asked to find a car, look near the roads.
- Coordinates are given west to east and south to north.

Before calling extend_map, consider this:
- If you need to find a path but there are NO existing connections,
you should call extend_map in the direction of that region.
- Before you call extend_map ask:
is there an existing connection I can use to get to my goal region? If so, use that.

Before calling explore_region, consider this:
- If you need to check if a path is clear, do not call explore.
Rather, map the region to find obstacles.

Before calling goto, consider this:
- goto uses a graph-search algorithm to find an efficient path,
so avoid calling goto on intermediate nodes.
- For example, if you path is ground_2 ->
ground_7 -> ground_10. Call goto(ground_10) instead of goto(ground_7)

Listing 4: LLM system prompt: planning advice



EXAMPLE_GRAPH_1 = {
"objects": [

{"name": "house_1", "coords": [-1, -1]},
{"name": "house_2", "coords": [-3, -1]},
{"name": "grocery_store_1", "coords": [-5, -1]},
{"name": "shed_1", "coords": [1, 3]},
{"name": "shed_1", "coords": [1, 5]},

],
"regions": [

{"name": "example_road_1", "coords": [-1, 0]},
{"name": "example_road_2", "coords": [-2, 0]},
{"name": "field_11", "coords": [0, 1]},
{"name": "field_13", "coords": [2, 3]},

],
"object_connections": [

["house_1", "example_road_1"],
["house_2", "example_road_2"],
["shed_1", "field_11"],
["shed_2", "field_13"],

],
"region_connections": [

["example_road_1", "example_road_2"],
["example_road_1", "field_11"],
["field_11", "field_13"],

],
"robot_location": "example_road_1",

}

EXAMPLE_1 = [
{

"role": "user",
"content": "task: I need a shovel. Is there one in the scene?"
+ f"Scene graph:{str(EXAMPLE_GRAPH_1)}",

},
{

"role": "assistant",
"content": '{\n\
"primary_goal": "find a shovel for the user."\
"relevant_graph": "field_11, field_13, unobserved_node(shovel)", \
"reasoning": "The graph does not contain any shovels.
However, I know that the graph may be incomplete, so I will explore before providing a definitive answer.
I will first map, then if needed I will add regions.
There are two sheds in the scene, and shovels are often found near sheds.
Therefore, for each of the sheds, I will navigate to the nearby region and map.",\
"plan": "[goto(field_11), map_region(field_11), goto(field_13), map_region(field_13)]"\n}',

},
{

"role": "user",
"content": "updates:[no_updates()]",

},
{

"role": "assistant",
"content": '{\n\

"primary_goal": "find a shovel for the user."\
"relevant_graph": "field_13, unobserved_node(shovel)",\
"reasoning": "After mapping field_11, which is next to shed_1, I did not find a shovel.
I also planned on going to example_node_14 to map near shed_2, so I will continue my plan.",\
"plan": "[goto(field_13), map_region(field_13)]"\n}',

},
{

"role": "user",
"content": "updates:[add_nodes({ name: shovel_1, type: object}), add_connections([shovel_1, field_13])]",

},
{

"role": "assistant",
"content": '{\n\
"primary_goal": "find a shovel for the user."\
"relevant_graph": "shovel_1", \
"reasoning": "After exploring field_13, which is next to shed_2, I found a nearby shovel, shovel_1,
that is connected to field_13. This fulfills the users request.",\
"plan": "[answer(There is a shovel, shovel_1, that is near shed_2 and connected to region_13.)]"\n}',

},
{

"role": "user",
"content": "task: How many grocery stores are currently in the scene?",

},
{

"role": "assistant",
"content": '{ \
"primary_goal": "find a shovel for the user."\
"relevant_graph": "grocery_store_1",\
"reasoning": "There is one grocery store in the scene. Although the scene may be incomplete,
I am only asked about currently observed grocery stores. Thus the answer is one",\
"plan": "[answer(There is one grocery store in the scene, grocery_store_1.)]"}',

},

Listing 5: In context learning example provided to the LLM.



APPENDIX III
EXPERIMENTAL DETAILS

This section provides details on the experimental tasks
reported in Section IV. We describe the mission, instruction
given the SPINE, and the subtasks required. We then provide
further discussion on experiments.

A. Semantic Route inspection

Mission provided to SPINE: ”There was a storm last night.
I am worried that impacted logistics, because I need to drop
off supplies today. Can I still do that¿‘

Implied subtasks: The planner must recognize that the
delivery depot is the most likely place for supply delivery.
The user wants to make sure the path between the current
location and delivery depot is free. These subtasks are

1. Recognize semantics. Primarily current location and
delivery depot. Bonus: recognize that debris, puddles,
fallen trees, etc, will give information about the extend
of the storm.

2. Navigate along path path to delivery depot. At each
step, if the robot cannot traverse an edge, it is likely
blocked.

Map is shown in Figure A4, which provided semantics:
ground, road, cabin, radio tower, truck, light pole, bridge,
supply depot.

Supply depot

Bridge 

Bridge 

truck

Radio tower 

Radio tower 

Light pole

Blockage 

Prior map:
Correct
Incorrect

Fig. A4. The semantic route inspection mission requires the planner to
check if the path to the supply depot is free. Red is blocked by storm. The
extent of prior is roughly 260m x 225m

Fig. A5. The semantic route inspection mission requires the robot to infer a
path to the supply depot (across the bridge shown in the figure). During route
inspection, the robot must recognize that the bridge is physically blocked.

B. Search and inspection with implicit goals

Mission provided to SPINE: ”I sent a robot out to collect
supplies from an incoming boat. I have not heard back. What
happened?”
Implied subtasks: The planner must recognize that it is
looking for a robot, and use the contextual information
provided to infer the robot is likely near one of the three
docks in the scene. The map does not provide a direct path
to these docks, so the planner must explore in order to reach
its goal locations. The planner must then find the mission
robot, which is near the third dock. The implied subtasks
are:

1. Infer correct semantic labels (robot) and best search
locations (three docks)

2. Understand gaps in map (three major gaps)
3. Navigate to the map boundary
4. Extend map to the first dock
5. Extend map to the second dock
6. Extend map to the third dock
7. Find and inspect robot
8. Report findings to user

Map is shown in Fig. A6 with semantics dock, ground,
road, cabin, radio tower, truck, light pole. Not all regions
or semantics in prior are relevant to task.

C. Multi-object inspection with implied semantics

Instruction provided to SPINE: ”Communications are
down. Can you figure out why?”
Implied subtasks: There are two radio towers provided in
the prior map. The planner must infer that radio towers are
relevant for communication, so it should inspect those. There
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Fig. A6. The search and inspection mission requires the planner to search
near docks for another missing robot. The prior information provided to the
planner and missing components in the map are illustrated.

Fig. A7. The search and inspection mission requires the planner to locate
the robot shown in the figure and report the robot’s position (eg “robot is
at location (x,y) and appears to be stationary”

is no direct path between the planners start locations and
the radio towers, so the planner must explore. The implied
subtasks are:

1. Identify inspection targets (radio towers)
2. Go to region boundary
3. Explore a path to the first radio tower
4. Inspect the first radio tower by forming appropriate

query (eg, “is this radio tower damaged”) and reason
over response

5. Navigate to second radio tower
6. Inspect the first radio tower by forming appropriate

query (eg, “is this radio tower damaged”) and reason
over response

7. Provide information to user

Map is shown in Fig. A3-C, with provided semantics,
ground, road, cabin, radio tower, truck, light pole.
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Fig. A8. The multi-object inspection mission requires the planner to infer
inspection targets (radio towers). There is no direct path provided in the
prior, so the robot must explore to find a path. Furthermore, there are some
distractors inclugin the bridge and supply depot (top of figure).

D. Semantic route inspection on real robot

Instruction given the SPINE I am worried that recent
construction on roads and fences impacted maritime supply
logistics. Can you check?

Implied subtasks: The planner must recognize that the user
is concerned about a path to the dock, which is provided
in the prior. The prior is outdated; there is a newly built
fence which obstructs the path. Furthermore, some of the
path between the robots starting location and dock is missing.
Thus, the planner must inspect the path towards the dock,
recognized blockage, and report findings to the user. A
successful mission terminated when the the discovered the
fence recently constructed, and the planner notifies the user.
See Fig. A9. The implied subtasks are:

1. Specify correct semantics (roads, fences)
2. Identify goal location (dock)
3. Go to map boundary
4. Fill in missing portion of path
5. Use valid priors to navigate towards the dock
6. Recognize blockage
7. Report to user

Map is shown in Fig. 4 with semantics courtyard, tree,
parking lot, road, dock, path.



Overhead

Robot view

Third person

Fig. A9. Example outcome on semantic route inspection mission. The mission implies that recent construction may have impacted the user’s intended
route to the dock (bottom left, off image). The planner searches along route until it finds a blockage (right). The planner then reports its findings to the
user.

E. Air-ground teaming on real robot

Mission provided to SPINE You are assisting a high-
altitude UAV in responding to an emergency chemical spill.
Triage regions that are not visible from the air.
Implied subtasks: The planner must recognize that inside
buildings and under trees cannot be observed from high-
altitude UAVs, thus the planner should explore those regions.
There are regions of the map that are not provided in the
prior, so the planner must explore. The planner must also
look for relevant semantics, including people and chemical
barrels. The implied subtasks are:

1. Configure semantics (people, barrels)
2. Go to the building entrance
3. Explore to find a path inside
4. Recognize task-relevant objects
5. Navigate to tree cover, which requires going to bound-

ary of prior map
6. Explore to tree cover
7. Identify task-relevant objects.

Map is shown in Fig. 4 with semantics: parking lot, road,
field, sidewalk, building, trees

F. Discussion of results

We observed comparative performance drop in SPINE (see
Table II) during multi-object inspection missions (Subsec-
tion A3-C). This mission required the planner to inspect two
radio towers in the scene. During some runs, the planner
would inspect the first tower, learn that the tower was
damaged, and terminate the mission. While this behavior is
correct, it is not complete.

For both the explicit tasking baseline and SPINE, there
was one manual takeover for each experiment. These
takeovers were both due to the minimum range of the
obstacle detector, which was around 1 meters. If the robot
came closer to one meter to an obstacle, that obstacle would
not be registered in the perception costmap, thus the robot

would try to drive into the obstacle. See Fig. A10 for an
illustration.

Fig. A10. Cause of manual takeover during experiment. The LiDAR’s
minimum return distance was roughly 1 meter, so obstacles closer than
this were not detected (top). When obstacles were not registered in the
occupancy map, the robot tried to drive through them, which required
manual takeover. The obstacles were picked back up again when robot
moves farther away (bottom).
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