
Under review as submission to TMLR

Implicit Regularization of AdaDelta

Anonymous authors
Paper under double-blind review

Abstract

We consider the AdaDelta adaptive optimization algorithm on locally Lipschitz, positively
homogeneous, and o-minimally definable neural networks, with either the exponential or
the logistic loss. We prove that, after achieving perfect training accuracy, the resulting
adaptive gradient flows converge in direction to a Karush-Kuhn-Tucker point of the margin
maximization problem, i.e. perform the same implicit regularization as the plain gradient
flows. We also prove that the loss decreases to zero and the Euclidean norm of the parameters
increases to infinity at the same rates as for the plain gradient flows. Moreover, we consider
generalizations of AdaDelta where the exponential decay coefficients may vary with time
and the numerical stability terms may be different across the parameters, and we obtain
the same results provided the former do not approach 1 too quickly and the latter have
isotropic quotients. Finally, we corroborate our theoretical results by numerical experiments
on convolutional networks with MNIST and CIFAR-10 datasets.

1 Introduction

Understanding when, why, and how training overparameterized neural networks by gradient-based algorithms
achieves good generalization (Zhang, Bengio, Hardt, Recht, and Vinyals, 2021; Belkin, Hsu, Ma, and
Mandal, 2019) remains one of the central questions in machine learning, despite several years of vibrant
research. Much progress on the question has been made by investigating implicit regularization (or implicit
bias) (Neyshabur, Bhojanapalli, McAllester, and Srebro, 2017): the mysterious preference of the training
algorithms for interpolators that perform well at test time.

Buiding on the seminal work of Soudry, Hoffer, Nacson, Gunasekar, and Srebro (2018), one of the most
celebrated results in the field was obtained by Lyu and Li (2020); Ji and Telgarsky (2020): that after achieving
perfect training accuracy, gradient flow implicitly regularizes locally Lipschitz, positively homogenous, and
o-minimally definable networks so that their parameters converge in direction to a margin maximization
KKT point. This precise bias towards margin maximization for this wide class of networks has been the
basis of numerous theoretical works (cf. Vardi (2023)), as well as remarkable practical methods such as the
reconstruction of training data by Haim, Vardi, Yehudai, Shamir, and Irani (2022); Buzaglo, Haim, Yehudai,
Vardi, Oz, Nikankin, and Irani (2023).

Nevertheless, already Soudry et al. (2018) observed that algorithms such as Adam (Kingma and Ba, 2015)
may not perform the same implicit regularization, and posed the research question:

Can we characterize the bias of adaptive optimization algorithms for classification problems?

The pertinence of this question was further attested by Wilson, Roelofs, Stern, Srebro, and Recht (2017),
who demonstrated that, for several realistic deep learning models, the solutions found by adaptive methods
often generalize significantly worse than those found by stochastic gradient descent, even when the former
solutions have better training performance.

Extending the pioneering work of Gunasekar, Lee, Soudry, and Srebro (2018); Qian and Qian (2019), a
major advance was made by Wang, Meng, Chen, and Liu (2021) who proved that, for the same wide class of
networks as admitted by Lyu & Li (2020); Ji & Telgarsky (2020) and in the continuous setting corresponding
to an infinitesimal learning rate, if the adapter of an algorithm without momentum can be shown to converge

1

Under review as submission to TMLR

to an isotropic vector without large fluctuations, then the implicit regularization is the same as for plain
gradient flow. They also established that this holds for RMSProp (Hinton, Srivastava, and Swersky, 2012)
and Adam without momentum, but fails for AdaGrad (Duchi, Hazan, and Singer, 2011).

Our contributions. In this work, we tackle the posed research question for AdaDelta (Zeiler, 2012), which
has remained open. AdaDeta is one of the main adaptive optimization algorithms, implemented in PyTorch1,
and known to perform well in many circumstances compared to other algorithms including RMSProp and
Adam (cf. e.g. Ruder (2016)). Specifically:

• we overcome the technical challenge of AdaDelta having exponentially decaying averages in both the
numerator and the denominator of the adapter (which makes it not readily amenable to the techniques of
Wang et al. (2021)), and prove that the adapter has the required convergence properties, which enables us to
conclude the same implicit regularization as for plain gradient flow;

• we show that the implicit regularization critically depends on the numerical stability terms in the numerator
and the denominator of the adapter, and that it changes if they are permitted to have different components
so that their quotient is not isotropic;

• we also investigate permitting the exponential decay coefficients to vary with time, and show that under a
mild assumption on their integrals, the implicit regularization is not affected;

• we corroborate these theoretical results in three empirical settings, ranging from a simple visualization to
a 14-layer convolutional network on CIFAR-10.

Further related work. Wang, Meng, Zhang, Sun, Chen, Ma, and Liu (2022) proved that momentum does
not affect the implicit bias towards margin maximization for linear classification. Wang, Fu, Zhang, Zheng,
and Chen (2023) proved a tight upper bound on Adam’s iteration complexity. Cattaneo, Klusowski, and
Shigida (2023) studied the implicit bias of Adam and RMSProp by backward error analysis. Tarzanagh,
Li, Zhang, and Oymak (2023) showed margin maximization when optimizing attention by gradient descent.
Thilak, Littwin, Zhai, Saremi, Paiss, and Susskind (2024) identified and investigated a slingshot phenomenon
in late-stage Adam and related it to grokking (Power, Burda, Edwards, Babuschkin, and Misra, 2022). Xie
and Li (2024) showed that AdamW implicitly performs constrained optimization.

2 Preliminaries

Basic notation. We write: [n] for the set {1, . . . , n}; ⟨u, v⟩ for the inner product of vectors u and v;
∥v∥ =

√
⟨v, v⟩ for the Euclidean length of a vector v; vi for the ith component of a vector v; 0, 1, ∞, etc.

for the vectors whose dimension is inferred from the context and whose all components are equal to the
specified value, so that for all i we have 0i = 0, 1i = 1, ∞i = ∞, etc.

Provided u and v are vectors of equal dimensions, we write uv, u/v, v2,
√

v, etc. for the component-wise
product, quotient, square, square root, etc. operations, so that for all i we have (uv)i = uivi, (u/v)i = ui/vi,
(v2)i = (vi)2, (

√
v)i = √

vi, etc. Similarly, we write u < v, u ≤ v, etc. for the component-wise less, less than
or equal, etc. relations, so that we have u < v ⇔ ∀i : ui < vi, u ≤ v ⇔ ∀i : ui ≤ vi, etc.

Local Lipschitz continuity and the Clarke subdifferential. Suppose a function f : Rk → R is locally
Lipschitz, i.e. every point v ∈ Rk has a neighborhood U such that f is Lipschitz continuous on U . By
Rademacher’s theorem (cf. e.g. Borwein and Lewis (2010, Theorem 9.1.2)), then f is differentiable almost
everywhere. The Clarke subdifferential of f at a point v is the convex hull

∂f(v) := conv
{

lim
i→∞

∇f(v(i))
∣∣∣ lim

i→∞
v(i) = v and ∇f(v(i)) exists for all i

}
.

It is nonempty and compact for all v, and equals the singleton {∇f(v)} if f is continuously differentiable
at v (Clarke, 1975). It consists of subgradients, which we may refer to simply as gradients.

1https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html

2

https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html

Under review as submission to TMLR

Procedure 1 Discrete generalized AdaDelta. In step k + 1, using a current gradient ∂̃L(wk) ∈ ∂L(w(t)),
it computes the next exponentially decaying average gk+1 of squared gradients, and computes the next
adapted gradient ∆k+1. It then computes the next exponentially decaying average hk+1 of squared adapted
gradients, and computes the next parameter vector wk+1 by subtracting ∆k+1 scaled by the learning rate.
The hyperparameters are: learning rate η > 0, exponential decay coefficients ρk ∈ [0, 1]p, and numerical
stability terms δ > 0 and ε > 0. The implementation of AdaDelta in PyTorch1 corresponds to the special
case where ρk = ϱ 1 for all k, and δ = ε = ϵ 1. By specializing further to η = 1, we obtain the original
AdaDelta (Zeiler, 2012).

gk+1 = ρkgk + (1 − ρk)∂̃L(wk)2

hk+1 = ρkhk + (1 − ρk)∆2
k+1

wk+1 = wk − η∆k+1

∆k+1 =
√

ε + hk

δ + gk+1
∂̃L(wk)

O-minimal structures and definable functions. An o-minimal structure S is a family {Sk}∞
k=1 such

that: each Sk is a set of subsets of Rk; S1 is the set of all finite unions of open intervals and points; each Sk

contains the zero sets of all polynomials on Rk; each Sk is closed under finite union, finite intersection, and
complement; each Sk+k′ contains the Cartesian products of all sets in Sk and Sk′ ; each Sk contains the
projections of all sets in Sk+1 onto the first k components. A function f : Rk → Rk′ is definable in S if and
only if its graph is a set in Sk+k′ .

For every o-minimal structure, the collection of all definable functions is closed under algebraic operations,
composition, inverse, maximum, minimum, etc. (cf. e.g. Ji & Telgarsky (2020, Appendix B)). Moreover, by
Wilkie’s theorem (Wilkie, 1996), there exists an o-minimal structure in which the exponential function is
definable.

Predictor and loss functions. We assume the following properties of the predictor function Φ(w, x) with
parameters w ∈ Rp, inputs x ∈ Rd, and scalar outputs. The L-positive homogeneity means that scaling the
parameters w by any α > 0 scales the output by αL, i.e. Φ(αw, x) = αLΦ(w, x).
Assumption 1. For some L > 0 and some o-minimal structure S in which the exponential function is
definable, for each x we have that Φ(w, x) as a function of w is: (i) locally Lipschitz; (ii) L-positively
homogeneous; (iii) definable in S.

This assumption admits neural networks that are constructed from a wide variety of layer types, including fully
connected, convolutional, ReLU, Leaky ReLU, and max-pooling, which may be composed arbitrarily. Points
of nondifferentiability, such as at 0 in the case of the ReLU nonlinearity, are permitted because we assume
only local Lipschitzness instead of continuous differentiability and we work with the Clarke subdifferential
instead of the gradient. However, due to the L-positive homogeneity (ii), skip connections are excluded, and
biases are excluded except at the first layer.

We consider minimizing the total loss L(w) :=
∑n

i=1 ℓ
(
y(i)Φ(w, x(i))

)
, which is with respect to a finite dataset{

(x(i) ∈ Rd, y(i) ∈ {±1})
}n

i=1 and where the individual loss function is: ℓ(z) := e−z for the exponential loss,
and ℓ(z) := log(1 + e−z) for the logistic loss.

Since in both cases the individual loss functions ℓ is locally Lipschitz and definable in the o-minimal structure S
from Assumption 1, the same is true of the total loss function L.

Generalized AdaDelta flow trajectories. The starting point of our analysis is the adaptive gradient
descent of Procedure 1, which is a generalization of AdaDelta (Zeiler, 2012) by allowing: the learning rate to
be specified (this is already the case in the PyTorch implementation1), the exponential decay coefficients to
vary with time (e.g. by following a specified schedule), and both those coefficients and the numerical stability
terms to be specified differently across the vector components.

The focus of our theoretical study is the adaptive gradient flow that corresponds to the adaptive gradient
descent with an infinitesimal learning rate. To arrive at its definition, we first restate the equations of

3

Under review as submission to TMLR

Process 2 Continuous generalized AdaDelta. This adaptive gradient flow, where ∂̃L(w(t)) ∈ ∂L(w(t))
is a gradient of the loss at the current parameters w(t), corresponds to the adaptive gradient descent of
Procedure 1 with an infinitesimal learning rate. The hyperparameters are: exponential decay coefficients
schedule ρ : [0, ∞) → [0, 1]p, and numerical stability terms δ > 0 and ε > 0.

g′(t) = (1 − ρ(t))(∂̃L(w(t))2 − g(t)) (1)
h′(t) = (1 − ρ(t))(w′(t)2 − h(t)) (2)

w′(t) = −

√
ε + h(t)
δ + g(t) ∂̃L(w(t)) (3)

Procedure 1 as follows. We eliminate the auxiliary variable ∆k+1, we suppose the hyperparameters ρk obey
that (1 − ρk)/η is constant with respect to the hyperparameter η, and we replace steps k by times t = kη:

g(t + η) − g(t)
η

= (1 − ρ(t))
(

∂̃L(w(t))2 − g(t)
)

h(t + η) − h(t)
η

= (1 − ρ(t))
((

w(t + η) − w(t)
η

)2
− h(t)

)
w(t + η) − w(t)

η
= −

√
ε + h(t)

δ + g(t + η) ∂̃L(w(t)) .

Now, regarding these equations as determining the endpoints g(t + η), h(t + η), w(t + η) of the next line
segments in some continuous polygonal curves g, h, w : [0, ∞) → Rp born from the adaptive gradient descent
of Procedure 1 with learning rate η (cf. e.g. Elkabetz and Cohen (2021)), letting η tend to 0 we obtain that
the limits of their directions are given by the right-hand sides of eqs. (1) to (3), which we take to be the
derivatives that determine the adaptive gradient flow we are seeking.

We therefore analyze trajectories g, h, w : [0, ∞) → Rp of the two exponentially decaying averages and of the
parameters, which are arcs (i.e. absolutely continuous on every compact subinterval) and which obey the
adaptive gradient flow of Process 2 for almost all t ≥ 0.
Assumption 2. (i)

∫∞
0 (1 − ρ(t))dt = ∞. (ii) g(0) ≥ 0 and h(0) ≥ 0. (iii) There exists a time t0 such

that L(w(t0)) < ℓ(0).

This is a mild regularity assumption. Part (i) ensures that the exponential decay coefficients are not scheduled
to approach 1 so fast that they stop the learning, and for example it is satisfied by any constant coefficients
smaller than 1. Part (ii) just requires that the exponentially decaying averages of squared gradients and
squared adapted gradients are initialized as nonnegative (in original AdaDelta they are initialized to zero).
Part (iii) assumes that the dataset is separable by the network, moreover that for every parameters trajectory w
that we consider arising from the generalized AdaDelta flow, there exists a time t0 at which a separation
(i.e. the perfect training accuracy) is achieved; this commonly occurs when training overparameterized neural
networks by gradient based algorithms (cf. e.g. Zhang et al. (2021)).

Admittance of a chain rule. Since the total loss function L is locally Lipschitz and definable in S (for
both the exponential and the logistic individual loss functions), and the trajectory w of the parameters is an
arc, we are able to use the following fact applied to them.
Proposition 1 (Davis, Drusvyatskiy, Kakade, and Lee (2020, Theorem 5.8)). If f : Rk → R is locally
Lipschitz and definable in an o-minimal structure, then it admits a chain rule: for all arcs v : [0, ∞) → Rk,
almost all t ≥ 0, and all u ∈ ∂f(v(t)), we have df(v(t))/dt = ⟨u, dv(t)/dt⟩.

Directional convergence, KKT conditions, and margin maximization. That a trajectory v converges
in direction to a vector u means limt→∞ v(t)/∥v(t)∥ = u/∥u∥.

4

Under review as submission to TMLR

Following Dutta, Deb, Tulshyan, and Arora (2013, Section 2.2), supposing f, g1, . . . , gn : Rk → R are locally
Lipschitz, we have that v ∈ Rk is a Karush-Kuhn-Tucker point of the problem

minimize: f(v) subject to: gi(v) ≤ 0 for all i ∈ [n]

if and only if there exist Lagrange multipliers λ1, . . . , λn ≥ 0 such that:

(feasibility) gi(v) ≤ 0 for all i ∈ [n];

(equilibrium inclusion) 0 ∈ ∂f(v) +
∑n

i=1 λi∂gi(v);

(complementary slackness) λigi(v) = 0 for all i ∈ [n].

For local optimality, these first-order conditions are necessary, however in general not sufficient.

The margin of a parameters vector w is the smallest label-adjusted prediction for an input, i.e. formally
mini∈[n] y(i)Φ(w, x(i)). By the L-positive homogeneity of the predictor function (cf. Assumption 1.(ii)), the
normalized margin mini∈[n] y(i)Φ(w, x(i))/∥w∥L depends only on the direction of w, and it is straightforward
to show that the directions that maximize it are also the optimal directions of the problem

minimize: 1
2 ∥w∥2 subject to: y(i)Φ(w, x(i)) ≥ 1 for all i ∈ [n] . (4)

3 Main result

We prove that continuous generalized AdaDelta obeys the same tight rates for convergence of the loss and
growth of the parameters as were established for plain gradient flow by Lyu & Li (2020, Corollary A.11),
and also implicitly regularizes the parameters to converge in direction to a KKT point of a variant of the
margin maximization problem in eq. (4), in which the objective function 1

2 ∥w∥2 is replaced by 1
2 ∥ 4
√

δ
ε w∥2. If

the quotient δ/ε of the numerical stability hyperparameters is isotropic (i.e. δj/εj are equal for all j ∈ [p]),
then this modification does not alter the directions of the KKT points, so the implicit regularization is
the same as was established for plain gradient flow by Lyu & Li (2020, Theorem A.8) and Ji & Telgarsky
(2020, Theorem 3.1). Otherwise, the sets of points w that have the same objective value 1

2 ∥ 4
√

δ
ε w∥2 are

ellipsoids which are not spheres, and the directions of the KKT points may be different from those for the
margin maximization problem in eq. (4). Moreover, these conclusions are robust with respect to changing the
exponential decay coefficients schedule ρ hyperparameter.

Theorem 2. Under Assumptions 1 and 2, we have that L(w(t)) = Θ
(

1
t(log t)2−2/L

)
, ∥w(t)∥ = Θ((log t)1/L),

and w(t) converges in direction to a KKT point of the problem

minimize: 1
2 ∥ 4
√

δ
ε w∥2 subject to: y(i)Φ(w, x(i)) ≥ 1 for all i ∈ [n] .

A key role in the proof of Theorem 2 is played by the skewed adapter β(t) :=
√

1+h(t)/ε
1+g(t)/δ , which is defined by

multiplying the adapter
√

ε+h(t)
δ+g(t) of the continuous generalized AdaDelta (cf. Process 2) component-wise by

the square rooted quotient
√

δ
ε of the numerical stability hyperparameters. Equation (3) that governs the

parameters trajectory can then be restated as

w′(t) = −
√

ε
δ β(t) ∂̃L(w(t)) for almost all t ≥ 0 . (5)

Our first lemma shows a useful expression for the derivative of 1 minus the squared skewed adapter.

Lemma 3. For almost all t ≥ 0 we have d(1−β(t)2)
dt = −(1 − ρ(t)) 1−β(t)2

1+g(t)/δ .

5

Under review as submission to TMLR

Proof. Observe that

d(1 − β(t)2)
dt

= −h′(t)/ε + h′(t) g(t)/εδ − g′(t)/δ − g′(t) h(t)/δε

(1 + g(t)/δ)2 by the def. of β(t)

= −(1 − ρ(t))

w′(t)2/ε − h(t)/ε − ∂̃L(w(t))2/δ + g(t)/δ

+ w′(t)2g(t)/εδ − ∂̃L(w(t))2h(t)/δε

(1 + g(t)/δ)2 by eqs. (1) and (2)

= −(1 − ρ(t))

g(t)/δ − h(t)/ε + (w′(t)2/ε)(1 + g(t)/δ)
− (∂̃L(w(t))2/δ)(1 + h(t)/ε)
(1 + g(t)/δ)2 rearranging

= −(1 − ρ(t))g(t)/δ − h(t)/ε

(1 + g(t)/δ)2 by eq. (5)

= −(1 − ρ(t)) 1 − β(t)2

1 + g(t)/δ
calculation

for almost all t ≥ 0.

By Assumption 2.(ii), each component of the skewed adapter is initially positive. The second lemma shows
that it never drops below that value or 1, whichever is smaller.
Lemma 4. For all t ≥ 0 we have β(t) ≥ min{β(0), 1}.

Proof. We first note that, if any component g(t)j or h(t)j of the exponentially decaying averages were
negative at any time t ≥ 0, then by eqs. (1) and (2) its derivative (provided it exists) would necessarily be
positive. Recalling that g(0) ≥ 0 and h(0) ≥ 0 (cf. Assumption 2.(ii)), and that g and h are arcs, we infer:
g(t) ≥ 0 and h(t) ≥ 0 for all t ≥ 0.

Now, from the nonnegativity of g, Lemma 3, and the fact that dβ(t)2/dt = 2β(t)β′(t), for almost all t ≥ 0
and all j ∈ [p] we have that: if 0 < β(t)j < 1 then β′(t)j is nonnegative, if β(t)j = 1 then β′(t)j is zero, and
if β(t)j > 1 then β′(t)j is nonpositive. These properties, together with the fact that the skewed adapter β is
an arc, imply the lemma.

Lemma 4 provides a lower bound for the skewed adapter, but it leaves open its asymptotic behavior. The
next lemma fills that gap, establishing that all its components converge to 1. This equivalently means that
the adapter

√
ε+h(t)
δ+g(t) converges to

√
ε
δ .

Lemma 5. We have that limt→∞ β(t) = 1.

Proof. We first use Lemma 4 to prove that the squared gradients have bounded integrals:

L(w(0)) ≥ −
∫ ∞

0
(dL(w(t))/dt)dt since L(w(t)) > 0 for all t ≥ 0

= −
∫ ∞

0
⟨∂̃L(w(t)), w′(t)⟩dt by Proposition 1

=
∫ ∞

0
⟨∂̃L(w(t)),

√
ε
δ β(t) ∂̃L(w(t))⟩dt by eq. (5)

≥
∫ ∞

0
⟨
√

ε
δ min{β(0), 1}, ∂̃L(w(t))2⟩dt by Lemma 4

=
∑
j∈[p]

√
εj

δj
min{β(0)j , 1}

∫ ∞

0
∂̃L(w(t))2

j dt rearranging ,

so for each j ∈ [p] we have
∫∞

0 ∂̃L(w(t))2
j dt ≤

√
δj

εj

L(w(0))
min{β(0)j ,1} =: Cj .

6

Under review as submission to TMLR

Now suppose j ∈ [p]. Equation (1) implies that

g(t)j ≤ g(0)j + Cj =: C†
j for all t ≥ 0 ,

so recalling Lemmas 3 and 4 and setting C‡
j := 1

1+C†
j

/δj
we have

d log |1 − β(t)2
j |/dt ≤ −C‡

j (1 − ρ(t)j) for almost all t ≥ 0 such that β(t)j ̸= 1 .

Hence
|1 − β(t)2

j | ≤ |1 − β(0)2
j | exp

(
−C‡

j

∫ t

0
(1 − ρ(τ)j)dτ

)
for all t ≥ 0 ,

which by positivity of C‡
j and unboundedness of the integrals of the complements of the exponential decay

coefficients (cf. Assumption 2.(i)) establishes the lemma.

Our final lemma shows that the components of the skewed adapter converge without large fluctuations.
Lemma 6. The function d log β(t)/dt is Lebesgue integrable.

Proof. For each j ∈ [p], from the proof of Lemma 4 we have that d log β(t)j/dt = β′(t)j/β(t)j is either
nonnegative for almost all t ≥ 0, or nonpositive for almost all t ≥ 0. Thus by Lemma 5 we have∫ ∞

0
|d log β(t)/dt|dt =

∣∣∣∣∫ ∞

0
(d log β(t)/dt)dt

∣∣∣∣ = | log 1 − log β(0)| = | log β(0)| < ∞ .

Theorem 2 now follows from Lemmas 5 and 6 by applying Wang et al. (2021, Theorems 2, 3, and 10)2 to the
flow

v′(t) = −β(t) ∂̃L̂(v(t)) for almost all t ≥ 0 ,

which is a restatement of eq. (5) with v(t) := 4
√

δ
ε w(t) and L̂(u) := L(4

√
ε
δ u).

4 Experiments

To test our theoretical result for generalized AdaDelta, we evaluated comparatively five algorithms:

SGD: Stochastic gradient descent as implemented in PyTorch3.

AdaDelta: Its standard PyTorch implementation1, with the exponential decay coefficient ϱ = 0.9, and the
numerical stability term ϵ = 10−5.

AdaDeltaS: This is AdaDelta amended to have the exponential decay coefficients follow the schedule
ϱk = 1 − 0.1/(1 + ⌊100k/K⌋), where K is the total number of steps. Thus 1 − ϱk follows a harmonic sequence,
increasing the coefficient from ϱ0 = 0.9 at the first step to ϱK−1 = 0.999 at the last step, which lessens
aggressiveness of the decay in computing the averages of the squared gradients and the squared adapted
gradients along the training.

AdaDeltaN: This is AdaDelta amended to have the numerical stability terms different in the numerator and
the denominator of the adaptor, and different across the network parameters. At the start of the training,
each component of δ and of ε is sampled independently from 10−5+X , where X is a centered Gaussian with
standard deviation 1 for the smaller two networks we consider, and with standard deviation 0.25 for the
largest network.

2Wang et al. (2021, Theorem 10) contains a typo: the rate Θ
(

1
(log t)1/L

)
should be Θ((log t)1/L).

3https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

7

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

Under review as submission to TMLR

AdaDeltaNS: This combines the generalizations in AdaDeltaS and AdaDeltaN, i.e. has exponential decay
coefficients that follow the specified schedule as well as numerical stability terms whose components are
initialized randomly as above.

We performed experiments in the following three gradually more complex settings. The total compute for the
perceptron setting was around 10min on a mid-range CPU, whereas an experiment for a single algorithm on
one of the two convolutional networks took around 2h on a mid-range GPU. In the plots for the experiments
on the convolutional networks, the solid lines show the median values, and the shaded areas are between
the 25th and 75th percentiles, over five runs of each experiment. Our experiments can be replicated by
making: simple amendments to the PyTorch implementation of AdaDelta1 to obtain AdaDeltaS, AdaDeltaN,
and AdaDeltaNS; and straightforward extensions to the code of Wang et al. (2021) to implement the VGG
network and load CIFAR-10.

Two-layer Leaky ReLU perceptron on a two-dimensional dataset. Following Wang et al. (2021),
we first considered a perceptron with parameters v ∈ R and w ∈ R2, whose prediction for an input x ∈ R2

equals v σ(⟨w, x⟩), where σ is the Leaky ReLU nonlinearity with inactive gradient 0.5.

The dataset
{

(x(1), y(1)), . . . , (x(100), y(100))
}

consists of 50 points sampled from (cos 0.5, sin 0.5) + u inde-
pendently and labelled 1, and 50 points sampled from −(cos 0.5, sin 0.5) + u independently and labelled −1,
where u is distributed uniformly on the square [−0.6, 0.6]2. An instance is depicted in fig. 1.(a).

This toy setting is convenient for three-dimensional visualizations of the adapter’s reciprocal square roots.
We trained the network for K = 5000 full-batch epochs using the exponential loss, with learning rate 0.1 for
SGD and learning rate 1 for the four variants of AdaDelta. We repeated the training 100 times, where in
each round the five algorithms used the same randomly initialized parameters and numerical stability terms
(if applicable). The results are shown in fig. 1.(b)–(g).

We observe that:

• all rounds achieved 100% training accuracy by around 256 epochs, in line with the separation Assump-
tion 2.(iii);

• the final normalized margin, which here equals mini∈[100]
y(i) vK σ(⟨wK ,x(i)⟩)

v2
K

+∥wK∥2 , is within a higher and much
narrower range for SGD and with isotropic numerical stability hyperparameters (i.e. for AdaDelta and
AdaDeltaS), confirming the prediction of Theorem 2 that, without the isotropy, the implicit regularization
may not be towards margin maximization;

• the final adapter’s reciprocal square root, which in the notations of Procedure 1 equals 4
√

δ+gK

ε+hK−1
, has a

large variance of its direction when the numerical stability hyperparameters have random components (i.e. for
AdaDeltaN and AdaDeltaNS), and it is the limit of this direction that according to the proof of Theorem 2
determines the nature of the implicit regularization.

Four-layer convolutional network on MNIST. Also following Wang et al. (2021), we then considered
the network from Mądry, Makelov, Schmidt, Tsipras, and Vladu (2018) with biases removed, and in order
consisting of: 32-channel 5×5-filter convolutional, ReLU, 2-kernel 2-stride max-pooling, 64-channel 3×3-filter
convolutional, ReLU, 2-kernel 2-stride max-pooling, 1024-width fully connected, ReLU, and 10-width fully
connected.

We trained the network on MNIST (LeCun, Bottou, Bengio, and Haffner, 1998) from the default PyTorch
random initialization for 500 epochs using the cross-entropy loss: in a finer regime with batch size 100,
learning rate 0.01 for SGD, and learning rate 0.1 for the four variants of AdaDelta; and in a coarser regime
with batch size 1000, learning rate 0.1 for SGD, and learning rate 1 for the four variants of AdaDelta. The
results are shown in fig. 2.

For both regimes, we observe that:

• all algorithms achieved perfect training accuracy by around 250 epochs, in line with the separation
Assumption 2.(iii);

8

Under review as submission to TMLR

• the normalized margin, whose values here are relatively small partly due to the division by the fourth
power of the norm of the network parameters, grows significantly higher for SGD and with isotropic numerical
stability hyperparameters (i.e. for AdaDelta and AdaDeltaS), confirming the prediction of Theorem 2 that,
without the isotropy, the implicit regularization may not be towards margin maximization;

• the test accuracy is consistently high for AdaDelta and AdaDeltaS, corroborating the link between the
normalized margin and generalization (cf. e.g. Jiang, Neyshabur, Mobahi, Krishnan, and Bengio (2020));

• the training loss shrinks faster when the numerical stability hyperparameters have random components
(i.e. for AdaDeltaN and AdaDeltaNS);

• the results are not substantially affected by whether the exponential decay coefficients follow the increasing
schedule.

VGG on CIFAR-10. Following Lyu & Li (2020), we finally considered the 14-layer VGG-16 (Simonyan and
Zisserman, 2015) with biases only at the first level, and in order consisting of: 64-channel convolutional then
ReLU, repeated 2 times; max-pooling; 128-channel convolutional then ReLU, repeated 2 times; max-pooling;
256-channel convolutional then ReLU, repeated 3 times; max-pooling; 512-channel convolutional then ReLU,
repeated 3 times; max-pooling; 256-channel convolutional then ReLU, repeated 3 times; max-pooling; 10-width
fully connected. Each convolutional layer is 3 × 3-filter, and each max-pooling is 2-kernel 2-stride.

We trained the network on CIFAR-10 (Krizhevsky, 2009) from the default PyTorch random initialization for
1000 epochs using the cross-entropy loss: in a finer regime with batch size 100, and learning rate 0.1 for all
five algorithms; and in a coarser regime with batch size 250, and learning rate 0.25 for all five algorithms.
The results are shown in fig. 3.

Our observations are similar as for the the previous setting, except that in the larger learning rate regime,
the increasing schedule of the exponential decay coefficient (i.e. in AdaDeltaS and AdaDeltaNS) seems to
help with both optimization and generalization.

5 Conclusion

Our main result, Theorem 2 which holds under Assumptions 1 and 2, indicates that AdaDelta may be used
in practical methods that rely on the optimization algorithm implicitly regularizing the network parameters
to converge in direction to a margin maximization KKT point.

Relaxing Assumption 1 on the predictor function is challenging even without considering adaptive algorithms,
e.g. the definability excludes pathological examples such as based on the “Mexican hat” function (cf. Lyu &
Li (2020, Appendix J)).

We focused on binary classification for simplicity of presentation; it is straightforward to extend Theorem 2
for logistic loss to an arbitrary number of classes (cf. Wang et al. (2021, Appendix E)).

An important future goal is to obtain a counterpart of Theorem 2 directly for adaptive gradient descent as
in Procedure 1. This is also a challenge already without adaptivity: the directional convergence result (Ji
& Telgarsky, 2020, Theorem 3.1) is only for gradient flow, and the characterization of directional limits for
gradient descent (Lyu & Li, 2020, Theorem E.3) assumes C2-smoothness of the predictor function which
excludes nonlinearities such as ReLU and Leaky ReLU.

A potentially interesting direction for further empirical work is to evaluate more systematically the extensions
of AdaDelta that we considered, in particular the benefits of anisotropic numerical stability terms and of
scheduled exponential decay coefficients that we observed in some experiments.

Broader Impact Statement

This is foundational research on a general algorithm for optimizing neural networks. Greater understanding
of its implicit regularization properties may lead to machine learning models that have cheaper training,
greater efficiency, and increased performance.

9

Under review as submission to TMLR

(a) Simple dataset (b) Average training accuracy (c) Final normalized margin

(d) AdaDelta (e) AdaDeltaS

(f) AdaDeltaN (g) AdaDeltaNS

Figure 1: We trained a two-layer Leaky ReLU perceptron on a binary classification dataset depicted in plot (a)
for 100 rounds. A round consisted of randomly initializing the network parameters and the numerical stability
terms (if applicable), and then running separately each of the five algorithms for 5000 epochs. Plot (b) shows
the training accuracies across the epochs averaged over the rounds, and plot (c) shows the final normalized
margin across the rounds. In plots (b) and (c), the differences between AdaDelta and AdaDeltaS are small
and thus hardly visible, and similarly for AdaDeltaN and AdaDeltaNS. Plots (d)–(g) visualize the direction of
the final adapter’s reciprocal square root, where the isotropic direction is indicated by the longer cyan arrow.

10

Under review as submission to TMLR

(a)
Training
loss

(b)
Training
accuracy

(c)
Test
accuracy

(d)
Normalized
margin

Figure 2: The plots show the results of training a 4-layer convolutional network on MNIST, with batch sizes
and learning rates for the right-hand column that are 10 times larger than for the left-hand column.

11

Under review as submission to TMLR

(a)
Training
loss

(b)
Training
accuracy

(c)
Test
accuracy

(d)
Normalized
margin

Figure 3: The plots show the results of training a 14-layer convolutional network on CIFAR-10, with batch
sizes and learning rates for the right-hand column that are 2.5 times larger than for the left-hand column.

12

Under review as submission to TMLR

References

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proc. Natl. Acad. Sci., 116(32):15849–15854, 2019. 1

Jonathan Borwein and Adrian Lewis. Convex Analysis and Nonlinear Optimization: Theory and Examples.
Springer, 2nd edition, 2010. 2

Gon Buzaglo, Niv Haim, Gilad Yehudai, Gal Vardi, Yakir Oz, Yaniv Nikankin, and Michal Irani. De-
constructing Data Reconstruction: Multiclass, Weight Decay and General Losses. In NeurIPS, 2023.
1

Matias D. Cattaneo, Jason M. Klusowski, and Boris Shigida. On the Implicit Bias of Adam. CoRR,
abs/2309.00079, 2023. 2

Frank H. Clarke. Generalized gradients and applications. Trans. Amer. Math. Soc., 205:247–262, 1975. 2

Damek Davis, Dmitriy Drusvyatskiy, Sham M. Kakade, and Jason D. Lee. Stochastic Subgradient Method
Converges on Tame Functions. Found. Comput. Math., 20(1):119–154, 2020. 4

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. J. Mach. Learn. Res., 12:2121–2159, 2011. 2

Joydeep Dutta, Kalyanmoy Deb, Rupesh Tulshyan, and Ramnik Arora. Approximate KKT points and a
proximity measure for termination. J. Glob. Optim., 56(4):1463–1499, 2013. 5

Omer Elkabetz and Nadav Cohen. Continuous vs. Discrete Optimization of Deep Neural Networks. In
NeurIPS, pp. 4947–4960, 2021. 4

Suriya Gunasekar, Jason D. Lee, Daniel Soudry, and Nathan Srebro. Characterizing Implicit Bias in Terms
of Optimization Geometry. In ICML, pp. 1827–1836, 2018. 1

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing Training Data From
Trained Neural Networks. In NeurIPS, 2022. 1

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Overview of mini-batch gradient descent, 2012.
Neural Networks for Machine Learning: Lecture 6a. 2

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In NeurIPS, 2020. 1,
3, 5, 9

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic Generalization
Measures and Where to Find Them. In ICLR, 2020. 9

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015. 1

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, University of
Toronto, 2009. 9

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, 1998. 8

Kaifeng Lyu and Jian Li. Gradient Descent Maximizes the Margin of Homogeneous Neural Networks. In
ICLR, 2020. 1, 5, 9

Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
Deep Learning Models Resistant to Adversarial Attacks. In ICLR, 2018. 8

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring Generalization in
Deep Learning. In NeurIPS, pp. 5947–5956, 2017. 1

13

https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1007/978-0-387-31256-9
http://papers.nips.cc/paper_files/paper/2023/hash/a1d20cc72a21ef971d7e49a90d8fa56f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a1d20cc72a21ef971d7e49a90d8fa56f-Abstract-Conference.html
https://doi.org/10.48550/arxiv.2309.00079
https://doi.org/10.1090/s0002-9947-1975-0367131-6
https://doi.org/10.1007/s10208-018-09409-5
https://doi.org/10.1007/s10208-018-09409-5
https://dl.acm.org/doi/10.5555/1953048.2021068
https://dl.acm.org/doi/10.5555/1953048.2021068
https://doi.org/10.1007/s10898-012-9920-5
https://doi.org/10.1007/s10898-012-9920-5
https://proceedings.neurips.cc/paper/2021/hash/274ad4786c3abca69fa097b85867d9a4-Abstract.html
http://proceedings.mlr.press/v80/gunasekar18a.html
http://proceedings.mlr.press/v80/gunasekar18a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/906927370cbeb537781100623cca6fa6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/906927370cbeb537781100623cca6fa6-Abstract-Conference.html
https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://proceedings.neurips.cc/paper/2020/hash/c76e4b2fa54f8506719a5c0dc14c2eb9-Abstract.html
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=SJgIPJBFvH
http://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/10ce03a1ed01077e3e289f3e53c72813-Abstract.html

Under review as submission to TMLR

Alethea Power, Yuri Burda, Harrison Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
Beyond Overfitting on Small Algorithmic Datasets. CoRR, abs/2201.02177, 2022. 2

Qian Qian and Xiaoyuan Qian. The Implicit Bias of AdaGrad on Separable Data. In NeurIPS, pp. 7759–7767,
2019. 1

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747, 2016. 2

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition.
In ICLR, 2015. 9

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The Implicit Bias of
Gradient Descent on Separable Data. J. Mach. Learn. Res., 19(70):1–57, 2018. 1

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-Margin Token Selection in
Attention Mechanism. In NeurIPS, 2023. 2

Vimal Thilak, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua M. Susskind. The Slingshot
Effect: A Late-Stage Optimization Anomaly in Adaptive Gradient Methods. Trans. Mach. Learn. Res.,
2024. 2

Gal Vardi. On the Implicit Bias in Deep-Learning Algorithms. Commun. ACM, 66(6):86–93, 2023. 1

Bohan Wang, Qi Meng, Wei Chen, and Tie-Yan Liu. The Implicit Bias for Adaptive Optimization Algorithms
on Homogeneous Neural Networks. In ICML, pp. 10849–10858, 2021. 1, 2, 7, 8, 9

Bohan Wang, Qi Meng, Huishuai Zhang, Ruoyu Sun, Wei Chen, Zhi-Ming Ma, and Tie-Yan Liu. Does
Momentum Change the Implicit Regularization on Separable Data? In NeurIPS, 2022. 2

Bohan Wang, Jingwen Fu, Huishuai Zhang, Nanning Zheng, and Wei Chen. Closing the gap between the
upper bound and lower bound of Adam’s iteration complexity. In NeurIPS, 2023. 2

Alex Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted
Pfaffian functions and the exponential function. J. Am. Math. Soc., 9(4):1051–1094, 1996. 3

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The Marginal Value of
Adaptive Gradient Methods in Machine Learning. In NeurIPS, pp. 4148–4158, 2017. 1

Shuo Xie and Zhiyuan Li. Implicit Bias of AdamW: ℓ∞ Norm Constrained Optimization. In ICML, pp.
54488–54510, 2024. 2

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. CoRR, abs/1212.5701, 2012. 2, 3

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115, 2021. 1, 4

14

https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://proceedings.neurips.cc/paper/2019/hash/3335881e06d4d23091389226225e17c7-Abstract.html
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v19/18-188.html
http://jmlr.org/papers/v19/18-188.html
http://papers.nips.cc/paper_files/paper/2023/hash/970f59b22f4c72aec75174aae63c7459-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/970f59b22f4c72aec75174aae63c7459-Abstract-Conference.html
https://openreview.net/forum?id=OZbn8ULouY
https://openreview.net/forum?id=OZbn8ULouY
https://doi.org/10.1145/3571070
http://proceedings.mlr.press/v139/wang21q.html
http://proceedings.mlr.press/v139/wang21q.html
http://papers.nips.cc/paper_files/paper/2022/hash/ab3f6bbe121a8f7a0263a9b393000741-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ab3f6bbe121a8f7a0263a9b393000741-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7ac19fdcdf4f311f3e3ef2e7ef4784d7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7ac19fdcdf4f311f3e3ef2e7ef4784d7-Abstract-Conference.html
https://doi.org/10.1090/s0894-0347-96-00216-0
https://doi.org/10.1090/s0894-0347-96-00216-0
https://proceedings.neurips.cc/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.mlr.press/v235/xie24e.html
http://arxiv.org/abs/1212.5701
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776

	Introduction
	Preliminaries
	Main result
	Experiments
	Conclusion

