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ABSTRACT

Multi-task learning can leverage information learned by one task to benefit the
training of other tasks. Despite this capacity, naı̈ve formulations often degrade
performance and in particular, identifying the tasks that would benefit from co-
training remains a challenging design question. In this paper, we analyze the
dynamics of information transfer, or transference, across tasks throughout train-
ing. Specifically, we develop a similarity measure that can quantify transference
among tasks and use this quantity to both better understand the optimization dy-
namics of multi-task learning as well as improve overall learning performance.
In the latter case, we propose two methods to leverage our transference metric.
The first operates at a macro-level by selecting which tasks should train together
while the second functions at a micro-level by determining how to combine task
gradients at each training step. We find these methods can lead to significant im-
provement over prior work on three supervised multi-task learning benchmarks
and one multi-task reinforcement learning paradigm.

1 INTRODUCTION

Deciding if two or more objectives should be trained together in a multi-task model, as well as
choosing how that model’s parameters should be shared, is an inherently complex issue often left to
human experts (Zhang & Yang, 2017). However, a human’s understanding of similarity is motivated
by their intuition and experience rather than a prescient knowledge of the underlying structures
learned by a neural network. To further complicate matters, the benefit or detriment induced from
co-training relies on many non-trivial decisions including, but not limited to, dataset characteristics,
model architecture, hyperparameters, capacity, and convergence (Wu et al., 2020; Vandenhende
et al., 2019; Standley et al., 2019; Sun et al., 2019). As a result, a quantifiable measure which
conveys the effect of information transfer in a neural network would be valuable to practitioners
and researchers alike to better construct or understand multi-task learning paradigms (Baxter, 2000;
Ben-David & Schuller, 2003).

The training dynamics specific to multitask neural networks, namely cross-task interactions at the
shared parameters (Zhao et al., 2018), are difficult to predict and only fully manifest at the comple-
tion of training. Given the cost, both with regards to time and resources, of fully training a deep
neural network, an exhaustive search over the 2m−1 possible combinations ofm tasks to determine
ideal task groupings can be infeasible. This search is only complicated by the irreproducibility inher-
ent in traversing a loss landscape with high curvature; an effect which appears especially pronounced
in multi-task learning paradigms (Yu et al., 2020; Standley et al., 2019).

In this paper, we aim to take a step towards quantifying transference, or the dynamics of informa-
tion transfer, and understanding its effect on multi-task training efficiency. As both the input data
and state of model convergence are fundamental to transference (Wu et al., 2020), we develop a
parameter-free approach to measure this effect at a per-minibatch level of granularity. Moreover,
our quantity makes no assumptions regarding model architecture, and is applicable to any paradigm
in which shared parameters are updated with respect to multiple task losses.

By analyzing multi-task training dynamics through the lens of transference, we present the follow-
ing observations. First, information transfer is highly dependent on model convergence and varies
significantly throughout training. Second, and perhaps surprisingly, excluding certain task gradients
from the multi-task gradient update for select minibatches can improve learning efficiency. Our
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Figure 1: Transference in (a) CelebA for a subset of 9 attributes; (b) Meta-World for “push”, “reach”,
“press button top”, and “open window”. To determine task groupings, we compute the transference
of each task i on all other tasks j, i.e. Zt{i}→j and average over time. For the purpose of illustration,
we normalize the transference along each axis. Notice the majority of the tasks in (a) concen-
trate around a single value for each attribute. Tasks which exhibit transference above this value are
considered to have relatively high transference. For instance, A3 exhibits higher-than-average trans-
ference on A0, A4, and A5. A similar effect is observed in (b), with “close window” manifesting
high transference on “push” and “reach”.

analysis suggests this is due to large variation in loss landscapes for different tasks as illustrated in
Figure 4. Building on these observations, we propose two methods to utilize transference in multi-
task learning algorithms – to choose which tasks to train together as well as determining which
gradients to apply at each minibatch. Our experiments indicate the former can identify promising
task groupings, while the latter can improve learning performance over prior methods.

In summary, our main contributions are three-fold: we (1) propose the first measure (to our knowl-
edge) which quantifies information transfer among tasks in multi-task learning; (2) demonstrate how
transference can be used as a heuristic to select task groupings; (3) present a method which leverages
minibatch-level transference to augment network performance.

2 RELATED WORK

Multi-Task Formulation. The most prevalent formulation of MTL is hard parameter sharing of
hidden layers (Ruder, 2017; Caruana, 1993). In this design, a subset of the hidden layers are typically
shared among all tasks, and task-specific layers are stacked on top of the shared base to output
a prediction value. Each task is assigned a weight, and the loss of the entire model is a linear
combination of each task’s loss multiplied by its respective loss weight. This particular design
enables parameter efficiency by sharing hidden layers across tasks, reduces overfitting, and can
facilitate transfer learning effects among tasks (Ruder, 2017; Baxter, 2000; Zhang & Yang, 2017).

Information Sharing. Prevailing wisdom suggests tasks which are similar or share a similar un-
derlying structure may benefit from co-training in a multi-task system (Caruana, 1993; 1997). A
plethora of multi-task methods addressing what to share have been developed, such as Neural Ar-
chitecture Search (Guo et al., 2020; Sun et al., 2019; Vandenhende et al., 2019; Rusu et al., 2016;
Huang et al., 2018; Lu et al., 2017) and Soft-Parameter Sharing (Misra et al., 2016; Duong et al.,
2015; Yang & Hospedales, 2016), to improve multi-task performance. Though our measure of trans-
ference is complementary with these methods, we direct our focus towards which tasks should be
trained together rather than architecture modifications to maximize the benefits of co-training.

While deciding which tasks to train together has traditionally been addressed with costly cross-
validation techniques or high variance human intuition, recent advances have developed increas-
ingly efficient algorithms to assess co-training performance. Swirszcz & Lozano (2012) and Bingel
& Søgaard (2017) approximate multi-task performance by analyzing single-task learning character-
istics. An altogether different approach may leverage recent advances in transfer learning focused on
understanding task relationships (Zamir et al., 2018; Achille et al., 2019b; Dwivedi & Roig, 2019;
Zhuang et al., 2020; Achille et al., 2019a); however, Standley et al. (2019) show transfer learning
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Figure 2: Effect of convergence on transference for CelebA attributes A6, A7, and A8. Transference
is highly dynamic and changes over the course of training. See Section 5.2 for more details.

algorithms which determine task similarity do not carry over to the multi-task learning domain and
instead propose a multi-task specific framework.

Training Dynamics. Significant effort has also been invested to improve the training dynamics of
MTL systems. In particular, dynamic loss reweighing has achieved performance superior to using
fixed loss weights found with extensive hyperparameter search (Kendall et al., 2018; Guo et al.,
2018; Liu et al., 2019; Chen et al., 2017; Sener & Koltun, 2018; Lin et al., 2019). Another set
of methods seeks to mitigate the optimization challenges in multi-task learning by manipulating
the task gradients in a number of ways such as (1) modifying the direction of task gradients with
the underlying assumption that directional inconsistency of gradients on the shared parameters are
detrimental to model convergence and performance (Zhao et al., 2018; Suteu & Guo, 2019), and (2)
altering both the direction and the magnitude of the task gradients (Yu et al., 2020; Chen et al., 2020;
Wang et al., 2020b). Instead of directly modifying the task gradients during optimization, our work
builds upon these approaches by quantifying how a gradient update to the shared parameters would
affect training loss and choosing the combination of gradients which maximizes positive information
transfer.

Looking into the Future. Looking at what could happen to determine what should happen has been
used extensively in both the meta-learning (Finn et al., 2017; Nichol et al., 2018; Brinkmeyer et al.,
2019; Grant et al., 2018; Kim et al., 2018) as well as optimization domains (Nesterov, 1983; Hinton
& Plaut, 1987; Zhang et al., 2019; Izmailov et al., 2018; Johnson & Zhang, 2013). Lookahead meta-
learning algorithms focusing on validation loss have also been used to improve generalization in
multi-task learning systems (Wang et al., 2020a), and our work further adapts this central concept to
multi-task learning to both quantify and improve information transfer.

3 TRANSFERENCE IN MULTI-TASK LEARNING

Within the context of a hard-parameter sharing paradigm, tasks collaborate to build a shared feature
representation which is then specialized by individual task-specific heads to output a prediction.
Accordingly, tasks implicitly transfer information to each other by updating this shared feature rep-
resentation with successive gradient updates. We can then view transference, or information transfer
in multi-task learning, as the effect of a task’s gradient update to the shared parameters on another
task’s loss during training.

While the the shared parameter update using a task’s gradient, often but not always, increases the
losses of the other tasks in the network, we find the extent to which these losses change to be
highly task specific. This indicates certain tasks interact more constructively than others. Further,
we notice this effect to be reproducible and nearly unchanged across successive training runs with
varying parameter initializations. Motivated by these observations, we derive a quantitative measure
of transference, describe how it can be used to determine which tasks should be trained together,
and provide empirical analysis of these claims. Later, we will build upon these ideas to derive a new
multi-task learning algorithm.

3.1 MEASURING TRANSFERENCE

Consider an m-multitask loss function parameterized by {θs} ∪ {θi| i ∈ [m]} where θs represents
the shared parameters and θi represents the task i ∈ [m] specific parameters. Let

Ltotal(X , θs, {θi}) =
∑
i∈[m]

Li(X , θs, θi) ,
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Figure 3: (Top) Performance of reach when co-trained with “push” and one of “press button top”,
“close window”, or “open window”. (Bottom) performance of “push” when co-trained with reach
and one of “press button top”, “close window”, or “open window”. In both cases, the best perfor-
mance is achieved by co-training with “close window”. Performance is degraded when co-trained
with “open window”.

denote the total loss where Li represents the non-negative loss of task i. For simplicity of notation,
we set the loss weight of each task to be equal to 1, though our construction generalizes to arbitrary
weightings.

For a given training batch X t at time-step t, we can first update the task specific parameters {θt+1
i }

using standard gradient updates. We can now define the quantity θt+1
s|ξ to represent the updated shared

parameters after a gradient step with respect to the tasks in the non-empty subset ∅ ⊂ ξ ⊆ [m].
Assuming SGD for simplicity, we have1

θt+1
s|ξ := θts − η

∑
i∈ξ

∇θsLi(X t, θts, θti) .

This quantity allows us to calculate a lookahead loss using the updated shared parameters while
keeping the task-specific parameters as well as the input batch unchanged across different subsets
of task gradients. That is, in order to assess the effect of the gradient update of tasks in ξ on a given
task j, we can compare the loss of task j before and after applying the gradient update on the shared
parameters with respect to ξ. In order to eliminate the scale discrepancy among different task losses,
we consider the ratio of a task’s loss before and after the gradient step on the shared parameters
as a scale invariant measure of relative progress. We can then define an asymmetric measure for
calculating the transference of the tasks in ξ at a given time-step t on a single task j as

Ztξ j = 1−
Lj(X t, θt+1

s|ξ , θ
t+1
j )

Lj(X t, θts, θtj)
. (1)

Notice that a positive value of Ztξ j indicates that the update on the shared parameters results in
a lower loss on task j than the original parameter values, while a negative value of Ztξ j indicates
that the shared parameter update is antagonistic for this task’s performance. Also, note that for
ξ = {j}, our definition of transference encompasses a notion of self-transference, i.e. the effect of a
task’s gradient update on its own loss. This quantity is particularly useful as a baseline to determine
whether a subset of gradient updates can result in improved performance when compared with a
task’s own self-transference. As we discuss in the next section, transference provides an effective
guideline for choosing the subset of tasks to train together in a multi-task setting.

3.2 TASK GROUPINGS BASED ON TRANSFERENCE

Before using transference to develop a multi-task training augmentation, we aim to evaluate if our
measure of transference is meaningful in practice. To do this, we empirically test whether transfer-
ence is predictive of whether a group of tasks should be trained together. We consider two multi-task
learning problems based on the CelebA dataset (Liu et al., 2015) and the Meta-World benchmark (Yu
et al., 2019). Compiling transference scores into a radar chart, we use Figure 1 to identify groupings
of tasks which exhibit beneficial or antagonistic transference. We then evaluate if our heuristic led
us to select ideal task groupings by comparing against all other possible task groupings. Unlike prior
approaches, our method requires only a single training run and is minimally complex, only making
additional forward and backward passes through the network which can be done in parallel.
1Note that the backward pass is computed only once and the gradients are calculated at {θts} ∪ {θti | i ∈ [m]}.
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Co-trained with
Group 1 Group 2

A0 A5 A4 A8 A7

{All Tasks} 92.65 96.76 96.27 87.98 95.14
A0 - - - 88.00 94.92
A1 92.55 96.77 96.48 87.93 95.20
A2 92.56 96.77 96.51 88.04 95.02
A3 93.10 96.84 96.56 87.97 95.11
A4 - - - 87.92 95.10
A5 - - - 88.11 95.15
A6 92.63 96.54 96.14 88.46 95.20
A7 92.48 96.66 96.56 - -
A8 92.71 96.69 96.34 - -

Table 1: Test Accuracy on CelebA. Group 1 and Group 2 are co-trained with the task(s) in the
left column. Group 1 most benefits from co-training with A3 while Group 6 most benefits from
co-training with A6.

We first consider a multi-task classification problem by selecting 9 attributes2 from the CelebA
dataset and computing their transference when trained together in a single model. Specifically, we
compute the transference of each task i on all other tasks j in the network, i.e. Zt{i} j . While
transference is computed at a per-minibatch level, we can average the transference across mini-
batches to compute an epoch-level transference metric. Integrating across the number of steps in
training then provides us with an overall (scalar) transference score. Figure 1(a) shows the transfer-
ence score among the 9 attributes in the CelebA dataset. For purposes of illustration, we normalize
the transference scores on each task by dividing the values by the task’s self-transference. Thus,
self-transference becomes 1 for all tasks.

As illustrated in Figure 1(a), two clusters of strong mutual transference manifest: (1) {A0, A3, A4,
A5} and (2) {A6, A7, A8}. We draw this grouping by choosing subsets of tasks which induce
relatively high mutual transference. For instance, A3 demonstrates significantly higher transference
on A0, A4, and A5, when compared with the transference of A1, A2, A6, A7, and A8 on these
tasks. In Table 1, we construct Group 1 and Group 2 from interpreting Figure 1(a) and co-train both
groups with all other attributes as shown in the left column of Table 1. We find the inclusion of A3

in Group 1 (A0, A4, and A5) results in the highest accuracy when compared to co-training with any
other attribute. Similarly, A6 is the best attribute to co-train with A7 and A8 in Group 2.

We also consider a multi-task reinforcement learning (RL) problem using the Meta-World bench-
mark (Yu et al., 2019), which contains 50 qualitatively different robotic manipulation tasks. We
select five tasks from Meta-World task suite, namely “reach”, “push”, “press button top”, “open
window” and “close window”. We train these five tasks together using the soft actor critic (SAC)
(Haarnoja et al., 2018) algorithm with the weights of the critic and the policy shared across all tasks.
We compute the transference on the critic loss to produce Figure 1(b). We include more details on
the multi-task RL experiment in Appendix A.2.

Figure 1(b) indicates that “open window” exhibits relatively low transference with all tasks while
“close window” exhibits especially high transference with “push” and “reach”. Accordingly, we
group “push” and “reach” together and then compute the efficacy of these tasks when co-training
with “press button top”, “open window”, and “close window”. As shown in Figure 3 and as sug-
gested by transference, the success rate of “reach” converges more quickly to a significantly higher
value when it is co-trained with “close window”, and marginally faster when it is co-trained with
“press button top”, as compared to co-training with “open window”. This effect is only magnified
when we assess the performance of “push”. For “push”, its performance in terms of success rates
and data efficiency is greatly increased when co-trained with either “close window” or “press button
top” when compared to co-training with “open window”.

In summary, transference can be used as a heuristic to determine task groupings. A set of tasks
which exhibit relatively high transference tend to train effectively together, while tasks which ex-
hibit relatively low transference with this set should be excluded. Using this method, our empirical
analysis suggests transference is capable of identifying beneficial and antagonistic task groupings in
both supervised and reinforcement learning paradigms.

2To avoid possible biases or implications conveyed by the definition of the attributes, we omit their names.
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Figure 4: Total loss in MultiFashion along a linear interpolation between the current and updated
shared parameter values. We extend the interpolation to a magnitude 3× the original update to
illustrate the curvature along this direction. The dashed vertical line crosses the loss curves at the
original update. In all cases, a step along the left gradient is better.

4 INCREASED TRANSFER MTL

As shown in Section 3.2, the transference measure defined in Eq. (1) is an effective “macro-level”
quantity to recognize the tasks that may benefit from co-training. In this section, we extend the utility
of our transference measure beyond determining task groupings by incorporating it directly into the
training dynamics of multi-task learning. In particular, we present a parameter-free algorithm which
selects the combination of task gradients in each step of training that most increases transference
among all tasks. Let us define total transference for the subset of tasks ξ at time-step t as

Ztξ :=
∑
j∈[m]

Ztξ j =
∑
j∈[m]

(
1−

Lj(X, θ
t+1
s|ξ , θ

t+1
j )

Lj(X, θts, θ
t
j)

)
. (2)

Total transference provides a cumulative measure of relative progress across all tasks as a result of
applying a gradient update to the shared parameters with respect to a subset of tasks ξ. Perhaps
surprisingly, ξ = [m] is not always the set of tasks which most increases transference. Rather, we
find that this particular update can often result in worse transference than a gradient update using a
subset of tasks, an effect especially pervasive at the beginning of training.

With this motivation in mind, we present increased transfer multi-task learning (IT-MTL), a
parameter-free augmentation to multi-task learning which chooses the gradient that most increases
transference. Specifically, IT-MTL chooses the shared parameter update using a subset of tasks
which induce the highest transference in a given minibatch. Formally, we define J ⊆ P([m]) − ∅
where P(S) denotes the power-set of set S.3 Although the possible number of task combinations is
exponentially large in the number of tasks m, in practice and as found in our experiments in Sec-
tion 5, a carefully chosen subset of tasks of size |J | = O(m) provides compelling results. Specif-
ically, choosing J as the set of m-many leave-one-out subsets, i.e. [m] − {i} for all i ∈ [m], plus
the set of all tasks [m] works well in practice. IT-MTL proceeds by calculating the total transference
defined in Eq. (2) for each subset of tasks ξ ∈ J and then applies the gradient update to the shared
parameters using the subset that induces the highest total transference. Task-specific parameters are
updated as normal. The full algorithm is provided in Algorithm 1.

To further illuminate the intuition behind IT-MTL, we present a deeper analysis into the loss land-
scape of MultiFashion (Lin et al., 2019) in Figure 4. This figure provides insight into several cases
where a single task gradient update on the shared parameters is more beneficial than the gradient us-
ing the full set of tasks. Figure 4(a) exemplifies the case where high curvature in the direction of the
right task gradient significantly increases the total loss. Similarly, the combined gradient marginally
decreases the total loss while the left gradient significantly decreases total loss. In a related instance,
and as illustrated in Figure 4(b), high curvature in the combined gradient direction, but relatively
low curvature in the direction of the left and right gradient, will also lead to a single task gradient
exhibiting higher transference than the combined gradient.

3In other words, for a subset ξ ∈ J and ξ 6= ∅, either a particular task i participates in the gradient update, i.e.
i ∈ ξ, or not i /∈ ξ.
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Algorithm 1 Increased Transfer Multi-Task Learning
1: Initialize network weights: {θs} ∪ {θi| i ∈ [m]}
2: Set candidate subsets: J ⊆ P([m])−∅
3: for t = 0, . . . , T − 1 do
4: Compute per-task loss: Li(X t, θts, θti), ∀i ∈ [m] . typical forward pass
5: Update task-specific parameters: θt+1

i = θti − η∇θiLi, ∀i ∈ [m]
6: for ξ ∈ J do
7: θt+1

s|ξ = θts − η
∑
i∈ξ∇θsLi(X t, θts, θti)

8: Ztξ =
∑
i∈[m]

(
1−

Li(X t,θt+1
s|ξ ,θ

t+1
i )

Li(X t,θts,θti)

)
9: end for

10: Select max transfer task combination: ξ? = argmaxξ Ztξ
11: Update shared parameters: θt+1

s = θts − η
∑
i∈ξ? ∇θsLi(X t, θts, θti)

12: end for

While the first two cases of high curvature occur predominantly during the early rounds of training, a
third case which occurs throughout training is shown in Figure 4(c). In this instance, the right task’s
gradient marginally decreases its own loss but significantly increases the loss of the left task. This
causes the combined gradient to only marginally decrease the total loss. On the other hand, the left
gradient most increases transference. As a result, only using the left gradient significantly improves
the total loss. Additional information regarding this analysis can be found in Appendix A.2.1.

4.1 A FIRST ORDER APPROXIMATION OF THE INCREASED TRANSFER MTL METHOD

The IT-MTL procedure requires multiple forward-backward passes to calculate the lookahead losses
of tasks inJ . This may become computationally prohibitive for large models, especially as the num-
ber of candidate tasks in J grows. In this section, we derive a simple first order approximation of IT-
MTL which requires only a single forward-backward pass. Unlike Algorithm 1, the approximation
does not update the task-specific parameters before computing the update to the shared parameters,
effectively moving line 5 in Algorithm 1 to line 11. Ignoring the learning rate η for simplicity, a first
order Taylor series expansion of transference in Eq. (1) yields:

Ztξ j = 1−
Lj(X t, θt+1

s|i , θ
t+1
j )

Lj(X t, θts, θtj)

≈ 1−
Lj(X t, θts, θtj)− 〈∇θsLj(X t, θts, θtj),

∑
i∈ξ∇θsLi(X t, θts, θti)〉

Lj(X t, θts, θtj)

=
〈∇θsLj(X t, θts, θtj),

∑
i∈ξ∇θsLi(X t, θts, θti)〉

Lj(X t, θts, θtj)
,

where 〈·, ·〉 denotes inner product. Thus, total transference defined in Eq. (2) can be written as

Ztξ =
∑
j∈[m]

Ztξ j ≈〈
∑
j∈[m]

∇θsLj(X t, θts, θtj)
Lj(X t, θts, θtj)

,
∑
i∈ξ

∇θsLi(X t, θts, θti)〉 ,

which can be rewritten as

=〈∇θs
∑
j∈[m]

logLj(X t, θts, θtj),
∑
i∈ξ

∇θsLi(X t, θts, θti)〉

=〈∇θs log
∏
j∈[m]

Lj(X t, θts, θtj)︸ ︷︷ ︸
log-product loss

,
∑
i∈ξ

∇θsLi(X t, θts, θti)〉 .

Our IT-MTL approximation computes alignment between the gradients of the candidate tasks with
the gradient of the first quantity in the inner product, which we call the “log-product” loss. The
gradient of the subtasks with the strongest alignment to the gradient of the log-product loss is used
to make the final update to the shared parameters. Note in the approximate procedure, the gradients
are calculated once, and the approximation has computational complexity similar to that of gradient
correction methods such as PCGrad (Yu et al., 2020) and GradNorm (Chen et al., 2017).
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4.2 AFFINITY WITH GRADIENT PROJECTION METHODS

IT-MTL can be combined with related work which modifies gradient direction and/or magnitude.
The modified gradient can be added to the set J in Algorithm 1 as an additional candidate gradient
for the current minibatch. If the modified gradient increases the total transference more so than the
gradient of the candidate tasks in J , it is used to update the shared parameters. We explore this idea
in our experiments by composing J = {total loss, PCGrad(total loss)} to select between the typical
multitask gradient and the PCGrad gradient.

5 EXPERIMENTS

Motivated by our analysis in Section 4, we study the utility of transference in selecting the com-
bination of gradients which increases transference for each minibatch. Unlike our evaluation of
transference in Section 3.2 on datastes with a large number of tasks, IT-MTL is most computation-
ally efficient when the number of tasks is small. Accordingly, we focus our evaluation on datasets
with either 2 or 3 tasks and perform our analysis on MultiMNIST, a multitask variant of the MNIST
dataset (LeCun et al., 1998); MultiFashion, a multitask variant of the MNISTFashion dataset (Xiao
et al., 2017); and NYUv2 (Silberman et al., 2012). Further, we found the rate at which a single-
task gradient is chosen over the combined gradient to be higher during the beginning of training.
With this observation as motivation, we evaluate how information transfer changes with respect to
convergence.

5.1 INCREASED TRANSFER MULTI-TASK LEARNING EVALUATION

To assess the efficacy of IT-MTL, we evaluate its performance on the MultiMNIST and MultiFashion
datasets. To increase comparability, we run our experiments on the same datasets as in (Lin et al.,
2019) with a multitask variant of LeNet (LeCun et al., 1998). Full experimental details are provided
in Appendix A.2.1, and (Lin et al., 2019) can be referenced for dataset construction. The code used
in generating experimental results is attached to the supplementary material part of our submission.

For both datasets, we compare against the corresponding single-task baselines, equal weight multi-
task learning, PCGrad (Yu et al., 2020), MGDA-UB (Sener & Koltun, 2018), and Uncertainty
Weighing (UW) (Kendall et al., 2018). Table 2 summarises our experimental results. Notably,
we find IT-MTL improves both left and right image accuracy over the equal-weight MTL baseline
on both MultiFashion and MultiMNIST by choosing the gradient combination which most increases
transference. Aside from this augmentation, there is no difference between these two models. More-
over, the IT augmentation can be combined with prior approaches to dynamically reweigh the tasks
or directly modify the gradient by choosing the gradient combination which most increases trans-
ference. In particular, our method, and its corresponding approximation described in Section 4.1,
combined with uncertainty weights and PCGrad (IT-UW-PCGrad) achieves very strong performance
on both datasets.

To further evaluate the robustness of IT-MTL, we assess its performance on the more challenging
NYUv2 dataset with a Multi-Task Attention Network architecture (MTAN) (Liu et al., 2019). The

Method
MultiFashion MultiMNIST

Left Image Acc Right Image Acc Left Image Acc Right Image Acc

Single Task Models 79.81± 0.39 78.64± 0.62 89.40± 0.17 87.80± 0.22
MTL 78.80± 0.35 77.92± 0.32 89.01± 0.22 86.11± 0.15

PCGrad 78.17± 0.48 77.20± 0.56 88.92± 0.21 86.61± 0.22
IT-MTL 79.30± 0.30 78.17± 0.36 89.12± 0.21 86.35± 0.23

MGDA-UB 79.25± 0.69 78.62± 0.48 89.38± 0.16 86.81± 0.46
UW-MTL 80.93± 0.27 80.11± 0.15 90.77± 0.13 88.36± 0.12

UW-PCGrad 80.81± 0.18 80.19± 0.19 90.77± 0.11 88.36± 0.09
IT-UW-MTL 80.94± 0.22 80.31± 0.21 90.71± 0.18 88.51± 0.13

IT-UW-PCGrad 81.39± 0.20 80.30± 0.15 90.94± 0.11 88.61± 0.14
IT-UW-PCGrad‡ 80.99± 0.17 80.25± 0.21 90.92± 0.09 88.60± 0.14

Table 2: Test Accuracy on MultiMNIST and MultiFashion classification datasets. The test accuracy
is averaged over 10 samples. We report standard error, and best results are highlighted in bold. The
approximation described in Section 4.1 is denoted with ‡. Our results indicate the IT augmentation
can improve the performance of traditional MTL, uncertainty weights (Kendall et al., 2018), and
PCGrad (Yu et al., 2020).
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Method

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance Within t◦
(Lower Better) (Higher Better)

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Split, Wide 15.89 51.19 0.6494 0.2804 33.69 28.91 18.54 39.91 52.02
Split, Deep 13.03 41.47 0.7836 0.3326 38.28 36.55 9.50 27.11 39.63

Dense 16.06 52.73 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35
Cross-Stitch 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97

MTAN 20.91 56.45 0.6111 0.2592 31.36 27.14 18.71 41.94 55.04
IT-MTL 21.36 56.48 0.5921 0.2516 31.21 26.92 19.74 42.41 55.37
PCGrad 22.93 57.79 0.6224 0.2687 30.90 26.81 19.64 42.56 55.63

IT-PCGrad 23.55 58.48 0.5926 0.2539 30.40 26.05 21.11 43.96 56.79
IT-PCGrad‡ 23.43 57.38 0.5909 0.24.98 30.47 26.08 21.44 43.96 56.63

Table 3: 13-class semantic segmentation, depth estimation, and surface normal prediction results
on the NYUv2 validation dataset. Performance of (Split, Wide), (Split, Deep), Dense, and Cross-
Stitch (Misra et al., 2016) as reported in (Liu et al., 2019). The symbol ‡ denotes the approximation
described in Section 4.1

dataset is composed of RGB-D images of indoor scenes and supports modeling of 13-class semantic
segmentation, true depth estimation, and surface normal prediction. We follow the procedure of
(Liu et al., 2019) and directly utilize their framework to evaluate the performance of IT-MTL. For
computational efficiency, we form J = {semantic + depth, semantic + normal, depth + normal,
semantic + depth + normal} in IT-MTAN and J = {semantic + depth + normal, PCGrad gradi-
ent} in IT-PCGrad. Table 3 summarizes our experimental findings. We find IT-MTAN improves
modeling performance across all measurements for segmentation, depth, and surface normal tasks
as compared with the MTAN baseline. IT-PCGrad and the approximation IT-PCGrad‡ demonstrate
similar improvements when compared with the PCGrad-MTAN baseline. This result indicates the
benefit of IT-MTL can hold for complex neural network architectures on a challenging real world
dataset.

5.2 EFFECT OF CONVERGENCE ON TRANSFERENCE

In this section, we return our focus to CelebA to analyze the effects of model convergence on infor-
mation transfer. As shown in Figure 2, transference is a highly dynamic process that is significantly
affected by model convergence. In particular, we find the transference of A6 on A8 to be nearly iden-
tical to that of A8’s self-transference during the first two epochs of training. This result indicates
the information encapsulated in the gradient update of A6 on the shared parameters is as effective at
minimizing the loss of A8 as its own gradient update. However, this effect is dampened throughout
training with positive transference only manifesting at the beginning of training.

Interpreting our results in the context of CelebA, the model may learn the location of certain at-
tributes in the beginning of training which are highly transferable to other related attributes. Once
this fundamental structure is learned, gradients may encode increasingly task-specific information
leading to lower positive information transfer among tasks. These observations lend weight to the
development of flexible sharing architectures, in particular those which can quickly adapt to chang-
ing information transfer dynamics in the shared parameters throughout training.

6 CONCLUSION

In this work, we take a first step towards quantifying information transfer in multi-task learning.
We develop a measure to quantify transference and leverage this quantity to determine which tasks
should be trained together as well as develop a method which improves multi-task learning efficiency
and performance.

Nonetheless, the method is not without its shortfalls. Using transference to select task groupings
does not account for regularization-like effects inherent in multi-task learning. As a result, although
a specific set of task groupings may exhibit high transference, there will be cases when this grouping
is sub-par. Moreover, the transference radar charts are open to interpretation. While the charts
provide flexibility in determining task groupings or identifying tasks which detract from co-training,
they do not unequivocally produce a final ranking. With regards to IT-MTL, training time scales
linearly with respect to the number of tasks if the lookahead loss computation is not run in parallel.

In spite of these detriments, we hope our analysis of information transfer in multi-task learning
encourages further analysis into its training dynamics. Future work on transference can incorpo-
rate this measure into a continuous-space learning algorithm, or guide the development of flexible
architectures to further improve multi-task learning performance.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

In this section, we detail our experimental methodology with the goal of facilitating reproducibility.
The code used to produce our experimental results can be found by accessing the Supplementary
Material section of our OpenReview submission.

A.1.1 CELEBA

Our experiments on CelebA are generated using a combination of Keras (Chollet et al., 2018)
and TensorFlow (Abadi et al., 2016) and access the CelebA dataset publicly available on Tensor-
Flow datasets https://www.tensorflow.org/datasets/catalog/celeb_a. We selected 9
attributes from the subset of 40 annotated attributes for our analysis.

The encoder architecture is based loosely on ResNet18 (He et al., 2016) with a shallow feed forward
network decoder. A learning rate of 0.001 is used for 40 epochs with the learning rate halved at
30 epochs. The model uses a momentum optimizer with momentum set to 0.9 and a batch size of
256. We maintain a 5-epoch moving average of the task accuracies and report the highest average
5-epoch moving accuracy achieved during training.

We found our model exhibits similar, if not slightly improved, performance over the ResNet18
variant used in (Sener & Koltun, 2018) that was trained for 100 epochs; however given transference
computes an update to the shared parameters, we adopted an architecture with less shared parameter
capacity and more task-specific capacity to improve training time without sacrificing performance.

Figure 5: CelebA Encoder and Decoder used for measuring transference and determining which
tasks should train together.

A.2 META-WORLD

We use the five tasks: “reach”, “push”, “press button top”, “open window”, and “close window” from
Meta-World (Yu et al., 2019). We use 6 fully-connected layers with 400 hidden units for both the pol-
icy and the critic with weights shared across all tasks. For each iteration, we collect 600 data points
for each environment and train the policy and the critic for 600 steps with a batch size 128 per task.
We use the soft actor critic (SAC) (Haarnoja et al., 2018) as our RL algorithm and adopt the default
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Table 4: Chosen hyperparameters for MultiMNIST/Fashion experiments.
Dataset Method lr loss weight GradNorm α

MultiFashion

MTL 1e− 3 0.5 —
PCGrad 1e− 3 0.5 —
IT-MTL 1e− 3 0.5 —

UW-MTL 1e− 3 — —
IT-UW-MTL 1e− 3 — —

MultiMNIST

MTL 1e− 3 0.5 —
PCGrad 1e− 3 0.5 —
IT-MTL 1e− 3 0.5 —

UW-MTL 1e− 3 — —
IT-UW-MTL 1e− 3 — —

hyperparameters used in the public repository of SAC (https://github.com/rail-berkeley/
softlearning at hash 59f9ad357b11b973b9c64dcfeb7cf7b856bbae91). We compute the transfer-
ence on the critic loss

JQ(θ) = E(s,a)∼D

[
1

2
(Q(s,a)− Q̂(s,a)2)

]
,

where s and a denote the state and action, Q̂ denotes the target Q network, D denotes the off-policy
dataset collected by the agent, and θ denotes the parameter of the critic Q network.

A.2.1 MULTIMNIST/FASHION

Our experimental results on Multi-MNIST and Multi-Fashion are generated using a combination of
Keras and TensorFlow. We evaluate on the datasets released by Lin et al. (2019) but further split 1

6
of the training dataset into a validation set for final dataset splits of 100k/20k/20k train/valid/test.

The model architecture is loosely based on LeNet (LeCun et al., 1998) with a fully convolutional
decoder and shallow feed-forward neural net decoder. A visual depiction is presented in (figure 6).
The model uses a momentum optimizer with momentum set to 0.9 and a batch size of 256. The
lookahead loss is computed by simulating the full momentum update to the shared parameters rather
than the SGD update described in Section 3.1. The learning rate of the MTL baseline was selected
on a validation dataset over {1e− 4, 5e− 4, 5e− 3, 1e− 2, 5e− 2} using a schedule which halves
the learning rate every 30 epochs. A coarse grid search of the task-specific weights with left image
weight = 1. - right image weight yielded left weight = right weight = 0.5. IT-MTL, Uncertainty
Weight, and PCGrad used the same hyperparameters as the baseline. GradNorm was found to be
much more sensitive to hyperparameters, and these were tuned via random search between [1e −
6, 1e− 2] for the learning rate and [1e− 6, 5.0] for the spring constant. The parameters we used for
each experiment are listed in Table 4.

Due to non-trivial inter-run variance, we ran each experiment to completion 6 times, dropped the
worst performance, and averaged the remaining 5 runs to produce the results shown in Table 2.
Moreover, we report the average accuracy of the final 5 epochs to further improve comparability.
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Figure 6: LeNet used in experiments. Note, the fully convolutional encoder and shallow neural net
decoder.
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A.3 NYUV2

We clone the MTAN repository released by (Liu et al., 2019) (https://github.com/lorenmt/
mtan at hash b6504093ea6d646dccf501bbbb525a4d85db96ba) to empirically test method and IT-
PCGrad choosing between the combined gradient (i.e. gradient with respect to depth + semantic +
normals loss) with the PCGrad gradient. The optimization uses Adam (Kingma & Ba, 2014), and
the lookahead loss is computed by simulating the full Adam update to the shared parameters rather
than the SGD update described in Section 3.1.

We run all MTAN experiments with default hyperparameters and settings with the exception of
reducing the number of steps in PCGrad and IT-PCGrad to 100 as we find significant overfitting
begins after this stage. Results from Split, Wide; Split, Deep; Dense; and Cross-Stitch results are
taken from (Liu et al., 2019).
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Figure 7: Expanded 1-d loss landscapes along each gradient direction.
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Figure 8: 2-Dimensional loss landscape of the (a) left digit loss, (b) right digit loss, and (c) the
combined (average of left and right) loss in MultiFashion in a step where IT-MTL chooses the left
gradient for the shared parameter update. The × symbol indicates the location of the minimum value
of the loss in the local landscape and • shows the projected coordinates of the current parameter.

15

https://github.com/lorenmt/mtan
https://github.com/lorenmt/mtan


Under review as a conference paper at ICLR 2021

A.4 LOSS LANDSCAPE EXPANDED ANALYSIS

Figure 4 was created by halting training in a given epoch immediately after either the left or the
right task gradient update manifests higher transference than the 1/2(left + right) (i.e. combined)
gradient update. We then applied the parameter update to the shared parameters using SGD with
momentum to create a linear interpolation between the current parameter values and the parameter
values following an update. We extend this interpolation 3x past the typical update to measure the
curvature along the direction of the update.

In Figure 7, we compute the loss along a linear interpolation of the left gradient, the right gradient,
and the combined gradient direction with each column corresponding to the total loss plot presented
in Figure 4. For instance, Column 1, Row 2 plots the left and right loss along the left gradient step
for the leftmost plot in Figure 4 and Column 2, Row 2 plots the left and right loss along the right
gradient step for the center plot in Figure 4.

In Figure 8, we plot the 2-dimensional loss landscape of the left and right loss as well as the com-
bined loss for MultiFashion. To generate the plots, we first sample two random directions in the
parameter space and then scale the norms of these directions to be equal to the norm of the parame-
ters. Next, we interpolate the parameters along these two directions in the range [−0.1,+0.1] times
the norm of the parameters.

The left image loss depicts a smooth landscape whereas the right image loss is highly non-smooth.
Notice that the level sets of the combined (i.e. average) loss is higher than those of the left loss. For
this step, IT-MTL chooses the left gradient for the shared parameter update which aligns with the
curvature discrepancy between the right image loss and the left image loss.

16


	Introduction
	Related Work
	Transference in Multi-Task Learning
	Measuring Transference
	Task Groupings Based on Transference

	Increased Transfer MTL
	A First Order Approximation of the Increased Transfer MTL Method
	Affinity with Gradient Projection Methods

	Experiments
	Increased Transfer Multi-Task Learning Evaluation
	Effect of Convergence on Transference

	Conclusion
	Appendix
	Experimental Details
	CelebA

	Meta-World
	MultiMNIST/Fashion

	NYUv2
	Loss Landscape Expanded Analysis


