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Abstract

Conditional GANs (cGAN), in their rudimentary form, suffer from critical draw-
backs such as the lack of diversity in generated outputs and distortion between
the latent and output manifolds. Although efforts have been made to improve
results, they can suffer from unpleasant side-effects such as the topology mismatch
between latent and output spaces. In contrast, we tackle this problem from a
geometrical perspective and propose a novel training mechanism that increases
both the diversity and the visual quality of a vanilla cGAN, by systematically
encouraging a bi-lipschitz mapping between the latent and the output manifolds.
We validate the efficacy of our solution on a baseline cGAN (i.e., Pix2Pix) which
lacks diversity, and show that by only modifying its training mechanism (i.e.,
with our proposed Pix2Pix-Geo), one can achieve more diverse and realistic
outputs on a broad set of image-to-image translation tasks. Code available at:
https://github.com/samgregoost/Rethinking-CGANs

1 Introduction

Generative adversarial networks (GAN) are a family of deep generative models that learn to model
data distribution Y from random latent inputs z ∼ Z using a stochastic generator functionG : Z → Y
[1]. A seemingly natural extension from unconditional GANs to conditional GANs (cGAN) can be
achieved via conditioning both the discriminator and the generator on a conditioning signal x ∼ X .
However, such a straightforward extension can cause the models to disregard x [2, 3, 4, 5]. To
overcome this unsought behavior, a reconstruction loss is typically added to the objective function
to penalise the model when it deviates from x. This approach has been widely adapted for diverse
tasks including image-to-image translation [6, 2], style transfer [7, 8] and inpainting [9, 3, 10],
and super-resolution [11, 12, 13, 14]. However, in spite of the wide usage, naively coupling the
reconstruction and the adversarial objectives entails undesirable outcomes as discussed next.

Many conditional generation tasks are ill-posed (many possible solutions exist for a given input), and
an ideal generator should be able to capture one-to-many mappings between the input and output
domains. Note that the stochasticity of G typically depends on two factors, first the randomness of z
and second the dropout [15]. However, empirical evidence suggests the composition of reconstruction
and adversarial losses leads to a limited diversity, despite the random seed z. In fact, many prior
works have reported that the generator often tends to ignore z, and learns a deterministic mapping
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from X to Y , leaving dropout as the only source of stochasticity [2, 4, 3, 5]. Additionally, [16]
and [17] demonstrated that from a geometrical perspective, latent spaces of generative models (e.g.,
cGANs) tend to give a distorted view of the generated distribution, thus, the Euclidean paths on
the latent manifold do not correspond to the geodesics (shortest paths) on the output manifold.
This hinders many possibilities such as clustering in the latent space, better interpolations, higher
interpretability and ability to manipulate the outputs. We show that the foregoing problems can
be direct consequences of the conventional training approach. Moreover, the naive coupling of
regression loss and the adversarial loss can also hamper the visual quality of the generated samples
due to contradictory goals of the two objective functions (see Sec. 2.1).

The aforementioned drawbacks have led multi-modal conditional generation approaches to opt for
improved objective functions [18, 19], and even complex architectures compared to vanilla cGANs
[20, 5, 4]. However, in Sec. 2, we show that while the existing solutions may improve the diversity
and address the loss mismatch, they can also aggravate the topology mismatch and distortion between
the latent and output manifolds. In contrast, we argue that these issues are not a consequence of the
model capacities of vanilla cGANs [2, 3, 21, 6], rather a result of sub-optimal training procedures
that are insensitive to their underlying geometry. As a remedy, we show that the foregoing problems
can be addressed by systematically encouraging a structured bijective and a continuous mapping, i.e.,
a homeomorphism, between the latent and the generated manifolds. Furthermore, the structure of the
latent space can be enhanced by enforcing bi-lipschitz conditions between the manifolds. To this end,
we introduce a novel training procedure and an optimization objective to encourage the generator and
the latent space to preserve a bi-lipschitz mapping, while matching the Euclidean paths in the latent
space to geodesics on the output manifold.

We choose Pix2Pix [2], a vanilla cGAN, and modify its training procedure to demonstrate that the
proposed mapping improves the realism of the outputs by removing the loss mismatch, enhances the
structure of the latent space, and considerably improves the output diversity. As the formulation of
our conditional generation approach is generic, we are able to evaluate the modified Pix2Pix model,
dubbed Pix2Pix-Geo, on a diverse set of popular image-to-image translation tasks. We show that with
the modified training approach, our Pix2Pix-Geo significantly improves the prediction diversity of the
cGAN compared to the traditional baseline procedure and achieves comparable or better results than
the more sophisticated state-of-the-art models. Most importantly, our modifications are purely aimed
at the optimization procedure, which demands no architectural modifications to vanilla cGANs.

2 Motivation

In conditional generative modeling, the ground truth (output) data distribution Y ⊆ RM is conditioned
on an input distribution X ⊆ Rd. Consider the data distribution Y|xp

⊂ Y conditioned on xp ∈ X .
Then, the following adversarial objective function is used to optimize the generator G by playing a
min-max game against a discriminator D, thereby approximating the distribution Y|xp

,

Ladv =
G

min
D

max E
y∼Y

[Φ(D(xp, y)]) + E
z∼ζ

[Φ(1−D(xp, G(xp, z))], (1)

where Φ is a suitably chosen monotone function, y ∼ Y and z ∈ Rk is a latent vector sampled
from a prior distribution ζ. It has been widely observed that using the above objective function in
isolation, pushes the models to generate samples that are not strongly conditioned on the input signal
xp [2, 18, 4, 20]. Hence, the conventional cGAN loss couples a reconstruction loss Lr (typically `1
or `2) with Eq. 1. However, as alluded in Sec. 1, this entails several drawbacks: a) contradictory goals
of the loss components, b) conditional mode collapse, and c) insensitivity to the underlying manifold
geometry. Below, we explore these issues in detail and contrast our method against several recent
attempts towards their resolution. From this point onwards, our analysis is focused on the conditional
setting and we do not explicitly denote the conditioning signal x in our notations, to avoid clutter.

2.1 Mismatch b/w adversarial & reconstruction losses

Given the generated distribution pg and the ground truth distribution pd, the optimal generator G∗ for
the adversarial loss can be formulated as,

G∗ = argmin
G

(
JSD

[
pg(ȳ)‖pd(y)

])
, (2)
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where JSD is the Jensen–Shannon divergence, y is the ground-truth and ȳ = G(z) is the output. Let
us also consider the expected `1 loss Lr = Ey,z|y − ȳ|. App. F shows that Lr is minimized when,∫ ȳ

−∞
pd(y)dy =

∫ ∞
ȳ

pd(y)dy. (3)

This shows the probability mass to the left of ȳ is equal to the probability mass of right of ȳ, i.e, ȳ is
the median of y. Therefore, the optimal generator obtained from minimizing Lr does not equal to
G∗, except for the rare case where pd(y) is unimodal with a sharp peak. With a similar approach, it
can be shown that `2 concentrates pg near the average of the ground truth distribution. Hence, these
contradictory goals of Lr and Ladv force the model to reach a compromise, thereby settling in a
sub-optimal position in the parameter space. On the contrary, this mismatch can be removed by our
proposed training approach by encouraging a homeomorphism between the latent and output spaces
(App. F). This argument is empirically backed by our experiments, as we show that the realism of the
outputs of the Pix2Pix [2] model can be significantly improved using the proposed method. Both
Bicycle-GAN [20] and MR-GAN [4] remove this loss mismatch using a bijective mapping and by
matching the moments of the generated and target distributions, respectively. However, their training
procedures can disrupt the structure of the latent space (see Sec. 2.3).

2.2 Conditional mode collapse

(Conditional) mode collapse is a commonly observed phenomenon in cGANs [2, 4, 3, 5]. In this
section, we discuss how the traditional training procedure may cause mode collapse and show that
the existing solutions tend to distort the structure of the latent manifold.

Definition 1 [18]. A mode H is a subset of Y s.t. maxy∈H‖y−y∗‖<α for an output y∗
and α>0. Then, at the training phase, z1 is attracted to H by ε from an optimization step if
‖y∗−Gθ(t+1)(z1)‖+ε < ‖y∗−Gθ(t)(z1)‖, where θ(t) are the parameters of G at time t.

Proposition 1 [18]. Suppose z1 is attracted toH by ε. Then, there exists a neighbourhood N (z1) of
z1, such that z is attracted toH by ε/2,∀z ∈ N (z1). Furthermore, the radius of N (z1) is bounded
by an open ball of radius r where the radius is defined as,

r = ε
(

4 inf
z

{
max(τ(t), τ(t+ 1))

})−1

, where τ(t) =

∥∥Gθ(t)(z1)−Gθ(t)(z)
∥∥

‖z1 − z‖
. (4)

Proposition 1 yields that by maximizing τ(t) at each optimization step, one can avoid mode collapse.
Noticeably, the traditional training approach does not impose such a constraint. Thus,‖z1 − z‖ can
be arbitrary large for a small change in the output and the model is prone to mode collapse. As a
result, DSGAN [18], MS-GAN [19] and MR-GAN [4] (implicitly) aim to maximize τ . Although
maximizing τ improves the diversity, it also causes an undesirable side-effect, as discussed next.

2.3 Loss of structure b/w output & latent manifolds

A sufficiently smooth generative model G(z) can be considered as a surface model [22]. This has
enabled analyzing latent variable generative models using Riemannian geometry [23, 24, 16, 25].
Here, we utilize the same perspective: a generator can be considered as a function that maps low
dimensional latent codes z ∈ Mz⊆Rk to a data manifoldMy in a higher dimensional space RM
whereMz andMy are Riemannian manifolds, i.e., z encodes the intrinsic coordinates ofMy . Note
that increasing τ in an unconstrained setting does not impose any structure in the latent space. That
is, since the range of

∥∥G(z1)−G(z)
∥∥ is arbitrary in different neighbourhoods, stark discontinuities in

the output space can occur, as we move alongMz . Further note that Bicycle-GAN also does not
impose such continuity on the mapping. Thus, the distance between two latent codes onMz may
not yield useful information such as the similarity of outputs. This is a significant disadvantage, as
we expect the latent space to encode such details. Interestingly, if we can induce a continuous and a
bijective mapping, i.e., a homeomorphism betweenMy andMz , while maximizing τ , the structure
of the latent space can be preserved to an extent.

However, a homeomorphism does not reduce the distortion ofMy with respect toMz . In other
words, although the arc length between z1 and z is smoothly and monotonically increasing with the
arc length between G(z1) and G(z) under a homeomorphism, it is not bounded. This can cause
heavy distortions between the manifolds. More formally, maximizing τ encourages maximizing
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the components of the Jacobian Jd×k = ∂G
∂z at small intervals. If G is sufficiently smooth, the

Riemannian metric M = JTJ can be obtained, which is a positive definite matrix that varies
smoothly on the latent space. Further, by the Hadamard inequality,

det(M) ≤
k∏
i=0

‖Ji‖2 , (5)

where Ji are the columns of J. This leads to an interesting observation. In fact, det(M) can be seen
as a measure of distortion of the output manifold with respect to the latent manifold. Therefore,
although maximizing τ acts as a remedy for mode collapse, even under a homeomorphism, it can
increase the distortion betweenMz andMy .

In conditional generation tasks, it is useful to reduce the distortion between the manifolds. Ideally, we
would like to match the Euclidean paths onMz to geodesics onMy, as it entails many advantages
(see Sec. 1). Consider a small distance ∆z onMz . Then, the corresponding distance inMy can be
obtained using Taylor expansion as,

G(∆z) = J∆z + Θ(‖∆z‖) ≈ J∆z, (6)

where Θ(‖∆z‖) is a function which approaches zero more rapidly than ∆z. It is evident from Eq. 6
that the corresponding distance onMy for ∆z is governed by J. Ideally, we want to constrain J in
such a way that small Euclidean distances ∆z encourage the output to move along geodesics inMy .
However, since random sampling does not impose such a constraint on J, the traditional training
approach and the existing solutions fail at this. Interestingly, it is easy to deduce that geodesics avoid
paths with high distortions [26]. Recall that minimizing τ along optimization curves reduces the
distortion ofMy , thus, encourages ∆z to match geodesics onMy . However, minimizing τ can also
lead to mode collapse as discussed in Sec. 2.2.

ℝ! ℝ"

bi-Lipschitz 
mapping

Euclidian distance

Latent Manifold Output Manifold

Bicycle-GAN

DS-GAN
MR-GAN

Pix2Pix

Ours
(Pix2Pix-Geo)

0

0.05

0.1

0.15

0.2

0.25

60 80 100 120 140

Geodesic path

LP
IP

S
(H

ig
he

r =
 m

or
e 

di
ve

rs
e)

FID
(Lower = more realistic)

Figure 1: Approach Overview. Our training proce-
dure encourages a bi-lipschitz mapping between the
latent and generated output manifolds, while mapping
the Euclidean shortest paths in the latent manifold to
geodesics on the generated output manifold, which
allows better diversity and structure. We gain a con-
siderable improvement in both visual quality and the
image diversity over our baseline Pix2Pix [2], using the
same network architecture (landmark→ faces image-
to-image translation task).

Although the above analysis yields seemingly
contradictory goals, one can achieve both by es-
tablishing a bi-lipschitz mapping between My

andMz , as it provides both an upper and a lower-
bound for τ . Such a mapping betweenMz and
My provides a soft bound for det(M), and pre-
vents mode collapse while preserving structure of
the latent manifold.

Remark 1: An ideal generator function should
be homeomorphic to its latent space. The struc-
ture of the latent space can be further improved
by inducing a bi-lipschitz mapping between the
latent space and generator function output.1

Based on the above Remark, we propose a train-
ing approach that encourages a structured bi-
lipschitz mapping between the latent and the gen-
erated manifolds and show that in contrast to the
existing methods, the proposed method is able to
address all three issues mentioned above.

3 Methodology

Our approach is based on three goals. R1) A
bi-lipschitz mapping must exist betweenMz andMy ,

1

C
dMz (zp, zq) ≤ dMy (φ−1(zp),φ−1(zq)) ≤ CdMz (zp, zq), (7)

where d·(·) is the geodesic distance in the denoted manifold, zp and zq are two latent codes, andC is a
constant. Further, φ :My→Mz is a continuous global chart map with its inverse φ−1. R2) Euclidean
distances inMz should map to geodesics inMy for better structure. R3) The geodesic distance
between two arbitrary points onMy should correspond to a meaningful metric, i.e., pixel distance
(note the loss mismatch is implicitly resolved by R1). Next, we explain our training procedure.

1Note that every bi-lipschitz mapping is a homeomorphism.
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3.1 Geodesics and global bi-lipschitz mapping

Here, we discuss the proposed training procedure. Consider a map γMz
: I →Mz , that parameter-

izes a curve onMz using t ∈ I ⊂ R. Then, there also exists a map (G ◦ γMz ) ≡ γMy
: I →My.

If γMy
is a geodesic, this mapping can be uniquely determined by a p ∈My and an initial velocity

V ∈ TpMy, where TpMy is the tangent space ofMy at p (see App. C)2. This is a useful result, as
we can obtain a unique point p′ ∈My only by defining an initial velocity and following γMy

for a
time T (note we do not consider the unlikely scenario where two geodesics may overlap at t = T ).

To find the geodesic between two points on a Riemannian manifold, γMz is usually constrained as,

γ̈Mz
= − 1

2 M−1

[
2(Ik ⊗ γ̇TMz

)∂vec(M)
∂γMz

γ̇Mz
−
[
∂vec(M)
∂γMz

]T
(γ̇Mz

⊗ γ̇Mz
)

]
,

where Mk×k = JTφ−1Jφ−1 is the metric tensor, Jφ−1 is the Jacobian, ⊗ is the outer product, dot
operator is the first-order gradient and the double dot operator is the second-order gradient [17]. This
approach is expensive, as it requires calculating the Jacobians in each iteration and moreover, causes
unstable gradients. In practice, an exact solution is not needed, hence, we adapt an alternate procedure
to encourage γMy to be a geodesic, and use Eq. 8 only for evaluation purposes in Sec. 4. Since
geodesics are locally length minimizing paths on a manifold, we encourage the model to minimize
the curve length L(γMy (t)) onMy in the range t = [0, T ]. L(γMy (t)) is measured as:

L(γMy (t)) =

∫ 1

0

∥∥∥∥∂G ◦ γMz (t)

∂t

∥∥∥∥ dt =

∫ 1

0

∥∥∥∥∂G ◦ γMz (t)

∂γMz (t)

∂γMz (t)

∂t

∥∥∥∥ dt. (8)

Eq. 8 can be expressed using the Jacobian Jφ−1 as,

=

∫ 1

0

∥∥∥∥Jφ−1
∂γMz (t)

∂t

∥∥∥∥ dt =

∫ 1

0

√[
Jφ−1

∂γMz (t)

∂t

]T
Jφ−1

∂γMz (t)

∂t
dt.

Since Mk×k = JTφ−1Jφ−1 ,

=

∫ 1

0

√[∂γMz (t)

∂t

]T
M∂γMz (t)

∂t
dt.

Considering small ∆t = T
N ,

≈
N∑
i=0

√[∂γMz (t)

∂t

]T
M∂γMz (t)

∂t
∆t =

N−1∑
i=0

√
żTi Mżi∆t. (9)

Further,
∥∥G(∆z)

∥∥ = ∆zTM∆z > 0,∀∆z > 0, i.e., M is positive definite (since dG
dz 6= 0, which is

discussed next). By Hadamard inequality (Eq. 5), it can be seen that we can minimize the ∂G
∂z , in

order for L(γMy
(t)) to be minimized. But on the other hand, we also need γMy

(T ) = y. Therefore,
we minimize ∂G

∂z at small intervals along the curve by updating the generator at each ti = i∆t,

Lgh(ti, zti , y, x) =‖[α(ti) · y − (1− α(ti)) ·G(zt0 , x)]−G(zti , x)‖, (10)

where i = 0, 1, . . . , N, and α(·) is a monotonic function under the conditions α(0) = 0 and
α(T ) = T . Another perspective for the aforementioned procedure is that the volume element ε of

My can be obtained as ε =
√∣∣det(M)

∣∣dz. Therefore, det(M) is a measure of the distortion in
My with respect toMz and geodesics prefer to avoid regions with high distortions. The procedure
explained so far encourages a bi-lipschitz mapping as in Eq. 7 (proof in App. D), and satisfies
R1. Further, we show that the enforced bijective mapping removes the loss mismatch between the
adversarial and reconstruction losses, hence, improves the visual quality (see Fig. 3 and App. F).

According to R2, the proposed training mechanism should map Euclidean paths onMz to geodesics
onMy . Therefore, we move z along Euclidean paths when minimizing Lgh, which also ensures that
Mz ⊆ Rk. Furthermore, we constrain ż to be a constant for simplicity. Since we ensure that the
distortion ofMy along the paths of z are minimum, in practice, it can be observed that the Euclidean
paths on the latent space are approximately matched to the geodesics on the output manifold (Fig. 6).

2V depends on p and hence the dependency of the mapping γMp on p does need to be explicitly denoted.
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Further, let γV (t) be a geodesic curve with an initial velocity V . Then, it can be shown,
γcV (t) = γV (ct), (11)

where c is a constant (proof in App. E). This is an important result, since it immediately follows
that

∥∥ż1
t0

∥∥ > ∥∥ż2
t0

∥∥ =⇒ L(γż1(T )) > L(γż2(T )). Following these intuitions, we define ż =

∇z
∥∥y −G(zt0)

∥∥. This yields an interesting advantage, i.e.,‖ż‖ (hence L(γż(T ))) tends to be large
for high

∥∥y −G(zt0)
∥∥, which corresponds to R3.

3.2 Encouraging the local bijective conditions

The approach described in Sec. 3.1 encourages a global bi-lipschitz mapping between My and
Mz . However, we practically observed that imposing bijective conditions in local neighborhoods in
conjunction leads to improved performance. Thus, we enforce a dense bijective mapping between
My and Mz near γMy (T ). Let zT and y be the latent code at γMy (T ) and the ground truth,
respectively. We generate two random sets Z̃ and Ỹ using the distribution,

Z̃ = N (zT ; ε2) and Ỹ = Ψ(y), (12)
where Ψ(·) applies random perturbations such as brightness, contrast and small noise, and 0 < ε2 < 1.
One trivial method to ensure that a bijective mapping exists is to apply a loss function

∑∥∥yi −G(zi)
∥∥,

∀zi ∈ Z̃, yi ∈ Ỹ to update the generator. However, we empirically observed that the above loss
function unnecessarily applies a hard binding between the perturbations and the generated data.
Therefore, we minimize the KL-distance between G and Ỹ up to second order moments. One
possible way to achieve this is to model each pixel as a univariate distribution (App G). However
in this case, since the generator cannot capture the correlations between different spatial locations,
unwanted artifacts appear on the generated data. Therefore, we treat G and Ỹ as M -dimensional
multivariate distributions (M = image height× image width). Then, the KL-distance between the
distributions up to the second order of moments can be calculated using the following equation,

Llh(y, z, x) =
1

2

[
log
|ΣG∗ |∣∣ΣỸ ∣∣ −M + tr(Σ−1

G ΣỸ) + (µG − µỸ)TΣ−1
G (µG − µỸ)

]
, (13)

Algorithm 1: Training algorithm
sample inputs {x1, x2, ..., xJ} ∼ X ;
sample outputs {y1, y2, ..., yJ} ∼ Y ;
for k epochs do

for x in χ do
z ∼ Bkr //Sample z from k-ball with a

small radius r
V ← ∇z

∥∥y −G(zt0)
∥∥

t← 0
for T steps do

sample noise: e ∼ N (0, ε1); ε1 � 1
update G: ∇wLgh(y, z, x, t)
update z: z ← z + ηV + e
update t: t← t+ 1

update G:
∇w[Llh(y, z, x)+LR(y, z, x)+Ladv(y, z, x)]

where Σ and µ denote the correlation matri-
ces and the means (App. H). However, using
the above loss (Eq. 13) in its original form
yields practical obstacles: for instance, the cor-
relation matrices have the dimension M ×M ,
which is infeasible to handle. Therefore, fol-
lowing [27], we use a random projection ma-
trix RM×h;h � M to project the images to
a h−dimensional space, where Ri,j ∼ p(x);

p(
√

3) = 1
6 , p(0) = 2

3 , p(−
√

3) = 1
6 (we em-

pirically justify this reduction method using an
ablation study in Sec. 4). Moreover, numerically
calculating |Σ| and Σ−1 causes unstable gradi-
ents which hinders the generator optimization.
We address this issue by adapting the approxi-
mation technique proposed in [28]:

log(|Σ|) ≈ −
N∑
i=1

tr(Ci)

i
, (14)

where C = I− Σ. Further, Σ−1 can be calculated as,
Vi+1 = Vi(3I− ΣVi(3I− ΣVn)), i = 1, 2, . . . , N, (15)

where Li et al. [29] proved that Vi → Σ−1 as i → ∞, for a suitable approximation of V0. They
further showed that a suitable approximation should be V0 = αΣT , 0 < α < 2/ρ(ΣΣT ), where ρ(·)
is the spectral radius. Our final loss function Ltotal consists of four loss components:

Ltotal = β0Lgh + β1Llh + β2Lr + β3Ladv, (16)
where β0 . . . β3 are constant weights learned via cross-validation. Further, Llh is estimated per
mini-batch. Algorithm 1 shows overall training.
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Figure 2: Qualitative comparison with state-of-the-art cGANs on three I2I translation tasks. We compare
our model with the baseline Pix2Pix [2], Bicycle-GAN [20] and DS-GAN[18]. It can be seen that samples
generated by our model are clearly more diverse (e.g., color and subtle structural variation) and realistic (e.g.,
shape and color) compared to other models in all tasks. Note that our model has the same architecture as Pix2Pix.

Method facades2photo sat2map edges2shoes edges2bags sketch2anime BW2color lm2faces hog2faces night2day
LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID

Bicycle-GAN [20] 0.142 58.21 0.109 54.21 0.139 21.49 0.184 22.33 0.026 73.33 0.008 78.13 0.125 72.93 0.065 98.208 0.103 120.63
DS-GAN [18] 0.181 59.43 0.128 48.13 0.126 27.44 0.113 26.66 0.006 67.41 0.012 71.56 0.168 88.31 0.061 92.14 0.101 137.9
MR-GAN [4] 0.108 110.31 0.091 108.34 -* -* -* -* -* -* 0.015 113.46 0.182 108.72 0.138 155.31 0.098 140.51
CGML [5] 0.191 46.2 0.143 42.11 0.13 20.38 0.19 20.43 0.05 61.40 0.092 51.4 0.190 73.40 0.141 51.33 0.100 127.8
Baseline (P2P) 0.011 92.06 0.014 88.33 0.016 34.50 0.012 32.11 0.001 93.47 0.002 97.14 0.009 121.69 0.021 151.4 0.008 157.3
Ours(P2P Geo) 0.148 63.27 0.154 59.41 0.141 20.48 0.167 19.31 0.086 56.11 0.092 61.33 0.197 67.82 0.156 45.31 0.101 131.8

Table 1: Quantitative comparison with the state-of-the-art on 9 (nine) challenging datasets. -* denotes the
cases where we were not able to make the models converge. A higher LPIPS similarity score means more
diversity and lower FID score signifies more realism in the generated samples. Our approach gives consistent
improvements over the baseline.

4 Experiments

In this section, we demonstrate the effectiveness of the proposed training scheme using qualitative
and quantitative experiments. First, we illustrate the generalizability of our method by comparing
against the state-of-the-art methods across a diverse set of image-to-image translation tasks. Then,
we explore the practical implications of geometrically structuring the latent manifold. Finally, we
conduct an ablation study to compare the effects of the empirical choices we made in Sec. 3. In
all the experiments, we use Pix2Pix [2] as our model architecture, and use the same model trained
using the traditional training approach as the main baseline. We use the official implementation of
other comparable methods to benchmark their performance against ours. For a fair comparison, we
use their pre-trained models wherever available, otherwise train their model from scratch, strictly
following the authors’ instructions to the best of our ability. For further details on the datasets and
hyper-parameter settings, see App. I.

Image-to-image translation: We compare our method against state-of-the-art models that focus on
multimodal image-to-image translation. Fig. 2 shows the qualitative results on landmarks→ faces,
sketch→ anime and BW → color. As evident, our training mechanism increases the diversity and
the visual quality of the baseline P2P model significantly, and shows better performance compared
to other models. Fig. 3 shows qualitative comparison against the baseline. Table 1 depicts the
quantitative results. As shown, our model exhibits a higher diversity and a higher realism on multiple
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datasets. In all the cases, we outperform our baseline by a significant margin. Fig. 4 compares color
distribution in BW2color task.

Input GT

Satellite → Map

Edges → Shoes

Facades → Photo

HOG → Faces

Generated Samples Generated Samples

Ours (Pix2Pix Geo) Baseline (Pix2Pix)

Figure 3: Qualitative comparisons with baseline Pix2Pix [2] model. Our proposed model consistently
generates diverse and realistic samples compared to its baseline Pix2Pix model.
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Figure 4: Colour distribution comparison on BW→ color dataset. left: a-plane and right: b-plane in Lab
color space. Our model exhibits the closest color distribution compared to the ground truth. Furthermore, our
model is able to generate rare colors which implies more diverse colorization.
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Figure 5: A visual example of interpolation along an Euclidean shortest path on the latent manifold. Top
row: the velocity V =

√
żMż change on My across the samples. Bottom three rows: the corresponding

interpolated samples in Bicycle-GAN, DS-GAN, and P2P Geo (Ours). As evident, our model exhibits a smooth
interpolation along with an approximately constant velocity onMy compared to the other networks, implying
that our model indeed tends to move along geodesics. The total standard deviations of the V for 100 random
interpolations for Bicycle-GAN, DS-GAN, and P2P Geo (Ours) are 0.056 0.067, and 0.011, respectively.

Geometrical interpretations: A key implication of our training scheme is that the Euclidean shortest
paths onMz map to geodesics onMy , which preserves better structure. We conduct an experiment
to empirically validate the aforementioned attribute. First, we travel along Euclidean paths onMz

and measure the corresponding curve length LE on the data manifold. Second, we calculate the actual
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Figure 6: Euclidean path vs. geodesic comparison. We travel
along a Euclidean shortest path on Mz and measure the cor-
responding curve distance LG on Mz (lm2faces). Then, we
traverse between the same two points along the numerically cal-
culated geodesic and measure the corresponding curve length LG.
E(LG) vs LE is illustrated with the corresponding standard devi-
ation obtained along 10 random paths. Our model is closer to the
oracle case (LE = E(LG)). We were not able to obtain distance
greater than ∼ 60 for DS-GAN and Bicyle-GAN which implies
that our model generates more diverse data. Further, Pix2Pix did
not produce enough diversity for this comparison.

geodesic distance LG between the same two points onMy using Eq. 8 in discrete intervals. We
travel in 10 random directions starting from random initial points, and obtain LGi for evenly spaced
LE ∈ {10, 20, 30, . . . 90}. Then, we obtain a set of the means and standard deviations of LG for the
corresponding LE . Fig. 6 illustrates the distribution. As evident, our model exhibits a significantly
high overlap with the ideal curve, i.e., LE = E(LG) compared to DS-GAN and Bicycle-GAN.

A useful attribute of travelling along the geodesics on the output manifold (My) is to obtain smooth
interpolations, since the geodesics tend to avoid regions with high distortions, i.e., rapid changes.
However, Euclidean shortest paths in the latent spaces (Mz) of cGANs often do not correspond to
geodesics on theMy. Therefore, in order to travel along geodesics, it is required to numerically
obtain the geodesic paths using Eq. 8, which requires extra computation. In contrast, the proposed
training method encourages the generator to map the Euclidean paths onMz to geodesics onMy.
Therefore, smooth interpolations can be obtained by traveling between two latent codes in a straight
path. To evaluate this, we compare the interpolation results between Bicycle-GAN, DS-GAN and our
model. Fig. 5 shows a qualitative example, along with a quantitative evaluation. As visible, our model
exhibits smooth transition from the starting point to the end point. In comparison, Bicycle-GAN
shows abrupt and inconsistent changes along the path. DS-GAN does not show any significant
variance in the beginning and shows sudden large changes towards the end. We also quantify this
comparison using the velocity on the data manifold: since the curve length onMy can be calculated
using Eq. 9, it is easy to see that the velocity onMy can be obtained using

√
żTi Mżi. Fig. 5 illustrates

the change in the velocity, corresponding to the given qualitative examples. Our model demonstrates
an approximately constant velocity (geodesics have constant velocities), while the other models show
sudden velocity changes. We did not include CGML in these evaluations (App. I).

Variant type Model FID LPIPS

Llh

MMD 66.31 0.188
2nd moment (univaritate) 117.53 0.201

Maximizing distance 132.91 0.232
2nd moment (multivariate) 67.82 0.197

Downsampling

Mean pool 75.41 0.192
Max pool 82.42 0.162

CNN 77.93 0.191
Random Projection 67.82 0.197

dim(z)

16 65.32 0.172
32 67.11 0.188
64 67.82 0.197
128 82.33 0.166

Training loss

Ll + Ladv 91.3 0.051
Lgh + Ll + Ladv 63.11 0.151
Llh + Ll + Ladv 91.3 0.055

Llh + Lgh + Ll + Ladv 67.82 0.197

Table 2: Ablation study. Ablation study with different
variants of our model on landmark→ faces dataset re-
porting FID score (lower = more realistic) and LPIPS
(higher = more diverse).

Ablation study: We conduct an ablation study
to compare the different variants of the proposed
technique. Table 2 depicts the results. First,
we compare different distance functions used
to calculate Llh. As expected, naive maximiza-
tion of the distances between the generated sam-
ples without any constraints increases the diver-
sity, but reduces the visual quality drastically.
Further, we observed unwanted artifacts when
modeling each pixel as a univariate distribution,
as the model then cannot capture dependencies
across spatial locations. Then, we compare dif-
ferent down-sampling methods that can be used
for efficient calculation of the correlation ma-
trices, where random projection performed the
best. Interestingly, we observed a reduction of
the visual quality when the dimension of the
latent code is increased. In contrast, the diver-
sity tends to improve with the latter. We chose
dim(z) = 64 as a compromise. Finally, we
compare the effects of different combinations of the loss components.

Generalizability: To demonstrate the generalizability of the proposed algorithm across different
loss functions and architectures, we employ it on three classic networks: Pathak et al. [3], Johnson
et al. [30], and Ronneberger et al. [31]. These networks use a masked reconstruction loss with the
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Figure 7: We apply our algorithm to three classic networks and obtain increased diversity with no architectural
modifications. Note that the original networks only learn one-to-one mappings.

Method CelebA-HQ AFHQ
FID LPIPS FID LPIPS

StarGANv2 13.7 0.452 16.2 0.450
StarGANv2 (modified) 13.1 0.488 15.7 0.477

Table 3: We apply our algorithm to StarGANv2 [32] which improves both realism and diversity.

adversarial loss, perception loss from pre-trained networks, and a reconstruction loss, respectively.
Further, in the original form, these networks only learn one-to-one mappings. As depicted in Fig. 7,
our algorithm increases the diversity of the models and obtains one-to-many mappings with no
changes to the architecture (for fair comparison, we concatenate a latent code at the bottlenecks
during both the original and proposed training). Further, since our algorithm is architecture agnostic,
it can be easily injected into any suitable model. To show this, we replace the Lds of StarGANv2 [32]
with our loss Lgh. In StarGANv2, the images are generated as a composition of two functions: the
style generator (F (·)) and the image generator (G(·, ·)). We enforce a bi-lipschitz constraint between
the latent space and the image generator outputs. For continuously differentiable functions F and
G, if the composition G ◦ F is homeomorphic, F and G are individually homeomorphic. Hence,
the image generator output becomes homeomorphic to the style space. As shown in Table 3, our
approach can improve the performance of StarGANv2, without any modifications to the architecture.

5 Conclusion

We show that the cGANs, in their basic form, suffer from significant drawbacks in-terms of diversity
and realism. We propose a novel training algorithm that can increase both realism and the diversity
of the outputs that are generated by cGANs while preserving the structure of the latent manifold.
To this end, we enforce a bi-lipschitz mapping between the latent and generated output manifolds
while encouraging Euclidean shortest paths on the latent manifold to be mapped to the geodesics
on the generated manifold. We establish the necessary theoretical foundation and demonstrate the
effectiveness of the proposed algorithm at a practical level, using a diverse set of image-to-image
translation tasks, where our model achieves compelling results.
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