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ABSTRACT

Training a neural network is a monolithic endeavor, akin to carving knowledge
into stone: once the process is completed, editing the knowledge in a network
is nearly impossible, since all information is distributed across the network’s
weights. We here explore a simple, compelling alternative by marrying the rep-
resentational power of deep neural networks with the flexibility of a database.
Decomposing the task of image classification into image similarity (from a pre-
trained embedding) and search (via fast nearest neighbor retrieval from a knowl-
edge database), we build a simple and flexible visual memory that has the fol-
lowing key capabilities: (1.) The ability to flexibly add data across scales: from
individual samples all the way to entire classes and billion-scale data; (2.) The
ability to remove data through unlearning and memory pruning; (3.) An inter-
pretable decision-mechanism on which we can intervene to control its behavior.
Taken together, these capabilities comprehensively demonstrate the benefits of an
explicit visual memory. We hope that it might contribute to a conversation on
how knowledge should be represented in deep vision models—beyond carving it
in “stone” weights.

1 INTRODUCTION

In the pretty diagrams on ”Intro to Machine Learning” slides, an ideal ML workflow looks like
this: Data collection, preprocessing, choosing a model, training, evaluation, deployment. Happy
ending—the model is deployed, the users love it, and one can finally go on that well-deserved
vacation and catch up on the latest AGI memes.

Until, of course, the enemy of any ideal world sets in: reality. The real world constantly keeps
changing, and so do data requirements. New data and datasets become available, and existing ones
become deprecated for a variety of reasons, including concerns around fairness, biases or unsafe
content. Knowledge changes, and concepts drift (Tsymbal, 2004; Lu et al., 2018): Phones and cars
look different today than they did a few years ago, and different from how they will look in the
future. When it comes to data, the only constant is change (Cao & Yang, 2015; Bourtoule et al.,
2021; Nguyen et al., 2022; Zhang et al., 2023). Consequently, from a modeling perspective, in
order to keep up with this change one would ideally want to constantly re-train or fine-tune models,
which is of course not feasible. In short, as anyone who has ever deployed a model has experienced
firsthand, one is constantly battling the symptoms of a single underlying cause: the fact that deep
learning models have a static knowledge representation entangled in millions or billions of model
parameters. We, among many others working on memory (e.g. Weston et al., 2014; Chen et al.,
2018; Wu et al., 2021; Iscen et al., 2022; Nakata et al., 2022; Iscen et al., 2023; Prabhu et al., 2023;
Gui et al., 2024; Shao et al., 2024; Silva et al., 2024), believe that this is not a great way to represent
visual knowledge for deep learning. Instead, we argue that we should build models that cleanly
separate representation (how things are represented, e.g. through feature embeddings) from visual
memory (what is known). In short, deep learning models need a flexible visual memory: a way to
explicitly utilize and edit knowledge.

In this work, we build a simple visual memory for classification and show that it has seven desir-
able capabilities, including the ability to flexibly add data across scales (from individual samples
to classes and even billion-scale data), the ability to remove data from our model’s classification
process through machine unlearning and memory pruning, and a simple, interpretable decision-
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mechanism on which we can intervene to control its behavior. Our main goal is to provide a com-
pelling idea of how beneficial a flexible visual memory for deep learning can be from a variety
of perspectives and capabilities. From a technical standpoint, we aim for simplicity: retrieving k
nearest neighbors (in an embedding feature space) along with their labels to classify a query image.
This approach allows us to investigate where a simple visual memory mechanism helps, where its
limitations may be, and where there might be opportunities for improvement through a more com-
plex system. We hope that by demonstrating clear benefits from a simple visual memory, this article
might contribute to a conversation on how knowledge ought to be represented in deep vision models.

Here are some highlights of this article:

1. Improved aggregation of retrieved samples: we propose using RankVoting, a power-law
weighting that surpasses previous SOTA (SoftmaxVoting) for a deep learning based memory.

2. Re-ranking samples using a vision-language model achieves 88.5% top-1 ImageNet validation
accuracy, improving over both DinoV2 ViT-L14 kNN and linear probing.

3. Flexible perception: the visual memory achieves perfect unlearning, scales to billion-scale data
without additional training, and enables controlling sample influence via memory pruning.

We argue that the way current deep learning models represent knowledge (static knowledge repre-
sentation, hard to update, hard to unlearn, hard to understand how a decision is made) is problematic.
As an alternative, we built a working proof-of-concept: By building on the long history of nearest
neighbor methods, and “marrying” them with a powerful deep learning representation (such as SSL
features from DinoV2) and a billion-scale visual memory.

Related work. The concept of a visual memory has a long history in ML, neuroscience and psy-
chology. In psychology, exemplar theory posits that humans recognize objects by comparing them to
existing examples in visual memory (Medin & Schaffer, 1978; Nosofsky, 1986; Dopkins & Gleason,
1997; Jäkel et al., 2008; Nosofsky, 2011), like the ALCOVE model (Kruschke, 2020). In ML, prior
to deep learning, instance-based learning (also known as memory-based learning) was a popular
alternative to model-based learning (Aha et al., 1991; Quinlan, 1993). For instance, Turk & Pent-
land (1991) used nearest neighbor methods to classify faces, and Sivic & Zisserman (2003) build
a visual memory inspired by text retrieval for object retrieval from videos. In recent years, hybrid
approaches have started to combine the benefits of both approaches. Deep neural network variants
(model-based since they learn generalized abstractions of data) of k-nearest neighbor algorithms
(instance-based since they compare new data to existing exemplars in memory) have been proposed
with various motivations, including few-shot learning (Wang et al., 2019b; Yang et al., 2020; Bari
et al., 2021), improving adversarial robustness (Sitawarin & Wagner, 2019; Papernot & McDaniel,
2018; Rajani et al., 2020), medical image classification (Zhuang et al., 2020), confidence calibration
(Papernot & McDaniel, 2018), interpretability (Papernot & McDaniel, 2018; Wallace et al., 2018;
Lee et al., 2020; Rajani et al., 2020), image denoising (Plötz & Roth, 2018), retrieval-augmented
learning (Khandelwal et al., 2019; Drozdov et al., 2022), anomaly and out-of-distribution detection
(Bergman et al., 2020; Sun et al., 2022). Recently, Nakata et al. (2022) tested a kNN-based vi-
sual memory up to ImageNet-scale (1.28M images), and Khandelwal et al. (2019); Wu et al. (2021)
applied kNN-based approaches to neural language models.

2 BUILDING A RETRIEVAL-BASED VISUAL MEMORY FOR CLASSIFICATION

Given a dataset Dtest := {(x̃1, y1), · · · , x̃n, yn}, we want to classify each image x̃i ∈ Dtest. Our
classification approach consists of two steps: (i) building a visual memory, and (ii) fast nearest
neighbor based inference using the visual memory.

2.1 BUILDING A VISUAL MEMORY

Our visual memory retrieves (image, label) pairs from an image dataset when a query is made by
directly retrieving those images that are considered similar to a test image according to a model.
The model is a fixed pre-trained image encoder, meaning that no training takes place when adding
information to visual memory. No copies of the dataset are stored in the visual memory. Instead,
feature maps are extracted from the model based on a set of images related to the downstream
classification task at hand, such as a standard training set. For our experiments, our visual memory
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(a) ImageNet
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(b) iNaturalist

Figure 1: Reliability of retrieved memory samples. This plot visualizes the ImageNet (left) and
iNaturalist (right) top-1 validation accuracy of a single retrieved neighbor depending on the index
of the neighbor (index 0: nearest neighbor). In both datasets and across models, the decrease in
accuracy with increasing neighbor index follows smooth trajectories and can be approximated by a
two-parameter logarithmic fit (black lines).

comprises of features extracted from a dataset like the ImageNet-1K (Russakovsky et al., 2015)
training set using different encoders like DinoV2 (Oquab et al., 2023) and CLIP (Radford et al.,
2021). Thus, given a pretrained image encoder, Φ, and a dataset of (image, label) pairs Dtrain :=
(x1, y1), (x2, y2), · · · , (xN , yN ), we obtain features zi := Φ(xi),∀xi ∈ Dtrain. Subsequently, the
feature maps and corresponding label pairs are put in a database thereby creating VisualMemory :=
{(z1, y1), (z2, y2), · · · , (zN , yN )} for classification. For both DinoV2 and CLIP, we use the last
image embedding layer as a feature space.

2.2 RETRIEVAL-BASED CLASSIFICATION USING VISUAL MEMORY

Given a query image x̃ ∈ Dtest, we extract its feature map, z̃ = Φ(x̃). We then query VisualMemory
to extract k feature vectors, Neighbors(x̃) := {(z[1], y[1]), (z[2], y[2]((, · · · , (z[k], y[k])}, that are
closest to the query features z̃ using the cosine distance, which is the default retrieval similarity
measure for SSL models like DinoV2. Neighbors(x̃), are ordered by distance i.e.

dist(z̃, z[i]) ≤ dist(z̃, z[j]), ∀i ≤ j.

We then assign a weight, wi, to each neighbour (z[i], y[i]) and aggregate the scores for each neigh-
bour with the same label. Finally, we assign that label to the query image with the highest aggregate
score. We implemented retrieval based classification using one of the following two approaches:

1. Fast inference using matrix multiplication on GPUs/TPUs: For smaller datasets like Ima-
geNet, we saved VisualMemory as a matrix of size num images× num dims. During inference, for
an encoded query image of size 1× num dims, we computed the dot product of this encoded image
with every entry in VisualMemory getting a matrix of size num images× 1. We then computed the
k nearest neighbors using the arg max operation.

2. Fast and scalable nearest neighbor search: We used ScaNN (Guo et al., 2020) for accelerating
nearest neighbor search at scale. Specifically, we saved the VisualMemory as a database and used
ScaNN for fast lookup of nearest neighbors during inference. This method scales easily to billion-
scale memory (cf. Section 3.3). Appendix J details latency and storage; storing features requires
only about 1–3% of the space of storing the dataset itself and even with a 1B memory.

We mentioned earlier that we retrieve a set of neighbors, Neighbors(x̃) and aggregate information
across them to make a classification decision. In order to understand how reliable (i.e., accurate) re-
trieved memory samples are from the first to the 100th neighbor, we systematically analyze neighbor
reliability in Figure 1. As expected, reliability decreases as the neighbor index k increases, but even
at large k the neighbors contain above-chance information about the ground truth class. This sug-
gests that aggregating information across different neighbors may be beneficial to decision-making,
leading to the question: What is the best aggregation strategy? We empirically study this by testing
different weighting strategies for aggregation:
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(a) Existing aggregation methods, DinoV2 ViT-L14
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(b) RankVoting across models

Figure 2: Aggregating information across retrieved memory samples. (left) Existing aggregation
methods are overconfident in distant neighbors, resulting in the paradox of decaying ImageNet-1K
accuracy with more information. The same pattern is also seen for other models and datasets in the
Appendix (Figures 7 and 8). (right) This is not the case for RankVoting, a simple power-function
based method which reaches higher and stable performance across models and choices of k.

Plurality voting: Each neighbour in Neighbors(x̃) is assigned an equal weight of 1.0. This is the
classic, most simple voting method and used for instance by Nakata et al. (2022).

Distance voting: Each neighbour in Neighbors(x̃) is assigned a weight based on its Cosine distance
to the query image x̃ i.e. wi = exp

(
− dist(z̃, z[i])

)
. This approach has been used by Khandelwal

et al. (2019) for nearest neighbor language models.

Softmax voting: Each neighbour is assigned a weight based on the softmax function i.e. wi =
softmax

(
dist(z̃, z[i]

)
, τ) where τ is the temperature. This voting method is considered state-of-

the-art; for example nearest neighbor accuracies of self-supervised models are reported using this
method. A temperature of τ = 0.07 frequently appears in literature (Wu et al., 2018; Caron et al.,
2021; Oquab et al., 2023) and is reported as a parameter “which we do not tune” in the Dino pa-
per (Caron et al., 2021, p. 18). We observe that performance is sensitive to this parameter; other
temperatures perform worse. We therefore follow the literature in using τ = 0.07.

Rank voting: We propose using a simple aggregation approach wherein each neighbour is assigned
a power-function weight based on its rank in the ordered set Neighbors(x̃) i.e. wi = 1/(α+ ranki)
where ranki is i and α is an offset to avoid division by zero that is set to 2.0. This is similar, though
not identical to, Gou et al. (2011) who used power-law weighting in a different context.

In Figure 2a, we compare the top-1 ImageNet validation accuracy of different ranking methods as
a function of number of neighbours, with the ImageNet-1K training set as the visual memory using
the DinoV2/ViT-L14 model as the featurizer. Paradoxically, existing aggregation methods like plu-
rality voting, distance-based voting, and softmax voting show decaying performance as the provided
information (number of nearest neighbors) increases. This suggests that the methods are overconfi-
dent in distant neighbors, assigning them too much weight. Our simple, parameter-free rank based
voting method, however, leads to an increase in performance with more neighbors until a certain k
after which the performance plateaus, which is the ideal scenario (Figure 2b). Furthermore, rank-
based voting also outperforms baselines in absolute terms; quantitative comparisons can be found
in the Appendix (Tables 4 to 8) where we also study the influence of hyperparameters (Figure 9).
This indicates that a simple, power-function based method can reliably integrate information across
retrieved memory samples.

Gemini re-ranking. Our results above demonstrate that different aggregation strategies have a
large impact on downstream performance. How far can we push the upper limit on aggregating
information from different neighbors? We perform a controlled experiment using the Gemini 1.5
Flash model (Reid et al., 2024) to test this: We add the 50 nearest neighbors from DinoV2 ViT-L14
for a query image along with their labels into Gemini’s context. We then query Gemini to predict the
query image’s label. This achieves 88.5% ImageNet validation accuracy, a substantial improvement
over both DinoV2 ViT-L14 kNN (83.5%) and linear probing (86.3%) performance. Interestingly,
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Gemini’s performance is mainly driven by the neighbor information through in-context learning
since it only achieves 69.6% accuracy without neighbors (when just the query image is provided to
the model). The performance improvement highlights the potential of using vision-language models
as a visual memory re-ranker. Given that our main goal is to explore a simple visual memory system,
we mostly focus on non-Gemini ranking methods throughout our analysis.

3 CAPABILITIES OF A VISUAL MEMORY

Our primary goal is to motivate the concept of a machine visual memory from a variety of different
perspectives. To this end, we investigate how such a memory can benefit the following capabili-
ties: 3.1 Flexible lifelong learning: adding novel OOD classes; 3.2 Flexibly trading off compute
and memory; 3.3 Flexibly adding billion-scale data without training; 3.4 Flexible removal of data:
machine unlearning; 3.5 Flexible data selection: memory pruning; 3.6 Flexibly increasing dataset
granularity; 3.7 Interpretable & attributable decision-making.

3.1 FLEXIBLE LIFELONG LEARNING: ADDING NOVEL OOD CLASSES (DATA AND LABELS)

Standard classifiers, whether trained end-to-end (supervised models) or with a linear classifier (self-
supervised models), are not able to handle new information without re-training. For instance, adding
new classes or changing labels in an existing model usually involves either re-training or fine-tuning
parts of the model. A retrieval-based visual memory, in contrast, is able to process such information
in a natural and flexible way, aligning with the requirements of lifelong learning (Parisi et al., 2019).
We tested this by adding data for 64 new classes, along with their new labels, to the visual memory of
a pre-trained DinoV2 ViT-L14 model (in addition to the ImageNet train set, which is in-distribution
for the model). We took the new classes from the NINCO dataset (Bitterwolf et al., 2023), a dedi-
cated OOD dataset that is designed to have no overlap with existing ImageNet labels and samples.
This requires the model to transfer what it has learned to new, unseen concepts. The new task is
therefore harder, as the model has to retrieve images from both in-distribution and OOD classes.
The resulting visual memory has 1064 classes (1K from ImageNet and 64 from NINCO). Table 1
shows that with a visual memory it is possible to add new classes such that the in-distribution accu-
racy is maintained without catastrophic forgetting (the new classes only change ImageNet validation
performance by 0.02–0.04% depending on the aggregation method), while at the same time reaching
very high accuracy on the new OOD classes (approx. 87% top-1) without any training. Figure 12
in the appendix confirms that the samples are indeed OOD for the model, as demonstrated by larger
distances to nearest neighbors. This highlights that a visual memory is capable of flexibly adding
new information—an important capability since the world is not static. Furthermore, the memory is
incredibly robust towards label corruption up to 60% random labels, as shown in Appendix D.

Table 1: Flexible lifelong learning: adding novel OOD classes. A visual memory of DinoV2
ViT-L14 with ImageNet-train (IN-train) as the memory database is able to handle a simple “insert
into memory” operation for 64 out-of-distribution classes (data and labels) from the NINCO dataset
(Bitterwolf et al., 2023), leading to high performance on the new classes without affecting top-1
ImageNet validation accuracy.

memory→ IN-train IN-train-and-NINCO
query→ IN-val IN-val NINCO

no aggregation 81.1 81.1 86.4
PluralityVoting 83.2 83.2 86.9
DistanceVoting 83.3 83.3 87.1
SoftmaxVoting 83.6 83.5 87.5

RankVoting 83.6 83.6 87.4

3.2 FLEXIBLY TRADING OFF COMPUTE AND MEMORY

Next, we turn our attention to studying the scaling behaviour of visual memory with increasing
memory model size. We hypothesize that bigger models will be able to attain similar performance as
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(a) ImageNet (million-scale)
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Figure 3: Memory scaling: flexibly trading off compute and memory. ImageNet top-1 validation
error decreases systematically as the memory size is increased (i.e., recognition accuracy increases
with scale). (left) Million-scale memory consisting of ImageNet-train labels. (right) Billion-scale
memory bank consisting of machine-generated pseudo labels on the JFT dataset (Zhai et al., 2022).
Accuracy continues to decrease even with billion-scale data in memory. The roughly constant offset
between models of different sizes suggests the possibility of a flexible trade-off: The same error rate
can be achieved with a small model and large memory, or a large model and a small memory.

smaller models with lesser amount of visual memory. This is because, all else being equal, a bigger
model should be a better featurizer that requires fewer examples in memory to represent different
concepts. We empirically study the scaling behaviour of visual memory based retrieval systems in
Figure 3a using models of different sizes like DinoV2 ViT models of sizes S/14 (21M params), B/14
(86M params), and L/14 (300M params), as well as CLIP ViT models of sizes B/16 and L/14. We
plot the top-1 error rate as a function of number of images in visual memory. The plot demonstrates
that for each model, the error rate consistently decreases as we increase the visual memory size.
Notably, already with a single exemplar per class in memory, ImageNet validation performance is
far beyond chance (41% top-1 error for DinoV2 ViT-L14). It also visualizes the possibility of a
flexible trade-off between model size and memory size: e.g. for the different DinoV2 models, the
S/14, B/14, and L/14 variant achieve similar performance at 1.28M, ∼150K, and ∼70K memory
capacity respectively. In line with Nakata et al. (2022), this indicates that a smaller model with large
memory can match the performance of a larger model with smaller memory.

3.3 FLEXIBLY ADDING BILLION-SCALE DATA WITHOUT TRAINING

Billion-scale dataset with pseudo labels. As demonstrated in Section 3.2, performance systemat-
ically improves with increased memory size across both small and large models. We here test how
far this trend holds beyond relatively small-scale, well-curated settings like ImageNet-1K by scal-
ing visual memory to the billion-scale unlabeled data regime. We obtain a large-scale dataset from
the union of the ImageNet-1K train set and a subset of the JFT-3B dataset (Zhai et al., 2022). To
this end, we treat JFT as an unlabeled dataset by ignoring its original labels and instead obtaining
pseudo labels by running them through ViT-22B-224px (Dehghani et al., 2023), a highly performant
classifier. We excluded images whose labels do not have a correspondence with the ImageNet labels.

Scaling. In Figure 3b, we show the downstream ImageNet validation performance of two DinoV2-
ViTs as a function of memory size. The plot demonstrates that even in the billion-scale data regime,
validation error decreases when increasing memory size without any training. The gain from more
data is most prominent when having fewer samples in memory (e.g., going from 1 to 10 samples per
class). In log-log space, a logarithmic function fits the empirical scaling trend well. In the literature,
simple scaling trends such as the one we observe are powerful predictors of scaling behaviour for
different model and dataset sizes (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022).

Out-of-distribution performance. In order to understand whether the benefits of increased memory
size transfer to out-of-distribution (OOD) data, we compared DinoV2 ViT-L14 once with ImageNet-
train in memory and once with JFT pseudo-labels in memory. The models are evaluated on the
ImageNet-A (Hendrycks et al., 2021), ImageNet-R (Hendrycks et al., 2020), ImageNet-Sketch
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(Wang et al., 2019a), ImageNet-V2 (Shankar et al., 2020), and ImageNet-ReaL (Beyer et al., 2020)
datasets. As an additional well-performing yet “inflexible” baseline, we report linear probing ac-
curacies from the DinoV2 paper (Oquab et al., 2023). Table 2 shows that visual memory scaled
with JFT data improves OOD performance across all datasets compared to an ImageNet-based vi-
sual memory. Gemini re-ranking again improves leads to performance gains. Overall, the finding
that memory scale transfers to OOD improvements is important in the context of continual learning,
where a flexible visual memory can easily incorporate newly available data that the model was not
trained on and improve performance both in- and out-of-distribution.

Table 2: OOD evaluation. Out-of-distribution performance improves with larger visual memory
size. Across all datasets, a visual memory with JFT memory outperforms ImageNet memory demon-
strating advantages of scaling visual memory for OOD performance. Probe details: Appendix I.

Model Method IN-A IN-R IN-Sketch IN-V2 IN-ReaL

DinoV2 ViT-L14 linear probe 71.3 74.4 59.3 78.0 89.5

DinoV2 ViT-L14 ImageNet memory 58.8 62.8 61.5 75.6 87.1
+ Gemini re-ranking 68.4 72.3 72.5 81.7 89.9

DinoV2 ViT-L14 JFT memory 61.1 73.7 68.0 77.6 88.2
+ Gemini re-ranking 69.6 81.4 75.0 82.3 90.5

3.4 FLEXIBLE REMOVAL OF DATA: MACHINE UNLEARNING

The world is not static. Thus, in addition to the need to flexibly add novel data, there is often a
need to remove the influence of specific training data from a model’s decision-making process after
it has been trained (Cao & Yang, 2015; Bourtoule et al., 2021; Nguyen et al., 2022; Zhang et al.,
2023). A range of intricate methods are being developed to remove or reduce the influence of certain
training samples (Gupta et al., 2021; Sekhari et al., 2021; Ullah et al., 2021; Kurmanji et al., 2024;
Sepahvand et al., 2024)—a challenging endeavour if knowledge is embedded in millions or billions
of model weights. In contrast, for models with an explicit visual memory, machine unlearning
becomes as simple as removing the dataset sample from the visual memory. For instance, after
adding the NINCO dataset (Bitterwolf et al., 2023) into visual memory, we can remove any NINCO
sample with outstanding performance on all three key unlearning metrics reported by Liu (2024):
Efficiency: How fast is the algorithm compared to re-training? (Lightning fast.) Model utility: Do
we harm performance on the retain data or orthogonal tasks? (Not at all.) Forgetting quality: How
much and how well are the ‘forget data’ actually unlearned? (Completely and entirely.) Can machine
unlearning therefore be solved with a visual memory? If the embedding model is trained on data
that needs to be unlearned, machine unlearning remains challenging. If, however, the embedding
model is trained on a safe, generalist dataset (e.g., a publicly available image dataset) and data that
may need to be considered for unlearning later is simply put into the visual memory, then machine
unlearning indeed becomes as simple as deleting a datapoint from the visual memory. This can be
particularly helpful for tasks that may require private or confidential data—a model can be trained
on publicly available datasets to learn general and information features and the private data can be
added to a visual memory on local devices for downstream tasks to preserve privacy.

3.5 FLEXIBLE DATA SELECTION: MEMORY PRUNING

The ability to flexibly remove the influence of certain datapoints is not just desirable in the unlearn-
ing sense, but also advantageous in the context of dataset pruning, an emerging field that analyzes
the quality of individual data points. The goal of dataset pruning is to retain only useful samples,
while removing those that have a neutral or harmful effect on model quality. The key challenge
is that in standard black-box models, it is entirely unclear whether any given sample is helpful or
harmful. The gold standard is leave-one-out-training (for ImageNet, this would consist of training
1.28 million models); current methods seek to approximate this extremely costly approach with
various heuristics (Feldman & Zhang, 2020; Chitta et al., 2021; Paul et al., 2021; Sorscher et al.,
2022; Abbas et al., 2023a). By contrast, the contribution of a data sample to decision-making in
a visual memory based system is straightforward. For any given query image x̃, the neighbor set
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Figure 4: Visualization of memory-based decision-making with and without memory pruning.
Given a query image, nearest neighbors are retrieved from memory via Cosine similarity in the
embedding space of a model (here: five closest neighbors from the ImageNet train set, embedded
via DinoV2 ViT-L14). The model’s prediction is based on the weighted aggregation of the neighbor
class labels. The rank-based weight decreases with the rank of the neighbor. For soft memory
pruning, those weights are adjusted by the reliability of their neighbors. In the specific example here,
all five neighbors appear sensible, but they have four different labels. Since the first two neighbors
contributed to wrong decisions on the training set, they are downweighted via soft memory pruning,
and the prediction changes to the correct class.

Neighbors(x̃) clearly reveals which samples contributed to the decision. Furthermore, this informa-
tion also highlights whether the samples were helpful (correct label) or harmful (wrong label) for
the decision. We, therefore, transfer the concept of dataset pruning to memory, and propose visual
memory pruning. To this end, we estimate sample quality by querying the ImageNet training set
against a visual memory consisting of the exact same dataset (IN-train, discarding the first neighbor
which is identical to the query). This approach requires no more compute than a single forward pass
over the training set. We then record the number of times any given neighbor contributed to a wrong
decision, resulting in a sample quality estimate. This enables us to exclude low-quality neighbors
from the decision-making process by either removing them from the visual memory entirely (“hard
memory pruning”) or by reducing their weight compared to higher-quality neighbors (“soft memory
pruning”). Method details can be found in Appendix H. In Table 3, we show that both memory
pruning variants improve ImageNet validation accuracy, with soft pruning leading to larger gains
than hard pruning. Figure 4 visualizes the decision-making process for a randomly selected sample
where estimating sample reliability improves decision quality. Given that observing the outcome of
an intervention is many orders of magnitude faster in visual memory models (as opposed to tradi-
tional leave-out-training), we are optimistic that the visual memory pruning gains we observed with
two simple strategies can be improved further in the future.

Table 3: Flexible data selection: memory pruning. ImageNet validation accuracy improves when
removing low-quality samples (hard pruning) or downweighting them (soft pruning). In contrast to
standard black-box models, memory models (here: using DinoV2 ViT-L14) offer a strikingly simple
way to estimate sample quality since their decisions are based on a few retrieved memory samples.

Pruning PluralityVoting DistanceVoting SoftmaxVoting RankVoting

no pruning (standard) 83.2 83.3 83.6 83.6
hard pruning (ours) 83.3 83.4 83.6 83.7
soft pruning (ours) 83.6 83.6 83.9 84.1

3.6 FLEXIBLY INCREASING DATASET GRANULARITY

In contrast to static classification, where a model is trained once without updates, a visual memory
model should be able to flexibly refine its visual understanding as more information becomes avail-
able. We test this using DinoV2 ViT-L14 embeddings on the iNaturalist21 dataset (iNaturalistTeam,
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2021), a large-scale imbalanced dataset of animal and plant images containing 10,000 species span-
ning seven taxonomic levels, from coarse (kingdom) to fine-grained (species). In a leave-one-out
fashion, we simulate the discovery of a new species by putting 50 exemplars for each of the 9,999
species into memory and then step by step adding more data for the remaining “newly discovered”
species—starting from zero exemplars all the way to 50 exemplars (see Algorithm 1 for an algorith-
mic description). In Section 3.6 we observe the following: (1.) Already before a single example of
the new species is added, it can already be placed in the right part of the taxonomic tree well beyond
chance (35.2% accuracy at the genus level compared to ∼0% chance). (2.) Accuracy at the species
level improves substantially by adding just a handful of images of the target species (e.g., 5–10 im-
ages); a regime where training a classifier would typically fail due to data scarcity. (3.) Interestingly,
adding more samples of the discovered species not only improves species-level accuracy, but also
leads to a “rising tide lift” of improvements across all levels of the taxonomic hierarchy. This indi-
cates that a visual memory is well-suited for hierarchical classification tasks and settings where data
for new concepts is initially scarce but becomes more abundant over time—which is often the case
in applications like fraud detection, personalized recommender systems, and scientific discovery.
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Figure 5: Impact of memory bank size
on top-1 accuracy across taxonomic lev-
els on iNaturalist. Top-1 accuracy for a tar-
get species across different taxonomic lev-
els as the number of exemplars in the mem-
ory bank for that species increases from 0 to
50. Each line represents the average accu-
racy over all 10,000 species in the iNaturalist
2021 dataset, while the number of examples
in visual memory is fixed at 50 exemplars for
all other species. The black dotted line indi-
cates baseline accuracy from predicting the
majority class.

3.7 INTERPRETABLE & ATTRIBUTABLE DECISION-MAKING

Unlike a black-box deep learning model, a visual memory offers a natural way to understand a
model’s specific predictions by attributing them to training data samples (e.g. Papernot & McDaniel,
2018). In Figure 6, we visualize misclassified validation set examples from the ImageNet-A dataset
(Hendrycks et al., 2021) using a memory of the ImageNet-1K training set. These randomly selected
samples illustrate that many seemingly strange errors (e.g., predicting a type of fence instead of a
teddy bear, or a unicycle instead of a bow tie) do in fact appear sensible given the data, raising ques-
tions about label quality of ImageNet-A—in a similar vein as label issues identified for ImageNet
(Beyer et al., 2020; Shankar et al., 2020; Yun et al., 2021)—rather than about model quality. This
issue is quantified in Appendix M, showing that 2 out of 5 model “errors” are instead label errors.

4 DISCUSSION

Summary. Typical neural networks are trained end-to-end: perfect for static worlds, yet cumber-
some to update whenever knowledge changes. This is limiting their potential in real-world settings
since the world is constantly evolving. Incorporating a visual memory, in contrast, enables a range of
flexible capabilities that embrace change: lifelong learning through incorporating novel knowledge,
being able to forget, remove and unlearn obsolete knowledge, flexible data selection through mem-
ory pruning, and an interpretable decision-making paradigm on which one can intervene to control
its behavior. We systematically explored a simple visual memory that decomposes the task of image
classification into two primitives, image similarity (from a pre-trained embedding representation)
and search (via fast, scalable nearest neighbor search from a vector database). Our results demon-
strate that technical improvements like RankVoting improve kNN accuracies for both DinoV2 and
CLIP over the widely used SoftmaxVoting method that is sensitive to two hyperparameters (tem-
perature τ and number of neighbors k). Our approach also narrows the accuracy gap between a
nearest neighbor memory (best flexibility, perfect unlearning, improved interpretability) and a fixed
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Figure 6: Interpretable decision-making. A retrieval-based visual memory enables a clear visual
understanding of why a model makes a certain prediction. Here, we show four randomly selected
misclassified query images from ImageNet-A (Hendrycks et al., 2021) along with five nearest neigh-
bors from DinoV2 ViT-L14 using the ImageNet-1K training set as visual memory. All labels are
from the respective datasets (ImageNet-A for query and ImageNet-train for neighbors). While all
neighbors visually look reasonable, not all labels do.

linear probe (highest accuracy on static image classification). More importantly, we show that visual
memory enables flexible perceptual capabilities.

Limitations and future work. First, we only considered the task of image classification across
a broad range of datasets. It will be interesting to extend the approach to other visual tasks, such
as object detection, image segmentation, instance recognition and to image generation where a vi-
sual memory would be desirable, too (since it is prohibitively expensive to re-train large generative
models every time data needs to be removed or added). Secondly, our approach relies on a fixed,
pre-trained embedding model; strong distribution shifts may require updating the embedding. Self-
supervised models are a particularly flexible choice, but it is an open question whether one could
train smaller models that excel at their task with the help of a larger memory database. Conceptually,
if a model needs to save less information in its weights, it might be possible to reduce the computa-
tional footprint of such a model. Furthermore, we sometimes observe a trade-off between flexibility
and accuracy. Exploring the use of the memory pruning weights as a data selection criterion in the
context of dataset pruning to improve over power-law scaling in deep learning (Sorscher et al., 2022)
might be an interesting avenue for future work.

Outlook. Deep learning is increasingly becoming a victim of its own success: the more widely it is
deployed, the stronger its limitations are felt. While the static nature of end-to-end trained networks
can easily be forgotten when focusing on fixed academic benchmarks, the real world is anything but
static. Data is constantly evolving, leading to the dreaded “model drift” where once-optimal models
gradually become less effective (Bayram et al., 2022). Incorporating an explicit visual memory—
however it may be instantiated—appears to be a promising way forward for real-world tasks where
flexibility is key. While the specific approach we employ here might well be improved through
more complex systems, we hope that the flexible capabilities we demonstrated might inspire and
contribute to a conversation on how knowledge ought to be represented in vision models.
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Code availability. Code to replicate experiments from this paper is available via github; for the
purpose of the anonymous review period we include it as a supplementary .zip file.
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Appendix
We here provide the following supplemental information:

Appendix A Aggregation method comparison on ImageNet-1K

Appendix B Aggregation method comparison on iNaturalist

Appendix C Hyperparameter sensitivity analysis

Appendix D Robustness towards label corruption

Appendix E Hit rate analysis as an upper bound on aggregation accuracy

Appendix F Scaling law details

Appendix G OOD analysis for NINCO dataset

Appendix H Memory pruning details

Appendix I Linear probe details

Appendix J Latency and storage

Appendix K Algorithm for hierarchical label prediction

Appendix L Calibration analysis

Appendix M ImageNet-A error analysis

Appendix N Compositionality analysis

A AGGREGATION METHOD COMPARISON (IMAGENET-1K)

Table 4: Benchmarking different aggregation variants at different k thresholds, DinoV2 ViT-L14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 83.2 82.9 82.6 82.4 82.1 82.0 81.8 81.6 81.5 81.4
DistanceVoting 83.3 83.0 82.7 82.4 82.2 82.1 81.9 81.7 81.6 81.5
SoftmaxVoting 83.5 83.5 83.4 83.3 83.2 83.1 83.1 83.0 82.9 82.9
RankVoting 83.5 83.6 83.6 83.5 83.5 83.4 83.3 83.3 83.3 83.3

Table 5: Benchmarking different aggregation variants at different k thresholds, DinoV2 ViT-B14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 81.8 81.4 81.1 80.9 80.7 80.4 80.2 80.0 79.8 79.6
DistanceVoting 81.9 81.5 81.2 81.0 80.8 80.5 80.3 80.0 79.9 79.7
SoftmaxVoting 82.0 82.0 81.9 81.8 81.7 81.7 81.6 81.5 81.3 81.3
RankVoting 82.1 82.2 82.1 82.0 82.0 82.0 81.9 81.9 81.9 81.9

Table 6: Benchmarking different aggregation variants at different k thresholds, DinoV2 ViT-S14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 78.6 78.2 77.8 77.4 77.1 76.8 76.5 76.3 76.1 75.9
DistanceVoting 78.8 78.4 77.9 77.5 77.2 76.9 76.6 76.4 76.2 76.0
SoftmaxVoting 78.9 78.9 78.7 78.6 78.5 78.3 78.1 78.0 77.9 77.7
RankVoting 78.9 79.1 79.0 78.9 78.9 78.9 78.9 78.8 78.8 78.8
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Table 7: Benchmarking different aggregation variants at different k thresholds, CLIP ViT-L14.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 79.0 78.7 78.3 78.0 77.8 77.6 77.4 77.4 77.2 77.0
DistanceVoting 79.2 78.9 78.5 78.2 78.0 77.8 77.6 77.5 77.3 77.1
SoftmaxVoting 79.3 79.3 79.1 78.9 78.8 78.7 78.5 78.5 78.4 78.2
RankVoting 79.3 79.6 79.7 79.7 79.7 79.7 79.7 79.7 79.7 79.7

Table 8: Benchmarking different aggregation variants at different k thresholds, CLIP ViT-B16.

Aggregation @10 @20 @30 @40 @50 @60 @70 @80 @90 @100

PluralityVoting 72.8 72.6 72.3 72.0 71.7 71.4 71.2 70.9 70.8 70.5
DistanceVoting 73.1 72.9 72.6 72.3 71.9 71.6 71.4 71.1 70.9 70.6
SoftmaxVoting 73.3 73.3 73.1 72.9 72.7 72.5 72.3 72.1 71.9 71.7
RankVoting 73.0 73.7 73.8 73.8 73.8 73.8 73.7 73.7 73.7 73.7
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Figure 7: Aggregation method comparison on the ImageNet-1K validation set (same as Figure 2a
but for other models).
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Table 9: Benchmarking different aggregation variants on ImageNet-1K.

Model Aggegation IN-val acc (%)

CLIP ViT-L14 CLIP paper (zero-shot) 75.3
CLIP ViT-L14 no aggregation 76.0
CLIP ViT-L14 PluralityVoting 79.2
CLIP ViT-L14 DistanceVoting 79.4
CLIP ViT-L14 SoftmaxVoting 79.6
CLIP ViT-L14 RankVoting 79.9
DinoV2 ViT-L14 DinoV2 paper (kNN Softmax) 83.5
DinoV2 ViT-L14 no aggregation 81.1
DinoV2 ViT-L14 PluralityVoting 83.2
DinoV2 ViT-L14 DistanceVoting 83.3
DinoV2 ViT-L14 SoftmaxVoting 83.6
DinoV2 ViT-L14 RankVoting 83.6

B AGGREGATION METHOD COMPARISON (INATURALIST)
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(b) RankVoting (across models)

Figure 8: Aggregating information across retrieved memory samples on iNaturalist. Same
as Figure 2 but for iNaturalist instead of ImageNet. (left) Existing aggregation methods (Plural-
ityVoting, DistanceVoting and SoftmaxVoting) are overconfident in distant neighbors, resulting in
the paradox of decaying iNaturalist accuracy with more information. (right) This is not the case for
RankVoting which shows strong and stable performance across models and choices of k.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C HYPERPARAMETER SENSITIVITY ANALYSIS
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Figure 9: Sensitivity to hyperparameters for different aggregation methods. Apart from Plural-
ityVoting, all aggregation methods described in Section 2.2 have a hyperparameter (α for RankVot-
ing, τ for SoftmaxVoting). For each model and method, we here plot the maximum performance
when aggregating using a certain method, sweeping over the number of neighbors from 1 to 100,
as a function of the hyperparameter. This analysis is performed to understand how sensitive the
respective method is to the choice of the hyperparameter. Note that the x range is different since
for instance the temperature parameter in SoftmaxVoting ranges from [0, 1] while RankVoting for
α = 0 is undefined (division by zero). We therefore evaluate a broad range for each method and find
that all methods have a regime in which they are relatively stable irrespective of the hyperparameter
choice. Since DistanceVoting as implemented by Khandelwal et al. (2019) does not have a hyper-
parameter, we added a temperature-style parameter ξ for the purpose of this comparison by setting
wi = exp

(
− dist(z̃, z[i])

)ξ
.

D ROBUSTNESS TOWARDS LABEL CORRUPTION
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Figure 10: Robustness towards label corruption. How robust is a visual memory towards cor-
rupted labels in the memory bank? This plot shows top-1 RankVoting accuracy on the ImageNet
validation set as a function of how many labels in the memory (containing ImageNet-1K training
set features via DinoV2 ViT-L/14) are corrupted, i.e., assigned to a random class. Intriguingly, per-
formance stays almost unchanged all the way to about 60% (!) corrupted (random) labels in the
database.
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E HIT RATE ANALYSIS
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Figure 11: Hit rate. This plot shows the probability of the true label being contained in list of labels
of the first k retrieved neighbors on ImageNet-1K, for five different models and k ∈ [1, 100]. With
100 neighbors, the hit rate approaches 98% for the best model. Conceptually, this is a very high
upper bound on the performance that can be achieved by a given featurizer via nearest neighbor
retrieval.

F SCALING LAW

As we mentioned in Section 3.3, we found that a logarithmic form fits the data well between
log10(memory size) and log10(error rate). Specifically, we found the following functional forms
for DinoV2 ViT S14 and DinoV2 ViT L14 respectively via np.polyfit(x, y, dim=1):

DinoV2 ViT L14: y = −0.9434 · log10(x) + 2.0704

DinoV2 ViT S14: y = −1.0942 · log10(x) + 2.3187

where x = log10(memory-size) and y = log10(error-rate), where memory-size ∈ [103, 109] and
error-rate in [0, 100].

G NINCO DATASET
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Figure 12: Distance comparison: the NINCO OOD samples are indeed out-of-distribution for
the model. In Section 3.1, we described that we can simply plug new out-of-distribution classes
into memory and still perform well on both existing data as well as the new classes. This boxplot
confirms that the added samples from the NINCO dataset (Bitterwolf et al., 2023) are indeed out-of-
distribution for DinoV2 ViT-L14: The mean (left) and median (right) distances from query to the
first 100 neighbors are substantially lower for ImageNet validation images than for OOD samples
from NINCO.
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Figure 12 confirms that there is a distribution difference between in-distribution data (ImageNet-
1K) and OOD data (NINCO). That said, while a distribution shift exists, it is possible that individual
NINCO samples were part of the training set for DinoV2. Test-set contamination is generally a
concern when working with models trained on large-scale datasets, since test samples may occur as
exact, semantic or near-duplicates in large training datasets (e.g. Abbas et al., 2023b). For instance,
NINCO contains samples from Food-101 (Bossard et al., 2014) which are also part of LVD-142M
dataset used to train DinoV2. That said, the NINCO samples belong to classes which are definitely
not part of the ImageNet-train set which serves as a memory bank for our experiments, as ensured
by the NINCO dataset collection process (Bitterwolf et al., 2023).

H MEMORY PRUNING

For memory pruning from Section 3.5, we implemented two pruning methods: removing unreliable
neighbors from memory entirely (“hard memory pruning”), and reducing their weight (“soft memory
pruning”). We report results on the ImageNet validation set with a (potentially pruned) ImageNet-
train set in memory. For hard pruning, we excluded images from memory that contributed to a wrong
decision at least 128 times (this meant excluding 26,257 images for DinoV2 ViT-L14), based on
querying the ImageNet-train set against a memory consisting of the ImageNet-train set and querying
100 neighbors for each sample. In order to obtain a fair comparison, instead of reporting accuracies
for an arbitrary choice of k (the number of neighbors) we instead evaluate accuracy for each k in
[1, 100] and report the maximum accuracy obtained in Table 3. This ensures that differences in
observed accuracy can indeed be attributed to memory pruning, as opposed to a choice of k. For soft
pruning, instead of excluding unreliable neighbors entirely as in hard pruning, the neighbor weights
(1.0 for PluralityVoting, or a rank-based weight in case of RankVoting) are instead multiplied by a
reliability factor γ with γ = d

c+v where v is the number of times the image contributed to a wrong
decision on the ImageNet-train set, c = 1 to avoid division by zero, and d = 1.75. This results,
for instance, in γ = 0.88 for images that only contribute to a single wrong decision; in γ = 0.16
for images that contribute to ten wrong decisions, and in γ = 0.02 for images that contribute to
100 wrong decisions on the training set. Images that never contributed to any wrong decision are
assigned γ = 1.0, i.e. their default weight remains unchanged.

I LINEAR PROBE DETAILS

For the linear probe results reported in the paper, we directly used the results that were reported
in the DinoV2 and CLIP papers. For DinoV2, the authors froze the model backbone and trained
the linear layers for 12500 iterations using SGD. Instead of training a single time, they performed
a full grid search sweep over three settings (output layers in 1, 4; pooling token concatenation in
yes, no, and 13 different learning rates), resulting in 52 linear probes. Then, the authors evaluated
the ImageNet validation accuracy for all of those 52 probes and only reported the highest one, as
described in Appendix B.3 of the DinoV2 paper. Some may call this test set tuning or double
dipping; the DinoV2 paper describes it as “common practice” (Oquab et al., 2023, p. 31). CLIP
linear probe results are based on a logistic regression classifier learned using scikit-learn’s L-BFGS
implementation, and hyperparameter sweeps are performed on a held-out set not used for evaluation,
according to Radford et al. (2021).

J LATENCY AND STORAGE

Latency. Nearest neighbor retrieval, fortunately, does not need to reinvent the wheel but can, in-
stead, build on top of highly optimized workloads and libraries such as the ScaNN library (Guo
et al., 2020). The ScaNN github README shows a latency comparison; with the requirement of
perfect recall a million-size memory can handle roughly 500-600 queries per second.

Storage. In addition to latency, storage is another very practical consideration: How much does
it take to store features for a large database? To put things into perspective, the ImageNet training
dataset requires 154.6 GB of storage, and the ImageNet validation dataset requires 6.0 GB of storage.
In comparison, as shown in Table 10, storing DinoV2 or CLIP features for the entire ImageNet
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training dataset only requires between 1.9 and 4.9 GB of storage space. Thus compared to storing
the training dataset, the model features account for only 1–3% of this size. This means that after
constructing the memory, one may decide to keep the dataset which adds 1–3% of storage, or one
may decide to delete the dataset only keeping the features which saves 97–99% of storage (compared
to the dataset storage requirement). The ratio of features requiring 1–3% of the dataset size doesn’t
change with dataset scale since it only depends on the embedding model, thus this ratio would hold
for very small datasets just as it would for a billion-scale dataset.

Table 10: Storage requirements for ImageNet features. Storing features in a memory database
requires only about 1–3% of the space that is needed to store the dataset (154.6 GB for ImageNet-
train, 6.0 GB for ImageNet-validation).

Model IN-train features (GB) IN-val features (MB)

DinoV2 ViT-L/14 4.9 197
DinoV2 ViT-B/14 3.7 148
DinoV2 ViT-S/14 1.9 75
CLIP ViT-L/14 3.7 148
CLIP ViT-B/16 2.5 100

K HIERARCHICAL LABEL PREDICTION ALGORITHM FOR FLEXIBLY
INCREASING DATASET GRANULARITY

Algorithm 1 Hierarchical Label Prediction

Require: New example x, Hierarchical tree T (with ROOT node)
1: cur node← ROOT
2: for each level l in T (top to bottom) do
3: candidates← all children of(cur node)
4: max p value← −∞
5: label at level← NULL
6: for each child node c in candidates do
7: cross dist← distance distribution(x, examples(c))
8: in dist← distance distribution(examples(c), examples(c))
9: p value← Kolmogorov-Smirnov test(cross dist, in dist)

10: if p value > max p value then
11: max p value← p value
12: label at level← c
13: end if
14: end for
15: cur node← label at level
16: end for
17: return label at level
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L CALIBRATION ANALYSIS
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(a) DinoV2 ViT-L14, linear classification
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(b) DinoV2 ViT-L14, kNN classification
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(c) DinoV2 ViT-B14, linear classification
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(d) DinoV2 ViT-B14, kNN classification
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(e) DinoV2 ViT-S14, linear classification
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(f) DinoV2 ViT-S14, kNN classification

Figure 13: How well are predictions calibrated? Left column: Accuracy vs. confidence from
Softmax of linear classifier for three DinoV2 variants. Right column: Accuracy vs. count of plurality
class among first 100 neighbors for the same three DinoV2 variants. A DinoV2-based kNN classifier
is well calibrated, as is the DinoV2 softmax.

M IMAGENET-A ERROR ANALYSIS

As shown in Figure 6, many “errors” on ImageNet-A appear to be perfectly reasonable predictions
that are caused by dataset label issues as opposed to model mistakes. More randomly selected
ImageNet-A samples, along with nearest neighbors, are shown in Figure 14. To quantify the issue,
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we performed a human experiment on a randomly selected subset of ImageNet-A images (N=100)
where the dataset label and the prediction from DinoV2 ViT-L14 with JFT memory disagree. We
presented the image alongside the original ImageNet-A label and our model-predicted label to three
human observers, asking them to identify which of the labels best describes the image (of course,
without telling them which of the labels is the dataset label). The result was that in 39.3% (!) of
cases (std: ±1.25%), the DinoV2 label was assessed as being better/more suitable than the original
dataset label—i.e., roughly 2 out of 5 model “errors” are in fact dataset label errors, quantifying the
ImageNet-A label quality issue we alluded to in Figure 6. This percentage can be used to estimate
how correcting problematic labels influences performance. Instead of the original model’s 61.1%
accuracy on ImageNet-A, due to label errors the ‘corrected’ accuracy is instead 76.4% (a delta of
+15.3% in absolute terms or +25.0% in relative terms).

Figure 14: Interpretable decision-making. A retrieval-based visual memory enables a clear visual
understanding of why a model makes a certain prediction. Here, we show four randomly selected
misclassified query images from ImageNet-A (Hendrycks et al., 2021) along with five nearest neigh-
bors from DinoV2 ViT-L14 using the ImageNet-1K training set as visual memory. All labels are
from the respective datasets (ImageNet-A for query and ImageNet-train for neighbors). While all
neighbors visually look reasonable, not all labels do.

N COMPOSITIONALITY ANALYSIS

A flexible visual memory also provides a path to analyze representations of various models, particu-
larly, how different models represent multiple concepts in an image. We study this for an ImageNet-
train visual memory of DinoV2 ViT-L14 and CLIP ViT-L14. We use manually selected query images
from outside the ImageNet dataset that have multiple objects from the ImageNet labels. We query
the visual memory for nearest neighbors of the query image. Subsequently, we obtain the resid-
ual image by subtracting the features of the nearest neighbor from the features of the query image.
We, then, obtain the nearest neighbors for the residual image from the visual memory. We plot the
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results in Figure 15 which shows that DinoV2 ViT-L14 and CLIP ViT-L14 represent concepts in
their features in a different manner. The nearest neighbors for DinoV2 are mostly images with a
single concept (or object) from the query image. The residual image, subsequently, leads to nearest
neighbors dominated by another single object in the query image. In contrast, CLIP often results in
nearest neighbors that are generally a blend of concepts from the query image. These qualitative ex-
plorations are simple demonstrations of the advantages of an interpretable decision-making process
provided by a flexible visual memory.

Figure 15: Compositionality of representations. The first column indicates a query image; the
next three columns are the three nearest neighbors from the training set. The last three columns are
the residual images, obtained by subtracting the features of the nearest neighbor (2nd column from
the left) from the features of the query image (1st column from the left). The nearest neighbors for
DinoV2 are mostly images with a single concept (or object) from the query image. The residual
image, subsequently, leads to nearest neighbors dominated by another single object in the query
image. In contrast, CLIP often finds neighbors that are a blend of concepts from the query image.
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