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ABSTRACT

Membership Inference (MI) refers to the task of determining whether or not a
document is included in the training data of a given model. MI provides an
effective post-training alternative for analyzing training datasets when the access
to them is restricted, including studying the impact of data choices on downstream
performance, detecting copyrighted content in the training sets, and checking for
evaluation set contamination. However, black-boxed Language Models (LMs)
only providing the loss for the document may not provide a reliable signal for
determining memberships. In this work, we leverage the insight that documents
sharing certain attributes (e.g., time of creation) are all expected to be in a training
set or none of them is, and develop methods that aggregate membership predictions
over these documents. We apply our set assumption on five different domains
(e.g., Wikipedia, Arxiv), and find that our method enhances prior MI methods by
0.14 in AUROC on average. We further analyze the impact of different language
model sizes, training data deduplication, and methods of aggregating membership
predictions over sets and find that our method is more effective on undeduplicated
and larger models with more documents available in each set and longer sequence
sampled for each document, and show our method’s robustness against noises in
the set assumption under practical settings.

1 INTRODUCTION

Language Models (LMs) have demonstrated impressive performance in a range of applications, owing
largely to being trained on web-scale texts. However, the increase in the size of the datasets used to
train LMs comes at the cost of transparency without releasing access to the datasets, since it becomes
increasingly difficult (in the case of open models) or impossible (for closed models) to determine
whether a given document is included in the pretraining dataset (Achiam et al., 2023; Team et al.,
2023; Touvron et al., 2023).

Membership Inference (MI) refers to the problem of determining whether a document is included
in the training data (member) or absent from it (non-member) given only a trained model. Thus, a
successful MI approach lets researchers gain knowledge about the presence or absence of training data
from black-boxed LMs and better understand the generalization in language models by enabling post-
hoc analyses such as: detecting membership of test sets in training data to avoid unfair evaluation of
the LMs; inferring the time information of the training data to correlate it with the LMs’ downstream
performance (K Nylund, 2023); and detecting the presence of copyrighted or licensed content in
the training data. Previous MI methods, which we refer as Individual-MI, focus on determining
the membership of individual documents relying on the logits from a trained LM (Shokri et al.,
2017; Yeom et al., 2018; Carlini et al., 2022a). However, the effectiveness of MI is limited by LMs’
pretraining data (Shi et al., 2023). We hypothesize that the loss of individual documents often does
not provide a strong enough signal for inferring its membership because LMs are often trained on
trillions of tokens and only see most of their training documents only once (Touvron et al., 2023).

In this work, we leverage the insight that there exist many sets that are expected to satisfy the set
assumption: either all documents in the set are present in the training dataset or none of them are,
and reform the problem into deciding the membership of entire sets. For example, as shown in
Figure 1, Arxiv papers created on the same date are likely to be present or absent from the training
data, depending on the data collection date of the LM. We argue that the set assumption are expected
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Figure 1: An illustration of the set assumption using Arxiv papers: a set is composed of papers
created on the same date, and all paper within a set is likely to be all present or absent from the
training data; an LM that collects data on 2020-07-31 will have sets created before that date to be
member sets and the ones created after that date to be non-member sets.

Figure 2: An illustration of Set-MI aggregation improves Individual-MI. Individual documents in
a member set can have low membership scores (red), making them hard to be distinguished from
non-members. By aggregating over documents that share the membership, including documents with
strong signals (green), membership scores for members can be more distinguishable from those for
non-members.

to hold true in many practical scenarios since documents included in the training datasets are seldom
chosen randomly, but based on some inclusion criteria (Albalak et al., 2024), meaning that the
sets corresponding to those criteria are entirely present or absent in the training data. For instance,
DOLMA (Soldaini et al., 2024), the dataset used to train OLMo (Groeneveld et al., 2024) models,
is reported to contain Reddit data up to March 2023, so the set of Reddit posts from April 2023
are all non-members. Based on this assumption, we introduce Set-MI, a method that enhances
Individual-MI by aggregating signals from sets that satisfy the set assumption. By aggregating
over multiple documents, Set-MI can make more accurate predictions and significantly improve the
performance of Individual-MI (See Figure 2).

To evaluate Set-MI in practical settings, we construct five benchmarks covering a variety of domains
(e.g., Wikipedia, Arxiv) and potential practical applications (e.g., test set contamination, license
infringement). We show that Set-MI significantly enhances four Individual-MI methods with an
improvement of 0.14 in AUROC on average. To better understand the role that each component of
Set-MI plays, we conduct extensive experiments to show the impact of target model sizes, training
data deduplication, and the number of tokens that represents each document. Our studies shows
that (1) Set-MI improves Individual-MI further when the target model is larger, (2) deduplication
in training data makes Set-MI less effective and impact Set-MI more than Individual-MI, and (3)
having a longer sequence of tokens to represent the document gives better results. We also conduct a
controlled analysis to demonstrate that even in practical scenarios where many sets does not satisfy
the set assumption perfectly due to potential training data prepossessing or the existence of duplicated
documents, Set-MI is robust against the introduced noise. We do this using evaluation setups with
simulated membership noise.

Together, Set-MI brings up the limit of MI to inspect the training data of LMs on a practically robust
level, provides an approach for any Individual-MI to obtain a significant performance gain by finding
documents with shared membership, and provides insights about the contributing factors of the
effectiveness of MI on LMs.
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2 BACKGROUND

Membership inference (MI) in deep learning models is formalized by Shokri et al. (2017) as an
adversarial attack to investigate the privacy risk of the models, which is widely used as a component
to reconstruct training data (Carlini et al., 2021; Mireshghallah et al., 2022b).1 While there are work
on less difficult settings assuming the access to model parameter (Leino & Fredrikson, 2020) or
training loss (Liu et al., 2022), these assumptions limit the application of these methods. We therefore
focus on the black-box setting where only the loss score of the target model is available.

MI has been vastly studied with supervised machine learning models (Yeom et al., 2018; Wat-
son et al., 2021; Carlini et al., 2022a). It is also applied to NLP models on pre-training Shi et al.
(2023); Duan et al. (2024); Mireshghallah et al. (2022a) and fine-tuning data targeting tasks including
text-generation (Mattern et al., 2023; Mahloujifar et al., 2021; Mireshghallah et al., 2022a), trans-
lation (Hisamoto et al., 2020), and classification (Shejwalkar et al., 2021). All of these prior work
focus on membership on an individual level, as their target of inference is a single sequence instead
of a set with a given particular attribute. Jagannatha et al. (2021) proposes using the loss signal as a
measure of membership for individual sequences in language models, but they report their results on
both an individual and a patient level, where they average the individual sequence signal over all the
records belonging to a patient. Our method, however, does not rely on the unique structure of clinical
supervised datasets they use and finds natural existing “sets” in the pretraining data originating from
the web. We also experiment with more methods rather than simply using the model loss and explore
alternative ways to aggregate the signals.

2.1 PROBLEM FORMULATION

Given a language model LM trained on pretraining data T (where T is typically unknown), and a
dataset D = {d1, d2, · · · , dn} as a collection of documents, the goal of membership inference is to
predict whether each document di ∈ D is a member of T or not, given only the model’s probability
over a document LM(di) and no access to T . MI methods typically define a function F that outputs
a score F(LM, di), representing the membership of di in T . In Section 2.2, we provide an overview
of various instances of scoring functions used in prior work.

2.2 INDIVIDUAL-MI

We discuss MI methods in prior research, which we refer to as Individual-MI, that can be applied
to infer the membership of an individual document in the pretraining data. In Section 3, we show
how our method can build upon each Individual-MI method. For all methods, we randomly select
a sequence of tokens t1, t2, · · · , tm to represent a document di, and we denote the probability of a
token ti assigned by LM as LM(t).

Loss Attack uses 1
m

∑m
i=1 LM(ti) = F(LM, di), as LM is likely to assign a high probability score

to a document that it has seen during training. However, this attack does not consider the complexity
of di, e.g., natural conversations have intrinsically higher probability scores than poetry regardless of
the membership (Shokri et al., 2017; Carlini et al., 2022a).

Likelihood Ratio Attack (LiRA; Carlini et al. (2022a)) proposes to use an additional LM LMr,
called a reference model, and defines F(LM, d) = 1

m

∑m
i=1 LM(ti)/

1
m

∑m
i=1 LMr(ti). The nor-

malization term considers the intrinsic complexity of a document d. Ideally, a reference model should
be trained on the data that is from the same distribution as LM ’s training data but with no overlap, so
that an unseen document can be distinguished from a complex document. In practice, finding such a
reference model is difficult as there is a high overlap between different LMs’ training datasets (e.g.,
English Wikipedia).

MIN-K% PROB (Shi et al., 2023) uses the K% of the tokens with the lowest probabilities, denoted
as Lk. It then defines F(LM, d) =

∑
t∈Lk LM(t)/|Lk|. It is designed to remove the effect of

tokens that are high-frequency in general web text and thus will have high probabilities regardless of
their membership.

1It was originally referred as ”membership inference attack,” but we drop the term, ”attack,” because the
intended use for our method is for research purpose and not adversarial.
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zlib entropy (Carlini et al., 2021) computes a ratio between the size of a document in bits after
and before the zlib compression (Gailly & Adler), denoted as E(d). It then defines F(LM, d) =
1
m

∑m
i=1 LM(ti)/E(d). It shares the motivation with LiRA and uses E(d) as a measure of the

intrinsic simplicity of a document d.

3 METHOD

Predicting membership of individual documents in large LM pretraining datasets using Individual-
MI may not often be effective since the signal obtained from each document may not be strong
enough. We introduce Set-MI, a method to augment existing Individual-MI methods by using the
set membership assumption of individual documents and aggregating their predictions. We formally
introduce our set assumption below, followed by the modification to existing MI methods using our
Set-MI aggregation.

Set assumption. Following the notation from Section 2.1, for MI of a document collection D
against a training set T , we assume that the collection of documents D can be split, based on their
metadata, into multiple disjoint sets of documents Si

D =

k⋃
i=1

Si and Si ∩ Sj = ∅ for Si , Sj ∈ D, i ̸= j

and that either all the elements in any set si are present in T or none of them is in T , formally

M(dx, T ) = M(dy, T )∀dx, dy ∈ si

where M(d, T ) = 1 iff d ∈ T and 0 otherwise.

Set-MI aggregation. We define the aggregated membership score over a set as

F(LM, s) =
1

|s′|
∑
d∈s′

s′⊆s

F(LM, d).

where we simply take the average of all the documents in the set as the final score. We optionally
select a subset of documents, s′ to aggregate the scores instead of the whole set. Finally, we assign the
aggregated score from the set to every element within the set, so that the score is directly comparable
with previous methods:

∀d∈sF(LM, d) = F(LM, s).

Practicality of the Set Assumption. We can generally expect many naturally-occurring sets that
satisfy the set assumption at different levels of granularity in training datasets, as the training data
are often chosen based on some inclusion criteria (Albalak et al., 2024), which can be shared across
different documents. For example, articles published on the same date, documents with the same
license, and instances from an existing smaller dataset all compose sets that are likely to be entirely
present in the trainings sets of LMs. Figure 1 shows an example where sets composed by Arxiv papers
created on the same date satisfies the set assumption. However, practical factors like LMs’ filtering
procedure on its training data and the potential duplication across different documents (Albalak
et al., 2024; Elazar et al., 2023) might cause the set assumption to not hold in some cases. We
argue that even in such cases, Set-MI can still yield significant benefits. Firstly, we provide evidence
that our approach is robust to membership noise (see Section 6 where we evaluate under simulated
membership noise). Secondly, the applications of Set-MI are not affected by the deviation between
the perfect set assumption and the practice, including revealing the time cutoff of LMs’ training data
collection, checking for potential dataset contamination post-hoc, learning the composition of the
alignment data, etc. Based on these insights, we construct benchmarks in the following Section 4.

4 EVALUATION BENCHMARK CONSTRUCTION

We construct evaluation benchmarks covering a range of domains and use cases for membership
inference. Each benchmark includes a collection of documents D, and sets s1...sk that are likely to
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Domain Statistics Examples for set assumption
# Sets # Docs

Wikipedia 1,000 100,000 Articles posted on 2020-01-01, articles posted on 2020-01-02, ...
Arxiv 1,000 100,000 Papers posted on 2020-01-01, papers posted on 2020-01-02, ...
Languages 200 20,000 English, French, Spanish, ...
License 190 19,000 All datasets under Public Domain, all datasets under CC-BY, ...
Instructions 130 13,000 ShareGPT, GPT4-Alpaca, Code-Alpaca ...

Table 1: List of the benchmarks statistics used in this work, along with example sets.

satisfy the set assumption described in Section 3. The ground-truth membership of each document
in D depends on the target LM, which we will discuss in Section 5. To our knowledge, the MI
benchmarks we construct are the first ones that are based on sets of documents, and are the most
diverse among LM’s MI benchmark with five different domains.

We discuss the motivation and data collection procedure for each of them below (see their statistics in
Table 1).

Wikipedia. In Wikipedia, articles created on the same date are likely to be all included or excluded
from the training data of an LM. Therefore, we can define each si with a set of articles created on the
same date. To construct the dataset, we collect articles in 2023-11-20 Wikipedia English dump from
Wikimedia grouped by their creation date from 2001-01-21 to 2023-10-27. We subsample 100 sets
with 100 documents per set.

Arxiv. Similarly, we can define each si with a set of Arxiv papers posted on the same date. To
construct the dataset, we collect Arxiv documents from Redpajama (Computer, 2023) grouped by
publication dates from 1991-08-21 to 2023-03-07. We subsample 100 sets with 100 documents per
set.

Language. Wikipedia contains articles in different languages, and models often choose certain
languages to include in their training data and ignore the rest. We therefore collect Wikipedia articles
in 20 different languages from Redpajama and define articles of each language as a set. For robust
evaluation, we subsample 1,000 documents for each set and divide them into 10 smaller sets, resulting
in 130 sets with 100 documents per set.

License. As concerns surrounding the use of copyrighted data in training LMs continue to
raise (Henderson et al., 2023), recent work has selected training data based on their license in-
formation. Different models may choose different criteria for determining which license can be
included in their training sets, from a highly restrictive approach where only public domain data can
be used, to a more permissive option that includes permissively-licensed code or creative commons
datasets. Datasets with the same license are likely to be either all included or all excluded from the
training data. To study such a setting, we collect a combination of 15 datasets from the Open License
Corpus (Min et al., 2023), along with an additional 4 datasets from the Pile, categorized according to
their licenses. For robust evaluation, we subsample 1,000 documents for each set and divide them
into 10 smaller sets, resulting in 130 sets with 100 documents per set.

Instructions. There has been much work collecting large-scale NLP datasets with instructions and
training the LM to follow the instructions to perform tasks. In these models, each dataset, consisting
of a set of input and output pairs, essentially shares membership. To study such a setting, we collect
a collection of 13 instructing tuning datasets sourced from both Tulu-v1 mix (Wang et al., 2023)
and Tulu-v2 mix (Ivison et al., 2023), grouped by its associated dataset. For robust evaluation, we
subsample 1,000 documents for each set and divide them into 10 smaller sets, resulting in 130 sets
with 100 documents per set.

5 EXPERIMENTS

We present an evaluation of the effect of aggregating membership predictions using Set-MI. We
compare Individual-MI and their corresponding Set-MI enhanced variants in multiple settings, where
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Method Loss Attack LiRA Min-K% PROB zlib entropy

Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI

Wikipedia 0.524 0.575 0.581 0.859 0.545 0.749 0.519 0.566
Arxiv 0.576 0.938 0.508 0.576 0.590 0.954 0.560 0.827
Languages 0.836 0.960 0.908 1.000 0.740 0.760 0.673 0.733
License 0.706 0.758 0.761 0.859 0.810 0.913 0.647 0.674
Instructions 0.596 0.786 0.612 0.857 1.000 1.000 0.458 0.429

Average 0.620 0.799 0.637 0.835 0.632 0.851 0.556 0.638

Table 2: Main results of Individual-MI and Set-MI on five benchmarks we construct. The results for
Wikipedia, Arxiv, and License are the average of multiple models (see Appendix C, Appendix D, and
Appendix E for the full results). Ind-MI refers to Individual-MI. Set-MI significantly outperforms
Individual-MI on most settings.

we vary key aspects including the language models, the training data, and the document collections
whose membership is being inferred.

All experiments in this section aggregate membership scores over the entire set. That is, s′ = s,
following the notation used in Section 3. We randomly subsample 1,024 tokens as the representation
for each document for our main experiment. See the choices for reference models we use for LiRA
and more implementation details in Appendix A.

Target LMs. We choose a collection of primary target LMs for each dataset and define the ground
truth membership based on the known metadata about the target LMs. Statistics of members and
non-members for each dataset are provided in Appendix B.

For Wikipedia and Arxiv, we use the Pythia models (Biderman et al., 2023) and GPT-Neo mod-
els (Black et al., 2021) as our primary target LMs, as these models’ training data, the Pile (Gao et al.,
2020), is publicly available and thus we can use it to determine the ground-truth membership of the
data. We label the ground-truth membership of each document based on whether their creation date
is before the data collection day of the Pile, i.e., 2020-03-01 for Wikipedia, and 2020-08-01 for Arxiv.
We primarily report results with Pythia-12B-dedup, and report ablations with varying sizes of LMs
and compare LMs with and without deduplication.

For Language, we use Bloom-7B (Scao et al., 2022) as our primary target LM, and use the Wikipedia
languages that were used to train the model on to determine the ground truth membership of the data.

For License, we use all three variants of SILO models, SILO-PD-1.3B, SILO-PDSW-1.3B, SILO-
PDSWBY-1.3B (Min et al., 2023), as target LMs, and use the license category that the authors used
for training their LM to determine the ground truth membership of the data.

For Instructions, we use Tulu-v1 (Wang et al., 2023) as a primary target LM, and use the dataset the
authors used for training to determine the ground truth membership of the data.

5.1 MAIN RESULTS: EFFECT OF SET-MI

Results of Set-MI compared to Individual-MI on the benchmarks from Section 4 are shown in Table 2.
We average the results of two target models for the Wikipedia and Arxiv domains (see full results in
Appendix C and Appendix D) and average the results of three target models for the License domain
(see full results in Appendix E). We use a single target model for Language and Instructions.

First, we find that the AUROC scores from Individual-MI are often less than 0.1 higher than the
random baseline of 0.5, indicating the difficulty of membership inference and the lack of a strong
signal from these methods. Set-MI significantly improves over its Individual-MI counterparts with a
gain in AUROC score of 0.14 on average, indicating that our set aggregation is effective in improving
any Individual-MI method.

Intuitively, the performance of Set-MI depends on the quality of the based-on Individual-MI method,
and poor Individual-MI could lead to even worse Set-MI. Specifically, we find a correlation of
0.824 with a p-value of 0.0002 between the performance of Individual-MI and the performance of
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Figure 3: Left: Effect of Target Model Size. Performance of Individual-MI (”Ind”) and Set-MI
(”Set”) with target models of different sizes. Performance increases as the target model sizes increase,
consistently across all MI methods. Increase in MI scores with larger target models is more significant
with Set-MI than with Individual-MI. Right: Effect of Deduplication. Performance with target
models trained on the original Pile (”Duplicated”) and the deduplicated Pile (”Deduped”). The gaps
between Duplicated and Dedupped are larger with Set-MI than with Individual-MI.

Set-MIṪhis suggests that future improvements to Individual-MI has the potential to further improve
Set-MI.

5.2 EFFECT OF TARGET MODEL SIZE

How does the size of the model affect the effectiveness of Set-MI? Prior work (Carlini et al., 2021;
2022b) have shown that larger models tend to memorize more; does that directly benefit Set-MI? To
answer these questions, we study Set-MI aggregation over three Individual-MI methods on Wikipedia
with Pythia models of sizes varying from 70M to 12B.

Figure 3 (left) demonstrates that scores of both Individual-MI and Set-MI increase as the target model
size increases, confirming the findings from Carlini et al. (2021; 2022b). This trend is significantly
more evident with Set-MI than with Individual-MI. This suggests that as the model gets larger, its
memorization of the training data becomes stronger, which Set-MI can better exploit.

It is also worth noting that when target model is small, Set-MI may perform worse than Individual-MI.
This is because Individual-MI is not effective (AUROC under 0.5) with these small models, making
Set-MI aggregating opposite signals as discussed in Section 5.1.

5.3 EFFECT OF DEDUPLICATION

Lee et al. (2021) and Kandpal et al. (2022) have shown that that MI is less effective on LMs with
deduplicated data than the duplicated ones. To confirm their findings with Set-MI, we compare
the performance of Loss Attack on Wikipedia between Pythia models trained on the original Pile
(“Duplicated”) and models trained on the deduplicated Pile (“Deduped”), with varying sizes from
70M to 12B.

We report the results in Figure 3 (right). We do not see clear differences in MI performance between
the Duplicated models and Deduped models with Individual-MI. Set-MI’s performance is substantially
higher with the Duplicated models than with the Deduped models with model sizes greater than
410M, despite not showing a difference with 70M and 160M models, This suggests Set-MI also
becomes less effective in exploiting models’ memorization against the deduplication on models’ the
training data.

5.4 EFFECT OF DOCUMENT LENGTH

As introduced in Section 2.2, each document is represented as a random segment of length 1024. We
vary the length of this segment from 16 to 2,048, and see how that affects Set-MI.

7
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Figure 4: Left: Effect of Document Length. Performance of LiRA. The x-axis indicates # tokens
we sample from each documents, varying from 16 to 2048. The performance gain from Set-MI
increases as the # tokens increases. Right: Effect of Available Documents Per Set. The x-axis
indicates # available documents within each set, varying from 1 to 100. Note that Set-MI is equivalent
to Individual-MI when there is only one document available. Set-MI gains better performance as #
documents within each set increases.

Figure 4 (left) reports results of LiRA on Wikipedia. MI performance increases with longer samples,
suggesting that using longer samples for each document provides a stronger signal for MI. The gap
between Set-MI and Individual-MI increases as the length of the sample from each document in-
creases, likely because Set-MI exploits signals from longer samples better. Note that the performance
becomes saturated as the performance difference is small between performance with 256 tokens v.s.
2,048 tokens.

5.5 EFFECT OF AVAILABLE DOCUMENTS PER SET

In practical applications of Set-MI, the number of available documents in each set may be limited. To
quantify the impact of the size of the set, we evaluate Set-MI on Wikipedia with varying sizes of sets,
from 1 to 100. Note that when the set size is 1, Set-MI is equivalent to Individual-MI.

Results are shown in Figure 4 (right). The performance of Set-MI increases as the number of available
documents increases. This is likely because aggregation over the bigger set provides stronger signals
about the membership of the sets. We also find the set size does not have to be very big in order to
benefit from Set-MI, e.g., the set size of 3 already provides significant gains over Individual-MI (the
set size of 1) .

6 ROBUSTNESS OF SET AGGREGATION

As discussed in Section 3, due to practical issues like filtering and duplication, the set assumption
can rarely hold perfectly in real-world. We thus conduct an carefully controlled analysis to explicitly
explore how the noise in Set-MI datasets, which breaks the set assumption, impacts the performance
of aggregation methods, and we provide insights about which aggregation method to choose based
on prior knowledge about potential types of noise.

We start off by constructing a clean version of Wikipedia, targeting at the deduplicated version of
the Pythia 2.8B model, where all documents’ memberships are correctly labeled according to their
13-gram overlap with the model’s training data (i.e., the Pile). This simulates a ideal dataset where
our set assumption perfectly holds. To simulate noise, we replace a portion of documents in a set with
documents of the opposite membership. We investigate the performance of Loss Attack under the
settings where the noise is included in either member or non-member sets with noise ratios ranging
from 0.0 to 0.9, as well as noise in both sets with ratios ranging from 0.0 to 0.5. We compare three
aggregation methods: 1) MAX: averaging the highest 30% of membership scores in each set, 2)
MIN: averaging the lowest 30% of membership scores in each set, and 3) FULL: average all the
membership scores in each set.
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Figure 5: Aggregation Over Noisy Set. Performance of three aggregation methods under the settings
where there are increasing ratio of noisy documents existing in (1) left: member sets, (2) middle:
non-member sets, and (3) right: both member and non-member sets. All three methods outperform
Individual-MI under noisy settings.

Figure 5 shows the performance of Set-MI with the three aggregation methods in the three different
scenarios. When only the member sets have noise, MAX is the most resistant aggregation method.
This is because MAX focuses on the documents with higher scores in member sets, which are less
likely to be affected by the noise. MIN, on the other hand, focuses on the documents in the member
set with the lowest scores, which are heavily affected by the noise. When noise is introduced into
the non-member sets, similarly yet oppositely, MIN is the most resistant and MAX is the least
resistant. When both member and non-member sets contain noise, FULL tends to perform the best
because MAX and MIN are influenced by noise either in member sets or non-members sets. All three
aggregations significantly outperform Individual-MI in all three settings. In practice, we recommend
users select the best aggregation based on their prior knowledge about the noise in the set of their
interest.

7 CONCLUSION

Membership inference (MI) lets researchers infer the composition of training datasets from trained
language models and trace specific downstream behaviors back to the training data of these models.
However, the performance of existing loss-based MI methods is not good enough for practical use,
likely because the loss from a trained model does not provide sufficiently strong signals to distinguish
members from non-members. This paper introduces Set-MI, a new MI method that identifies a set of
documents that shares the membership (e.g., arXiv papers posted on the same date) and aggregates MI
scores over documents within the set. Set-MI is orthogonal to previous MI methods (Individual-MI)
and can added on top of them to improve their performance. On five different new benchmarks,
Set-MI leads to significant improvements in AUROC scores, consistently across four previous MI
methods. Our analyses demonstrate that Set-MI effectively exploits stronger membership signals
from the target models, e.g., when target models memorize more due to their larger size and the
duplication in the training data. Our study further shows that Set-MI is still robust against the noise
potentially introduced by sets with imperfect set assumptions.

Our work makes an assumption that the metadata about the dataset of interest (D) is available,
enabling the identification of sets that satisfy the set assumption. We highlight that this may not
always be the case in practical MI scenarios, and leave relaxing this assumption for future work.

ETHICAL CONSIDERATIONS

Although our work deliberately drops the ”attack” term from ”Membership Inference Attack” as our
motivation is to provide an alternative method to learn about LM pretraining data composition for
research or copyright purposes, it can be used in an adversarial way to threaten users’ privacy as prior
work have shown. However, due to the nature of our method, we argue that it is difficult to apply our
method to enhance adversarial attacks without access or metadata to user’s private information.

9
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A IMPLEMENTATION DETAILS

Membership Definition. Because of the preprocessing that LMs usually perform on their data, the
member data we label in our datasets may not be verbatim to the data the target models are trained
on. We consider it as an inherent challenge for MIA on LMs, and choose to keep this realistic setting.

Set Size. We subsampled 100 documents from each set as available documents. See Section 5.5 for
a study on the effect of the number of documents in each set.

Context Length. We use 512 as the context length that represents each document. We later discuss
the effect of the context length in Section 5.4.

B BENCHMARK STATISTICS

We list statistics and reference models for LiRA of the benchmarks we construct in Table 3.

Domain Member Non-member Reference Model for LiRA
# Sets # Docs # Sets # Docs

Wikipedia 770 77,000 230 23,000 Pythia-160
Arxiv 926 92,600 74 7,400 Pythia-160
Languages 90 5,000 150 15,000 OPT-125M
License-PD 40 4,000 150 15,000 OPT-125M
License-PDSW 90 5,000 150 15,000 OPT-125M
License-PDSWBY 150 15,000 40 4,000 OPT-125M
Instructions 70 7,000 60 6,000 LLama2-13B

Table 3: List of the statistics and reference model for LiRA of benchmarks we constructed. Note that
numbers for members and non-members vary for License based on the target models.

C FULL RESULTS IN THE WIKIPEDIA DOMAIN

Apart from the average results in the Wikipedia domain shown in Section 5.1, we show full results
for both target models, Pythia-12B-dedup and GPT-Neo-2.7B, in Table 4. Consistent with findings
from Table 2, Set-MI consistently outperforms Individual-MI.

Target Model Loss Attack LiRA Min-K% PROB zlib entropy

Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI

Pythia-12B-dedup 0.535 0.614 0.582 0.849 0.554 0.791 0.522 0.578
GPT-Neo-2.7B 0.514 0.536 0.580 0.870 0.535 0.707 0.516 0.555

Average 0.524 0.575 0.581 0.859 0.545 0.749 0.519 0.566

Table 4: Results of Individual-MI and Set-MI on the Wikipedia benchmark with all three target
models. Ind-MI refers to Individual-MI.

D FULL RESULTS IN THE ARXIV DOMAIN

Apart from the average results in the Arxiv domain shown in Section 5.1, we show full results for
both target models, Pythia-12B-dedup and GPT-Neo-2.7B, in Table 5. Consistent with findings from
Table 2, Set-MI consistently outperforms Individual-MI.
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Target Model Loss Attack LiRA Min-K% PROB zlib entropy

Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI

Pythia-12B-dedup 0.579 0.946 0.516 0.634 0.594 0.966 0.562 0.831
GPT-Neo-2.7B 0.574 0.930 0.501 0.518 0.586 0.942 0.559 0.822

Average 0.576 0.938 0.508 0.576 0.590 0.954 0.560 0.827

Table 5: Results of Individual-MI and Set-MI on the Arxiv benchmark with all three target models.
Ind-MI refers to Individual-MI.

E FULL RESULTS IN THE LICENSE DOMAIN

Apart from the average results in the License domain shown in Section 5.1, we show full results for
all three target models, SILO-PD-1.3B, SILO-PDSW-1.3B, and SILO-PDSWBY-1.3B, in Table 6.
Consistent with findings from Table 2, Set-MI consistently outperforms Individual-MI.

Target Model Loss Attack LiRA Min-K% PROB zlib entropy

Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI Ind-MI Set-MI

SILO-PD-1.3B 0.710 0.732 0.775 0.821 0.860 0.964 0.637 0.571
SILO-PDSW-1.3B 0.772 0.852 0.838 1.000 0.745 0.813 0.682 0.716
SILO-PDSWBY-1.3B 0.637 0.689 0.669 0.756 0.824 0.962 0.623 0.733

Average 0.706 0.758 0.761 0.859 0.810 0.913 0.647 0.674

Table 6: Results of Individual-MI and Set-MI on the License benchmark with all three target models.
Ind-MI refers to Individual-MI.

F EFFECT OF THE REFERENCE MODEL FOR LIRA

LiRA is a particularly effective method for MI, and the choice of reference model is extremely
important. In this ablation, we aim to characterize a good reference model for LiRA in language
modeling when given a target model. To study this, targetting at Pythia-12-deduped trained on
the Pile, we evaluate the performance of Set-MI with LiRA on Wikipedia using reference models
with different sizes from Pythia family and GPT-Neo family (Black et al., 2021) trained on the Pile,
OPT family (Zhang et al., 2022) trained on RoBERTa+the Pile+PushShift.io Reddit, and GPT-2
family (Radford et al., 2019) trained on WebCrawl, a filtered corpus from the CommonCrawl. Results
are shown in Figure 6.

Good reference models represent the training data distribution of the target model. LiRA
normalizes the calculated membership scores using a reference model so that a ‘surprise’ to the
target model should mostly come from a non-member document rather than a difficult one. Thus,
the reference model should be able to measure the difficulty of a document to the target model
with a similar training data distribution. Due to the size and complexity of the pretraining data of
LMs, it is difficult to find two pretraining datasets with similar composition, resulting in different
data distributions. In order to find models that can reflect the training distribution of the target
model, choices include using models from the same family or other models training on the same
data. LiRA with Pythia models, GPT-Neo models, and OPT models, with the training data for
Pythia-12b-deduped (the Pile) included in their training data, significantly improves over the random
baseline. GPT-2 models’ training data WebCrawl is filtered from CommonCrawl, which is largely
disjointed and different from the Pile, and thus GPT-2 models fails to represents the distribution of
the target model’s training data with the lowest performance.

Good reference models should have no overlap in training data with the target model. Models
that were trained on the Pile all have heavy overlap with the target model in training data, but remain
good performance on LiRA. This is because smaller models tend to memorize the exact training data
less, making them suitable substitutes for reference models with absolutely no overlap in training
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Figure 6: Effect of the Reference Model. The Pythia-1b-deduped serves as the best reference model
for Pythia-12b-deduped. Using too small or too large reference models hurts the performance of
LiRA.

data (Carlini et al., 2021). When we are using models with larger sizes, as shown in Figure 6, LiRA’s
performance goes down as the reference models memorize more. Also, note that OPT models are
more resistant to model size change. This is because OPT models are not exclusively trained on the
Pile, making them memorize less.
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