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Abstract

Evaluating Large Language Models (LLMs)001
free-form generated responses remains a chal-002
lenge due to their diverse and open-ended003
nature. Traditional supervised signal-based004
automatic metrics fail to capture semantic005
equivalence or accommodate the variability of006
open-ended responses, while human evaluation,007
though reliable, is resource-intensive at scale.008
Leveraging LLMs as evaluators offers a promis-009
ing alternative due to their strong language un-010
derstanding and instruction-following capabili-011
ties. To harness these strengths efficiently, we012
propose the Selective Aggregation for Gener-013
ative Evaluation (SAGE), which employs two014
primary LLMs as judges and engages a third015
judge only in cases of disagreement. This se-016
lective aggregation prioritizes evaluation reli-017
ability while reducing unnecessary computa-018
tional demands compared to conventional ma-019
jority voting. SAGE incorporates task-specific020
reference answers to improve judgment accu-021
racy, leading to substantial gains in evaluation022
metrics such as Macro F1 and Cohen’s Kappa.023
Through experiments, including human evalua-024
tion, we demonstrate SAGE’s ability to provide025
consistent, scalable, and resource-efficient as-026
sessments, establishing it as a robust framework027
for evaluating free-form model outputs.028

1 Introduction029

The rapid advancements in Large Language Mod-030

els (LLMs) have propelled the field of natural lan-031

guage processing forward, yet their evaluation re-032

mains a challenge (Laskar et al., 2024). In par-033

ticular, free-form model responses are difficult to034

evaluate because their correctness depends on un-035

derstanding the broader context and underlying036

meaning (Si et al., 2021). Many benchmarks, such037

as MMLU (Hendrycks et al., 2021), often simplify038

evaluation by focusing on structured outputs (e.g.,039

multiple-choice questions) (Chen et al., 2024). Al-040

though effective for certain tasks, such methods041

rely on the model’s probability distribution over042

predefined options (Thakur et al., 2024). By se- 043

lecting the highest-probability response, they con- 044

strain the evaluation to closed-ended outputs and 045

narrow the scope for assessing broader model capa- 046

bilities (Chang et al., 2024). The rigid, predefined 047

options in such evaluations not only limit the scope 048

of assessment but also overlook the diversity of 049

potential correct responses in free-form tasks (Li 050

et al., 2023; Zhang et al., 2024). 051

While automatic metrics offer scalability for 052

evaluating free-form model outputs, they face no- 053

table limitations. For instance, Exact Match (EM) 054

requires strict lexical alignment (e.g., failing to 055

equate “nuclear weapon” and “atomic bomb”) and 056

ignores semantic equivalence. N-gram metrics, 057

such as BLEU, ROUGE, prioritize surface-level 058

similarity, struggling with structural or lexical di- 059

versity that preserves meaning (Papineni et al., 060

2002; Lin, 2004; Zhu et al., 2023). Neural met- 061

rics like BERTScore (Zhang et al., 2020) address 062

this via contextual embeddings but remain brit- 063

tle: overly dependent on reference quality (Liu 064

et al., 2024), sensitive to domain shifts and text 065

length (Zhu et al., 2023). Additionally, BERTScore 066

produces continuous scores (i.e, from 0 to 1), 067

which are not well-suited for binary evaluations 068

where a clear true or false decision is required (Xu 069

et al., 2023). These shortcomings are exacerbated 070

with instruction-tuned models (Doostmohammadi 071

et al., 2024), which generate verbose, diverse out- 072

puts (Saito et al., 2023; Wang et al., 2024b). 073

Contrary to automatic metrics, human evalua- 074

tion provides a more reliable assessment (Chiang 075

and Lee, 2023). However, despite being the “gold 076

standard”, it has limitations. LLMs’ growing com- 077

plexity and scale have made recruiting and coordi- 078

nating multiple human raters increasingly resource- 079

intensive and time-consuming (Mañas et al., 2024). 080

Furthermore, the reliability of human evaluation 081

is additionally challenged by variations in rater 082

expertise and inherent subjectivity that affect re- 083
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producibility (Clark et al., 2021; Chiang and Lee,084

2023).085

Recently, a paradigm shift has emerged where086

LLMs are utilized to judge the candidate model087

generations for given tasks (Zheng et al., 2024).088

This model-based method leverages the instruction-089

following capabilities of LLMs through evaluation090

prompts or, in some cases, fine-tuned versions of091

LLMs that are specifically optimized for evaluation.092

Existing studies using LLM as judges primarily093

focus on subjective pairwise comparison (Zheng094

et al., 2024; Wang et al., 2023a; Vu et al., 2024) and095

single-answer scoring (Verga et al., 2024) (Chiang096

and Lee, 2023; Hu et al., 2024; Liu et al., 2023;097

Chan et al., 2024; Chu et al., 2024). However, to the098

best of our knowledge, objective evaluation using099

LLM judges, particularly for free-form question-100

answering, remains largely unexplored.101

As discussed earlier, one practical limitation to102

objective evaluation is the lexical–semantic mis-103

match between instruction-tuned LLM outputs and104

the terse “gold” strings in many free-form QA105

benchmarks. For the query “Who wrote 1984?”,106

the dataset may list simply “George Orwell”, while107

a helpful model replies: “It was penned by the108

British author Eric Arthur Blair.” Although the109

sentence refers to the same person, it shares no110

surface tokens with the reference, so EM, n-gram,111

and even embedding-based metrics assign it an112

unduly low score. A reference-aware LLM-as-a-113

judge can instead reason over meaning, recognize114

that the candidate entails the gold fact, and deliver115

a reliable verdict—thereby overcoming this lexi-116

cal–semantic gap. However, LLM-based judging117

itself lies on a cost–quality spectrum. Querying a118

single judge is efficient but is less reliable due to the119

known limitations such as prompt sensitivity, incon-120

sistency, and bias (Ye et al., 2024), as no individual121

model captures the full diversity of reasoning styles,122

long-tail knowledge, and user values (Feng et al.,123

2025). Multi-judge ensembles improve robustness124

through diversity and majority voting, yet invoking125

several large models per instance increases cost126

and latency, limiting practicality for large-scale or127

continuous evaluation (Jung et al., 2024; Adlakha128

et al., 2024).129

To address these trade-offs, we propose the130

Selective Aggregation for Generative Evaluation131

(SAGE)—a scalable framework that balances the132

reliability and efficiency of using LLMs as judges.133

SAGE employs two primary judges for initial as-134

sessments and invokes a third judge only when dis- 135

agreements occur. By minimizing redundant calls 136

in the fixed majority-based voting, SAGE reduces 137

computational overhead by 80–95% while achiev- 138

ing near-human alignment (Macro-F1: 0.95–0.98). 139

Our key contributions include: 1) introducing 140

LLM-as-a-judge for objective evaluation with 141

reference-guided assessment, 2) proposing selec- 142

tive aggregation that maintains evaluation quality 143

while achieving substantial efficiency, 3) compre- 144

hensive empirical validation across five free-form 145

QA datasets and multiple state-of-the-art models, 146

and 5) systematic analysis of LLM-as-judge failure 147

cases. 148

2 Methodology 149

This section briefly describes the key components 150

of our proposed framework. 151

2.1 Candidate LLMs 152

A candidate LLM Cllm generates output ȳ for the 153

given input x. 154

2.2 LLMs-as-a-Judge 155

A judge Jllm LLM delivers evaluation or verdict 156

V on candidate LLMs Cllm outputs ȳ. The Jllm 157

evaluates output when prompted with x (i.e., x → 158

Cllm) and ȳ. We utilize the reference answer r and 159

prompt P the Jllm as: 160

P = {x, ȳ, r} 161

Utilizing P , Jllm performs the evaluation and 162

delivers a decision as V = J(P ). The structure 163

of V depends on the instructions provided in P . 164

For instance, if a binary V is required, J assesses 165

whether ȳ is aligned with r given the context x and 166

returns True if ȳ is deemed correct, or False if it 167

is not. The evaluation P may vary from zero-shot, 168

where Jllm receives no prior examples, to few-shot, 169

which includes several related examples, or a chain 170

of thought, encouraging Jllm to reason stepwise 171

through the problem. 172

2.3 Selective Aggregation for Generative 173

Evaluation (SAGE) 174

In traditional human evaluation settings, when two 175

annotators disagree on a judgment, a third expert is 176

often called upon to resolve the dispute. Drawing 177

inspiration from this efficient practice, we propose 178

SAGE. Rather than immediately employing three 179

LLMs (Badshah and Sajjad, 2024; Verga et al., 180
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Figure 1: Our proposed Selective Aggregation for Generative Evaluation (SAGE). Two primary judges, J1
and J2, first provide verdicts Vi1 and Vi2 for an instance i. If agree, that consensus Vi is the final decision Di.
If disagree, a third model Jt independently produces a verdict Vt. The final decision Di is then determined via
majority voting among {Vi1 , Vi2 , Vt}.

2024), SAGE adopts an efficient approach by be-181

ginning with two open-source models as primary182

judges. When these judges reach a consensus, no183

further evaluation is needed. Only in cases of dis-184

agreement, the third LLM is engaged, whose deci-185

sion then creates a majority verdict. This selective186

approach maintains evaluation quality while mini-187

mizing reliance on expensive models (e.g., GPT-4).188

Formally, let Vi1 and Vi2 denote the verdicts189

from the two primary judges for the i-th evalua-190

tion instance. We define the agreement status Ai191

as:192

Ai =

1 if Vi1 = Vi2 ,

0 otherwise.
193

If Ai = 1, the final decision Di is simply Vi, the194

agreed-upon verdict of the primary judges. If Ai =195

0, a third model provides an additional verdict Vt.196

The final decision Di is then obtained via majority197

voting among {Vi1 , Vi2 , Vt}. Formally:198

Di =

Vi if Ai = 1,

majority({Vi1 , Vi2 , Vt}) if Ai = 0.
199

The majority operation selects the verdict that ap-200

pears at least twice among {Vi1 , Vi2 , Vt}. Since201

there are three votes, at least two must coincide for202

a majority.203

2.4 Judges Inclusion and Exclusion Criteria204

To systematically select suitable judges for SAGE,205

we evaluate various LLMs (see Figure 2) using206

100 random instances from HotpotQA. For each207

model, we compare binary verdicts against human208

annotations and compute Cohen’s Kappa (κ) and209

Macro F1. We interpret κ following the commonly210

used guideline where values between 0.61–0.80211

indicate substantial agreement, and values above 212

0.80 indicate near-perfect agreement (McHugh, 213

2012). However, since κ is known to be sensitive 214

to class imbalance (Cicchetti and Feinstein, 1990), 215

we jointly consider Macro F1 to ensure balanced 216

evaluation across both classes. Formally: 217

status(J ) =


(Vi1 & Vi2)

if κ ≥ 0.6
∧ F1 ≥ 0.85,

Vt
if κ ≥ 0.8
∧ F1 ≥ 0.9,

excluded otherwise.

218

Here, κ and F1 represent agreement metrics be- 219

tween judge J and the human majority. 220

3 Experiments 221

We utilize the following settings to examine the per- 222

formance and reliability of individual LLM judges 223

and SAGE. 224

3.1 Models 225

We select open and closed-source instruct models 226

to serve as candidates in our experiment. These 227

include Llama-3.1 70B1 (Meta AI, 2024), GPT- 228

3.5-turbo (Brown et al., 2020), Mistral 7B2 (Jiang 229

et al., 2023), Mixtral 8x7B3 (Jiang et al., 2024) and 230

DeepSeek-R1 (Team, 2025). 231

Based on our criteria for judges selection in 232

Section 2.4, we found that Mistral 7B consistently 233

met the required agreement thresholds (κ ≥ 0.6, 234

1https://huggingface.co/meta-llama/
Meta-Llama-3.1-70B-Instruct

2https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

3https://huggingface.co/mistralai/
Mixtral-8x7B-Instructv0.1

3

https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct v0.1


Figure 2: Judges selection based on the defined criteria
in Section 2.4.

F1 ≥ 0.85) while offering the advantages of lower235

computational cost and faster inference. Llama 3.1236

70B, as a much larger model, demonstrated higher237

overall agreement but at greater computational ex-238

pense. By choosing both a strong lightweight239

model (Mistral 7B) and a state-of-the-art large240

model (Llama 3.1 70B) as primary judges, we cover241

a meaningful spectrum of capabilities rather than242

arbitrarily selecting models of different sizes (Feng243

et al., 2025; Liang et al., 2024; Sun et al., 2024).244

For the third judge role, we chose GPT-3.5-turbo245

because it exceeded the stricter agreement crite-246

ria (κ ≥ 0.8, F1 ≥ 0.9), is widely accessible247

via API, and offers favorable pricing compared to248

larger closed models such as GPT-4o (see Figure 2).249

In addition, we utilize GPT-4o (Team, 2023) and250

DeepSeek-R1 (Team, 2025) in our ablation experi-251

ments.252

To ensure the reproducibility of our experiments,253

we set the temperature to 0 for all models under254

study, as the performance of LLM-based evalu-255

ators has been shown to drop when temperature256

increases (Hada et al., 2024).257

3.2 Datasets258

We focus on free-form question-answering (QA)259

since it has widespread practical applications and260

the critical importance of truthfulness in this do-261

main (Gou et al., 2024a; Evans et al., 2021).262

We utilize five free-form QA datasets: Am-263

bigQA (Min et al., 2020), FreshQA (Vu et al.,264

2023), HotpotQA (Yang et al., 2018), Natural265

Questions (Kwiatkowski et al., 2019), and Triv-266

iaQA (Joshi et al., 2017). See Appendix A for267

details.268

3.3 Prompts 269

We design generalized (i.e., with minimum instruc- 270

tions) zero-shot prompts with role-playing (Kong 271

et al., 2024) for both candidates and judges. Ini- 272

tially, we prompt candidate LLMs to elicit outputs 273

for the given random samples associated with each 274

dataset. 275

To evaluate the outputs of candidate LLMs, we 276

prompt judge LLMs for binary verdicts (i.e., True 277

or False) using P = {x, ȳ, r} and instructed to 278

provide a brief explanation for their verdicts (see 279

Appendix E for examples). Binary verdicts ex- 280

plicitly differentiate between correct and incorrect 281

answers, minimize subjective interpretations, and 282

simplify the evaluation process, thus facilitating 283

automatic evaluation. We chose not to use few-shot 284

or chain-of-thought prompting strategies to keep 285

the solution robust to a variety of tasks. Previous 286

studies have also shown that in-context examples 287

do not significantly improve the performance of 288

model-based evaluators (Hada et al., 2024; Min 289

et al., 2022). 290

3.4 Baselines 291

We compare individual LLM judges, and specifi- 292

cally, SAGE, against the following baseline (details 293

in Appendix A): (1) Exact Match (EM), adapted 294

for verbose LLM outputs by marking an answer 295

correct if any gold span appears anywhere in the 296

response; (2) BERTScore (Zhang et al., 2020), 297

computed with microsoft/deberta-xlarge-mnli and 298

thresholded at τ = 0.5 to yield binary decisions; 299

(3) Majority Voting, which always invokes a fixed 300

trio of LLM judges and returns the model verdict; 301

(4) Self-Consistency (Wang et al., 2023b), which 302

samples five judgments from the same model (T = 303

0.7) and takes their majority; and (5) Prometheus 304

2 (Kim et al., 2024), we run in its reference-based 305

“direct assessment” using GPT-4 Turbo. 306

Human Evaluation: We recruit three graduate 307

students from our academic network, all special- 308

ized in natural language processing, to serve as 309

annotators. We provide the input given to the can- 310

didate LLMs, reference answers, and candidate 311

LLMs responses. This format, while similar, is dis- 312

tinct from the judge LLMs prompts which addition- 313

ally require formatted decisions. We anonymize 314

the origin of model responses to reduce potential 315

bias linked to model familiarity or reputation. The 316

annotators are asked to score the candidate LLMs 317

outputs on a binary scale: ‘1’ for ‘True’ and ‘0’ 318
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for ‘False’ based on alignment with the reference319

answer and relevance (see Appendix C for details).320

4 Evaluation Metrics321

We compute Fleiss’ Kappa (κ) (Fleiss and Cohen,322

1973) and percent agreement to assess inter-rater323

reliability among human annotators. Similarly, we324

use Cohen’s kappa (McHugh, 2012) to find the325

agreement between each evaluator and the human326

majority to obtain instance-level comparison. Due327

to the high-class imbalance in TriviaQA, kappa328

scores can be misleadingly low despite high raw329

agreement - a known limitation called the “kappa330

paradox” (Cicchetti and Feinstein, 1990). There-331

fore, we treat the evaluation as a binary classifi-332

cation task where we consider each evaluator’s333

predictions against the human majority and report334

Macro-F1 scores which give equal weight to both335

classes regardless of their frequency in the selected336

random samples.337

To quantify the efficiency of our selective aggre-338

gation, we report the disagreement rate between339

the two primary judges that indicates how often340

the third model is required, thereby revealing the341

reduction in third-model usage compared to always342

employing three judges. Formally,343

Disagreement rate (%) =

(
1

N

N∑
i=1

I[Vi1 ̸= Vi2 ]

)
× 100344

where N is the total number of evaluation instances345

and I[·] is the indicator function that equals 1 when346

the condition is satisfied and 0 otherwise.347

5 Results348

In this section, we briefly report the experimen-349

tal results and refer the reader to Appendix D for350

detailed results.351

5.1 Alignment with Human Evaluation352

As evidenced by consistently high Cohen’s kappa353

and Macro F1 scores in Table 1 and 2, SAGE main-354

tains a strong alignment with human evaluation.355

This represents a substantial improvement over356

individual model performance, where individual357

judges generally showed varying levels of agree-358

ment with human evaluation. Overall, LLM-as-359

a-judge works better with larger models. This is360

particularly noticeable in Llama and GPT, which361

achieve greater performance across AmbigQA,362

HotpotQA, and NQ-Open compared to smaller363

models. This indicates an important scaling law in364

Evaluators

LLMs Tasks EM BS Llama GPT Mixtral Mistral SAGE

Llama

AmbigQA 0.518 0.283 0.888 0.844 0.824 0.858 0.911
HotpotQA 0.577 0.498 0.877 0.899 0.820 0.832 0.953
NQ-Open 0.381 0.437 0.833 0.793 0.816 0.738 0.927
TriviaQA 0.281 0.564 0.547 0.439 0.396 0.299 0.684

GPT

AmbigQA 0.561 0.252 0.944 0.897 0.861 0.853 0.967
HotpotQA 0.604 0.300 0.953 0.973 0.873 0.933 0.987
NQ-Open 0.453 0.218 0.884 0.824 0.824 0.829 0.956
TriviaQA 0.335 0.364 0.650 0.401 0.580 0.467 0.775

Mixtral

AmbigQA 0.546 0.337 0.896 0.781 0.909 0.887 0.951
HotpotQA 0.546 0.349 0.940 0.933 0.859 0.940 0.973
NQ-Open 0.371 0.301 0.879 0.728 0.899 0.815 0.913
TriviaQA 0.317 0.390 0.625 0.605 0.678 0.436 0.764

Mistral

AmbigQA 0.599 0.254 0.893 0.893 0.893 0.860 0.953
HotpotQA 0.605 0.383 0.937 0.902 0.895 0.937 0.958
NQ-Open 0.484 0.291 0.851 0.838 0.878 0.840 0.953
TriviaQA 0.467 0.239 0.758 0.725 0.645 0.470 0.854

Table 1: Cohen’s Kappa scores displaying the agreement
levels of individual and multiple (SAGE) evaluators
with human judgments across candidate models and
tasks.

Evaluators

LLMs Tasks EM BS Llama GPT Mixtral Mistral SAGE

Llama

AmbigQA 0.744 0.641 0.944 0.922 0.912 0.929 0.955
HotpotQA 0.778 0.745 0.939 0.949 0.910 0.916 0.976
NQ-Open 0.653 0.718 0.916 0.896 0.907 0.869 0.964
TriviaQA 0.612 0.782 0.772 0.717 0.695 0.640 0.842

GPT

AmbigQA 0.792 0.622 0.972 0.949 0.930 0.927 0.984
HotpotQA 0.794 0.623 0.977 0.987 0.936 0.966 0.993
NQ-Open 0.703 0.606 0.942 0.911 0.911 0.914 0.978
TriviaQA 0.646 0.681 0.824 0.700 0.789 0.730 0.887

Mixtral

AmbigQA 0.760 0.666 0.948 0.891 0.955 0.944 0.975
HotpotQA 0.761 0.657 0.970 0.966 0.930 0.970 0.987
NQ-Open 0.650 0.649 0.939 0.863 0.950 0.908 0.956
TriviaQA 0.625 0.695 0.812 0.803 0.838 0.716 0.882

Mistral

AmbigQA 0.792 0.622 0.947 0.947 0.947 0.930 0.977
HotpotQA 0.796 0.673 0.969 0.951 0.947 0.969 0.979
NQ-Open 0.726 0.639 0.925 0.919 0.939 0.920 0.976
TriviaQA 0.718 0.608 0.879 0.863 0.822 0.735 0.927

Table 2: Macro-F1 scores of individual and multiple
(SAGE) evaluators applied to different candidate LLMs
and associated tasks.

evaluation capability (Kaplan et al., 2020; Zheng 365

et al., 2024; Team, 2024). However, we also found 366

that the most advanced models are not always guar- 367

anteed to be the best evaluators. We observed 368

slightly comparable performance through the small 369

open-source Mistral7B. For instance, when evaluat- 370

ing candidate Mixtral 8x7B on AmbigQA (see Ta- 371

ble 2), Mistral 7B as-a-judge outperformed (0.944) 372

judge GPT-3.5-turbo (0.891). Regardlesss, we ob- 373

serve relatively lower Macro-F1 scores for all LLM 374

judges in TriviaQA. 375

Interestingly, lexical matching EM typically ac- 376

complishes better alignment with human evalua- 377

tion on the instance-level in Table 2 than neural- 378

based BERTScore. EM’s strict and conservative 379

nature leads to lower overall performance, but its 380

high-precision characteristics ensure that when it 381

identifies a match, it strongly aligns with human 382

annotations. In contrast, BERTScore takes a more 383

lenient approach to semantic matching. Although 384
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this leniency produces higher raw scores, it intro-385

duces more false positives, consequently reducing386

instance-level agreement with human judgments.387

5.2 Selective Aggregation vs. Majority Voting388

Our selective aggregation approach provides eval-389

uation quality comparable to full majority vot-390

ing, while substantially reducing computational391

cost. As presented in Table 3, SAGE matches392

or closely approaches the Macro F1 and Cohen’s393

Kappa scores of the three-judge majority across394

almost all tasks and candidate LLMs. For example,395

on HotpotQA, evaluating candidate Llama with396

SAGE achieves a Macro F1 of 97.6% (compared to397

97.6% for majority voting) and a Cohen’s Kappa398

of 0.95, while for GPT-3.5 on AmbigQA, SAGE399

reaches a Macro F1 of 98.4% (versus 98.3% for400

majority voting). By invoking the third judge only401

when disagreements occur, SAGE reduces usage by402

roughly 80–95% (averaging about 88%) compared403

to always-on majority voting across tasks, mak-404

ing it practical for large-scale deployments (see405

Table 11).406

5.3 SAGE vs. Prometheus 2407

As given in Table 4, SAGE outperformed the fine-408

tuned Prometheus 2 on every LLM–task pair. Cru-409

cially, SAGE achieves these gains while calling410

a third judge selectively, whereas Prometheus 2411

runs a GPT-4 Turbo, after fine-tuning with scalar412

ratings.413

5.4 SAGE vs. Self-consistency414

As shown in Table 5, SAGE consistently outper-415

forms self-consistency (Wang et al., 2023b) across416

all tasks and LLMs. While self-consistency relies417

on five model calls per instance to stabilize deci-418

sions, SAGE achieves higher accuracy with fewer419

calls, invoking a third judge only when needed.420

This demonstrates that leveraging diverse models421

is not only more effective but also substantially422

more efficient than repeated sampling from a sin-423

gle model.424

5.5 Evaluation with One Strong425

LLM-as-a-judge426

While a single state-of-the-art (i.e., based on it’s427

leaderboard performance) evaluator can achieve428

strong performance in many cases, the dual-LLM429

framework remains critical for ensuring robustness,430

particularly in high-stakes or ambiguous scenarios.431

LLMs Tasks Majority Voting Disagr. (%) SAGE

Macro F1 Kappa Macro F1 Kappa

Llama

AmbigQA 95.5 0.91 10.0 95.5 0.91
HotpotQA 97.6 0.95 13.0 97.6 0.95
NQ-Open 96.3 0.93 18.0 96.4 0.92
TriviaQA 84.1 0.68 17.0 84.2 0.68

GPT

AmbigQA 98.3 0.97 7.0 98.4 0.96
HotpotQA 99.3 0.99 5.7 99.3 0.98
NQ-Open 97.8 0.96 13.0 97.8 0.95
TriviaQA 90.5 0.81 15.7 88.7 0.77

Mixtral

AmbigQA 98.9 0.98 9.0 97.5 0.95
HotpotQA 98.6 0.97 4.7 98.7 0.97
NQ-Open 98.3 0.97 13.0 95.6 0.91
TriviaQA 95.0 0.90 17.0 88.2 0.76

Mistral

AmbigQA 97.6 0.95 11.7 97.7 0.95
HotpotQA 97.9 0.96 6.0 97.9 0.95
NQ-Open 97.6 0.95 14.7 97.6 0.95
TriviaQA 93.5 0.87 20.3 92.7 0.85

Table 3: Comparison between Majority Voting
(Llama+GPT-3.5+Mistral) and SAGE. Disagr. refers
to disagreement.

LLMs Tasks Prometheus SAGE

Llama

AmbigQA 0.894 0.955
HotpotQA 0.891 0.976
NQ-Open 0.855 0.964
TriviaQA 0.804 0.842

GPT

AmbigQA 0.937 0.984
HotpotQA 0.942 0.993
NQ-Open 0.843 0.978
TriviaQA 0.796 0.887

Table 4: Macro-F1 comparison between Prometheus 2
and SAGE in the reference-based setting. See Table 10
for complete results.

To explore the potential of a more powerful sin- 432

gle LLM, we evaluated GPT-3.5-turbo on Hot- 433

potQA and TriviaQA using GPT-4o as a judge. 434

With this configuration, GPT-4o as the evaluator 435

achieved a Macro-F1 score of 0.946 on HotpotQA, 436

demonstrating its exceptional capability. How- 437

ever, the same GPT-4o judge achieved only 0.784 438

on TriviaQA, which falls short of SAGE’s perfor- 439

mance of 0.887. This shows that even the most 440

advanced models show inconsistencies when eval- 441

uating free-form QA. This is particularly critical 442

in precision-sensitive domains where minor errors 443

can have outsized consequences. 444

5.6 Analysis 445

In our main experiments, candidate LLMs gener- 446

ated 6000 outputs for the given tasks, with each 447

evaluator producing corresponding evaluations. We 448

randomly sampled 100 error cases (50 false posi- 449

tives and 50 false negatives) from each evaluator 450

to understand their behavior. Given EM had only 451

11 false positives, we included all of them in our 452

analysis. Due to length constraints, we moved the 453

detailed analysis of EM and BERTScore to Ap- 454
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LLMs Tasks SC (Llama) SC (GPT) SAGE

Llama AmbigQA 0.933 0.914 0.955
HotpotQA 0.925 0.896 0.976

Mistral AmbigQA 0.957 0.943 0.977
HotpotQA 0.965 0.922 0.979

Table 5: Comparison of SAGE and Self-Consistency
(SC) Macro F1. SC results are based on 5 samples per
instance.

pendix D and focused exclusively on the LLM-as-455

a-judge method here.456

LLM-based evaluators demonstrate strong457

abilities in recognizing semantic variations while458

maintaining the core meaning, especially when as-459

sessing responses that use different terminology or460

structural approaches to convey the same informa-461

tion. For instance, in the evaluation examples, eval-462

uators correctly identified that “Salma Hayek” and463

“Salma Hayek Pinault” refer to the same individual,464

acknowledging the semantic equivalence despite465

differences in phrasing. Similarly, when assess-466

ing responses that use different terms for the same467

entity, such as recognizing “Nick Fury, Agent of468

S.H.I.E.L.D.” as part of the broader “Marvel” uni-469

verse, the evaluators effectively maintain the core470

meaning and contextual relevance. Their expla-471

nations show systematic assessment patterns that472

combine multiple evaluation criteria including fac-473

tual accuracy, logical coherence, and contextual474

relevance.475

LLMs are prone to hallucination in justifi-476

cation (Zhang et al., 2023), where they fabricate477

reasoning to support their evaluations, produce de-478

tailed but incorrect explanations, or reference non-479

existent criteria or standards. In LLM judges, false480

positives and negatives often result from overlook-481

ing critical distinctions between candidate LLM482

outputs and failing to account for the specificity re-483

quired by the reference answer. This pattern is par-484

ticularly noticeable in Mistral 7B, where the model485

disregards the ground truth and provides evalua-486

tions influenced by unknown factors. For exam-487

ple, when evaluating candidate GPT-3.5’s response488

“The foreign minister of Germany who signed the489

Treaty of Versailles was Hermann Müller.” which490

is correct according to the reference answer “Her-491

mann Müller” and human evaluation, Mistral 7B492

as-a-judge incorrectly marked this response as false493

and fabricated reasoning “Hermann Müller was the494

Chancellor of Germany, not the Foreign Minister.495

The Foreign Minister of Germany who signed the496

Treaty of Versailles was Gustav Stresemann.” in 497

support of its decision. The same problem can also 498

be attributed to inconsistent evaluations. Because 499

when Mistral 7B acted as a candidate for the same 500

question, its response to the question is completely 501

different: “The Treaty of Versailles was signed 502

by Matthias Erzberger, a German politician who 503

served as the President of the German National 504

Assembly at the time”. There are also alternative 505

interpretations of this issue, such as ambiguity in 506

the question, but we leave a deeper exploration of 507

these aspects to future work. 508

We observe a different pattern in some judges, 509

specifically, GPT-3.5 and Mixtral 8x7B which fo- 510

cuses more on specificity. This approach shifts 511

the evaluation towards false negatives by missing 512

semantically similar but structurally different an- 513

swers. We found many cases when such evaluators 514

failed to account for valid variations in phrasing or 515

granularity, focusing instead on rigid adherence to 516

the reference answer. Compounding these issues 517

are reasoning errors within the evaluators’ own ex- 518

planations, which often contain fabrications, circu- 519

lar logic, or overconfident assertions. By insisting 520

on correctness derived strictly from the reference, 521

evaluators disregard valid alternative perspectives 522

and can even mischaracterize or invert the facts in 523

their attempts to justify their decisions. This dy- 524

namic leaves little room for nuance or ambiguity, 525

and it pushes the evaluation process away from 526

fair, context-sensitive assessment toward rigid, and 527

sometimes inaccurate, verdicts. 528

We found several temporal limitations in 529

LLM-based evaluators. Although most of our 530

datasets are older and the evaluator models are rela- 531

tively up-to-date, we still observed instances where 532

references to recent events, newly emerging termi- 533

nology, or evolving contexts were misinterpreted. 534

The FreshQA dataset (Vu et al., 2023), being re- 535

cent, serves as a valuable testbed for assessing these 536

temporal deficiencies. As shown in Table 6, LLM- 537

based evaluators indicate deviation from human 538

judgment on FreshQA compared to tasks that rely 539

on older information, such as HotpotQA. Specif- 540

ically, in dynamic or time-sensitive contexts, we 541

found that LLM judges tend to hallucinate by con- 542

sistently classifying candidate model responses as 543

True, even when incorrect. For example, when 544

presented with the question: “On what date did 545

the Patriots last play the Miami Dolphins?” the 546

LLM-generated response states: ‘‘The last time the 547
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Evaluators

LLMs Llama GPT Mixtral Mistral SAGE

Llama 0.835 0.737 0.817 0.730 0.917
GPT 0.695 0.824 0.780 0.746 0.891
Mixtral 0.708 0.779 0.738 0.703 0.936
Mistral 0.665 0.802 0.818 0.723 0.880

Table 6: Performance (in Macro F1) of individual and
multiple LLM judges on FreshQA.

New England Patriots played the Miami Dolphins548

was on January 1, 2023, during the NFL regular549

season.” Despite the correct reference answer be-550

ing “November 24, 2024” the LLM evaluator not551

only failed to recognize the inaccuracy but also hal-552

lucinated an erroneous justification, stating: “The553

proposed answer correctly states the date the New554

England Patriots last played the Miami Dolphins555

as January 1, 2023, which matches the information556

provided.”557

6 Related work558

Free-form question-answering has traditionally re-559

lied on supervised signal-based metrics such as560

EM. Despite its simplicity and efficiency, EM over-561

looks semantically equivalent variations and of-562

ten penalizes accurate responses that use differ-563

ent phrasing (Wang et al., 2024a; Kamalloo et al.,564

2023). Other commonly used metrics, including565

BLEU (Papineni et al., 2002) and ROUGE (Lin,566

2004) primarily focus on n-gram overlap with ref-567

erence texts. Although widely used, these metrics568

often fail to recognize correct answers that use569

different wording or sentence structure than the ref-570

erence, limiting their ability to evaluate free-form571

responses accurately (Zhang et al., 2020).572

Contextual metrics such as BERTScore (Zhang573

et al., 2020) and the learned regressor574

BLEURT (Sellam et al., 2020) increases ro-575

bustness by comparing dense embeddings rather576

than n-grams. However, even BERTScore and577

similar embedding-based methods struggle to578

effectively evaluate open-ended generation (Zheng579

et al., 2024; Sun et al., 2022). More importantly,580

such methods return continuous similarity scores581

which are not well-suited for binary evaluations582

where a clear true or false decision is required.583

Recent advances in LLMs have unlocked new op-584

portunities for automatic and context-aware evalua-585

tion (Li et al., 2024b; Chiang and Lee, 2023; Zheng586

et al., 2024). A key strength of LLM-based evalua-587

tors lies in their ability to operate in reference-free588

settings, where evaluation does not rely on pre- 589

defined answers but instead leverages subjective cri- 590

teria such as helpfulness, relevance, and coherence. 591

This capability makes LLM evaluators particularly 592

well-suited for assessing tasks where multiple valid 593

responses exist or where human-like judgment is 594

required (Li et al., 2024a). For instance, LLMs 595

are frequently used in subjective evaluations such 596

as pairwise comparison or single-response scor- 597

ing (Verga et al., 2024; Chan et al., 2024). LLM- 598

based evaluators are specifically effective for tasks 599

like summarization, where subjective criteria are 600

central to evaluation (Liu et al., 2023). However, 601

subjective evaluations are less useful for evaluat- 602

ing objective tasks such as free-form QA, where 603

responses are either correct or incorrect and require 604

explicit verification against reference answers. 605

LLM-based evaluators face several challenges, 606

particularly in ensuring consistency and fair- 607

ness (Ye et al., 2024; Khan et al., 2024). Re- 608

cent studies recruit multiple LLMs and aggre- 609

gate their votes to tackle such challenges. Self- 610

consistency (Wang et al., 2023b) involves running 611

the same model k times with diverse reasoning 612

paths (e.g., k = 40) and then applying majority 613

voting to the outputs, improving reliability but sig- 614

nificantly increasing inference cost. Similarly, both 615

the Reference-Guided Verdict (Badshah and Saj- 616

jad, 2024) and PoLL (Verga et al., 2024) methods 617

employ multiple diverse LLM evaluators to miti- 618

gate intra-model bias and enhance alignment with 619

human judgments. However, these studies rely on 620

fixed majority voting across all instances, which 621

increases unnecessary computational requirements. 622

7 Conclusion 623

We present SAGE, a framework designed to eval- 624

uate free-form question-answering by leveraging 625

LLMs. Our findings demonstrate that individual 626

LLM judges are reliable alternatives to traditional 627

lexical and neural-based metrics, offering substan- 628

tial alignment with human evaluations. However, 629

relying solely on individual judges poses chal- 630

lenges, including inherent biases, inconsistencies, 631

and prompt sensitivity, which can affect evalua- 632

tion performance. SAGE addresses these limita- 633

tions by combining the strengths of multiple LLMs 634

through selective aggregation. It significantly im- 635

proves evaluation accuracy over individual judges, 636

while reducing redundancy and cost compared to 637

full majority voting. 638
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8 Limitations639

We acknowledge certain limitations in our study.640

The accuracy of evaluations depends on the qual-641

ity and clarity of reference answers, which serve642

as the basis for determining correctness. Incor-643

rect or ambiguous references could affect evalu-644

ation outcomes. Similarly, this study primarily645

uses binary verdicts, which overlook detailed as-646

pects of responses that could be captured through647

more comprehensive evaluation criteria. Further-648

more, while we conducted an error analysis of649

LLM judges and automatic metrics, there may be650

error cases that were not identified during our man-651

ual review, leaving gaps in understanding the full652

spectrum of evaluation inaccuracies. From our abla-653

tion experiments, we found SAGE performs worst654

in reference-free settings. Thus, in the future, we655

aim to explore SAGE with LLM agents for auto-656

matic and reference-free evaluation, instead of rely-657

ing on human-annotated dataset-specific reference658

answers.659
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A Free-form Question-Answering 1044

In our experiments, we include AmbigQA (Min 1045

et al., 2020), FreshQA (Vu et al., 2023), Hot- 1046

potQA (Yang et al., 2018), Natural Ques- 1047

tions (Kwiatkowski et al., 2019), and Trivi- 1048

aQA (Joshi et al., 2017). 1049

• AmbigQA: Focuses on 14K ambiguous ques- 1050

tions derived from NQ, requiring systems to 1051

identify multiple valid interpretations and gen- 1052

erate disambiguated questions alongside cor- 1053

responding answers. 1054

• FreshQA: A QA benchmark containing 600 1055

questions that consist of a diverse range of 1056

types, including those requiring fast-changing 1057

world knowledge and questions with false 1058

premises that need debunking. It is regularly 1059

updated to reflect current information and is 1060

designed to evaluate the factual accuracy of 1061

LLMs in handling up-to-date and evolving 1062

knowledge. 1063

• HotpotQA: Contains 113K questions based 1064

on Wikipedia. It is designed to test multi- 1065

hop reasoning, requiring connections across 1066

multiple paragraphs, and includes annotated 1067

supporting facts for evaluation. 1068

• Natural Questions (NQ): Consists of real 1069

user queries from Google Search, paired with 1070
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Wikipedia articles. The dataset includes 307K1071

training examples annotated with both long1072

(paragraph) and short (entity-level) answers.1073

• TriviaQA: Features approximately 650K1074

trivia questions, with evidence sourced from1075

Wikipedia and web searches. These questions1076

often require reasoning across multiple docu-1077

ments for complex answer synthesis.1078

We utilize the validation splits across multiple1079

datasets: the standard validation split for Am-1080

bigQA and Natural Questions, the “distractor” sub-1081

set’s validation split for HotpotQA, and the “unfil-1082

tered.nocontext” subset’s validation split for Triv-1083

iaQA. We randomly sampled 300 examples from1084

each dataset using Seed 42.1085

B Baselines1086

Exact Match (EM): For our selected datasets1087

and also free-form QA tasks, EM serves as a stan-1088

dard lexical matching metric to evaluate candidate1089

LLM performance (Izacard and Grave, 2021; Lewis1090

et al., 2020; Gou et al., 2024b). Due to the verbose1091

nature of LLM-generated responses, we adapt EM1092

to classify an answer as correct if any golden an-1093

swer ri ∈ R appears within the generated response1094

ȳ (i.e., ri ⊆ ȳ), rather than requiring complete1095

strict string equality (i.e., ȳ = ri).1096

BERTScore: We use BERTScore (Zhang et al.,1097

2020) which measures similarity by comparing con-1098

textualized word embeddings derived from a pre-1099

trained BERT model. This enables the evaluation1100

to focus on semantic correctness rather than exact1101

lexical matches. As BERTScore is based on contin-1102

uous values between -1 and 1, we set a threshold1103

of τ = 0.5 to convert continuous similarity scores1104

into binary 0 and 1. The purpose of this conversion1105

is to allow direct comparison with other evalua-1106

tion methods. For our implementation, we use the1107

microsoft/deberta-xlarge-mnli4 model (He et al.,1108

2021).1109

Majority voting This uses three fixed LLM1110

judges to independently evaluate each instance.1111

The final decision is determined by a simple major-1112

ity across the three verdicts. Unlike SAGE, which1113

selectively invokes the third judge only in cases of1114

disagreement, this method uniformly engages all1115

judges, leading to higher computational cost.1116

4https://huggingface.co/microsoft/
deberta-xlarge-mnli

Self-consistency For self-consistency (Wang 1117

et al., 2023b), we sample five outputs from the 1118

same judge model using a temperature of 0.7, and 1119

take the majority verdict across these samples as 1120

the final decision. This baseline evaluates the ex- 1121

tent to which response stability from a single model 1122

can approximate consistent evaluation. 1123

Prometheus 2 We tailored Prometheus (Kim 1124

et al., 2024) for the reference-based (direct- 1125

assessment) settings. We converted 5-point scores 1126

to a binary by assigning 0 to ratings 1-3 and 1 to rat- 1127

ings 4-5 so that it is directly comparable to SAGE. 1128

C Human evaluation 1129

This section provides detailed guidelines for human 1130

annotators responsible for evaluating the outputs of 1131

candidate LLMs. The goal is to ensure consistency 1132

and objectivity across all evaluations. These guide- 1133

lines provide clear instructions for assessing each 1134

model’s response based on its alignment with the 1135

reference answer and contextual relevance. 1136

C.1 Guidelines 1137

Dear Evaluator, 1138

Thank you for your valuable contribution to this 1139

evaluation process. These guidelines outline the 1140

process for evaluating Large Language Model 1141

(LLM) outputs for the given tasks. As annotators, 1142

you will receive three components for each eval- 1143

uation instance: the input question, reference an- 1144

swer(s), and the model’s response. Your task is 1145

to evaluate the responses independently and score 1146

them on a binary scale: ‘1’ for ‘True’ (correct) and 1147

‘0’ for ‘False’ (incorrect). 1148

A response warrants a score of ‘1’ when it demon- 1149

strates semantic equivalence with the reference an- 1150

swer, even if expressed through alternative phrasing 1151

or structure. This includes acceptable variations 1152

such as synonym usage and structural variations. 1153

Additional contextual information is acceptable as 1154

long as it doesn’t introduce errors. 1155

Responses receive a score of ‘0’ when they con- 1156

tain factual errors, miss crucial elements from the 1157

reference answer, or demonstrate contextual mis- 1158

alignment. Partial answers that omit essential in- 1159

formation should be marked incorrect, regardless 1160

of the accuracy of included content. When multi- 1161

ple reference answers are provided, a response is 1162

correct if it fully aligns with at least one reference. 1163

You are encouraged to use internet resources when 1164

needed to verify specific facts, terminology, or po- 1165
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LLMs AmbigQA FreshQA HotpotQA NQ-Open TriviaQA

DeepSeek 0.975 0.949 0.986 0.889 0.456 (κ paradox)
Llama 0.945 0.962 0.973 0.985 0.935
GPT 0.989 0.973 0.982 0.990 0.948
Mixtral 0.981 0.945 0.996 0.977 0.936
Mistral 0.978 0.932 0.981 0.978 0.975

Table 7: Fleiss’ Kappa scores of human annotators across models and tasks.

LLMs AmbigQA FreshQA HotpotQA NQ-Open TriviaQA

DeepSeek 99.0% 98.0% 99.7% 92.0% 90.0%
Llama 96.3% 98.0% 98.0% 99.0% 99.0%
GPT 99.3% 99.3% 98.7% 99.3% 99.0%
Mixtral 98.7% 98.0% 99.7% 98.3% 98.3%
Mistral 98.3% 97.0% 98.7% 98.3% 99.0%

Table 8: Human annotators percent agreement scores across candidate models and tasks.

tential synonyms that may affect your evaluation1166

decision. However, the reference answer should1167

remain the primary basis for evaluation. Focus on1168

whether the model’s response conveys the same1169

core information as the reference answer. To main-1170

tain reliability, document any challenging cases1171

requiring further discussion with other annotators.1172

C.2 Inter-human annotator agreement1173

We calculate Fleiss’ Kappa (κ) (Fleiss and Cohen,1174

1973) and percent agreement to assess inter-rater1175

reliability among human annotators.1176

Fleiss’ Kappa is defined as:1177

κ =
P̄ − Pe

1− Pe
,1178

where P̄ is the average observed agreement among1179

annotators, and Pe is the expected agreement by1180

chance.1181

Percent agreement is calculated as:1182

Percent Agreement =
(

Agreements
Total Annotations

)
×1001183

Table 7 and 8 show the inter-annotator agree-1184

ment across models and tasks. The results demon-1185

strate high reliability, with Fleiss’ Kappa scores1186

consistently above 0.93 for most tasks. The highest1187

agreement is observed in Mixtral evaluations on1188

HotpotQA (κ = 0.996), and GPT on NQ-Open1189

(κ = 0.990). In FreshQA, which shows lower1190

Kappa scores, the agreement among annotators re-1191

mains high including 99.3% in GPT and 98.0% in1192

Mixtral.1193

The percent agreement scores in Table 8 further 1194

confirm strong inter-annotator consistency. Most 1195

models achieve over 98% agreement across Am- 1196

bigQA, HotpotQA, NQ-Open, and TriviaQA. How- 1197

ever, DeepSeek exhibits lower agreement on NQ- 1198

Open (92.0%) and TriviaQA (90.0%). This indi- 1199

cates a variance in human ratings for these tasks. 1200

D Additional results 1201

This section provides further results and analysis of 1202

conventional metrics and LLM-based evaluators. 1203

Table 9 illustrates the raw performance of Llama 1204

obtained through various evaluators. Unlike lexical 1205

matching and neural-based metrics, each LLM-as- 1206

a-judge shows overall performance close to the hu- 1207

man majority. The proposed SAGE method consis- 1208

tently achieves comparable or slightly better align- 1209

ment with the human majority. Conventional met- 1210

rics such as EM severely underestimate the candi- 1211

date LLMs’ performance. Contrarily, BERTScore 1212

tends to overestimate the performance except in 1213

some cases such as when evaluating Llama on Am- 1214

bigQA and NQ-Open (see Table 9 for additional 1215

results). 1216

EM underestimates performance because it re- 1217

quires a candidate’s response to exactly match one 1218

of the reference answers. This rigid, lexical ap- 1219

proach fails to account for valid paraphrases, syn- 1220

onyms, or alternative expressions that convey the 1221

same meaning. In free-form QA tasks, where there 1222

can be multiple correct answers phrased in various 1223

ways, EM’s strict criteria often penalize responses 1224
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that are semantically accurate but differ slightly in1225

wording. As a result, it underestimates the true1226

capabilities of candidate LLMs, leading to an in-1227

complete assessment of their performance.1228

BERTScore relies on token-level semantic simi-1229

larity, which rewards shallow lexical overlap rather1230

than actual factual accuracy. For example, in cases1231

where minor differences in wording (e.g., “The1232

Treaty of Versailles was signed in 1919.” versus1233

“The Treaty of Versailles ended in 1919.”) lead to1234

opposing factual claims, BERTScore still scores the1235

response high due to its emphasis on matching to-1236

kens (e.g., “signed” versus “ended”). Additionally,1237

verbosity bias and threshold instability—where a1238

default threshold (threshold = 0.5) is arbitrarily1239

set—further inflate its raw accuracy. However,1240

when comparing raw accuracy with instance-level1241

agreement metrics like Cohen’s kappa, which ad-1242

justs for class imbalance and penalizes asymmetric1243

errors, the limitations of BERTScore become ap-1244

parent.1245

D.1 Impact of selective third judge on1246

disagreements1247

Figure 3 illustrates the impact of SAGE on resolv-1248

ing disagreements between primary judges. SAGE,1249

facilitated by GPT-3.5 as the third judge, consis-1250

tently improves performance across all tasks, par-1251

ticularly in FreshQA and TriviaQA, where Macro1252

F1 increases by up to 21.5 points. In contrast,1253

tasks like AmbigQA and HotpotQA, where primary1254

judges initially exhibit stronger agreement, show1255

smaller but still meaningful improvements. No-1256

tably, evaluations of DeepSeek-v3 show higher dis-1257

agreement between Llama-3.1 70B and Mistral 7B,1258

particularly in FreshQA (28.3%) and AmbigQA1259

(25.7%). From our analysis, we did not find strong1260

evidence explaining why DeepSeek-v3 leads to1261

higher disagreement between the primary judges.1262

We observed substantial enhancements in Co-1263

hen’s Kappa scores across several tasks. For in-1264

stance, as illustrated in Figure 4, in the AmbigQA1265

Cohen’s Kappa increased from 0.881 to 0.911 for1266

Llama. Similarly, in the same task, Cohen’s Kappa1267

from 0.467 to 0.773 for candidate DeepSeek. Some1268

Cohen’s Kappa scores remain relatively low, partic-1269

ularly in FreshQA and DeepSeek-evaluated outputs.1270

This is partially explained by the Kappa Paradox,1271

where high agreement on extreme cases (e.g., clear1272

correct/incorrect responses) and unbalanced class1273

distributions can artificially lower the Kappa scores.1274

In such cases, even when evaluators mostly agree, 1275

Cohen’s Kappa can appear lower than expected. 1276

Despite this, the SAGE process effectively miti- 1277

gates inconsistencies, especially in tasks involving 1278

evolving knowledge and nuanced interpretations, 1279

such as FreshQA. 1280

D.2 Cost analysis 1281

To assess the efficiency of SAGE, we track the 1282

number of times the third judge is invoked, which 1283

directly corresponds to disagreement between the 1284

two primary judges. As shown in Table 11, across 1285

7,500 evaluation instances, the third judge was re- 1286

quired only 1,318 times, representing just 17.6% 1287

of the total cases. This implies an 82.4% reduction 1288

in third-judge usage compared to a full majority- 1289

voting setup, where every instance would involve 1290

all three models. 1291

Disagreement rates vary across tasks and models. 1292

For example, GPT shows only 5.7% disagreement 1293

on HotpotQA, while FreshQA exhibits higher dis- 1294

agreement (up to 44.3%) for some judge combi- 1295

nations. This behavior allows SAGE to scale effi- 1296

ciently: it concentrates computational effort only 1297

where model uncertainty exists, minimizing redun- 1298

dant inference. In contrast to fixed-cost evaluation 1299

schemes, SAGE offers a cost-efficient alternative 1300

that maintains high evaluation quality while signifi- 1301

cantly reducing compute usage. 1302

D.3 DeepSeek as the third judge 1303

To assess the impact of using DeepSeek as the third 1304

judge in SAGE, we conducted experiments by re- 1305

placing GPT-3.5-turbo with DeepSeek-R1 (Team, 1306

2025). We evaluated this setup using different 1307

candidate models across multiple tasks. Specifi- 1308

cally, we tested GPT-3.5 on TriviaQA, DeepSeek 1309

on NQ-Open, and Llama on FreshQA. The primary 1310

judges remained Llama and Mistral, and third was 1311

invoked only in cases of disagreement. Our find- 1312

ings indicate that DeepSeek as the selective third 1313

judge achieves strong performance, with Macro-F1 1314

scores of 91.23 on TriviaQA, 79.11 on NQ-Open, 1315

and 0.914 on FreshQA. 1316

D.4 Evaluating with GPT-4o as-a-judge 1317

While a single state-of-the-art evaluator can achieve 1318

strong performance in many cases, the dual-LLM 1319

framework remains critical for ensuring robustness, 1320

particularly in high-stakes or ambiguous scenarios. 1321

To explore the potential of a more powerful sin- 1322

gle LLM, we evaluated GPT-3.5-turbo on Hot- 1323
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LLMs Tasks Evaluators

EM BS HM DeepSeek Llama GPT Mixtral Mistral

DeepSeek

AmbigQA 56.3 80.0 84.3 86.3 73.7 75.0 62.3 93.3
FreshQA 31.3 88.0 84.3 84.7 82.7 75.3 58.0 82.3
HotpotQA 38.6 78.4 57.7 58.0 51.0 51.0 52.7 57.7
NQ-Open 35.0 78.3 60.3 64.7 63.7 61.3 55.3 68.3
TriviaQA 77.3 90.7 94.3 90.7 94.0 91.7 81.7 89.7

Llama

AmbigQA 42.3 63.0 67.0 64.0 65.3 64.7 63.0 66.0
FreshQA 25.6 81.3 77.7 81.3 78.3 72.7 71.0 62.3
HotpotQA 34.3 67.7 56.3 56.7 58.3 54.0 50.7 52.7
NQ-Open 31.7 61.7 66.3 62.3 62.7 60.0 59.0 66.7
TriviaQA 74.3 94.0 94.7 88.0 90.3 90.0 88.7 84.7

GPT

AmbigQA 49.7 78.0 71.7 70.3 70.0 68.0 65.7 71.0
FreshQA 24.6 89.3 70.7 58.0 51.7 78.7 83.0 83.3
HotpotQA 33.7 80.0 54.0 50.3 53.0 52.7 51.7 54.0
NQ-Open 36.3 74.0 65.3 65.3 62.7 59.0 59.0 67.0
TriviaQA 74.3 95.3 93.0 90.0 89.3 90.7 89.7 86.3

Mixtral

AmbigQA 37.7 70.3 61.7 58.7 57.3 62.0 59.3 61.7
FreshQA 18.6 89.7 86.0 72.3 67.0 87.0 85.0 77.7
HotpotQA 25.0 69.7 47.0 46.3 45.3 45.7 44.7 46.0
NQ-Open 23.7 63.7 56.7 54.0 52.7 47.7 52.3 59.7
TriviaQA 64.7 91.3 90.7 83.7 86.3 89.7 86.0 85.3

Mistral

AmbigQA 31.0 61.7 49.7 47.7 46.3 47.7 46.3 53.3
FreshQA 15.6 80.0 81.7 60.7 59.0 83.7 84.0 86.0
HotpotQA 23.7 64.7 40.0 39.3 39.0 38.0 37.0 39.0
NQ-Open 22.7 60.0 46.0 41.3 40.0 43.3 41.3 50.0
TriviaQA 62.0 94.3 83.7 78.0 81.3 81.0 79.7 85.0

Table 9: Raw performance of candidate LLMs across free-form QA tasks evaluated through various methods. HM
represents Human Majority and BS denotes BERTScore.

Candidate LLMs Tasks Prometheus 2 SAGE

Llama

AmbigQA 0.894 0.955
HotpotQA 0.891 0.976
NQ-Open 0.855 0.964
TriviaQA 0.804 0.842

GPT

AmbigQA 0.937 0.984
HotpotQA 0.942 0.993
NQ-Open 0.843 0.978
TriviaQA 0.796 0.887

Mixtral

AmbigQA 0.939 0.975
HotpotQA 0.930 0.987
NQ-Open 0.887 0.956
TriviaQA 0.801 0.882

Mistral

AmbigQA 0.920 0.977
HotpotQA 0.931 0.979
NQ-Open 0.866 0.976
TriviaQA 0.819 0.927

Table 10: Macro-F1 comparison between the
fine-tuned Prometheus 2 evaluator and SAGE in the
reference-based setting.

potQA and TriviaQA using GPT-4o as a judge.1324

With this configuration, GPT-4o as the evaluator1325

achieved a Macro-F1 score of 0.946 on HotpotQA,1326

demonstrating its exceptional capability. How-1327

ever, the same GPT-4o judge achieved only 0.7841328

on TriviaQA, which falls short of SAGE’s perfor-1329

mance of 0.887. This shows that even the most1330

advanced models show inconsistencies when eval-1331

uating free-form QA. This is particularly critical 1332

in precision-sensitive domains where minor errors 1333

can have outsized consequences. 1334

In such settings, SAGE’s ensemble approach acts 1335

as a safeguard. When employing SAGE with GPT- 1336

3.5-turbo as the selective third judge, we achieved 1337

an even higher Macro-F1 of 0.984 on HotpotQA, 1338

surpassing the performance of a single GPT-4o. In- 1339

terestingly, when we experimented with DeepSeek 1340

as the third judge in SAGE, performance remained 1341

strong at 0.963 Macro-F1, indicating that SAGE’s 1342

benefits are not solely tied to a specific third judge 1343

model. 1344

D.5 Majority voting-based evaluation 1345

We conducted additional experiments utilizing a 1346

traditional majority voting approach for evaluating 1347

candidate LLMs performance. Given n annotators 1348

and a binary classification, the majority label is 1349

defined as: 1350

ymajority =

{
1 if

∑n
i=1 yi >

n
2 ,

0 otherwise,
1351

where yi represents the label assigned by the ith 1352
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Figure 3: Impact of selective third judge on disagreements between primary judges. Note that we used Llama-3.1-
70B and Mistra 7B as primary judges. GPT-3.5-turbo is only utilized when disagreements are found. The models
given in the figure are candidate LLMs that generate outputs for the given tasks and are then evaluated through
SAGE.

annotator.1353

In this setup, we employed three LLM judges1354

of equal weight: Llama, GPT-3.5, and Mistral to1355

evaluate candidate models’ generated responses.1356

For every evaluation instance, each judge provided1357

an independent binary verdict (True or False). The1358

final decision is determined through a simple ma-1359

jority vote across these three verdicts.1360

As presented in Table 12, SAGE matches or1361

closely approaches the Macro F1 and Cohen’s1362

Kappa scores of the three-judge majority across1363

almost all tasks and candidate LLMs. For example,1364

on HotpotQA, evaluating candidate Llama with1365

SAGE achieves a Macro F1 of 97.6% (compared to1366

97.6% for majority voting) and a Cohen’s Kappa 1367

of 0.95, while for GPT-3.5 on AmbigQA, SAGE 1368

reaches a Macro F1 of 98.4% (versus 98.3% for ma- 1369

jority voting), indicating a negligible performance 1370

difference. Even in high-disagreement tasks like 1371

TriviaQA, where the primary judges (e.g., Mistral) 1372

disagree 20.3% of the time, SAGE retains strong 1373

alignment (with a Macro F1 of 92.7 compared to 1374

93.5 for majority voting). Minor deviations, such 1375

as the one observed for candidate Mixtral on Triv- 1376

iaQA (SAGE’s Macro F1 = 0.88 vs. 0.95 for ma- 1377

jority voting), reflect rare instances where both the 1378

primary judges and the third judge make errors, yet 1379

these outliers are substantially outweighed by the 1380
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Figure 4: Comparison of Cohen’s kappa scores before and after third judge (GPT-3.5-turbo as third judge).

computational savings offered by selective third1381

judge.1382

D.6 Impact of prompt variations1383

The effectiveness and consistency of LLM-based1384

evaluation are significantly influenced by prompt1385

design. Variations in prompt structure, reasoning1386

order, explanation requirements, and task-specific1387

examples can lead to notable differences in model1388

verdicts. To analyze the robustness of the LLM1389

judges in free-form QA, we conducted ablation1390

studies on different prompt variations using Mistral1391

as the candidate model and GPT as the judge.1392

D.6.1 Consistency in judgment across1393

multiple trials1394

LLMs generate random text even at a temperature1395

of 0. To assess whether this affects evaluation con-1396

sistency, we repeated the same evaluation task five1397

times for 100 Mistral-generated responses for Hot-1398

potQA.1399

• Verdict stability: GPT produced identical1400

True/False verdicts in 100% of cases. This1401

suggest that its binary decision-making pro-1402

cess remains stable even across multiple trials.1403

• Explanation variability: While verdicts re-1404

mained consistent, the rationales and expla-1405

nations provided by GPT across trials, often1406

cited different supporting facts for the same 1407

judgment. 1408

D.6.2 Few-shot vs. zero-shot prompting 1409

We investigated the impact of few-shot prompting 1410

where we included three task-specific examples 1411

in the prompt to guide the judge’s decision-making 1412

process. We found that adding few-shot examples 1413

resulted in a 2% increase in Macro-F1 scores. How- 1414

ever, few-shot prompting introduced rigid decision 1415

patterns—the model sometimes over-applied rea- 1416

soning from the examples rather than adapting flex- 1417

ibly to novel cases. For instance, multi-hop reason- 1418

ing cases from HotpotQA, the judge model consis- 1419

tently followed the structure of the provided exam- 1420

ples, even when the correct reasoning required a 1421

different approach. 1422

D.6.3 Explanation requirement: Binary 1423

verdict vs. justification-based evaluation 1424

To test whether requiring the model to generate 1425

explanations alongside verdicts improves judgment 1426

reliability, we compared two settings: 1427

• Binary verdict-only evaluation: The model 1428

was instructed to provide only a True/False 1429

response without any explanation. 1430

• Justification-based evaluation: The model 1431

was required to explain its reasoning before 1432

delivering the final verdict. 1433
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Candidate LLMs Tasks Samples Disagreement Rates (%) Third Judge Usage

DeepSeek AmbigQA 300 25.7 77
FreshQA 300 28.3 85

HotpotQA 300 10.7 32
NQ-Open 300 12.0 36
TriviaQA 300 14.3 43

Llama AmbigQA 300 10.0 30
FreshQA 300 31.3 94

HotpotQA 300 13.0 39
NQ-Open 300 18.0 54
TriviaQA 300 17.0 51

GPT AmbigQA 300 7.0 21
FreshQA 300 44.3 133

HotpotQA 300 5.7 17
NQ-Open 300 13.0 39
TriviaQA 300 15.7 47

Mixtral AmbigQA 300 9.0 27
FreshQA 300 37.3 112

HotpotQA 300 4.7 14
NQ-Open 300 13.0 39
TriviaQA 300 17.0 51

Mistral AmbigQA 300 11.7 35
FreshQA 300 39.7 119

HotpotQA 300 6.0 18
NQ-Open 300 14.7 44
TriviaQA 300 20.3 61

Total 7500 1318

Table 11: Cost-efficiency analysis of SAGE: Summary of disagreement rates and third judge usage across candidate
models and tasks

We found that:1434

• Higher verdict volatility in verdict-only1435

mode: When explanations were removed,1436

13% of verdicts changed between repeated1437

evaluations of the same responses.1438

• Reduced alignment with human judgment:1439

Cohen’s Kappa agreement with human anno-1440

tators dropped from 0.95 to 0.72, highlighting1441

that rationale-based prompts lead to more sta-1442

ble and accurate decisions.1443

D.6.4 Reason-first vs. verdict-first prompting1444

In the verdict-first approach, the model is instructed1445

to provide a True/False answer before justifying1446

its decision, whereas in the reason-first approach,1447

the model is asked to generate reasoning first and1448

then conclude with a verdict. Experimental results1449

showed no significant difference in accuracy or 1450

agreement scores between these two formats. 1451

D.7 G-Eval: reference-free evaluation of 1452

free-form question-answering 1453

Existing LLM-based evaluators such as G- 1454

Eval (Liu et al., 2023) are designed for reference- 1455

free, subjective tasks (e.g., summarization, dia- 1456

logue), where evaluation criteria (e.g., coherence, 1457

fluency) are inherently ambiguous and scored on 1458

Likert scales. These frameworks prioritize qualita- 1459

tive judgments rather than binary factual correct- 1460

ness. In contrast, SAGE is explicitly tailored for 1461

reference-dependent, objective evaluation in free- 1462

form QA, where answers are either factually cor- 1463

rect or incorrect based on alignment with explicit 1464

ground-truth references. 1465

To validate this distinction, we tailored the G- 1466
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Candidate LLM Task Majority Voting Disagreement (%) SAGE

Macro F1 Kappa Macro F1 Kappa

Llama

AmbigQA 95.5 0.91 10.0 95.5 0.91
HotpotQA 97.6 0.95 13.0 97.6 0.95
NQ-Open 96.3 0.93 18.0 96.4 0.92
TriviaQA 84.1 0.68 17.0 84.2 0.68

GPT

AmbigQA 98.3 0.97 7.0 98.4 0.96
HotpotQA 99.3 0.99 5.7 99.3 0.98
NQ-Open 97.8 0.96 13.0 97.8 0.95
TriviaQA 90.5 0.81 15.7 88.7 0.77

Mixtral

AmbigQA 98.9 0.98 9.0 97.5 0.95
HotpotQA 98.6 0.97 4.7 98.7 0.97
NQ-Open 98.3 0.97 13.0 95.6 0.91
TriviaQA 95.0 0.90 17.0 88.2 0.76

Mistral

AmbigQA 97.6 0.95 11.7 97.7 0.95
HotpotQA 97.9 0.96 6.0 97.9 0.95
NQ-Open 97.6 0.95 14.7 97.6 0.95
TriviaQA 93.5 0.87 20.3 92.7 0.85

Table 12: Comparison between Majority Voting (Llama+GPT-3.5+Mistral) and SAGE (GPT-3.5 as the third judge).
For each candidate LLM and task, the table reports Macro F1 and Cohen’s Kappa scores under Majority Voting, the
disagreement rate (in %), and the corresponding scores using SAGE.

eval (Liu et al., 2023) to investigate the capability1467

of LLM-as-a-judge in reference-free settings. In1468

this setting, we modify the evaluation prompt by ex-1469

cluding the reference answer r and directly prompt1470

the evaluator model as P = {x, ȳ} along with in-1471

structions such as correctness.1472

The performance of LLM-as-a-judge drastically1473

changes in reference-free settings. Without access1474

to the ground truth references, we observe a stark1475

decline in evaluation capability across all models1476

(see Table 13 and 14 values in blue). This sys-1477

tematic deterioration spans all tasks and model1478

combinations, though its severity varies by context.1479

HotpotQA and NQ-Open, with their demands for1480

complex reasoning, exemplify this challenge most1481

clearly. The substantial gap between reference-1482

based and reference-free evaluation underscores1483

the crucial role of reference answers in reliable1484

assessment.1485

D.8 SAGE in multi-reference answers1486

SAGE explicitly accommodates multiple gold ref-1487

erence answers by incorporating all available refer-1488

ences into the judge LLM’s prompt during evalu-1489

ation. For datasets like AmbigQA and TriviaQA,1490

where questions often have multiple valid answers1491

(e.g., synonyms, rephrased answers, or alternative 1492

factual representations), SAGE aggregates all ref- 1493

erence answers into the judge’s input prompt (e.g., 1494

concatenating them as a comma-separated list). 1495

This design ensures that the judge evaluates the 1496

candidate’s output against the full spectrum of ac- 1497

ceptable answers, mirroring the human evaluation 1498

protocol, where annotators are instructed to mark a 1499

response as correct if it aligns with any reference 1500

answer. However, as presented in our paper, LLM- 1501

based judges encounter challenges with multiple 1502

reference answers. This confusion is particularly 1503

evident in TriviaQA, where multiple reference an- 1504

swers introduce difficulties for the judges to recog- 1505

nize and evaluate a range of correct responses. 1506

D.9 Analysis of automatic metrics 1507

Figures 5, 6, 7, and 8 illustrate the fundamental 1508

trade-offs in automatic metrics. In TriviaQA, where 1509

multiple normalized reference answers exist, EM 1510

achieves impressive true positives (61.7-74.3%) 1511

compared to HotpotQA (23.0-34.3%) which con- 1512

tains single reference answers. EM’s near-zero 1513

false positives across tasks (0-0.7%) stem from 1514

its strict string matching – it only flags matches 1515

when answers are identical to references. Our er- 1516
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Candidate LLMs Tasks Evaluators

EM BERTScore Human Majority Llama-3.1-70B GPT-3.5-turbo Mixtral-8x7B Mistral-7B

Llama-3.1-70B

AmbigQA 42.3 63.0 67.0 65.3 [83.3] 64.7 [84.7] 63.0 [76.0] 66.0 [80.3]
HotpotQA 34.3 67.7 56.3 58.3 [81.0] 54.0 [81.0] 50.7 [67.3] 52.7 [69.3]
NQ-Open 31.7 61.7 66.3 62.7 [89.0] 60.0 [89.3] 59.0 [81.0] 66.7 [81.0]
TriviaQA 74.3 94.0 94.7 90.3 [90.3] 90.0 [90.3] 88.7 [89.0] 84.7 [84.0]

GPT-3.5

AmbigQA 49.7 78.0 71.7 70.0 [79.0] 68.0 [81.0] 65.7 [79.0] 71.0 [84.3]
HotpotQA 33.7 80.0 54.0 53.0 [85.3] 52.7 [85.7] 51.7 [82.3] 54.0 [86.3]
NQ-Open 36.3 74.0 65.3 62.7 [83.7] 59.0 [90.7] 59.0 [87.0] 67.0 [89.7]
TriviaQA 74.3 95.3 93.0 89.3 [89.0] 90.7 [88.7] 89.7 [90.3] 86.3 [84.3]

Mixtral-8x7B

AmbigQA 37.7 70.3 61.7 57.3 [74.7] 62.0 [82.3] 59.3 [79.7] 61.7 [80.7]
HotpotQA 25.0 69.7 47.0 45.3 [80.0] 45.7 [84.7] 44.7 [72.0] 46.0 [78.0]
NQ-Open 23.7 63.7 56.7 52.7 [81.7] 47.7 [90.3] 52.3 [85.7] 59.7 [89.7]
TriviaQA 64.7 91.3 90.7 86.3 [85.7] 89.7 [89.0] 86.0 [86.7] 85.3 [86.0]

Mistral-7B

AmbigQA 31.0 61.7 49.7 46.3 [61.0] 47.7 [78.7] 46.3 [74.7] 53.3 [85.0]
HotpotQA 23.7 64.7 40.0 39.0 [64.3] 38.0 [83.3] 37.0 [62.0] 39.0 [77.0]
NQ-Open 22.7 60.0 46.0 40.0 [72.3] 43.3 [85.7] 41.3 [78.0] 50.0 [92.3]
TriviaQA 62.0 94.3 83.7 81.3 [80.7] 81.0 [81.0] 79.7 [80.7] 85.0 [84.7]

Table 13: Overall performance (Raw Accuracy) of candidate LLMs across free-form QA tasks. Values [in blue]
represent LLM-as-a-judge in the reference-free mood.

Candidate LLMs Tasks Evaluators

EM BERTScore Llama-3.1-70B GPT-3.5-turbo Mixtral-8x7B Mistral-7B SAGE

Llama-3.1-70B

AmbigQA 0.744 0.641 0.944 [0.629] 0.922 [0.604] 0.912 [0.669] 0.929 [0.631] 0.955 [0.637]
HotpotQA 0.778 0.745 0.939 [0.628] 0.949 [0.574] 0.910 [0.665] 0.916 [0.640] 0.976 [0.623]
NQ-Open 0.653 0.718 0.916 [0.606] 0.896 [0.560] 0.907 [0.639] 0.869 [0.622] 0.964 [0.610]
TriviaQA 0.612 0.782 0.772 [0.772] 0.717 [0.628] 0.695 [0.678] 0.640 [0.633] 0.842 [0.747]

GPT-3.5

AmbigQA 0.792 0.622 0.972 [0.686] 0.949 [0.603] 0.930 [0.596] 0.927 [0.553] 0.984 [0.607]
HotpotQA 0.794 0.623 0.977 [0.566] 0.987 [0.521] 0.936 [0.543] 0.966 [0.494] 0.993 [0.522]
NQ-Open 0.703 0.606 0.942 [0.671] 0.911 [0.544] 0.911 [0.601] 0.914 [0.536] 0.978 [0.575]
TriviaQA 0.646 0.681 0.824 [0.817] 0.700 [0.690] 0.789 [0.760] 0.730 [0.701] 0.887 [0.882]

Mixtral-8x7B

AmbigQA 0.760 0.666 0.948 [0.704] 0.891 [0.636] 0.955 [0.654] 0.944 [0.622] 0.975 [0.650]
HotpotQA 0.761 0.657 0.970 [0.587] 0.966 [0.470] 0.930 [0.582] 0.970 [0.577] 0.987 [0.536]
NQ-Open 0.650 0.649 0.939 [0.652] 0.863 [0.517] 0.950 [0.590] 0.908 [0.529] 0.956 [0.563]
TriviaQA 0.625 0.695 0.812 [0.800] 0.803 [0.754] 0.838 [0.818] 0.716 [0.725] 0.882 [0.858]

Mistral-7B

AmbigQA 0.792 0.622 0.947 [0.730] 0.947 [0.627] 0.947 [0.628] 0.930 [0.523] 0.977 [0.647]
HotpotQA 0.796 0.673 0.969 [0.649] 0.951 [0.478] 0.947 [0.680] 0.969 [0.578] 0.979 [0.673]
NQ-Open 0.726 0.639 0.925 [0.652] 0.919 [0.515] 0.939 [0.597] 0.920 [0.433] 0.976 [0.527]
TriviaQA 0.718 0.608 0.879 [0.881] 0.863 [0.840] 0.822 [0.846] 0.735 [0.744] 0.927 [0.913]

Table 14: Performance (Macro F1) of various evaluators across candidate LLMs and tasks. Values [in blue] represent
the reference-free mode.

ror analysis found three primary causes of such1517

rare false positives including preprocessing errors,1518

where character normalization removes crucial dis-1519

tinctions, and reference ambiguities, where incom-1520

plete or ambiguous references lead to incorrect1521

matches. Additionally, a semantic mismatch oc-1522

curs when the EM incorrectly labels a prediction as1523

true by matching text without considering its con-1524

text. For instance, despite their different contextual1525

meanings, EM wrongly marks a match between a1526

model prediction of “1944” (describing the start of1527

a war) and a reference answer containing “1944”1528

(representing the end of the war).1529

EM string-matching guarantees high precision1530

and makes EM particularly effective when exact1531

wording is crucial, such as mathematical problems.1532

However, its rigid criteria also result in substantial1533

false negatives (17.0-34.7%). These false negatives1534

primarily occur when the candidate LLM generates 1535

semantically correct responses that differ from ref- 1536

erences in format or expression. Common cases 1537

include synonym usage and paraphrases, structural 1538

variations in phrasing (e.g., “School of Medicine 1539

at Harvard” vs. “Harvard Medical School”), granu- 1540

larity discrepancies where answers differ in levels 1541

of detail from references (e.g., answering “British 1542

writer” instead of “William Shakespeare”), and par- 1543

tial matches that contain valid information but don’t 1544

exactly mirror the reference. 1545

Unlike EM, BERTScore offers advantages in 1546

capturing semantic similarities. In TriviaQA, 1547

it gains high true positive rates (81.3-92.0%) 1548

with relatively low false positives (2.0-13.0%). 1549

BERTScore’s performance varies significantly 1550

across tasks and is influenced by its sensitivity to 1551

the threshold setting. In HotpotQA, where answers 1552
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Task: AmbigQA

Figure 5: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on AmbigQA.
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Figure 6: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on HotpotQA.
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Task: NQ-Open

Figure 7: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on NQ-Open.
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Figure 8: Confusion matrices comparing the performance of automatic metrics (EM, BERTScore) and individual
LLM judges on TriviaQA.
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require multi-hop reasoning, true positives reach1553

36.0-50.3%, with an increase in false positives1554

(17.7-29.7%). A similar pattern appears in NQ-1555

Open, with true positives of 43.3-53.0% and false1556

positives of 10.7-21.0%. Its tendency toward false1557

positives indicates that relying solely on embedding1558

similarity often accepts answers that are contextu-1559

ally related but factually incorrect. The false posi-1560

tives emerge through semantic drift (where similar1561

embeddings yield false matches), contextual mis-1562

alignment (where word meanings shift based on1563

context), and threshold instability (where similarity1564

cutoffs fail to distinguish subtle semantic differ-1565

ences). Additionally, false positives emerge due1566

to the verbose responses where additional content1567

artificially increases similarity scores.1568

E Prompting1569

In our main experiment, we performed zero-shot1570

prompting in the following two stages.1571

E.1 Prompting Candidate LLMs1572

We prompted candidate LLMs (see Figure 9) to1573

record generations for each task. We set the same1574

role and prompt structure for each candidate model1575

to ensure the reproducibility of our results. Figure1576

10 shows the candidate GPT-3.5-turbo response at1577

zero temperature for the input given in Figure 9.1578

You are a helpful assistant. Which comic
book was also written by the writer of
Crossed?

Figure 9: Prompting candidate GPT-3.5-turbo to elicit
outputs for HotpotQA.

Crossed was written by Garth Ennis. The
Boys is a comic book series also written by
Garth Ennis. So the comic book that was
also written by the writer of Crossed is The
Boys.

Figure 10: Candidate GPT-3.5-turbo response to the
input given in Figure 9.

E.2 Prompting LLM Judges 1579

We prompted LLMs-as-judges to perform the eval- 1580

uation (see Figure 11). In Figure 12, judge Llama- 1581

3.1-70B evaluates candidate GPT-3.5-turbo. 1582

You are a helpful assistant acting as an
impartial judge. You will be given a
Question and a Proposed Answer. Your
task is to judge whether the Proposed
Answer is correct by comparing it to the
Reference Answer. If the Proposed Answer
is correct, choose ’True’, otherwise, choose
’False’. Provide a brief explanation for your
decision.
Question: Which comic book was also
written by the writer of Crossed?
Provided Answer: Crossed was written by
Garth Ennis. The Boys is a comic book
series also written by Garth Ennis. So the
comic book that was also written by the
writer of Crossed is The Boys.
Reference Answer: the Vertigo series
“Preacher”
Evaluation:
Provide your response in the following
format:
Decision: [True/False]
Explanation: [Your brief explanation]

Figure 11: Prompting judge Llama-3.1-70B for evaluat-
ing candidate GPT-3.5-turbo.

Decision: False
Explanation: The Proposed Answer incor-
rectly identifies "The Boys" as the comic
book written by the writer of Crossed.
While it is true that Garth Ennis wrote
Crossed, the Proposed Answer fails to
consider other works written by Garth
Ennis. The Reference Answer, "Preacher",
is indeed another comic book series written
by Garth Ennis, specifically for the Vertigo
imprint.

Figure 12: Llama-3.1-70B-Judge verdict on the candi-
date GPT-3.5-turbo output.
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E.3 Prompting Prometheus 21583

As Prometheus 2 is based on subjective criteria, we1584

tailored it for our setting (see below Figure 13).1585

Criteria: Is the model’s answer correct and
adequately addresses the question based on
the reference answer?

Score 1 (“Completely incorrect”) — The
answer is completely incorrect or irrelevant
to the question.
Score 2 (“Minor relevance”) — The
answer has minor relevance but contains
significant inaccuracies.
Score 3 (“Partially correct”) — The
answer is partially correct and addresses
some aspects of the question.
Score 4 (“Mostly correct”) — The answer
is mostly correct with minor omissions or
imprecisions.
Score 5 (“Fully correct”) — The answer
is fully correct, comprehensive, and aligns
perfectly with the reference answer.

Figure 13: Prompt rubric used by Prometheus 2 in the
reference-based setting.
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