
Reducing Variance of Stochastic Optimization for Approximating Nash
Equilibria in Normal-Form Games

Linjian Meng 1 Wubing Chen 1 Wenbin Li 1 Tianpei Yang 1 Youzhi Zhang 2 Yang Gao 1

Abstract

Nash equilibrium (NE) plays an important role
in game theory. How to efficiently compute an
NE in NFGs is challenging due to its complex-
ity and non-convex optimization property. Ma-
chine Learning (ML), the cornerstone of modern
artificial intelligence, has demonstrated remark-
able empirical performance across various appli-
cations including non-convex optimization. To
leverage non-convex stochastic optimization tech-
niques from ML for approximating an NE, various
loss functions have been proposed. Among these,
only one loss function is unbiased, allowing for
unbiased estimation under the sampled play. Un-
fortunately, this loss function suffers from high
variance, which degrades the convergence rate.
To improve the convergence rate by mitigating
the high variance associated with the existing un-
biased loss function, we propose a novel surro-
gate loss function named Nash Advantage Loss
(NAL). NAL is theoretically proved unbiased and
exhibits significantly lower variance than the exist-
ing unbiased loss function. Experimental results
demonstrate that the algorithm minimizing NAL
achieves a significantly faster empirical conver-
gence rates compared to other algorithms, while
also reducing the variance of estimated loss value
by several orders of magnitude.

1. Introduction
Game theory is a powerful tool for modeling multi-agent in-
teractions. A common goal in addressing games is the Nash
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equilibrium (NE), where no player gains by unilaterally de-
viating from it. However, computing an NE often involves a
complex, non-convex optimization problem. Theoretically,
computing an NE is known to be PPAD-complete and thus
computationally intractable (Daskalakis et al., 2009).

Machine Learning (ML) (Mitchell & Mitchell, 1997) is a
predominant technology in contemporary artificial intelli-
gence, demonstrating remarkable performance in diverse
real-world applications including non-convex optimization
problems such as image and speech recognition (Deng et al.,
2014), natural language processing (Achiam et al., 2023),
autonomous vehicles (Bojarski et al., 2016), and financial
modeling (Heaton et al., 2017). Since NE computation is
known to be a non-convex optimization problem (Gemp
et al., 2024), leveraging ML for NE computation presents a
promising research direction. However, the application of
ML to NE computation remains largely unexplored.

A significant challenge in applying ML to compute an NE is
designing an appropriate loss function. Specifically, for an
n-player, m-action, general-sum normal-form game (NFG),
storing the payoff matrix requires nmn entries. As m and
n increase, the storage complexity O(nmn) grows expo-
nentially, making it computationally prohibitive to load the
entire payoff matrix into memory for large-scale NFGs.
Thus, sampling a portion of the payoff matrix becomes nec-
essary, i.e., minimizing the expectation of a random variable
using non-convex stochastic optimization techniques in ML.
However, most existing loss functions (Nikaidô & Isoda,
1955; Shoham & Leyton-Brown, 2008; Raghunathan et al.,
2019; Gemp et al., 2022; Duan et al., 2023) introduce bias
under the sampled play, which can be seen as the stochastic
optimization setting in ML, making it infeasible to compute
an NE under this setting. To address this bias, Gemp et al.
(2024) propose a loss function that can be unbiasedly esti-
mated under the stochastic optimization setting. However, it
suffers from high variance, as its value is estimated via the
inner product of two independent and identically distributed
random variables, whose variance is the square of that of
estimating an individual random variable, thus significantly
degrading the convergence rate.

To improve the convergence rate by mitigating the high vari-
ance associated with the existing unbiased loss function, we
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propose a novel surrogate loss function called Nash Advan-
tage Loss (NAL). Our key insight is: finding a way to obtain
an unbiased estimate of the first-order gradient to eliminate
the need for calculating the inner product that introduces
high variance. Specifically, previous works have overlooked
the fact that commonly used non-convex stochastic optimiza-
tion techniques in ML (Robbins & Monro, 1951; Bottou,
2010; Kingma & Ba, 2014) require only unbiased estimates
of the first-order gradient, not the loss function itself. Con-
sequently, NAL ensures that obtaining an unbiased estimate
of its first-order gradient does not require computing the
inner product of the two random variables, avoiding the high
variance associated with such computations. In addition,
we demonstrate that the first-order gradient of NAL can ap-
proximate that of a variant of the loss function proposed by
Gemp et al. (2024) under certain conditions. This implies
that when applying commonly used non-convex stochastic
optimization techniques in ML, minimizing NAL approxi-
mates the process of minimizing the loss function proposed
by Gemp et al. (2024), while mitigating the high variance
caused by the inner product of two estimated variables.

We conduct an empirical evaluation of the convergence rates
and the variances of the estimated values of the loss func-
tions on eight NFGs from OpenSpiel (Lanctot et al., 2019)
and GAMUT (Nudelman et al., 2004). Our results reveal
that the algorithm minimizing NAL substantially outper-
forms algorithms that minimize existing unbiased or biased
loss functions in terms of the convergence rate. Addition-
ally, our algorithm exhibits significantly lower variance in
the estimated values of its loss function than the algorithm
minimizing the existing unbiased loss function. Particularly,
compared to the existing unbiased loss function, the vari-
ance in estimating the value of NAL is typically reduced
by two orders of magnitude. In some games, this variance
reduction can even reach six orders of magnitude. Further-
more, we analyze the discrepancies between estimated and
true values for different loss functions. Our findings indicate
that the difference between the estimated and true values for
our loss function is usually two orders of magnitude smaller
compared to that of other tested loss functions.

2. Related Work
Our research aligns with studies that conceptualize the prob-
lem of computing an NE in NFGs as a non-convex optimiza-
tion problem and address it through non-convex stochastic
optimization techniques in ML due to their remarkable em-
pirical performance in solving such problems (Chen et al.,
2019; Zou et al., 2019). Specifically, we focus on studies
that reduce NE computation to minimize a loss function via
non-convex stochastic optimization techniques in ML.

Sampling is critical for solving large-scale NFGs since the
action size increases linearly while the shape of the payoff

matrix grows exponentially. Although many works (Gok-
tas et al., 2022; Marris et al., 2022; Liu et al., 2024) have
investigated computing an NE via optimization techniques
of ML, they did not consider whether loss functions would
incur bias under the sampled play, which can be interpreted
as the stochastic optimization setting in ML. Actually, most
existing loss functions (Nikaidô & Isoda, 1955; Shoham
& Leyton-Brown, 2008; Raghunathan et al., 2019; Gemp
et al., 2022; Duan et al., 2023) will incur bias under the
sampled play. Specifically, these functions are biased under
the sampled play due to either (i) the presence of a random
variable as the argument of a complex, nonlinear function,
or (ii) the unclear sampling methods (Gemp et al., 2024).
For instance, duality gap-based loss functions (Nikaidô &
Isoda, 1955; Shoham & Leyton-Brown, 2008; Duan et al.,
2023; Gemp et al., 2022) incur bias through a max operator.
Additionally, Gradient-based Nash Iteration (NI) (Raghu-
nathan et al., 2019) is biased due to a projection operator
that projects a random variable onto the simplex, which
involves a max operator (Chen & Ye, 2011). Moreover,
unconstrained optimization methods (Shoham & Leyton-
Brown, 2008) that penalize deviation from the simplex lose
the ability to sample from strategies when any iterate is no
longer within the simplex. To mitigate the bias under the
stochastic optimization setting, Gemp et al. (2024) propose
a loss function that allows unbiased estimation under this
setting. However, it suffers from high variance.

Our approach is different from algorithms that replicate
tabular methods, i.e., those that use deep neural networks
(DNNs) (LeCun et al., 2015; Goodfellow, 2016) to approx-
imate variables in tabular algorithms without modifying
the update rules, such as NFSP (Heinrich & Silver, 2016),
PSRO (Lanctot et al., 2017), and Deep CFR (Brown et al.,
2019). These algorithms employ non-convex stochastic op-
timization techniques to train a DNN for approximating
variables in tabular algorithms, rather than directly comput-
ing an NE. More details can be found in Appendix B.

In addition, while our algorithm bears resemblance to exist-
ing simultaneous gradient descent algorithms (Sokota et al.,
2023) under a certain specific setting, this setting is not sup-
ported by our algorithm (Appendix C). Specifically, even
when an NE is learned, existing simultaneous gradient de-
scent algorithms may continue to operate and deviate from
this NE rather than halt their progress, while our algorithm
cease once the NE is reached. This distinction is clearly
demonstrated in our experimental results, which show that
under the same set of conditions, our algorithm successfully
converges to the NE, while the traditional simultaneous
gradient descent algorithms fail to do so. Moreover, we
establish a connection between NAL and the loss function
in Gemp et al. (2024), which does not hold for any existing
simultaneous gradient descent algorithm. Additional details
can be found in Appendix C.
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3. Preliminaries
Normal-form games (NFGs) are fundamental games in
game theory (Osborne et al., 2004), which consists of play-
ers N = {1, 2, . . . , n}, an action set Ai for each player
i, and a utility function ui for each player i. Each player
i ∈ N simultaneously chooses an action ai ∈ Ai and re-
ceives a utility ui(ai, a−i) ∈ [0, 1], where −i denotes all
players except player i. The strategy of player i is rep-
resented by xi ∈ X i, and the strategy profile is denoted
as x = {xi ∈ X i | i ∈ N}, where X i is a (|Ai| − 1)-
dimensional simplex. The strategy space of all players
is represented by X = ×i∈NX i. Moreover, the inte-
rior of X is denoted as X ◦. Precisely, for each x ∈ X ◦,
xi(ai) > 0,∀i ∈ N and ai ∈ Ai. The utility of player
i, given that all players follow the strategy profile x ∈ X ,
is ui(xi,x−i) =

∑
a∈×i∈NAi

ui(a)
∏

j∈N xj(aj), where
aj ∈ Aj denotes player j’s component of the joint action a.

Nash equilibrium (NE) describes a rational behavior where
no player can benefit by unilaterally deviating from the
equilibrium. As analyzed in Facchinei (2003), if the utility
function of each player i is concave over X i, an NE x is
such that ⟨∇xi

ui(x),xi − xi⟩ ≤ 0,∀i ∈ N and x ∈ X .
This concavity condition is satisfied in NFGs since the utility
function of each player i is linear over X i. We denote the
set of NE by X ∗. If the utility function of each player i
is concave over X i, a well-known metric to measure the
distance from the strategy profile x to NE is the duality
gap: dg(x) =

∑
i∈N maxx′

i∈X i
⟨∇xi

ui(x),x
′
i − xi⟩. If

and only if dg(x) = 0, x ∈ X ∗. If dg(x) = δ, then x is a
δ-NE. X ∗,◦ denotes interior NE that ∀x∗ ∈ X ∗,◦, x∗

i (ai) >
0,∀i ∈ N , ai ∈ Ai. The duality gap is the upper bound
of exploitability: exp(x) =

∑
i∈N (maxx′

i
ui(x

′
i,x−i) −

ui(xi,x−i))/|N | ≤ dg(x)/|N |, as ui(·) is linear over X i.

Existing unbiased loss function. To our knowledge, the
only known unbiased loss function for approximating an
NE is proposed by Gemp et al. (2024). The key insight
of this loss function is that gradients of all actions, w.r.t.
an interior strategy profile x ∈ X ◦, are equal if and only
if x ∈ X ∗ when the utility function of each player i is
concave over X i. Formally, for any x ∈ X ◦ and i ∈ N ,
∀ai, a′i ∈ Ai,∇xi

ui(x)(ai) = ∇xi
ui(x)(a

′
i) if and only

if x ∈ X ◦,∗ when the utility function ui(x) of each player
i is concave over X i (Gemp et al., 2024). To ensure that the
interior NE always exists, they add an entropy −τxT

i logxi

to each player’s utility function, where τ > 0 is a constant.
From their analysis, the addition of entropy guarantees that
all equilibria of the regularization game with utility function
uτ
i (x) = ui(x)− τxT

i logxi are interior. Formally, given
a strategy profile x ∈ X , their loss function is defined as
follows:

Lτ
G(x) =

∑
i∈N
∥F τ,x

i − F τ,x
i ∥22, (1)

where F τ,x
i = −∇xi

uτ
i (x) = −∇xi

ui(x) + τ logxi

and F τ,x
i =

∑
ai∈Ai

F τ,x
i (ai)/|Ai|1. As the utility func-

tion uτ
i (·) of each player i is concave over X i, ∀ai, a′i ∈

Ai,∇xi
uτ
i (x)(ai) = ∇xi

uτ
i (x)(a

′
i) if and only if x is an

NE of the regularization game. In other words, Lτ
G(x) = 0

if and only if x is an NE of the regularization game. By
gradually decreasing τ , the sequence of NEs of the regular-
ization games converges to an NE of the original game. The
advantage of this function is that this function can be unbias-
edly estimated given two independent unbiased estimations
of F τ,x

i .

To improve the readability, we include a table of notations
and definitions, as shown in Appendix A.

4. Our Method
To the best of our knowledge, Gemp et al. (2024) propose
the only unbiased loss function that enables unbiased estima-
tion when computing an NE by using non-convex stochastic
optimization techniques of ML. However, this loss function
often exhibits high variance, resulting in significant insta-
bility that degrades the convergence rate. To address the
high variance, we propose a novel surrogate loss function,
termed the Nash Advantage Loss (NAL).

4.1. Overview of NAL

Our key insight is: finding a way to obtain an unbiased
estimate of the first-order gradient to eliminate the need for
calculating the inner product, which introduces high vari-
ance. In particular, the insight comes from a fact overlooked
in previous works that commonly used non-convex stochas-
tic optimization techniques of ML (Robbins & Monro, 1951;
Bottou, 2010; Kingma & Ba, 2014) require only unbiased
estimates of the first-order gradient.

Lemma 4.1. For any vector b ∈ Rd and any y in a (d− 1)-
dimensional simplex, the equation b− ⟨b,y⟩1 = 0 holds if
and only if all coordinates of b are all equal to each other.

Specifically, NAL aims to ensure that (i) its first-order gradi-
ent can be estimated without bias by using a single random
variable to reduce the variance, and (ii) its first-order gradi-
ent with respect to x ∈ X ◦ equals 0 if and only if x ∈ X ∗,◦

to ensure that the algorithm stops once an NE is learned.
To achieve these, we build on the key insight from the loss
function in Gemp et al. (2024)—where for any x ∈ X ◦,
i ∈ N , and ai, a

′
i ∈ Ai, ∇xiui(x)(ai) = ∇xiui(x)(a

′
i) if

and only if x ∈ X ∗,◦—and recognize that ∇xiui(x) can
be estimated without bias using a single random variable
(e.g., via importance sampling). Then, inspired by Lemma
4.1, we define NAL’s first-order gradient as the difference
between the gradient of the utility function of the game and
the inner product of the utility function’s gradient with any
arbitrary given strategy x̂. This difference is the advantage
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of each action’s gradient for making the gradients of actions
more uniform. Formally, the first-order gradient can be

[−∇xi
ui(x) + ⟨∇xi

ui(x), x̂i⟩1 | i ∈ N ].

As ∀x ∈ X ◦, i ∈ N and ai, a
′
i ∈ Ai, ∇xi

ui(x)(ai) =
∇xi

ui(x)(a
′
i) if and only if x ∈ X ∗,◦, from Lemma 4.1,

we have that ∀x ∈ X ◦, [−∇xi
ui(x) + ⟨∇xi

ui(x), x̂i⟩1 |
i ∈ N ] = 0 if and only if x ∈ X ∗,◦. In addition, to ensure
that the interior NE always exists, as done in Gemp et al.
(2024), we add an entropy −τxT

i logxi to each player’s
utility, where τ > 0 is a constant. As we mentioned above,
Gemp et al. (2024) show that the additional entropy guar-
antees that all NE of the regularization game, with utility
function uτ

i (x) = ui(x)− τxT
i logxi, are interior.

Now, we provide the formal definition of NAL. Given a
strategy profile x ∈ X , NAL is defined as

Lτ
NAL(x) =

∑
i∈N
⟨sg[F τ,x

i − ⟨F τ,x
i , x̂i⟩1],xi⟩, (2)

where x̂ = [x̂0, x̂1, · · · , x̂|N |−1] can be any strategy pro-
file in X (notably, ∀i ∈ N , x̂i ̸= 0 and must in X i),
F τ,x
i = −∇xi

uτ
i (x) = −∇xi

ui(x) + τ logxi is defined
in Eq. (1), and sg[·] is the stop-gradient operator that im-
plies the term in this operator is not involved in gradient
backpropagation, i.e., for any variable b ∈ Rd, sg[b] = b
while ∇bsg[b] = 0 (see details in Appendix D). There-
fore, in Eq. (2), xi participates in gradient backpropagation,
whereas sg[F τ,x

i − ⟨F τ,x
i , x̂i⟩1] do not. Consequentially,

we obtain ∇xi
Lτ
NAL(x) = sg[F τ,x

i − ⟨F τ,x
i , x̂i⟩1]. As

x̂i in NAL can be any strategy, not just xi, we are free to
employ any sampling strategy to estimate ∇xiLτ

NAL(x) to
further reduce the variance.

While other loss functions do not include the stop-gradient
operator in their definitions, in practice, these loss functions
must employ the stop-gradient operator when solving real-
world games. This is because ∇xi

ui(x) in F τ,x
i cannot

feasibly participate in gradient backpropagation. Enabling
F τ,x
i to participate in backpropagation would require iter-

ating over all action pairs for every two players, as done in
Gemp et al. (2022) and Gemp et al. (2024), which is practi-
cally infeasible in real-world games. More details about the
implementation of other loss functions are in Appendix G.

Unbiased estimation of NAL. Assume we can obtain an
unbiased estimate of F τ,x

i , which can be achieved through
importance sampling, as described in Section 4.3. Since
F τ,x
i is estimated without bias and x̂i is given, we have that
⟨F τ,x

i , x̂i⟩ remains unbiased. By using the unbiased esti-
mates of F τ,x

i and ⟨F τ,x
i , x̂i⟩, we can obtain an unbiased

estimate of ∇xi
Lτ
NAL(x). Then, with the unbiased esti-

mate of ∇xiLτ
NAL(x) and knowledge of xi, an unbiased

estimate of Lτ
NAL(x) is obtained. This unbiased estimate

of Lτ
NAL(x) is used for non-convex stochastic optimiza-

tion techniques in ML to update the strategy profile. Further
details on the unbiased estimation process are in Section 4.3.

Relationship between duality gap in the regularization
game and NAL. As analyzed in Gemp et al. (2024),
∀ai, a′i ∈ Ai, ∇xi

uτ
i (x)(ai) = ∇xi

uτ
i (x)(a

′
i) holds if

and only if x is an NE of the regularization game with the
utility function uτ

i (x). Then, from Lemma 4.1, we have
that ∇xLτ

NAL(x) = 0 if and only if x is an NE of the reg-
ularization game with the utility function uτ

i (x). A formal
relationship between the duality gap of a strategy profile x
in the regularization game and the gradient of NAL is in
Theorem 4.2. The proof of Theorem 4.2 depends on the
properties of the tangent residual (Cai et al., 2022).

Theorem 4.2 (Proof is in Appendix E.2). The duality gap
of a strategy profile x in the regularization game with the
utility function uτ

i (x) = ui(x)− τxT
i logxi is bounded as:

dgτ (x) =
∑
i∈N

max
x′

i∈X i

⟨∇xiu
τ
i (x),x

′
i − xi⟩

≤C0∥∇xLτ
NAL(x)∥2,

where C0 is a game-dependent constant.

For the exploitability in the regularization game,
we have expτ (x) =

∑
i∈N (maxx′

i
uτ
i (x

′
i,x−i) −

uτ
i (xi,x−i))/|N | ≤ dgτ (x)/|N | since the function ui(xi)

is linear and −τxT
i logxi is concave over X i, respectively,

as well as for any concave function f(·) with any u,v in
its domain, the inequality f(u)− f(v) ≤ ⟨∇f(v),u− v⟩
holds.

Relationship between duality gap in the original game
and NAL. NAL ensures that a zero point of the first-order
gradient of NAL corresponds to an NE of the regularization
game rather than the original game. To find an NE of the
original game, we establish a precise relationship between
the duality gap in the original game and NAL, as shown in
Theorem 4.3. This relationship allows us to approximate an
NE of the original game by minimizing NAL. Specifically,
by progressively decreasing the value of τ , we guarantee
that the sequence of NEs of the regularization games, charac-
terized by the utility function uτ

i (x) = ui(x)− τxT
i logxi,

converges to the set of the NE of the original game.

Theorem 4.3 (Proof is in Appendix E.4). The duality gap
of a strategy profile x in the original game is bounded as:

dg(x) ≤ τC1 + C2∥∇xLτ
NAL(x)∥2,

where C1 and C2 are game-dependent constants.

From the analysis above, we observe that NAL learns the
global minimum of the loss function proposed by Gemp
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et al. (2024), without requiring the inner product between
the two estimated variables that introduces high variance
(Section 4.2). Therefore, NAL can be viewed as a surrogate
for the loss function in Gemp et al. (2024), which is why
we refer to NAL as a surrogate loss function. Furthermore,
as demonstrated in Appendix C and H, under specific con-
ditions, the first-order gradient of NAL approximates that
of a variant of the loss function proposed by Gemp et al.
(2024), while mitigating high variance. It implies that min-
imizing NAL approximates the process of minimizing the
loss function proposed by Gemp et al. (2024)

4.2. Analysis of Variances of NAL and Existing
Unbiased Loss Function

We now analyze the variance in the estimated values of
NAL and the unbiased loss function defined in Eq. (7). We
demonstrate that when the variance in estimating the value
of NAL is O(σ), that of the unbiased loss function defined
in Eq. (7) may be O(σ2), where σ > 0 is a constant.

Firstly, assume that the components of the vector F τ,x
i −

⟨F τ,x
i , x̂i⟩1 at each ai ∈ Ai are estimated independently,

with the variance for each estimation being less than σ.
Specifically, let the estimation of F τ,x

i − ⟨F τ,x
i , x̂i⟩1 at ac-

tion ai ∈ Ai be denoted as ĝτ,x
i (ai). Under this assumption,

we have ĝτ,x
i (ai) ⊥ ĝτ,x

i (a′i), where⊥ denotes that the two
random variables are independent, and Var[ĝτ,x

i (ai)] = σ
for all ai, a′i ∈ Ai. By the definition of variance, the vari-
ance of Lτ

NAL(x) is

Var[Lτ
NAL(x)] =

∑
i∈N

∑
ai∈Ai

Var[ĝτ,x
i (ai)xi(ai)]

=
∑
i∈N

∑
ai∈Ai

(xi(ai))
2Var[ĝτ,x

i (ai)]

≤|N |σ,

where the second equality is from that for a random variable
Y with a constant c, Var[cY ] = c2Var[Y ], and the inequality
follows from the fact that

∑
ai∈Ai

(xi(ai))
2 ≤ 1.

For the unbiased loss function defined in Eq. (7), we
make similar assumptions. Specifically, let the two esti-
mates of F τ,x

i (ai)−F τ,x
i (ai) be ḡτ,x,1

i (ai) and ḡτ,x,2
i (ai),

we assume that each ḡτ,x,j
i (ai) is sampled independently

∀i ∈ N , ai ∈ Ai, j ∈ {1, 2}, and the variances for
each estimation are less than σ. Formally, ∀i ∈ N ,
ai, a

′
i ∈ Ai, j, j′ ∈ {1, 2}, ḡτ,x,j

i (ai) ⊥ ḡτ,x,j′

i (a′i) and
Var[ḡτ,x,j

i (ai)] = σ. Then, the variances of the estimation
for this loss function are

Var[Lτ
G(x)]=

∑
i∈N

∑
ai∈Ai

Var[ḡτ,x,1
i (ai)ḡ

τ,x,2
i (ai)]

≥|N |σ2min
i∈N
|Ai|+

2|N |σ min
i∈N ,ai∈Ai

∥F τ,x
i (ai)−F τ,x

i (ai)∥22min
i∈N
|Ai|,

Algorithm 1 Learning an NE via Minimizing NAL
1: Input: An optimizer OPT , the exploration ratio ϵ, the uni-

form strategy profile xu = [xu
i |i ∈ N ], the initial parameter

θ, the learning rate η, the regularization scalar τ , the number
of total iterations T , the number of instances S sampled at per
iteration, the frequency Tu of updating η and τ , the weight α
on updating η, the weight β on updating τ , simulator G that
returns player i’s payoff given a joint action.

2: for each t ∈ [1, 2, · · · , T ] do
3: Initialize bufferMi ← {}, ∀i ∈ N
4: vi ← 0, ∀i ∈ N
5: for each s ∈ [1, 2, · · · , S] do
6: ai ∼ xθ

i , ∀i ∈ N
7: a← [ai : i ∈ N ]
8: a′

i ∼ (1− ϵ)xθ
i + ϵxu

i , ∀i ∈ N
9: pi ← (1− ϵ)xθ

i (a
′
i) + ϵxu

i (a
′
i), ∀i ∈ N

10: ri ← −G(i, a′
i, a−i) + τ logxθ

i (a
′
i), ∀i ∈ N // To

estimate F τ,xθ

i (a′
i)

11: Mi.append([i, a′
i, ri, pi]), ∀i ∈ N

12: vi ← vi + ri
13: end for
14: L̃τ

NAL(θ)← 0

15: vi ← vi
S
, ∀i ∈ N // To estimate ⟨F τ,xθ

i , x̂i⟩
16: for each i ∈ N do
17: for each [i, as

i , r
s
i , p

s
i ] ∈Mi do

18: gs
i ← rsi −vi

psi
eas

i
// To estimate F τ,xθ

i −

⟨F τ,xθ

i , x̂i⟩1
19: L̃τ

NAL(θ)← L̃τ
NAL(θ) + ⟨sg[gs

i ],x
θ
i ⟩

20: end for
21: end for
22: θ ← OPT .update(L̃τ

NAL(θ))
23: if t%Tu = 0 then
24: η ← αη, τ ← βτ
25: end if
26: end for
27: Return θ

where the last inequality follows from Appendix F. Thus,
the variance in estimating Lτ

G(x) is σmini∈N |Ai| times
larger than for NAL. Then, the variance in estimating Lτ

G(x)
is expected to be substantially higher than that of NAL.

4.3. Minimizing NAL under the sampled play

We now detail our algorithm that learns an NE by mini-
mizing NAL. The pseudocode is in Algorithm 1. Specifi-
cally, consider an approximation function Π(·) parameter-
ized by θ, where the resulting strategy profile is denoted
as xθ = Π(θ). Our goal is to minimize the following loss
function Lτ

NAL(θ) through a two-step process: sampling
and updating.

Lτ
NAL(θ) =

∑
i∈N
⟨sg[F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1],xθ
i ⟩.

Sampling. The sampling process is outlined from lines 3
to 13 in Algorithm 1. At each iteration t, we begin by ini-
tializing the bufferMi = {} and the random variable vi for

5
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each player i (lines 3 and 4 of Algorithm 1). The random
variable vi is used to estimate the value of −⟨F τ,xθ

i , x̂i⟩.
Next, for each player i, S instances are sampled. In each
instance, an action ai is selected for each player i according
to the strategy profile xθ (line 6 of Algorithm 1), resulting
in the action profile a = [ai : i ∈ N ] (line 7 of Algo-
rithm 1). Each a−i = [aj : j ∈ N , j ̸= i] serves as the
environmental dynamic for player i, enabling the estima-
tion of Lτ

NAL(θ). Subsequently, based on the exploration
parameter ϵ, the uniform strategy profile xu (xu

i = 1/|Ai|),
and the current strategy profile xθ, an alternative action
a′i is sampled for each player i according to the strategy
x̂i = (1− ϵ)xθ

i + ϵxu
i (line 8 of Algorithm 1). The explo-

ration parameter ϵ and the uniform strategy xu ensure that
the probability of selecting any action a within the strategy
x̂i is not too small, which guarantees the variance of estimat-
ing via importance sampling is not too large. The probability
of selecting action a′i through x̂i is denoted by pi (line 9 of
Algorithm 1). The unbiased estimation of F τ,xθ

i (a′i) is then
computed as ri ← −G(i, a′i,a−i) + τ logxθ

i (a
′
i), ∀i ∈ N

(line 10 of Algorithm 1), where G represents the simula-
tor returning player i’s payoff for the joint action [a′i,a−i].
Specifically,

E[ri] =E[−G(i, a′i,a−i) + τ logxθ
i (a

′
i)]

=E[−G(i, a′i,a−i)] + τ logxθ
i (a

′
i)

=F xθ

i (a′i) + τ logxθ
i (a

′
i) = F τ,xθ

i (a′i),

(3)

where the third line follows from the fact that a−i is sampled
according to xθ

−i. Finally, the tuple [i, a′i, ri, pi] is stored
in the bufferMi (line 11 of Algorithm 1), and vi is updated
as vi ← vi + ri (line 12 of Algorithm 1).

Updating. The updating procedure is outlined from lines
14 to 25 in Algorithm 1. We first initialize the estimator for
Lτ
NAL(θ) as L̃τ

NAL(θ) ← 0 and normalize vi by setting
vi ← vi

S (lines 14 and 15 of Algorithm 1). The expectation

E[vi] corresponds to ⟨F τ,xθ

i , x̂i⟩. Formally,

E[vi] = E

[
1

S

S∑
s=1

rsi

]
=E

[
1

S

S∑
s=1

F τ,xθ

i (asi )

]
=Eas

i∼x̂i

[
F τ,xθ

i (asi )
]

=⟨F τ,xθ

i , x̂i⟩,

(4)

where asi and rsi come from the s-th tuple [i, asi , r
s
i , p

s
i ]

stored in bufferMi, the second equality is from E[rsi ] =
F τ,xθ

i (asi ) (Eq. (3)), and the third equality is from that asi
is sampled via x̂i. Additionally, we use the tuples inMi

(line 17 of Algorithm 1) to estimate F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1
through the computation gs

i ←
rsi−vi
ps
i

eas
i

(line 18 of Algo-
rithm 1), where eas

i
is a vector whose the coordinate asi is

1 and all other coordinates are 0. It is straightforward to
verify that E[gs

i ] = F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1. Formally,

E[gs
i ] =Es∼x̂i

[
rsi − vi

psi
eas

i

]
=Es∼x̂i

[
F τ,xθ

i (asi )− ⟨F
τ,xθ

i , x̂i⟩
psi

eas
i

]
,

(5)

where the second equality is from E[rsi ] = F τ,xθ

i (asi ) (Eq.

(3)), E[vi] = ⟨F τ,xθ

i , x̂i⟩ (Eq. (4)), and (rsi − vi) ⊥ psi
(as psi is given and not sampled, which can be seen as a
constant). As the rightest side of Eq. (5) a standard impor-
tance sampling process, it follows from the properties of
importance sampling that

E[gs
i ] =Es∼x̂i

[
F τ,xθ

i (asi )− ⟨F
τ,xθ

i , x̂i⟩
psi

eas
i

]
=F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1.

The estimator L̃τ
NAL(θ) is updated via L̃τ

NAL(θ) ←
L̃τ

NAL(θ)+⟨gs
i ,x

θ
i ⟩ (line 19 of Algorithm 1). Since E[gs

i ] =

F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1 and xθ
i is known, it follows that

1
SE[L̃

τ
NAL(θ)] = Lτ

NAL(θ). Therefore, L̃τ
NAL(θ) pro-

vides an unbiased estimate of Lτ
NAL(θ). The estimator

L̃τ
NAL(θ) is then passed to the optimizer OPT for updat-

ing θ (line 22 of Algorithm 1). If t%Tu = 0 (line 23
of Algorithm 1), the parameters η and τ are updated as
η ← αη and τ ← βτ , where 0 < α, β < 1 (line 24 of
Algorithm 1). These adjustments ensure that an NE of the
regularization game approaches an NE of the original game.
Specifically, as shown in Theorem 4.3, decreasing τ brings
the NE of the regularization game, defined by the utility
function uτ

i (x) = ui(x) − τxT
i logxi, closer to that of

the original game. Furthermore, reducing η stabilizes the
algorithm as we find that without a corresponding reduction
in η, decreasing τ could destabilize the learning process.

We do not provide the convergence for our algorithm as
this convergence depends on the stochastic optimization
technique used, which is not the focus of this work. Theoret-
ically learning the zero point of the first-order gradient via
non-convex stochastic optimization techniques is an urgent
problem to be solved. Solving this problem falls under the
research direction of optimization rather than game theory.

5. Experiments
Configurations. We compare our algorithm with algo-
rithms that minimize the loss function in Gemp et al. (2024),
ADI (Gemp et al., 2022), or NashApr (Duan et al., 2023), re-
spectively. Our loss function and the loss function in Gemp
et al. (2024) are unbiased loss functions, while others are
biased loss functions. The implementation details of the
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Figure 1. Empirical convergence rates of tested algorithms when the optimizer is Adam. The top row shows the following scenarios from
left to right: 2 players with 64 actions, 2 players with 384 actions, 4 players with 66 actions, and 2 players with 2304 actions. The bottom
row displays, from left to right: 4 players with 50 actions, 4 players with 50 actions, 5 players with 30 actions, and 11 players with 5
actions. The shaded regions represent one standard deviation of the results, calculated across four different random seeds.

compared loss functions are in Appendix G. Notably, the
implementation of all tested loss functions includes the stop-
gradient operator. We conduct experiments on eight NFGs
from OpenSpiel (Lanctot et al., 2019) and GAMUT (Nudel-
man et al., 2004), specifically Kuhn Poker, Goofspiel, Blotto,
Liars Dice, Bertrand Oligopoly, Guess Two Thirds Ave,
Minimum Effort, and Majority Voting. The former four
games are sourced from OpenSpiel, while other games are
implemented by GAMUT. The payoff matrix components
of each game are normalized to a range between 0 and 1.
All experiments are performed on a machine equipped with
four RTX 3060 GPUs and 376 GB of memory.

We use a DNN parameterized by θ to represent strategy
profiles due to the strong expressive power of DNNs, as
did in previous works (Goktas et al., 2022; Marris et al.,
2022; Liu et al., 2024) (see discussions in Appendix B). The
network used in this paper is a three-layer MLP, with 1024
neurons in both the input and hidden layers, and |N | heads
in the output layer, each corresponding to the action space
of a player. For all games, the input is a 1024-dimensional
vector with all coordinates set to 1. ReLU activation is
used in the hidden layers (Krizhevsky et al., 2012), and
Softmax activation is applied in the output layer (Dempster
et al., 1977) (unless otherwise stated), ensuring the output
remains within the simplex. Neural networks and optimizers
(stochastic optimization techniques) are implemented using
PyTorch (Paszke et al., 2019), with Adam (Kingma & Ba,
2014) as the optimizer (unless otherwise stated), due to its
widespread use in training modern neural networks, includ-
ing GANs (Goodfellow et al., 2014), BERT (Devlin, 2018),
GPT (Brown, 2020), and ViT (Dosovitskiy, 2020). For all

tested algorithms, ϵ is fixed at 1, T at 10,000, and S at 10
across all games (unless otherwise stated). We perform an
extensive hyperparameter search, varying the learning rate
η ∈ {0.0001, 0.00001}, regularization scalar τ ∈ {0.1, 1},
update frequency Tu ∈ {200, 500, 1000}, and momentum
coefficients α, β ∈ {0.9, 0.5}. The selected hyperparame-
ters are listed in Appendix I.

Results on convergence rates and variances. We run
each algorithm four times with different random seeds. The
results, including convergence rates and variances, are pre-
sented in Figures 1 and 2, respectively. Our algorithm
achieves the fastest empirical convergence rate and the low-
est variance. Specifically, we find that, in Goofspiel and
Minimum Effort, the algorithm minimizing the existing un-
biased loss function in Gemp et al. (2024) fails to converge
to an NE. In contrast, the algorithm minimizing NAL is
able to converge to an NE. Additionally, algorithms based
on biased loss functions occasionally fail to converge. For
example, the algorithm minimizing ADI does not converge
in Blotto, and the algorithm minimizing NashApr fails in
Liars Dice. In addition, the variance in estimating NAL
decreases by at least two orders of magnitude for all tested
games compared to using the existing unbiased loss func-
tion, and in Liars Dice, this variance reduction reaches up
to six orders of magnitude. We also find a strong correla-
tion between variance and convergence performance. In
Bertrand Oligopoly, where the algorithm minimizing the ex-
isting unbiased loss function in Gemp et al. (2024) performs
closest to ours, it is the only case where this algorithm’s
variance in estimating the value of the loss function is lower
than that of our algorithm. However, due to the extremely
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Figure 2. Variances observed in estimating the value of loss functions used by different algorithms when the optimizer is Adam.

high variance early on, this algorithm’s convergence rate re-
mains slower than ours. Although the algorithm minimizing
NAL does not appear to converge to an exact NE in Kuhn
Poker and Liars Dice, this is primarily due to the value of S
being insufficiently large. As shown in Appendix J, when
S is increased, our algorithms can also converge to a more
and more accurate NE in both Kuhn Poker and Liars Dice.

Results on differences between estimated and true loss
values. To determine whether NAL is an unbiased loss
function, we compare the differences between the estimated
and true loss values across the various algorithms, as shown
in Figure 3. Empirical results confirm that NAL behaves as
an unbiased loss function, exhibiting significantly smaller
differences between true and estimated values compared to
other loss functions. More precisely, the difference between
the estimated and true values for NAL is usually two orders
of magnitude smaller compared to that of other tested loss
functions. As the difference between the true value and
the estimated value of NAL is considerably smaller than
that of other loss functions, we present a more detailed
graph highlighting this difference for NAL in Appendix J. In
addition, the estimated value of NAL is also in Appendix J.

Results on convergence rates, variances, and differences
with different optimizers. We further assess the robustness
of our loss function with different optimizers by evaluating
performance using other famous optimizers, such as RM-
Sprop (Bottou, 2010) and SGD (Robbins & Monro, 1951),
with the parameter fine tuned in the scenario where Adam
is used. Key metrics, such as convergence rate, the variance
of estimating the value loss function, and the difference
between the estimated value and true value of loss functions,
are analyzed. The results on convergence rates, variances,
and differences when using RMSprop or SGD as the opti-

mizer are in Appendix J. Consistent with the results using
Adam, our algorithm exhibits the fastest convergence rates,
lowest variance, and smallest difference.

Results on sampling times and convergence rates with
different sampling methods. We also present experimental
results for algorithms that employ the sampling method from
(Gemp et al., 2022) and Gemp et al. (2024), as described
in Appendix J. Specifically, we compare sampling times
between the method in (Gemp et al., 2022) and Gemp et al.
(2024) with the method in Algorithm 1, and evaluate the
convergence rates of algorithms employing the sampling
method used in (Gemp et al., 2022) and Gemp et al. (2024)
as well as the sampling method in Algorithm 1, respectively.
Experimental results show that both the sampling method
in Algorithm 1 and our loss function, NAL, significantly
enhance the convergence rate.

Results on convergence rates with different neural net-
work structures. Additionally, we evaluate the perfor-
mance of different algorithms under various network ar-
chitectures. Specifically, we replace Softmax with Sparse-
max (Martins & Astudillo, 2016). The experimental results
are shown in Appendix J. We observe that our algorithm
still exhibits the fastest convergence rate. In fact, the con-
vergence rate of our algorithm remains largely unchanged.
In contrast, the convergence rates of the other algorithms
experience significant degradation.

Results on convergence rates of NAL with or without the
term ⟨F τ,x

i , x̂i⟩1. Moreover, we investigate the impact of

the term ⟨F τ,xθ

i , x̂i⟩1 in NAL. Our results show that this
term not only reduces the variance but also ensures that
the algorithm minimizing NAL converges to an NE. In the
absence of this term, the algorithm may fail to learn an NE.
Further details are provided in Appendix J.
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Figure 3. Difference between the true value and the estimated value of loss functions when the optimizer is Adam. Since the difference
between the true value and the estimated value of our loss function NAL is considerably smaller than that of other loss functions, we
present a more detailed graph highlighting this difference for NAL in Appendix J.

Results on convergence rates of NAL with different val-
ues of ϵ. To strengthen the robustness of our results, we also
include experiments with various ϵ values (0, 0.1, 0.5, and
0.9), as shown in Appendix J. Across all tested ϵ values, our
algorithm consistently outperforms the baselines, further
validating that the variance reduction achieved by our loss
function leads to an accelerated convergence rate.

Results on convergence rates when the strategy is repre-
sented using a real vector. As mentioned in Appendix B,
we employ a DNN due to its capability to approximate
arbitrary non-linear functions, enabling the discovery of
complex equilibrium strategies that simpler representations
may overlook. In contrast, a real vector lacks this expres-
sive power. The results, where the strategy is represented
using a real vector, are shown in Appendix J. All algorithms
exhibit varying degrees of performance degradation, yet our
algorithm still outperforms the others.

6. Conclusions
We introduce a novel surrogate loss function for using non-
convex stochastic optimization techniques of ML to com-
pute an NE, named NAL. It can be estimated without bias
and will incur an significantly lower variance than the exist-
ing unbiased loss function. Experimental results show that
the algorithm minimizing NAL significantly outperforms
other tested algorithms. Our approach offers a promising
new direction for computing an NE, with the potential to
address the challenges posed by large-scale games. One
direction of our future works is to extend our approach to
solve imperfect information extensive-form games.
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A. Table of Notations and Definitions

Table 1: Table of Notations and Definitions

Notation/Definition Section Description

N 3 the set of players

i 3 the index of the player

−i 3 all players except player i

Ai 3 the action set of player i

ai 3 an action of player i, e.g., ai ∈ Ai

a−i 3 the actions selected by the players except player i

ui(ai, a−i) 3
the utility received by player i if player i select ai,

while other players select a−i

xi 3 the strategy of player i

X i 3 the set of the strategies of player i, a (|Ai| − 1)-dimensional simplex

x 3 {xi ∈ X i | i ∈ N}; the strategy profile

X 3 ×i∈NX i; the strategy space of all players

X ◦ 3 the interior of X , e.g., for each x ∈ X ◦, xi(ai) > 0,∀i ∈ N and ai ∈ Ai

ui(xi,x−i) 3

∑
a∈×i∈NAi

ui(a)
∏

j∈N xj(aj), where aj ∈ Aj denotes
player j’s component of the joint action a;

the utility received by player i,
given that all players follow the strategy profile x ∈ X

∇xiui(x) 3 the first-order gradient of ui(x) w.r.t. xi

X ∗ 3 the set of NEs in the game with the utility function ui(x)

X ∗,◦ 3
the set of interior NEs in the game with the utility function ui(x)

such that ∀x∗ ∈ X ∗,◦, x∗
i (ai) > 0,∀i ∈ N , ai ∈ Ai

dg(x) 3

∑
i∈N maxx′

i∈X i
⟨∇xi

ui(x),x
′
i − xi⟩;

the duality gap in the game with the utility function ui(x),
a well-known metric to measure the distance

from the strategy profile x to NE;
if and only if dg(x) = 0, x ∈ X ∗; if dg(x) = δ, then x is a δ-NE

exp(x) 3

∑
i∈N (maxx′

i
ui(x

′
i,x−i)−ui(xi,x−i))

|N | ;
the exploitability in the game with the utility function ui(x),

a well-known metric to measure the distance
from the strategy profile x to NE

uτ
i (x) 3

ui(x)− τxT
i logxi;

the utility function of the regularization
game defined in Gemp et al. (2024)

Continued on next page
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Notation/Definition Section Description

F τ,x
i 3 −∇xiu

τ
i (x), which can also be represented by −∇xiui(x) + τ logxi

F τ,x
i 3

∑
ai∈Ai

F τ,x
i (ai)

|Ai| 1

Lτ
G(x) 3

∑
i∈N ∥F

τ,x
i − F τ,x

i ∥22;
the loss function proposed by Gemp et al. (2024)

sg[·] 4
the stop-gradient operator such that

for any variable b ∈ Rd, sg[b] = b while ∇bsg[b] = 0 ∈ Rd×d

Lτ
NAL(x) 4

∑
i∈N ⟨sg[F

τ,x
i − ⟨F τ,x

i , x̂i⟩1],xi⟩,
where x̂ = [x̂0, x̂1, · · · , x̂|N |−1] can be any strategy profile in X ;

NAL, the unbiased loss function proposed by us

∇xi
Lτ
NAL(x) 4

sg[F τ,x
i − ⟨F τ,x

i , x̂i⟩1];
the first-order gradient of Lτ

NAL(x) w.r.t. xi

∇xLτ
NAL(x) 4

[sg[F τ,x
i − ⟨F τ,x

i , x̂i⟩1]|i ∈ N ];
the first-order gradient of Lτ

NAL(x) w.r.t. x

dgτ (x) 4
∑

i∈N maxx′
i∈X i
⟨∇xiu

τ
i (x),x

′
i − xi⟩;

the duality gap in the game with the utility function uτ
i (x)

expτ (x) 4

∑
i∈N (maxx′

i
uτ
i (x

′
i,x−i)−uτ

i (xi,x−i))

|N | ;
the exploitability in the game with the utility function uτ

i (x)

⊥ 4
this notation represents that two random variables are independent,

e.g., for random variables b and c, b ⊥ c implies
that b and c are independent

Var[·] 4 the variance

ĝτ,x
i (ai) 4 the estimation of F τ,x

i − ⟨F τ,x
i , x̂i⟩1 at action ai ∈ Ai in NAL

ḡτ,x,j
i (ai) 4 the j-th estimation of F τ,x

i − F τ,x
i at action ai ∈ Ai

in the loss function proposed by Gemp et al. (2024), where j ∈ {1, 2}

σ 4
in Section 4.2, we assume that Var[ĝτ,x

i (ai)] = σ

and Var[ḡτ,x,j
i (ai)] = σ, ∀i ∈ N , j ∈ {1, 2}, and ai ∈ Ai

xθ 4
the strategy profile represented by an approximation

function Π(·) parameterized by θ

Lτ
NAL(θ) 4

∑
i∈N ⟨sg[F

τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1],xθ
i ⟩;

the NAL related to the parameter θ

OPT 4 the optimizer in Algorithm 1

ϵ 4 the exploration ratio in Algorithm 1

xu
i 4 1

|Ai| ; the uniform strategy of player i

xu 4 [xu
i |i ∈ N ]; the uniform strategy profile

η 4 the learning rate in Algorithm 1

T 4 the number of total iterations in Algorithm 1

Continued on next page
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Notation/Definition Section Description

S 4 the number of instances sampled at per iteration in Algorithm 1

Tu 4 the frequency of updating η and τ in Algorithm 1

α 4 the weight on updating η in Algorithm 1, e.g., η ← αη

β 4 the weight on updating τ in Algorithm 1, e.g., τ ← βτ

G 4
the simulator in Algorithm 1 that

returns player i’s payoff given a joint action

Mi 4 the buffer in Algorithm 1

t 4 the current iteration in Algorithm 1

a 4 [ai : i ∈ N ]; the joint action in Algorithm 1

a′i 4
sampled from (1− ϵ)xθ

i + ϵxu
i ,

used in Algorithm 1 for estimating F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1

pi 4
(1− ϵ)xθ

i (a
′
i) + ϵxu

i (a
′
i);

used in Algorithm 1 for estimating F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1

ri 4
−G(i, a′i, a−i) + τ logxθ

i (a
′
i);

used in Algorithm 1 for estimating F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1

vi 4 used in Algorithm 1 for estimating F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1

L̃τ
NAL(θ) 4 the estimation of Lτ

NAL(θ) in Algorithm 1

[i, asi , r
s
i , p

s
i ] 4 the s-th tuple stored in bufferMi in Algorithm 1

gs
i 4

rsi−vi
ps
i

eas
i
, where eas

i
is a vector whose the coordinate asi is 1

and all other coordinates are 0;
used in Algorithm 1 for estimating F τ,xθ

i − ⟨F τ,xθ

i , x̂i⟩1

rtan(x) E

minz∈NX (x) ∥ − ∇xu(x) + z∥2,
where NX (x) = {v ∈ R|X | : ⟨v,x′ − x⟩ ≤ 0,∀x′ ∈ X}

is the normal cone of x,
and ∇xu(x) = [∇x0

u0(x);∇x1
u1(x); · · · ;∇x|N|−1

u|N |−1(x)];
the tangent residual in the game with the utility function ui(x),

a new metric to measure the distance from the strategy profile x to NE;
if and only if rtan(x) = 0, x ∈ X ∗;

used for proving Theorem 4.2

rtan,τ (x) E
minz∈NX (x) ∥ − ∇xu

τ (x) + z∥2;
the tangent residual in the game with the utility function uτ

i (x);
used for proving Theorem 4.2

Y (1), Y (2) F
two independent variables,

used for deriving the variance of the product of two independent variables

Y F the expectations of Y (1) and Y (2)

[i, a2s−1
i ,

r2s−1
i , p2s−1

i ]
G the (2s− 1)-th tuple stored in bufferMi in Algorithm 1

Continued on next page
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Notation/Definition Section Description

[i, a2si , r2si , p2si ] G the 2s-th tuple stored in bufferMi in Algorithm 1

L̂τ
G(θ) G

∑
i∈N ∥sg[F xθ

i ] + τ logxθ
i − sg[F xθ

i ]− τ logxθ
i ∥22;

the implementation of the loss of Gemp et al. (2024) used in our paper

L̃τ
G(θ) G

∑
i∈N

∑s=S
2

s=1 ⟨sg[F̂ xθ

i,2s−1] + τ logxθ
i − sg[F̂ xθ

i,2s−1]− τ logxθ
i ,

sg[F̂ xθ

i,2s] + τ logxθ
i − sg[F̂ xθ

i,2s]− τ logxθ
i ⟩,

where F̂ xθ

i,2s−1 =
r2s−1
i −τ log p2s−1

i

p2s−1
i

ea2s−1
i

, F̂ xθ

i,2s =
r2si −τ log p2s

i

p2s
i

ea2s
i

, as well as

ea2s−1
i

(ea2s
i

) is a vector in which the coordinate a2s−1
i (a2si ) is 1

and all other coordinates are 0;
the estimation of L̂τ

G(θ)

Lτ
ADI(θ) G

∑
i∈N maxx′

iXi
⟨sg[F xθ

i ] + τ logxθ
i ,x

′ − xθ
i ⟩;

the implementation of the loss of Gemp et al. (2022) used in our paper

L̃τ
ADI(θ) G

∑
i∈N maxx′

iXi
⟨sg[F̂ xθ

i ] + τ logxθ
i ,x

′ − xθ
i ⟩,

where F̂ xθ

i,s =
rsi−τ log ps

i

ps
i

eas
i
, F̂ xθ

i =
∑s=S

s=1 F̂ xθ

i,s ,
as well as eas

i
is a vector in which the coordinate asi is 1

and all other coordinates are 0;
the estimation of Lτ

ADI(θ)

LNashApr(θ) G maxi∈N maxx′
iXi
⟨sg[F xθ

i ],x′ − xθ
i ⟩;

the implementation of the loss of Duan et al. (2023) used in our paper

L̃τ
NashApr(θ) G

maxi∈N maxx′
iXi
⟨sg[F̂ xθ

i ],x′ − xθ
i ⟩,

where F̂ xθ

i,s =
rsi−τ log ps

i

ps
i

eas
i
, F̂ xθ

i =
∑s=S

s=1 F̂ xθ

i,s ,
as well as eas

i
is a vector in which the coordinate asi is 1

and all other coordinates are 0;
the estimation of LNashApr(θ)

Lτ
0(x) H

∑
i∈N ∥sg[F

τ,x
i ]− sg[F τ,x

i ] + τxi − τxi∥22,

where τxi =
τ
∑

i∈Ai
xi

|A| 1;
a variant of the loss of Gemp et al. (2024) that is used for deriving
the relationship between NAL and the loss of Gemp et al. (2024)

Lτ
1(x) H

∑
i∈N (2τ⟨sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1],xi⟩+ ⟨τxi, τxi⟩ − ⟨τxi, τxi⟩);
used for deriving the relationship

between NAL and the loss of Gemp et al. (2024)

B. Discussion on Learning Nash equilibria via the Combination of Deep Neural Networks with
Non-Convex (Stochastic) Optimization Techniques

Deep neural networks (DNNs) have been widely applied to solve complex optimization and decision-making problems
across diverse domains, owing to their expressive power. This enables them to capture intricate patterns and relationships
that are challenging to model using traditional methods. DNNs can approximate arbitrary non-linear functions (Hornik,
1991), making them particularly suitable for representing strategic decision-making processes in game theory. Furthermore,
the ability of DNNs to learn directly from raw data—without requiring handcrafted features—allows them to uncover
complex equilibrium strategies that might otherwise be overlooked (Brown et al., 2019; Goktas et al., 2022; Marris et al.,
2022; Liu et al., 2024).

A variety of methods combining DNNs with non-convex (stochastic) optimization techniques has been developed to compute
an NE, where strategy profiles are represented by DNNs and the equilibrium is directly learned by minimizing a loss
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function through non-convex (stochastic) optimization techniques (Goktas et al., 2022; Marris et al., 2022; Liu et al.,
2024). To the best of our knowledge, the first work on computing an NE via the combination of DNNs with non-convex
(stochastic) optimization techniques was proposed by Duan et al. (2023), demonstrating the feasibility of combining DNNs
with non-convex optimization techniques for computing an NE. Following this, Marris et al. (2022), Goktas et al. (2022),
and Liu et al. (2024) conducted extensive research on network architectures tailored for computing an NE through this
combination. However, these architectures are not suitable for solving real-world games, as they assume that the payoff
matrix can be fully loaded into memory as input to the network. In contrast, real-world games often feature payoff matrices
too large to fit into memory, necessitating solutions based on sampling a subset of the matrix, referred to as sampled play,
which can be seen as the stochastic optimization setting in ML.

In the context of stochastic optimization, designing appropriate loss functions specifically tailored for equilibrium computa-
tion remains a significant challenge. Many existing loss functions rely on sampling to estimate gradients or payoffs, which
can introduce considerable biases (Duan et al., 2023; Gemp et al., 2022) or lead to high variance (Gemp et al., 2024), thereby
making training unstable. This limitation highlights the need for further research in developing unbiased, low-variance
loss functions that better align with the requirements of equilibrium computation. Nonetheless, the intersection of DNNs,
non-convex (stochastic) optimization techniques, and game theory presents a promising avenue for addressing complex,
real-world problems, ranging from economic markets to strategic decision-making in games.

C. Relationship between Our Algorithm and Simultaneous Gradient Descent Algorithms
Our algorithm is similar to existing simultaneous gradient descent algorithms, specifically to its improved version, magnetic
mirror descent (Sokota et al., 2023), if we set x̂i = 0. However, as mentioned in Section 4, the property of NAL does not
hold when x̂i = 0 (we also highlight around Eq. (2) that x̂i ̸= 0 in NAL).

Firstly, we cannot relate the zero-point of the first-order gradient of existing simultaneous gradient descent algorithms
(NAL with x̂i = 0) to NE (Theorem 4.2 and 4.3). Specifically, when x̂i = 0 and applying commonly used non-convex
stochastic optimization techniques in ML, we cannot guarantee that the algorithm will stop updating upon reaching NE.
This is because, even if x is an NE of the regularization game, existing simultaneous gradient descent algorithms only
ensure that its first-order gradient sg[F τ,x

i −⟨F τ,x
i ,0⟩1] = sg[F τ,x

i ] is the same across all actions (as shown in the analysis
in Section 4), but does not guarantee that this gradient is 0. Unfortunately, the algorithm that employs commonly used
non-convex stochastic optimization techniques in ML, will only stop updating when the first-order gradient of the loss
function is 0. In other words, even if an NE is learned by existing simultaneous gradient descent algorithms, the updates
may not stop, and existing simultaneous gradient descent algorithms will eventually deviate from this NE. In contrast,
NAL ensures that its first-order gradient sg[F τ,x

i − ⟨F τ,x
i , x̂i⟩1] = 0 if and only if x is an NE of the regularization game

(as shown in the analysis in Section 4), which enables the algorithm employing commonly used non-convex stochastic
optimization techniques in ML to stop updating once an NE is learned.

Secondly, no connection can be established between existing simultaneous gradient descent algorithms and the loss function
proposed by Gemp et al. (2024). However, as shown in Theorem H.1, the first-order gradient of NAL approximates a variant
of the first-order gradient of the loss function introduced by Gemp et al. (2024). This suggests that, if we can establish
theoretical convergence for the loss function proposed by Gemp et al. (2024) when using commonly applied non-convex
stochastic optimization techniques to minimize this loss function, we may also be able to establish similar convergence
results for NAL under these techniques. However, this does not hold for existing simultaneous gradient descent algorithms.

Regarding the theoretical convergence of existing simultaneous gradient descent algorithms, these algorithms are primarily
used in training GANs (Goodfellow et al., 2014; Mescheder et al., 2018), which typically involve two-player zero-sum
games, as opposed to multi-player general-sum games that we consider. Notably, while research (Milionis et al., 2023)
suggests that there may be games where dynamics do not converge to an NE, their theory does not account for randomness.
As the authors state: “our impossibility results do not apply to stochastic dynamics—e.g., discrete-time dynamics in which
φ(x) is a distribution of possible next points” (where φ(x) is the notation in Milionis et al. (2023)). Yongacoglu et al. (2024)
demonstrate that the presence of randomness can enable convergence to an NE, noting that “we note that our possibility
result does not contradict the impossibility results of [22, 2] or [38]. In particular, the functions {f i

Γ}ni=1 need not be (and
usually will not be) continuous, violating the regularity conditions of [22] and [38]” (where {f i

Γ}ni=1 is the notation in
Yongacoglu et al. (2024), and [38] refers to (Milionis et al., 2023)). Our algorithm incorporates randomness. Studying the
theoretical convergence of our algorithm will be the future work.
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Thirdly, the experimental results in Figure 20 and Figure 21 further highlight the distinct nature of NAL and existing
simultaneous gradient descent algorithms, as their performance diverges significantly. Specifically, a minor modification to
the neural network architecture—namely, replacing the activation function in the final layer—causes existing simultaneous
gradient descent algorithms to fail to converge, whereas NAL’s convergence rate remains unaffected by this structural
change.

D. More Details of Stop-Gradient Operator
Let b ∈ Rd be a variable. The stop-gradient operator is defined as sg[b] = b ∈ Rd with∇bsg[b] = 0 ∈ Rn×n. This implies
that sg[b] passes the value of b unchanged in the forward pass, but blocks its gradient during backpropagation. Intuitively,
sg[·] can be regarded as a constant during differentiation. In summary,

• Forward pass. sg[b] returns the value of b.

• Backward pass. The gradient is blocked—no gradients are propagated through b.

In fact, this operator has already been widely adopted in previous works (Grill et al., 2020; Flennerhag et al., 2020; Chen &
He, 2021). We are inspired by the use of this operator in previous works and adopt it in our work accordingly.

E. Missing Proofs in Section 4
E.1. Proof of Lemma 4.1

Proof. Let b = (b1, b2, . . . , bd) ∈ Rd and y = (y1, y2, . . . , yd) be a vector in the standard simplex, i.e., yi ≥ 0 and∑n
k=1 yk = 1.

The inner product ⟨b,y⟩ is defined as

⟨b,y⟩ =
n∑

k=1

bkyk.

We will now prove the lemma in two parts: sufficiency and necessity.

Sufficiency:

Assume that all coordinates of b are equal, i.e., b1 = b2 = · · · = bd = c, where c is some constant. In this case, we have

⟨b,y⟩ =
n∑

k=1

bkyk =

n∑
k=1

cyk = c

n∑
k=1

yk = c · 1 = c.

Thus,
b− ⟨b,y⟩1 = (c, c, . . . , c)− c = (0, 0, . . . , 0),

which implies that b− ⟨b,y⟩1 = 0. Hence, the sufficiency holds.

Necessity:

Now, assume that b− ⟨b,y⟩1 = 0. We need to show that this implies that all coordinates of b are equal. From the equation
b− ⟨b,y⟩1 = 0, we have

b = ⟨b,y⟩1,

where 1 = (1, 1, . . . , 1) is the vector of all ones. This implies that

bk = ⟨b,y⟩ for all k = 1, 2, . . . , d.

In other words, all bk are equal to ⟨b,y⟩, meaning b1 = b2 = · · · = bd. Thus, the necessity holds.

Since both sufficiency and necessity have been proven, the lemma is true.

17



Reducing Variance of Stochastic Optimization for Approximating Nash Equilibria in Normal-Form Games

E.2. Proof of Theorem 4.2

Proof. We prove Theorem 4.2 via the tangent residual (Cai et al., 2022). Therefore, before we start the proof, we first
introduce the tangent residual. Formally, for any game, whose utility function u(·) of each player i is concave over X i,
∀x ∈ X , its tangent residual is

rtan(x) = min
z∈NX (x)

∥ − ∇xu(x) + z∥2,

where NX (x) = {v ∈ R|X | : ⟨v,x′ − x⟩ ≤ 0,∀x′ ∈ X} is the normal cone of x, and ∇xu(x) =
[∇x0u0(x);∇x1u1(x); · · · ;∇xn−1un−1(x)]. If rtan(x) = 0, then, by Lemma E.1, x is an NE. Additionally, if
x is an NE, then ∇xu(x) ∈ NX (x), since ⟨∇xu(x),x

′ − x⟩ ≤ 0,∀x′ ∈ X when x is an NE. Therefore,
rtan(x) = ∥ − ∇xu(x) +∇xu(x)∥2 = 0 if and only if x is an NE.

Lemma E.1 (Proof is in Appendix E.3). For any game, whose utility function of each player i is concave over X i, it holds
that

dg(x) ≤
√

2|N |rtan(x).

From the definition of −⟨F τ,x
i ,x′

i⟩1, ∀x,x′ ∈ X , we have∑
i∈N
⟨−⟨F τ,x

i , x̂i⟩1,x′
i − xi⟩ =

∑
i∈N
−⟨F τ,x

i , x̂i⟩+ ⟨F τ,x
i , x̂i⟩ = 0,

where the first equality comes from ⟨1,x′
i⟩ = ⟨1,xi⟩ = 1 since x′

i and xi are in the simplex. Therefore,
[−⟨F τ,x

i , x̂0⟩1,−⟨F τ,x
i ; x̂1⟩1; · · · ;−⟨F τ,x

i , x̂|N |−1⟩1] is in the normal cone of x. Then, from the definition of the
tangent residual,

rtan,τ (x) = min
z∈NX (x)

∥ − ∇xu
τ (x) + z∥2,

with NX (x) is the normal cone of x, and
−∇xiu

τ
i (x) = F τ,x

i ,

we have that
rtan,τ (x) ≤ ∥∇xLτ

NAL(x)∥2.
In addition, from Lemma E.1, we can obtain that

dgτ (x) ≤
√
2|N |rtan,τ (x) ≤

√
2|N |∥∇xLτ

NAL(x)∥2.

It completes the proof.

E.3. Proof of Lemma E.1

Proof. Let x′
i = argmaxx′

i∈X i
⟨∇xiui(x),x

′
i − xi⟩, for the definition of the duality gap and normal cone, ∀z ∈ NX (x),

we have
dg(x) =

∑
i∈N
⟨∇xi

ui(x),x
′
i − x′⟩

≤
∑
i∈N
⟨∇xiui(x),x

′
i − xi⟩+ ⟨z,x− x′⟩

= ⟨−∇xu(x) + z,x− x′⟩
≤ ∥ −∇xu(x) + z∥2∥x− x′∥2,

(6)

where the second lines comes from the fact that, ∀z ∈ NX (x) and x′′ ∈ X ,⟨z, x− x′′⟩ ≥ 0 holds. As Eq. (6) holds for
all z ∈ NX (x), we can get

dg(x) ≤ ∥x− x′∥2 min
z∈NX (x)

∥ − ∇xu(x) + z∥2,

which implies
dg(x) ≤

√
2|N |rtan(x),

where the right-hand side comes from maxx′′, x′′′∈X ∥x′′ − x′′′∥2 ≤
√∑

i∈N maxx′′
i , x

′′′
i ∈X i

∥x′′
i − x′′′

i ∥22 ≤√∑
i∈N 2 =

√
2|N |. It completes the proof.
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E.4. Proof of Theorem 4.3

Proof. Beginning with the definition of the duality gap, we find

dg(x) =
∑
i∈N

max
x′

i∈X i

⟨∇xiui(x),x
′
i − xi⟩

=
∑
i∈N

max
x′

i∈X i

⟨∇xi
ui(x)− τ log(xi) + τ log(xi),x

′
i − xi⟩

≤
∑
i∈N

max
x′

i∈X i

⟨∇xi
ui(x)− τ log(xi),x

′
i − xi⟩+

∑
i∈N

max
x′

i∈X i

⟨τ log(xi),x
′
i − xi⟩

≤ dgτ (x) +
∑
i∈N

max
x′

i∈X i

⟨τ log(xi),x
′
i⟩+

∑
i∈N
⟨τ log(xi),−xi⟩

≤
√
2|N |∥∇xLτ

NAL(x)∥2 +
∑
i∈N
⟨τ log(xi),−xi⟩

≤
√
2|N |∥∇xLτ

NAL(x)∥2 + τ
∑
i∈N

log(|Ai|).

where the second inequality follows from the definition of the duality gap and NE, and the third inequality comes from
log(xi) ≤ 0,∀0 ≤ xi ≤ 1. It completes the proof.

F. Variance of Estimating via Two Independent and Identically Distributed Random Variables
Let two independent samples from two corresponding identically distributed random variables be Y (1) and Y (2). Due to the
definition of Y (1) and Y (2), we have E[Y (1)] = E[Y (2)] = Y . Assume Var[Y (1)] = σ and Var[Y (2)] = σ. Now, we aim to
analyze the variance Var[Y (1)Y (2)]. From the definition of Var[Y (1)Y (2)], we have

Var[Y (1)Y (2)] = E[(Y (1))2]E[(Y (2))2]− (E[Y (1)]E[Y (2)])2.

For the term E[Y (1)]2, from the definition of Var[Y (1)], we get

Var[Y (1)] = E[(Y (1))2]− (E[Y (1)])2 = E[(Y (1))2]− Y 2 = σ

⇒E[(Y (1))2] = σ + Y 2.

Similarly, we have E[(Y (2))2] = σ + Y 2. Combining the above equities, we have

Var[Y (1)Y (2)] = (σ + Y 2)(σ + Y 2)− (Y 2)2 = σ2 + 2σY 2.

G. Implementation Details of Compared Loss Functions
The loss function proposed by Gemp et al. (2024). As shown in Algorithm 1, we do not employ the sampling method
used in Gemp et al. (2022) and Gemp et al. (2024) due to the high per-sample sampling complexity of their sampling method.
Formally, the per-sample sampling complexity of their estimating method is O(|N ||Ai|2) while that of our estimating
method as shown in Algorithm 1 is O(|N |). In Appendix J, we provide a comparison of the sampling time between our
sampling method and the sampling method used in Gemp et al. (2022) and Gemp et al. (2024), under the same number
of sampled instances S. In our sampling method, the estimated variable of F x

i (i.e., −∇xi
ui(x)) cannot participate in

gradient backpropagation, and only the variable xθ
i participates in gradient backpropagation. In other words, we minimize

the following loss function

L̂τ
G(θ) =

∑
i∈N
∥sg[F xθ

i ] + τ logxθ
i − sg[F xθ

i ] + τ logxθ
i ∥

2
2.

The only distinction between L̂τ
G(θ) and Lτ

G(θ) in Eq. (1) (or Lτ
G(x)) is the omission of the gradient backpropagation

path for sg[F xθ

i ] and sg[F xθ

i ]. For the definition of the stop-gradient operator in Appendix D, the stop-gradient operator
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only affects the gradient computation. Specifically, the stop-gradient operator treats a term as a constant, preventing it from
participating in the gradient backpropagation, but does not alter the value of the term. Based on the analysis in Section 3, for
all xθ ∈ X , xθ is an NE of the regularization game with utility function uτ

i (x
θ) = ui(x

θ)− τxθ
i
T
logxθ

i if and only if
Lτ
G(x

θ) = 0. Since the stop-gradient operator does not alter the value, it follows that for all xθ ∈ X , xθ is an NE of the
regularization game with the utility function uτ

i (x
θ) = ui(x

θ)− τxθ
i
T
logxθ

i if and only if L̂τ
G(θ) = 0.

As done in Gemp et al. (2024), we use the following loss function to estimate the value of L̂τ
G(θ) via the (2s− 1)-th and

(2s)-th tuples ([i, a2s−1
i , r2s−1

i , p2s−1
i ] and [i, a2si , r2si , p2si ]) stored inMi:

L̃τ
G(θ) =

∑
i∈N

s=S
2∑

s=1

⟨sg[F̂ xθ

i,2s−1] + τ logxθ
i − sg[F̂ xθ

i,2s−1]− τ logxθ
i , sg[F̂

xθ

i,2s] + τ logxθ
i − sg[F̂ xθ

i,2s]− τ logxθ
i ⟩,

F̂ xθ

i,2s−1 =
r2s−1
i − τ log p2s−1

i

p2s−1
i

e
a2s−1
i

, F̂ xθ

i,2s =
r2si − τ log p2si

p2si
ea2s

i
,

where ea2s−1
i

(ea2s
i

) is a vector in which the coordinate a2s−1
i (a2si ) is 1 and all other coordinates are 0. From the analysis in

Gemp et al. (2024), E[F̂ xθ

i,2s−1] = F xθ

i , E[F̂ xθ

i,2s] = F xθ

i , and 2
SE[L̃

τ
G(θ)] = L̂τ

G(θ).

ADI (Gemp et al., 2022). Since the variable F x
i cannot participate in gradient backpropagation via our sampling method,

we defined this loss function as

Lτ
ADI(θ) =

∑
i∈N

max
x′

iXi

⟨sg[F xθ

i ] + τ logxθ
i ,x

′ − xθ
i ⟩.

We use the following loss function to estimate the value of Lτ
ADI(θ) via the tuples [i, asi , r

s
i , p

s
i ] (s ∈ [1, 2, · · · , S]) stored

inMi:

F̂ xθ

i,s =
rsi − τ log psi

psi
eas

i
, F̂ xθ

i =

s=S∑
s=1

F̂ xθ

i,s ,

L̃τ
ADI(θ) =

∑
i∈N

max
x′

iXi

⟨sg[F̂ xθ

i ] + τ logxθ
i ,x

′ − xθ
i ⟩.

NashApr (Duan et al., 2023). Since the variable F x
i cannot participate in gradient backpropagation via our sampling

method, we defined this loss function as

LNashApr(θ) = max
i∈N

max
x′

iXi

⟨sg[F xθ

i ],x′ − xθ
i ⟩.

We use the following loss function to estimate the value of LNashApr(θ) via the tuples [i, asi , r
s
i , p

s
i ] (s ∈ [1, 2, · · · , S])

stored inMi:

F̂ xθ

i,s =
rsi − τ log psi

psi
eas

i
, F̂ xθ

i =

s=S∑
s=1

F̂ xθ

i,s , L̃τ
NashApr(θ) = max

i∈N
max
x′

iXi

⟨sg[F̂ xθ

i ],x′ − xθ
i ⟩.

H. Minimizing NAL Approximates the Process of Minimizing the Loss Function in Gemp et al.
(2024)

We now show that when using commonly used non-convex stochastic optimization techniques in ML, minimizing NAL
approximates the process of minimizing the loss function in Gemp et al. (2024), while mitigating the high variance caused
by the inner product of two estimated variables.

As mentioned in Appendix G, for the loss function in Gemp et al. (2024), it is difficult to backpropagate the gradient of the
term ∇xi

ui(x) in F τ,x
i when solving real-world games. Therefore, in practice, we have to use the following loss function

as a surrogate function for the loss in Gemp et al. (2024):

L̂τ
G(x) =

∑
i∈N

∥∥sg[F x
i ]− sg[F x

i ] + τ logxi − τ logxi

∥∥2
2
, (7)
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where F x
i = −∇xiui(x). Then, consider the following variant of L̂τ

G(x):

Lτ
0(x) =

∑
i∈N
∥sg[F τ,x

i ]− sg[F τ,x
i ] + τxi − τxi∥22.

Compared to L̂τ
G(x), the key difference is thatLτ

0(x) replaces the gradient backpropagation paths involving logxi with those
involving xi. The reason for this modification is that the gradient of logxi is 1/xi, which may become very large in some
cases, leading to instability (as shown in Figure 18). This modification ensures that a global minimum of L̂τ

G(x) is an NE of a
regularization game with the utility function ûτ

i (x). Formally, since∇xi û
τ
i (x) = F τ,x

i +τxi = ∇xiui(x)−τ logxi−τxi

is concave over X i, from the analysis in Gemp et al. (2024), we have that F τ,x
i + τxi = F τ,x

i + τxi,∀i ∈ N if and only
if x is an NE of the regularization game with the utility function ûτ

i (x). Then, consider the following loss function

Lτ
1(x) =

∑
i∈N

(
2τ⟨sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1],xi⟩+ ⟨τxi, τxi⟩ − ⟨τxi, τxi⟩
)
.

Theorem H.1 (Proof is in Appendix H.1). The first-order gradients of Lτ
0(x) and Lτ

1(x) are identical.

As shown in Theorem H.1, we are surprised to find that the first-order gradient of Lτ
0(x) is the same as the first-order

gradient of Lτ
1(x). It is evident that non-convex stochastic optimization techniques commonly used in ML require only

first-order gradients as input, minimizing Lτ
0(x) is equivalent to minimizing Lτ

1(x). Moreover, Lτ
1(x) does not involve the

inner product of two estimated variables that leads to high variance compared to Lτ
0(x).

It is evident that 2τLτ
NAL(x) approximates Lτ

1(x), as the difference between them is merely the term ⟨τxi, τxi⟩ −
⟨τxi, τxi⟩. Therefore, we have that when employing commonly used non-convex stochastic optimization methods in ML,
minimizing NAL approximates the process of minimizing Lτ

0(x) while reducing high variance. In our experiments (Figure
18), the algorithm minimizing Lτ

1(x) significantly outperforms the algorithm minimizing Lτ
0(x) (in fact, we compare

the algorithm minimizing Lτ
0(x)/2τ with the one minimizing Lτ

1(x)/2τ , as the first-order gradients of Lτ
0(x)/2τ and

Lτ
1(x)/2τ are on the same scale as the first-order gradient of NAL. This ensures a consistent comparison framework). This

highlights the substantial impact of variance on convergence, as the performance of both algorithms would be consistent when
using commonly used non-convex stochastic techniques without sampling. However, under the sampled play, the algorithm
minimizing Lτ

1(x) surpasses the one minimizing Lτ
0 by a significant margin. Furthermore, the algorithm minimizing NAL

also achieves considerably better performance compared to the one minimizing Lτ
0(x), further emphasizing the critical role

of variance in convergence, given that NAL is merely an approximation of Lτ
1(x). For detailed results, refer to Appendix J.

We employ NAL instead of Lτ
1(x) in our paper because the computation of Lτ

1(x) involves ⟨τxi, τxi⟩ − ⟨τxi, τxi⟩. When
the action size of the game is large, the entire xi is unknown, and only the value xi(ai) on the sampled action ai ∈ Ai is
available. For instance, in games used for preference alignment in large language models (Munos et al., 2023; Wu et al., 2024;
Ye et al., 2024), where actions consist of all possible natural language sentences, it is evident that xi cannot be fully known.
Note that for the computation of ⟨sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1],xi⟩, due to the importance sampling, sg[F τ,x
i − ⟨F τ,x

i ,xu
i ⟩1]

is zero except for the sampled actions, thus the entire xi is not required. Our experimental results, as depicted in Figure 18,
demonstrate that the algorithm minimizing NAL exhibits nearly identical performance to the one minimizing Lτ

1(x). We
hypothesize that this is primarily because the gradient∇xi

(⟨τxi, τxi⟩ − ⟨τxi, τxi⟩) = 2τ2xi − 2τ2xi (see derivation in
Eq. (11), (12), and (13)) is relatively small compared to the value of sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1], due to the entropy term in
sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1]. See details in Appendix J.

H.1. Proof of Theorem H.1

Proof. Now, we prove that the first-order gradients of the following two loss functions are identical:

Lτ
0(x) =

∑
i∈N
∥sg[F τ,x

i ]− sg[F τ,x
i ] + τxi − τxi∥22,

Lτ
1(x) =

∑
i∈N

(2τ⟨sg[F τ,x
i − ⟨F τ,x

i ,xu
i ⟩1],xi⟩+ ⟨τxi, τxi⟩ − ⟨τxi, τxi⟩).

(8)
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Expanding the first line in Eq. (8) (Lτ
0(x)), we have

∥sg[F τ,x
i ] + τxi − sg[F τ,x

i ]− τxi∥22
= ⟨sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi⟩ − 2

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
+

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
.

(9)

Lemma H.2. (Proof is in Appendix H.2) ∀b, c ∈ Rd, we have

⟨b, c⟩ = ⟨b, c⟩ = ⟨b, c⟩,

where b =
∑d

j=1 b(j)

d 1 and c =
∑d

j=1 c(j)

d 1.

By substituting Lemma H.2 into Eq. (9) with b = c = sg[F τ,x
i ] + τxi, we have

⟨sg[F τ,x
i ] + τxi, sg[F

τ,x
i ] + τxi⟩ − 2

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
+

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
= ⟨sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi⟩ − 2

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
+

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
= ⟨sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi⟩ −

〈
sg[F τ,x

i ] + τxi, sg[F
τ,x
i ] + τxi

〉
=⟨sg[F τ,x

i ], sg[F τ,x
i ]⟩+ 2⟨sg[F τ,x

i ], τxi⟩+ ⟨τxi, τxi⟩ − ⟨sg[F τ,x
i ], sg[F τ,x

i ]⟩ − 2⟨sg[F τ,x
i ], τxi⟩ − ⟨τxi, τxi⟩.

(10)

Combining Eq. (8), (9) , and (10), we get

Lτ
0(x)=

∑
i∈N

(
⟨sg[F τ,x

i ],sg[F τ,x
i ]⟩+2⟨sg[F τ,x

i ],τxi⟩+⟨τxi,τxi⟩−⟨sg[F τ,x
i ],sg[F τ,x

i ]⟩−2⟨sg[F τ,x
i ],τxi⟩−⟨τxi,τxi⟩

)
.

Now, we present the first-order gradient of Lτ
0(x) with respect to xi(ai). Formally, we have

∇xi(ai)L
τ
0(x)

=∇xi(ai)

(∑
j∈N

⟨sg[F τ,x
j ],sg[F τ,x

j ]⟩+2⟨sg[F τ,x
j ],τxj⟩+⟨τxj ,τxj⟩−⟨sg[F τ,x

j ],sg[F τ,x
j ]⟩−2⟨sg[F τ,x

j ],τxj⟩−⟨τxj ,τxj⟩

)

=∇xi(ai)

(
2⟨sg[F τ,x

i ],τxi⟩+⟨τxi,τxi⟩−2⟨sg[F τ,x
i ],τxi⟩−⟨τxi,τxi⟩

)
=∇xi(ai)2⟨sg[F

τ,x
i ],τxi⟩+∇xi(ai)⟨τxi,τxi⟩−∇xi(ai)2⟨sg[F

τ,x
i ],τxi⟩−∇xi(ai)⟨τxi,τxi⟩

=2τsg[F τ,x
i (ai)]+2τ2xi(ai)−∇xi(ai)2|Ai|τ

∑
a′
i∈Ai

sg[F τ,x
i (a′

i)]

|Ai|

∑
a′
i∈Ai

xi(a
′
i)

|Ai|

−∇xi(ai)|Ai|τ2

∑
a′
i∈Ai

xi(a
′
i)

|Ai|

∑
a′
i∈Ai

xi(a
′
i)

|Ai|

=2τsg[F τ,x
i (ai)]+2τ2xi(ai)−2τ

∑
a′
i∈Ai

sg[F τ,x
i (a′

i)]

|Ai|
−2τ2

∑
a′
i∈Ai

xi(a
′
i)

|Ai|
,

(11)
where the last line comes from

∇xi(ai)|Ai|τ2

∑
a′
i∈Ai

xi(a
′
i)

|Ai|

∑
a′
i∈Ai

xi(a
′
i)

|Ai|
=∇xi(ai)

τ2

|Ai|
∑

a′
i∈Ai

∑
a′′∈Ai

xi(a
′
i)xi(a

′′)

=
τ2

|Ai|

∇xi(ai)xi(ai)xi(ai)+∇xi(ai)

∑
a′
i∈Ai,a′ ̸=a

2xi(ai)xi(a
′
i)


=

τ2

|Ai|

2xi(ai)+
∑

a′
i∈Ai,a

′
i ̸=ai

2xi(a
′
i)

=2τ2

∑
a′
i∈Ai

xi(a
′
i)

|Ai|
.

(12)
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Table 2. The hyperparameters of the algorithm that learns an NE via minimizing NAL.

η τ Tu α β

Kuhn Poker 0.0001 0.1 200 0.9 0.9
Goofspiel 0.0001 0.1 200 0.9 0.5

Blotto 0.0001 0.1 500 0.9 0.5
Liar’s Dice 0.0001 0.1 500 0.9 0.5

Bertrand Oligopoly 0.0001 0.1 200 0.9 0.5
Guess Two Thirds Ave 0.0001 0.1 1000 0.9 0.5

Minimum Effort 0.0001 0.1 200 0.9 0.5
Majority Voting 0.0001 0.1 200 0.9 0.5

Therefore, from Eq. (11), we get

∇xiLτ
0(x) =2τsg[F τ,x

i ] + 2τ2xi − 2τsg[F τ,x
i ]− 2τ2xi

=2τsg[F τ,x
i − F τ,x

i ] + 2τ2xi − 2τ2xi.
(13)

For Lτ
1(x) =

∑
i∈N (2τ⟨sg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1],xi⟩+ ⟨τxi, τxi⟩ − ⟨τxi, τxi⟩), obviously, we have

∇xi
Lτ
1(x) =2τsg[F τ,x

i − ⟨F τ,x
i ,xu

i ⟩1] +∇xi
(⟨τxi, τxi⟩ − ⟨τxi, τxi⟩)

=2τsg[F τ,x
i − F τ,x

i ] + 2τ2xi − 2τ2xi,
(14)

where the last line comes from the derivation of the first-order gradients of ⟨τxi, τxi⟩ and ⟨τxi, τxi⟩ in Eq. (11). By
combining Eq. (13) and (14), we complete the proof.

H.2. Proof of Lemma H.2

Proof. From the definition of ⟨b, c⟩, ⟨b, c⟩ and ⟨b, c⟩, we have

⟨b, c⟩ = ⟨
∑d

j=1 b(j)

d
1,

∑d
j=1 c(j)

d
1⟩ = d

1

d2

d∑
j=1

b(j)

d∑
j′=1

c(j′) =
1

d

d∑
j=1

b(j)

d∑
j′=1

c(j′),

⟨b, c⟩ = ⟨
∑d

j=1 b(j)

d
1, c⟩ = 1

d

d∑
j=1

b(j)

d∑
j′=1

c(j′),

⟨b, c⟩ = ⟨b,
∑d

j=1 c(j)

d
1⟩ = 1

d

d∑
j=1

b(j)

d∑
j′=1

c(j′).

Therefore, we have ⟨b, c⟩ = ⟨b, c⟩ = ⟨b, c⟩, which finishes the proof.

I. The Hyperparameters Used in Experiments
The selected hyperparameters for algorithms that minimize NAL, the loss function in Gemp et al. (2024), ADI, and NashApr,
are shown in Table 2, Table 3, Table 4, and Table 5, respectively (unless otherwise stated).

J. Additional Experimental Results
Results on differences between true and estimated values for NAL. Firstly, as previously mentioned, the difference
between true and estimated values for NAL is significantly smaller than other loss functions. To illustrate this difference
more clearly, we present a detailed graph specifically for NAL, as shown in Figure 4.
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Table 3. The hyperparameters of the algorithm that learns an NE via minimizing the loss function proposed by Gemp et al. (2024).

η τ Tu α β

Kuhn Poker 0.00001 1 500 0.9 0.5
Goofspiel 0.00001 0.1 200 0.9 0.5

Blotto 0.00001 0.1 500 0.9 0.5
Liar’s Dice 0.00001 0.1 500 0.9 0.5

Bertrand Oligopoly 0.00001 0.1 200 0.9 0.5
Guess Two Thirds Ave 0.00001 0.1 500 0.9 0.9

Minimum Effort 0.00001 0.1 200 0.9 0.9
Majority Voting 0.00001 0.1 1000 0.9 0.5

Table 4. The hyperparameters of the algorithm that learns an NE via minimizing ADI.

η τ Tu α β

Kuhn Poker 0.00001 1 500 0.9 0.5
Goofspiel 0.0001 0.1 200 0.9 0.5

Blotto 0.00001 0.1 500 0.9 0.5
Liar’s Dice 0.0001 0.1 500 0.9 0.5

Bertrand Oligopoly 0.00001 0.1 200 0.9 0.5
Guess Two Thirds Ave 0.0001 0.1 1000 0.9 0.5

Minimum Effort 0.00001 0.1 200 0.9 0.5
Majority Voting 0.00001 0.1 200 0.9 0.5

Table 5. The hyperparameters of the algorithm that learns an NE via minimizing NashApr.

η

Kuhn Poker 0.0001
Goofspiel 0.00001

Blotto 0.0001
Liar’s Dice 0.0001

Bertrand Oligopoly 0.00001
Guess Two Thirds Ave 0.0001

Minimum Effort 0.0001
Majority Voting 0.0001

Results on the value of NAL. We also present the value curves of NAL during the training process. Adam is employed
as the optimizer. The parameter τ remains constant throughout the training because, as observed, continuously shrinking
τ (as suggested in Algorithm 1) renders it excessively small, diminishing its impact. The experimental results are shown
in Figure 5. Note that the absence of biased estimates in Goofspiel is an artifact of the logarithmic scaling of the y-axis,
leading to visual distortion. In most cases, we observe that the values of NAL converge to zero, which aligns with an NE
of the regularization game. However, it is important to emphasize that since an NE in NAL is only the zero point of the
first-order gradient, the values of NAL may either exceed or fall below zero.

Results on convergence rates with different optimizers. The convergence results for RMSprop and SGD are shown in
Figures 6 and 7, respectively. RMSprop shows minimal variation in empirical convergence compared to Adam, likely due to
their similarities. In contrast, all other algorithms except ours, experience significant performance degradation with SGD.
This is likely due to the considerable difference between SGD and momentum-based optimizers like Adam and RMSprop.
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Results on convergence rates of algorithm minimizing NashApr when the optimizer is SGD with larger learning rates
in terms of epochs. We observe that the convergence performance of NashApr is poor when the optimizer is SGD. Therefore,
we also present the results when the loss function is NashApr, the optimizer is SGD, and the learning rate is increased by a
factor of 10 and 100, respectively, compared to the learning rate of NashApr shown in Appendix I. The experimental results
are illustrated in Figure 8 and Figure 9, corresponding to learning rates 10 and 100 times higher, respectively, while keeping
the learning rates for algorithms using other loss functions unchanged. We observe that algorithms using NashApr as the
loss function still perform poorly.

Results on variances and differences between true and estimated values with different optimizers. Now, we present
the results of the variance in estimating the value of loss functions and the difference between the true and estimated values
when RMSprop and SGD are used as optimizers. The variances in estimating the value of loss functions under RMSprop and
SGD are shown in Figures 10 and 11, respectively. Similar to the case when Adam is used as the optimizer, our algorithm
demonstrates the lowest variance. Additionally, the differences between the true and estimated loss values under RMSprop
and SGD are presented in Figures 12 and 13, respectively. Again, consistent with the results using Adam, our algorithm
exhibits the smallest difference.

Results on convergence rates with different numbers of sampled instances. Then, we investigate the empirical
convergence rates of our algorithm and the algorithm minimizing the loss function proposed by Gemp et al. (2024) with
varying numbers of sampled instances S per iteration, using Adam as the optimizer. We focus on these two algorithms since
they both minimize unbiased loss functions. The results are presented in Figure 14. We observe that as S increases, our
algorithm converges to a more and more accurate NE. In contrast, the algorithm minimizing the loss function proposed by
Gemp et al. (2024) learns a more and more accurate NE in Liar’s Dice, but fails to learn a more accurate NE in Kuhn Poker.
These results demonstrate that finding an NE is easier by using our algorithm due to the lower variance.

Results on sampling times with different sampling methods. We also provide a comparison of the sampling time between
our sampling method in Algorithm 1 with the sampling method used in Gemp et al. (2022) and Gemp et al. (2024), under the
same number of sampled instances S. We conduct our tests on Liar’s Dice because it has the largest number of actions for
each player among the eight games evaluated in the experiments. The results are shown in Figure 15. We observe that the
sampling time of the methods employed by Gemp et al. (2022) and Gemp et al. (2024) are at least 10,000 times greater than
that of our sampling method. Specifically, when S = 10, which corresponds to the configuration used in our experiments
(Section 5), our sampling method achieves a sampling time of approximately 0.004 seconds, while the methods from Gemp
et al. (2022) and Gemp et al. (2024) require about 1590 seconds.

Results on convergence rates with different sampling methods in terms of time. Now, we compare the convergence rates
of algorithms employing different sampling methods in terms of time. We focus on algorithms that minimize NAL or the
loss function proposed by Gemp et al. (2024), the only known unbiased loss functions. We conduct experiments on Liar’s
Dice, which has the largest number of actions (2306) among all tested games. For the algorithms employing the sampling
method outlined in Algorithm 1, we set S = 100 to learn a sufficiently accurate approximation of NE, while maintaining
all other parameters as described in Section 5. For the algorithms that adopt the sampling method utilized in Gemp et al.
(2022) and Gemp et al. (2024), We reduce T and Tu in Section 5 by a factor of 100 since the sampling time associated
with the method in Gemp et al. (2022) and Gemp et al. (2024) is excessively large. In addition, we employ two different
settings of the value of S, e.g., S = 2 and S = 100. All other settings remain unchanged from Section 5. Notably, when
employing the loss function from Gemp et al. (2024), F xθ

i also contributes to the gradient backpropagation, consistent
with the settings in the original paper by Gemp et al. (2024). The experimental results are presented in Figure 16. We
observe that both algorithms minimizing NAL exhibit a faster convergence rate than minimizing the loss function proposed
by Gemp et al. (2024). More importantly, we find that the wall times of the algorithms utilizing the sampling methods from
Gemp et al. (2022) and Gemp et al. (2024) are significantly greater than those of the algorithms employing the sampling
method in Algorithm 1. This suggests that, when addressing real-world games, the sampling method in Algorithm 1 is more
advantageous, as the action space in real-world scenarios vastly exceeds the 2306 actions present in Liar’s Dice.

Results on convergence rates of algorithms employing the sampling method used in Gemp et al. (2022) and Gemp
et al. (2024) in terms of epochs. We compare the convergence rates of the algorithms when they employ the sampling
method presented in Gemp et al. (2022) and Gemp et al. (2024) across all games, measured in terms of epochs. It is
important to note that when using the sampling method from Gemp et al. (2022) and Gemp et al. (2024), the runtime of the
algorithms is primarily determined by the sampling time. Therefore, the runtime difference between algorithms with the
same number of epochs is negligible, which implies that analyzing the convergence rates in terms of epochs is sufficient to
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reflect the convergence rates in terms of runtime. As shown in Figure 16, we focus on algorithms that minimize NAL and
the loss function proposed by Gemp et al. (2024). We reduce T and Tu in Section 5 by a factor of 100, and set S to 2 instead
of 10, as the sampling time associated with the methods in Gemp et al. (2022) and Gemp et al. (2024) is excessively large.
All other settings remain unchanged from Section 5. The experimental results are presented in Figure 17. In alignment
with the findings in Section 5, we observe that the algorithm minimizing NAL exhibits a significantly superior convergence
rate compared to the algorithm minimizing the loss function proposed by Gemp et al. (2024). More critically, in numerous
games, the latter algorithm fails to learn a sufficiently accurate NE. Conversely, the algorithm minimizing NAL successfully
learns an accurate NE in nearly all games, characterized by exploitability approaching zero.

Results on convergence rates of Lτ
0(x) and Lτ

1(x). As shown in Appendix H, it is clear that (i) the first-order gradient of
Lτ
0(x) (a variant of the loss function in Gemp et al. (2024)) is identical to that of Lτ

1(x), and (ii) NAL is an approximation
of Lτ

1(x)/2τ . We evaluate the convergence rates of algorithms minimizing Lτ
0(x)/2τ or Lτ

1(x)/2τ . Note that the term
2τ from that NAL is an approximation of Lτ

1(x)/2τ . For convenience, throughout the rest of this paper, we refer to
algorithms minimizing Lτ

0(x) (Lτ
1(x)) as those minimizing Lτ

0(x)/2τ (Lτ
1(x)/2τ ), respectively. For both algorithms, we

use the parameters that minimize NAL. The experimental results are shown in Figure 18. The algorithm minimizing Lτ
1(x)

significantly outperforms the algorithm minimizing Lτ
0(x). Since the first-order gradients of Lτ

0(x) and Lτ
1(x) are identical,

in scenarios where the entire payoff matrix is known (i.e., no sampling required), the performance of both algorithms should
be consistent when using standard non-convex stochastic methods, such as SGD. However, as shown in Figure 18, under
the sampled play, the algorithm minimizing Lτ

1(x) significantly outperforms the one minimizing Lτ
0(x), highlighting the

substantial impact of variance on convergence. The results also show that the algorithm minimizing NAL outperforms
the one minimizing Lτ

0(x) by a large margin, further demonstrating the strong influence of variance on convergence, as
NAL is merely an approximation of Lτ

1(x). Furthermore, the performance of the algorithms minimizing NAL or Lτ
1(x) is

nearly identical across all games. We hypothesize that this phenomenon arises primarily because the term∇xi
(⟨τxi, τxi⟩−

⟨τxi, τxi⟩) = 2τ2xi − 2τ2xi is relatively small in magnitude compared to the term sg[F τ,x
i − ⟨F τ,x

i ,xu
i ⟩1] due to the

influence of the entropy term embedded within sg[F τ,x
i − ⟨F τ,x

i ,xu
i ⟩1].

Results on convergence rates with different neural network structures. As mentioned in the main text, we evaluate the
performance of different algorithms across various network architectures. Specifically, we replace the Softmax function with
Sparsemax (Martins & Astudillo, 2016). The experimental results are presented in Figure 19. Our algorithm demonstrates
the fastest convergence rate. Its convergence behavior remains stable, while the convergence rates of the other algorithms
experience significant degradation. In particular, the algorithm minimizing the loss function in Gemp et al. (2024) exhibits
output instability, often producing NaN values in numerous games, which also explains why the exploitability curve of the
algorithm is incomplete in many games. This instability is likely due to excessively high variance. Moreover, the algorithms
minimizing ADI or NashApr fail to converge in all games.

Results on convergence rates of NAL with or without ⟨F τ,x
i , x̂i⟩1. As mentioned in the main text, we analyze the

convergence behavior of NAL when ⟨F τ,x
i , x̂i⟩1 is omitted. The case where NAL does not include ⟨F τ,x

i , x̂i⟩1 can also
be interpreted as x̂i = 0. In this scenario, NE is no longer a zero point of the first-order gradient of NAL, as the gradient
F τ,x
i − ⟨F τ,x

i , x̂i⟩1 does not vanish at NE. Consequently, parameter updates induce a shift in strategy. We evaluate the
performance across various values of S (S = 2, 10, 100,∞), where S = ∞ corresponds to the case without sampling.
That is, for S =∞, the variance introduced by sampling is zero. The experimental results are presented in Figure 20 and
Figure 21, corresponding to Softmax and Sparsemax activation functions, respectively, in the final network layer. Note
that the minimum value of S is 2. For S = 1, it is impossible to estimate F τ,x

i − ⟨F τ,x
i , x̂i⟩1 using Algorithm 1, as the

estimated value of F τ,x
i − ⟨F τ,x

i , x̂i⟩1 in this case will always be 0 (since rsi − vi = 0).

We observe that when the activation function is Softmax and S = ∞, using NAL with x̂i = 0 as the loss function
performs equivalently to the standard NAL. This equivalence arises because the Softmax function normalizes outputs
(i.e., for any z > 0, it produces z/sum(z), constrained within the simplex), leading to identical parameter updates under
F τ,x
i − ⟨F τ,x

i , x̂i⟩1 and F τ,x
i . However, when S < ∞, using NAL with x̂i = 0 introduces higher variance compared

to the standard NAL, resulting in degraded performance. This is further evidenced by the increasing performance gap
between using F τ,x

i − ⟨F τ,x
i , x̂i⟩1 and F τ,x

i as S decreases. For Sparsemax activation, the standard NAL significantly
outperforms NAL with x̂i = 0. Notably, we do not observe convergence for NAL with x̂i = 0 under Sparsemax. This
observation suggests that the convergence of NAL with x̂i = 0 when using the Softmax activation is likely a consequence
of the identical parameter updates induced by F τ,x

i − ⟨F τ,x
i , x̂i⟩1 and F τ,x

i .
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Figure 4. Difference between the true value and the estimated value of NAL when the optimizer is Adam.
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Figure 5. Value curves of NAL during the training. The optimizer is Adam. The parameter τ = 0.1 (from the hyperparameters in Table 2)
remains constant. Note that the absence of biased estimates in Goofspiel is an artifact of the logarithmic scaling of the y-axis, leading to a
visual distortion.

Results on convergence rates of NAL with different values of ϵ. To enhance the robustness of our results, we conduct
experiments with various ϵ values (0, 0.1, 0.5, and 0.9), as illustrated in Figure 22. Our algorithm consistently surpasses the
performance of baselines at all tested ϵ values. This consistency further confirms that the variance reduction facilitated by
our loss function contributes to an accelerated convergence rate.

Results on convergence rates when the strategy is represented using a real vector. As highlighted in Appendix B, we
utilize a DNN due to its ability to approximate arbitrary non-linear functions. This capability allows for the identification of
complex equilibrium strategies that simpler representations, such as real vectors, may fail to capture. In Figure 23, the results
are displayed with the strategy represented by a real vector. Although all algorithms show varying levels of performance
degradation, our algorithm consistently outperforms the others.
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Figure 6. Empirical convergence rates of tested algorithms when the optimizer is RMSprop.
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Figure 7. Empirical convergence rates of tested algorithms when the optimizer is SGD.
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Figure 8. Empirical convergence rates of tested algorithms when the optimizer is SGD with 10 times larger learning rate for NashApr.
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Figure 9. Empirical convergence rates of tested algorithms when the optimizer is SGD with 100 times larger learning rate for NashApr.
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Figure 10. Variances observed in estimating the value of loss functions used by different algorithms when the optimizer is RMSprop.
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Figure 11. Variances observed in estimating the value of loss functions used by different algorithms when the optimizer is SGD.
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Figure 12. Difference between the true value and the estimated value of loss functions when the optimizer is RMSprop.
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Figure 13. Difference between the true value and the estimated value of loss functions when the optimizer is SGD.
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Figure 14. Empirical convergence rates of our algorithm, as well as the algorithm proposed by Gemp et al. (2024), with varying numbers
of sampled instances S at per iteration, are evaluated when the optimizer is Adam.

100 101 102 103

S

10 2

100

102

104

sa
m

pl
in

g 
tim

e 
(s

ec
on

ds
)

ours Gemp et al.

Figure 15. Comparison of the sampling times of our sampling method, shown in Algorithm 1, with the sampling method used in Gemp
et al. (2022) and Gemp et al. (2024) for various values of the number S of the sampled instance in Liar’s Dice. We conduct our tests on
Liar’s Dice because it has the largest number of actions for each player among the eight games evaluated in the experiments. For each S,
we run four seeds and report the average sampling times.
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Figure 16. Empirical convergence rates of the algorithms utilizing various sampling methods in Liar’s Dice. The x-axis represents the
wall time. For algorithms that employ the sampling method outlined in Algorithm 1, the parameter S is set to 100 to ensure the learning
of a sufficiently accurate NE. For algorithms that employ the sampling method used in Gemp et al. (2022) and Gemp et al. (2024), we
reduce the T and Tu in Section 5 by a factor of 100, as the sampling method used in Gemp et al. (2022) and Gemp et al. (2024) results in
excessively higher sampling times for each instance than that of the sampling method in Algorithm 1, which is used in Section 5. The
remaining hyperparameters for each algorithms remain consistent with those used in Section 5. The graph on the right is a scaled version
of the one on the left.
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Figure 17. Empirical convergence rates of the algorithms that employ the sampling method used in Gemp et al. (2022) and Gemp et al.
(2024). We reduce the T and Tu in Section 5 by a factor of 100, and set S as 2 rather than 10 in Section 5. The remaining hyperparameters
remain consistent with those used in Section 5.
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Figure 18. Empirical convergence rates of the algorithms that minimizeLτ
0(x) orLτ

1(x) when the optimizer is Adam. All hyperparameters
remain consistent with those used in Section 5.
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Figure 19. Empirical convergence rates of the algorithms when the Softmax function is replaced by Sparsemax. All hyperparameters
remain consistent with those used in Section 5. The incompleteness of the exploitability curve of the algorithm is incomplete is due to that
the network will output NaN value.

34



Reducing Variance of Stochastic Optimization for Approximating Nash Equilibria in Normal-Form Games

0 2500 5000 7500 10000
0.0

0.1

0.2

0.3

0.4

du
al

ity
 g

ap

Kuhn Poker

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

Goofspiel

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8 Blotto

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Liar's Dice

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

du
al

ity
 g

ap

Bertrand Oligopoly

0 2500 5000 7500 10000
iterations

0.0

0.5

1.0

1.5

2.0

2.5 Guess Two Thirds Ave

0 2500 5000 7500 10000
iterations

0.00

0.25

0.50

0.75

1.00

Minimum Effort

0 2500 5000 7500 10000
iterations

0.0

0.5

1.0

1.5

Majority Voting

Ours (S=2) Ours with xi = 0 (S=2)

0 2500 5000 7500 10000
0.0

0.1

0.2

0.3

0.4

du
al

ity
 g

ap

Kuhn Poker

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Goofspiel

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8 Blotto

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Liar's Dice

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

du
al

ity
 g

ap

Bertrand Oligopoly

0 2500 5000 7500 10000
iterations

0.0

0.5

1.0

1.5

2.0

2.5 Guess Two Thirds Ave

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

0.8

Minimum Effort

0 2500 5000 7500 10000
iterations

0.00

0.25

0.50

0.75

1.00

1.25
Majority Voting

Ours (S=10) Ours with xi = 0 (S=10)

0 2500 5000 7500 10000
0.0

0.1

0.2

0.3

0.4

du
al

ity
 g

ap

Kuhn Poker

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Goofspiel

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8 Blotto

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Liar's Dice

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

du
al

ity
 g

ap

Bertrand Oligopoly

0 2500 5000 7500 10000
iterations

0.0

0.5

1.0

1.5

2.0

2.5 Guess Two Thirds Ave

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

0.8

Minimum Effort

0 2500 5000 7500 10000
iterations

0.00

0.25

0.50

0.75

1.00

Majority Voting

Ours (S=100) Ours with xi = 0 (S=100)

0 2500 5000 7500 10000
0.0

0.1

0.2

0.3

0.4

du
al

ity
 g

ap

Kuhn Poker

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Goofspiel

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8 Blotto

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

Liar's Dice

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

du
al

ity
 g

ap

Bertrand Oligopoly

0 2500 5000 7500 10000
iterations

0.0

0.5

1.0

1.5

2.0

2.5 Guess Two Thirds Ave

0 2500 5000 7500 10000
iterations

0.0

0.2

0.4

0.6

0.8

Minimum Effort

0 2500 5000 7500 10000
iterations

0.00

0.25

0.50

0.75

1.00

Majority Voting

Ours (S= ) Ours with xi = 0 (S= )

Figure 20. Empirical convergence rates of the algorithms that minimize NAL and NAL with x̂i = 0, respectively, when the optimizer is
Adam. The notation S =∞ denotes the scenario where sampling is not used.
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Figure 21. Empirical convergence rates of the algorithms that minimize NAL and NAL with x̂i = 0, respectively, when the optimizer is
Adam and the activation function of the final layer is Sparsemax. The notation S =∞ denotes the scenario where sampling is not used.
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Figure 22. Empirical convergence rates of the algorithms that minimize NAL with various ϵ values. From top to bottom, ϵ takes values of
0, 0.1, 0.5, and 0.9.
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Figure 23. Empirical convergence rates of tested algorithms when the strategy is represented by a real vector rather than a DNN.
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