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ABSTRACT

This work aims to generate long-duration audio while preserving acoustic co-
herence, utilizing existing text-conditional audio generation models through
diffusion-based approaches. Current diffusion models, however, encounter signif-
icant challenges in generating long audio sequences due to memory constraints,
as output size scales with input length. While one possible solution is to con-
catenate short clips, this often leads to inconsistencies due to a lack of shared
temporal information across segments. To address these challenges, we propose
InfiniteAudio, a novel inference technique designed to generate long audio with
consistent acoustic attributes. Our method is based on three key components.
First, we implement a curved denoising approach with a fixed-size input, enabling
theoretically infinite audio generation while maintaining a constant memory foot-
print. Second, we introduce conditional guidance alternation, a mechanism that
enhances intelligibility in long speech generation. Finally, initial self-attention
features are shared across future frames to maintain temporal coherence. The ef-
fectiveness of InfiniteAudio is demonstrated through comprehensive comparisons
with existing text-to-audio generation baselines. Generated audio samples are
available on our anonymous project page1.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020b) have received considerable attention across
various domains due to their ability to generate high-quality, diverse outputs. They have demon-
strated impressive results in tasks including image generation (Dhariwal & Nichol, 2021; Rombach
et al., 2022), video generation (Ho et al., 2022; Singer et al., 2022; Wang et al., 2023), and text-to-
audio (TTA) generation (Liu et al., 2023; Huang et al., 2023; Lee et al., 2024; Liu et al., 2024). TTA
models generate audio from text description prompts and typically utilize generative frameworks
such as latent diffusion models (Rombach et al., 2022) as illustrated in Fig. 1(a) or flow matching
models (Vyas et al., 2023). Recently, VoiceLDM (Lee et al., 2024) has advanced this capability by
generating both speech and background audio simultaneously, as shown in Fig. 1(b). The generated
speech not only reflects the background description prompt but also adapts to the content prompt.
For example, when prompted with ”Hello” in a cathedral setting, the speech will naturally include
reverberation to match the environment.

Despite these advancements, existing TTA generation models based on diffusion approaches face
significant challenges when generating longer audio sequences. To extend the output size during
inference, the input size must also be increased, given that diffusion models require the input and
output dimensions to remain unchanged. Moreover, these models struggle to manage long text
conditions when producing extended speech. While long audio can be generated by concatenating
short clips created by existing TTA models, ensuring a smooth and continuous audio stream remains
challenging due to the lack of temporal consistency between inter-clip segments.

To address these challenges, we introduce InfiniteAudio, a novel inference method for generating
long and consistent audio. InfiniteAudio generates extended audio by utilizing a fixed input size
with progressively increasing noise levels over time. As shown in Fig. 2, at each inference step, the
fully denoised audio segment at the beginning of the input is removed, while a new random noise

1https://anonymousforcf.github.io/InfiniteAudio/
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Figure 1: Overview of tasks. (a) InfiniteAudio enables the generation of longer audio using a pre-
trained text-to-audio model, overcoming the memory limitations faced by existing models. (b) For
simultaneous audio and speech generation, InfiniteAudio can generate long speech that accurately
reflects the audio description prompt.

Table 1: Comparison of existing diffusion inference methods with our approach. Our method gen-
erates longer audio with a fixed memory size.

Methods Memory requirements Long generation Varying timesteps

Diffusion Various Limited ✗
FIFO-Diffusion (Kim et al., 2024) Small capable ✓
InfiniteAudio Very small capable ✓

latent is added at the end. In this manner, InfiniteAudio can theoretically generate infinite audio
frames using a fixed input size, effectively mitigating memory constraints.

While FIFO-Diffusion (Kim et al., 2024), which is designed for text-to-video (TTV) generation,
also employs a fixed input size, it utilizes all diffusion sampling steps. In contrast, as illustrated
in Fig. 2, our method chooses the more important steps rather than using the entire steps. This
selective approach, which we refer to as curved denoising, reduces the number of required sampling
steps while attaining high-quality generation, resulting in more efficient inference. Tab. 1 presents a
comparison of traditional diffusion inference methods, FIFO-Diffusion, and our proposed approach.

Additionally, InfiniteAudio addresses the challenge of generating long audio sequences from ex-
tended text inputs by segmenting the text and applying a guidance alternation technique. By dividing
long text prompts into smaller segments, we reduce memory overhead. However, when processing
consecutive prompts, the generated audio can be affected by preceding segments, leading to reduced
intelligibility. To resolve this, we propose a guidance alternation strategy that switches between con-
ditional and unconditional guidance when processing following text inputs. This approach preserves
the clarity of long speech while minimizing interference between segments.

While this method effectively handles extended speech, generating audio from multiple distinct
prompts within a single clip can disrupt coherence, as the prompts often lack the specificity required
to retain consistent speaker characteristics. To mitigate this issue, we share a query, key, and value
(QKV) features within the self-attention layers of the diffusion model. Propagating the initial QKV
features across successive segments ensures uniform speaker attributes and continuity, preserving
vocal consistency and maintaining intelligibility of both background audio and speech, even with
varying text inputs. Our experiments demonstrate that InfiniteAudio can generate extremely long
and coherent audio without any degradation in quality over time. Further details are provided in
Sec 4.

Our contributions can be summarized as follows.

• We propose InfiniteAudio, a method for generating long-duration audio without additional
training, addressing memory limitations in existing TTA models using diffusion techniques.

• We introduce curved denoising, which selectively applies key diffusion steps, improving
efficiency.

• We suggest a conditional guidance alternation mechanism to support multiple speech con-
ditions within a single audio stream, maintaining intelligibility.

• We implement QKV sharing in self-attention, ensuring consistent speech generation.
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Figure 2: Overall pipeline for the existing method and our method. Traditional diffusion models
apply the same diffusion timestep across inputs during inference. Our method starts with a latent
containing varying timesteps and skips unimportant timesteps for P multiple big steps. For every
inference step, an audio frame reaching τ = 1 is popped out and an audio frame with noise is
inserted to maintain a same input size. This method theoretically allows infinite audio generation
with constant memory usage, producing one audio frame per step.

2 RELATED WORKS

2.1 TEXT TO AUDIO AND SPEECH GENERATION

TTA generation (Liu et al., 2023; Kreuk et al., 2022; Yang et al., 2023) has attracted considerable
attention in recent years, driven by advancements in generative modeling techniques (Ho et al.,
2020; Song et al., 2020b). Several works (Liu et al., 2023; Ghosal et al., 2023; Yang et al., 2023)
use the latent diffusion model (LDM) (Rombach et al., 2022) to generate audio, mitigating the
large computational costs of the original diffusion process. In the diffusion-based TTA models,
contrastive language audio pretraining (CLAP) (Wu et al., 2023) is utilized in many models (Liu
et al., 2023; Huang et al., 2023; Yuan et al., 2024), in order to align language and audio embeddings.
Additionally, large language models (LLMs) are exploited due to their strong text understanding
capabilities (Ghosal et al., 2023; Liu et al., 2024).

Besides TTA, text-to-speech (TTS) generation is also an active area of research, with early models
using autoregressive (AR) models (Wang et al., 2017; Oord et al., 2016). To address the issue of
slow inference speed that arises in AR models, researchers have introduced non-AR models (Ren
et al., 2019; Kim et al., 2020) that offer improved performance compared to AR models. Using the
diffusion model, Grad-TTS (Popov et al., 2021) produces high-quality speech with a score-based
decoder. Furthermore, several works have addressed environment-related speech generation. For
example, VoiceLDM (Lee et al., 2024) introduces an efficient model that generates audio closely
aligned with both descriptive and content prompts. Audiobox (Vyas et al., 2023), a unified model
based on flow matching, can produce audio that contains various audio conditions, such as non-
verbal sounds (e.g., coughing, screaming) or acoustic environments (e.g., rural, stadium, indoor).
While these environment-related speech generation models produce high-quality results, they strug-
gle to generate long outputs that containing multiple sentences simultaneously.

2.2 LONG GENERATION USING DIFFUSION MODELS

Producing large-scale output with diffusion models is challenging due to the high computational
costs and memory footprints. For image generation, Multi-Diffusion (Bar-Tal et al., 2023) and
SyncDiffusion (Lee et al., 2023) use several windows to generate images with arbitrary aspect ra-
tios but focus on smoothing the overlap regions of windows, falling short of solving the repetition
problem. Scalecrafter (He et al., 2023) dynamically increases the receptive field and succeeds in
generating ultra-high-resolution images up to 4096× 4096.
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In addition to image generation, research into long video generation has become increasingly active.
Many AR models (He et al., 2022; Voleti et al., 2022; Harvey et al., 2022; Chen et al., 2023) can
generate long videos, but due to error accumulation and a lack of temporal consistency between the
frames, there are quality issues. FreeNoise (Qiu et al., 2023) addresses this issue with a window-
based function but cannot generate infinitely long videos as it requires memory proportional to the
output length. FIFO-Diffusion (Kim et al., 2024) can produce infinitely long videos with a fixed
amount of memory by conducting diagonal diffusion across different timesteps.

In the audio domain, residual vector quantization (RVQ) is widely used to generate audio faster and
more efficiently (Défossez et al., 2022; Zeghidour et al., 2021). SoundStorm (Borsos et al., 2023b),
which combines RVQ with AudioLM (Borsos et al., 2023a), efficiently generates audio sequences
up to 30 seconds long, a relatively extended length. To generate longer audio, (Evans et al., 2024a)
tackles this issue by leveraging LDMs, resulting in output up to 95 seconds long. Moreover, (Evans
et al., 2024b) leverage the diffusion transformer(DiT) to generate even longer audio, stretching up
to 4m 45s. However, these approaches (Evans et al., 2024a;b) require additional training on datasets
that match the desired output length. Our method does not require any additional training to generate
audio of theoretically infinite length.

3 TEXT-TO-AUDIO DIFFUSION MODELS

We briefly summarize the outline of existing text-to-audio generation models, focusing on two rep-
resentative models: AudioLDM (Liu et al., 2023) and VoiceLDM (Lee et al., 2024). TTA models
produce audio based on given text prompts and deal with audio as an image since audio can be
represented as a 2D mel-spectrogram consisting of time and frequency axes.

Many TTA models commonly include the following modules: audio and text encoders, an audio
decoder and vocoder, and a latent diffusion model. Through these modules, TTA models can learn
the distribution of mel-spectrograms corresponding to a text prompt y. For the audio faudio(·) and
text encoder ftext(·), many models (Liu et al., 2023; Lee et al., 2024; Huang et al., 2023) leverage
a contrastive language-audio pretraining (CLAP) encoder, which is trained to align text and audio
modalities (Wu et al., 2023). These encoders encode a start latent and conditions that are exploited
in the latent space, while the decoder reconstructs the mel-spectrogram denoted by a ∈ RT×F

from the latent z1 ∈ RC×T
r ×F

r , where T represents the time dimension, F denotes the frequency
dimension, C refers to the channel dimension, τ ∼ U([1, ...,M ]) is the diffusion timestep, and r
is the compression factor. The vocoder produces a waveform from the predicted mel-spectrogram.
The LDM is trained to denoise a perturbed version of the latent from zτ to z1.

For noise ϵ ∼ N (0, I) and the text condition c = ftext(y), AudioLDM is trained to minimize the
following loss:

LAudioLDM = Ez0,ϵ,τ

[
∥ϵ− ϵθ(zτ , τ, c)∥22

]
. (1)

, where ϵθ is the predicted diffusion score. Unlike AudioLDM, VoiceLDM generates not only
general audio but also produces clean speech and speech that reflects background sounds. Therefore,
the model uses two text prompts: a description prompt cdesc and a content prompt ccont. Similar
to AudioLDM, VoiceLDM uses a CLAP encoder and latent diffusion model architectures. The
objective for VoiceLDM is as follows:

LV oiceLDM = Ez0,ϵ,τ

[
∥ϵ− ϵθ(zτ , τ, cdesc, ccont)∥22

]
. (2)

The model uses dual classifier-free guidance (Ho & Salimans, 2022) to control audio description
prompt and a text content prompt. Therefore, the diffusion score ϵ̃ is formulated as follows:

ϵ̃θ (zτ , cdesc, ccont) = ϵθ (zτ , cdesc, ccont)

+ wdesc (ϵθ (zτ , cdesc, ∅cont)− ϵθ (zτ , ∅desc, ∅cont))
+ wcont (ϵθ (zτ , ∅desc, ccont)− ϵθ (zτ , ∅desc, ∅cont)) (3)

where w is the guidance weight and ∅ indicates the null condition.

4 INFINITEAUDIO

In this section, we describe how to generate infinite-length audio with a fixed memory footprint
using pretrained TTA models. Additionally, we introduce a method for generating longer, consis-
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tent speech. We explore two representative TTA models, AudioLDM and VoiceLDM, and suggest
suitable inference techniques respectively.

4.1 CURVED DENOISING WITH REDUCED SAMPLING STEPS

Because diffusion models are trained to estimate the noise in the input, both the input and output
must have the same size. This inherent property increases memory demands, as generating longer
audio requires longer inputs. For instance, on a single GPU with 12GB of memory, AudioLDM is
limited to generating audio no longer than 22.5 seconds.

To overcome memory limitations, we propose InfiniteAudio, which operates with a fixed input
size but can theoretically generate infinite-length audio. Inspired by FIFO-Diffusion (Kim et al.,
2024), which addresses text-to-video generation, we initiate the diffusion inference process with a
fixed-length audio segment using a small portion of the output predicted by existing TTA models.
Although mel-spectrograms, which consist of time and frequency axes, can be treated as images,
audio generation tasks must handle temporal information, similar to video generation. Therefore,
we treat the input latent zτ ∈ RC×T

r ×F
r as containing T

r audio frames, analogous to video frames.
Each encoded mel-spectrogram frame corresponds to zi1 ∈ RC×1×F

r , where i ∈ [1, T
r ].

For infinite audio generation, noise is progressively added to the input audio frames over time, ex-
cept for the initial frames, which act as a ’buffer zone’ with no added noise. Since no further training
occurs in InfiniteAudio, using different diffusion timesteps during inference can produce a perfor-
mance gap. The buffer zone mitigates this by applying the same timesteps as during training, helping
to reduce the performance gap. Beyond the buffer zone, the latent frames gradually transition: the
earlier frames are almost fully predicted, whereas the T

r -th frame is treated as Gaussian noise. The
input to the inference stage consists of the initial buffer frames and T

r frames with varying noise
levels. As represented in Fig. 2 (b), after each inference step, the first frame following the buffer
zone reaches diffusion timestep τ = 1 and is then removed. To maintain a total of T

r frames, we
insert a new noisy frame at the T

r -th position. By repeating this process iteratively, we can generate
N frames in N inference steps. To effectively tackle memory limitation issues, InfiniteAudio keeps
the input size constant during inference, regardless of the desired output length. However, employ-
ing the full set of diffusion timesteps still necessitates long input sequences. To mitigate this issue,
InfiniteAudio reduces input size by selecting only the most critical diffusion steps. By leveraging
deterministic denoising (Song et al., 2020a), existing models perform inference without requiring all
timesteps. Additionally, we found that we can further reduce the number of timesteps by skipping
unimportant steps while still preserving sample quality.

AudioLDM
Key

VoiceLDM
Key

Q
ue

ry

Q
ue

ry

Buffer 
Zone

Buffer 
Zone

Figure 3: Attention maps denoting the importance
of timesteps in the input sequences. In Audi-
oLDM, the query in the last sequence segment fo-
cuses on the initial portions of the audio. In con-
trast, VoiceLDM demonstrates a stronger correla-
tion with the later segments in its final query.

We first identify the most important timesteps
of the three segments, initial, middle, and fi-
nal, during inference for both AudioLDM and
VoiceLDM. Since the attention scores for both
models reflect the relevance of one frame (Key)
to another frame (Query), we analyze the self-
attention maps in the diffusion U-Net decoder
modules.

As shown in Fig. 3, in AudioLDM, the query
sequences are primarily influenced by the ini-
tial key sequences, which correspond to ear-
lier frames or cleaner inputs. In contrast,
VoiceLDM behaves differently: the query se-
quences are more influenced by later key se-
quences, which correspond to noisier inputs.
Since some initial frames lie within a buffer zone, we focus on regions beyond this zone.

Consequently, we allocate more timesteps to critical regions with high attention scores and skip
less crucial timesteps, significantly reducing the overall number of inference steps and input size.
This strategy, dubbed as curved denosing, enables us to achieve similar output quality with fewer
computations compared to the traditional method, which uses N timesteps for N frames.
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Splitting Long Contents 

Figure 4: Illustration of guidance alternation method. Long sentence token ccont is divided into
several sentence tokens such as ccont1, ccont2, and so on. We apply existing conditional guidance to
odd-numbered sentence prompts and switch to unconditional guidance for even-numbered sentence
prompts. This alternation helps reduce the influence of one segment on the generation of the next,
improving overall coherence in the generated audio.

4.2 LONG SPEECH GENERATION

In addition to generating long sounds, it is essential to generate extended speech. However, gen-
erating long speech with LDM by encoding a long content prompt at once with a text encoder is
challenging due to memory limitations. To overcome memory limitation, we first split the long
content prompt ccont into smaller, manageable sentence segments: ccont1, ccont2, ..., ccontk. Each
segment is then applied to its corresponding audio section.

After generating the first sentence segment, the model faces challenges in immediately processing
the next sentence prompt due to differing diffusion timesteps in the input. The part of latent which
is in its final timesteps becomes confused when it receives a new sentence prompt, as it has already
processed using the previous sentence prompt. Therefore, we need to eliminate the residual effects
from the previous sentence before generating the next one. As shown in Fig. 4, rather than simply
sequencing the sentence segments ccont2, ..., ccontk, which causes interference between sentences,
we devise a novel guidance alternation method.

Considering the guidance scale in Eq. 3, we utilize existing guidance differently depending on the
sentence prompts are odd-numbered or even-numbered prompts denoted in Eq. 4 and 5 , respectively.

ϵ̃θ (zτ , cdesc, ccont) = ϵθ (zτ , cdesc, ccont)

+ wdesc (ϵθ (zτ , cdesc, ∅cont)− ϵevenθ (zτ , ∅desc, ∅cont))
+ wcont

(
ϵoddθ (zτ , ∅desc, ccont)− ϵevenθ (zτ , ∅desc, ∅cont)

)
(4)

ϵ̃θ (zτ , cdesc, ccont) = ϵθ (zτ , cdesc, ccont)

+ wdesc

(
ϵθ (zτ , cdesc, ∅cont)− ϵoddθ (zτ , ∅desc, ∅cont)

)
− wcont

(
ϵoddθ (zτ , ∅desc, ∅cont)− ϵevenθ (zτ , ∅desc, ccont)

)
(5)

For even-numbered sentence prompts, such as ccont2, ccont4, ccont6, we switch from conditional
guidance to unconditional guidance to mitigate the influence of the previous sentence. Specifically,
we treat existing unconditional guidance as conditional guidance and vice versa for odd-numbered
prompts. The red-highlighted sections indicate the existing conditional guidance, while the green-
highlighted sections represent the alternated conditional guidance. This approach helps ensure that
sentences are generated accurately and completely. Furthermore, to balance the guidance alternation
method, we apply a negative sign to the guidance weights, wcont. As a result, we no longer need to
input the entire sentence prompt, which significantly reduces memory and computational demands
while enhancing speech intelligibility.

4.3 CONSISTENT SPEECH GENERATION

While long speech generation can be efficiently achieved by separating sentences and employing
the guidance alternation method, it is essential to maintain consistent speaker attributes throughout
the generation process. Splitting long sentences into multiple tokens can lead to inconsistencies,
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such as fluctuations between male and female voices. To address this issue, we propose sharing
query, key, and value (QKV) features within the self-attention layers of the U-Net architecture in
the diffusion model, as demonstrated in Fig. 5. In video editing and image translation research,
self-attention layers in the diffusion model are critical as they can determine the overall structure of
the image (Tumanyan et al., 2023; Ceylan et al., 2023). Query, key, or value pairs of the previous
image are used for the next image generation to maintain the overall image concept.

Q K V

Initial 𝑻	frames
generation

Following Sentence 
generation

…

Q K V

𝐜!"#$% 𝐜!"#$& 𝐜!"#$'𝐜!"#$% 𝐜!"#$& 𝐜!"#$'

…

Figure 5: To maintain a speaker characteristic,
QKV paris in initial T audio frames are uti-
lized. For following sentence generation, the
model loads the QKV pairs for speech consis-
tency.

Unlike previous works that focus on maintain-
ing consistency within a single image by uti-
lizing a single image (Tumanyan et al., 2023;
Ceylan et al., 2023), we aim for long-term con-
sistency by sharing the QKV pairs from the ini-
tial speech throughout the generation of subse-
quent sentences in the U-Net upsampling lay-
ers. We retain a series of QKV features for the
initial T audio frames and utilize them during
the generation of later sentences. We empir-
ically demonstrate a method for selecting the
appropriate QKV pairs and determining the op-
timal number of frames to share.

5 EXPERIMENT

We present generated long audio using InfiniteAudio, built on pretrained AudioLDM and VoiceLDM
models, and evaluate them quantitatively and qualitatively. Furthermore, we perform ablation stud-
ies on Sec. 4. For more audio samples and additional ablation studies, see App. B and D .

5.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate our method on TTA generation, we randomly selected 500 audio-text pairs
from the 975 test files in the Audiocaps dataset (Kim et al., 2019), which is commonly used for eval-
uating existing TTA models. For text-to-long-speech (TTLS) generation, we constructed a test set
from the English subset of the CommonVoice 13.0 corpus (Ardila et al., 2019), randomly selecting
60 text samples, each consisting of more than five sentences, to assess long-form speech generation.
For TTAS, which involves generating both audio and speech, we used 60 randomly selected text
sets from the CommonVoice 13.0 corpus (Ardila et al., 2019). The test set for audio description was
sourced from the Audiocaps test set (Kim et al., 2019), specifically focusing on samples from the
”speech” category, such as those involving ”talking” or ”speaking.”

Baselines. For comparison, we evaluate the performance of InfiniteAudio against two publicly
available TTA models: AudioLDM2 and VoiceLDM3. Notably, VoiceLDM is currently the only
available model capable of generating both audio and speech simultaneously, making it the sole
candidate for our TTLS and TTAS experiments.

Evaluation Metrics. We employ several quantitative metrics to evaluate the audio quality and the
alignment between the input text prompt and the generated audio. These metrics include Frechet
Distance (FD), Kullback-Leibler (KL) divergence, and the CLAP score, which are standard in text-
to-audio generation evaluations (Liu et al., 2023; Lee et al., 2024; Vyas et al., 2023). FD and KL
divergence quantify how closely the generated audio matches the ground truth, with lower values
indicating better performance. The CLAP score, in contrast, assesses the relevance between the text
prompts and the generated audio, where higher values are preferable. For subjective evaluation of
the audio produced by TTA models, we use two metrics: (i) overall quality (OVL) and (ii) relevance
to the input text description (REL). Both were rated on a scale of 1 to 5 by 20 domain experts, based
on 30 speech samples. Further details on the human evaluation process are available in App. C.3.

2https://github.com/haoheliu/AudioLDM
3https://github.com/glory20h/VoiceLDM
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Table 2: Quantitative evaluations on TTA. Our method for both models achieves comparable results,
even surpassing original inference results.

Method CLAP↑ FD↓ KL↓ OVL↑ REL↑

Ground Truth 0.5276 NA NA 4.11±0.22 4.03±0.25

AudioLDM (Liu et al., 2023) 0.4908 44.6689 2.0805 3.03±0.23 3.06±0.21
InfiniteAudio w/ Equally spaced timesteps 0.3832 54.7479 2.4013 2.19±0.21 2.33±0.23
InfiniteAudio w/ Middle focused timesteps 0.3979 56.7792 2.6077 2.06±0.19 2.18±0.20
InfiniteAudio w/ Last focused timesteps 0.4559 43.3788 1.9650 2.63±0.18 2.80±0.21
InfiniteAudio w/ Initial focused timesteps 0.3110 67.0704 2.9838 2.13±0.19 2.07±0.20

VoiceLDM (Lee et al., 2024) 0.4199 51.4019 2.2749 2.53±0.24 2.41±0.21
InfiniteAudio w/ Equally spaced timesteps 0.3729 59.1521 2.4477 2.20±0.21 2.33±0.22
InfiniteAudio w/ Middle focused timesteps 0.3779 56.7321 2.4622 2.10±0.20 2.41±0.22
InfiniteAudio w/ Last focused timesteps 0.3542 64.8813 2.6227 2.38±0.23 2.24±0.21
InfiniteAudio w/ Initial focused timesteps 0.4107 51.5047 2.3498 2.38±0.23 2.48±0.21

To assess speech intelligibility, we measure word error rate (WER) and character error rate (CER)
using the Whisper automatic speech recognition (ASR) model (Radford et al., 2023), where lower
scores indicate better intelligibility.

To evaluate voice consistency within a single audio sample, we utilize the Resemblyzer Python pack-
age4, which is commonly employed for extracting speaker embeddings, alongside the VoxCeleb-
disentangler model (Nam et al., 2024), which offers a high-level representation of speakers. We
calculate the cosine similarity score Csim based on the first 10 seconds of the speaker embedding
G(a:10), where G represents the speaker verification model used in the aforementioned methods.
Additionally, we assess 5-second segments of the embedding, G(a5+5h:10+5h), where h = 1, 2, 3,
and 4. This score Csim quantifies the similarity between two vectors in an inner product space.

5.2 QUANTITATIVE RESULTS

Figure 6: Comparisons on memory consumption
between AudioLDM (Liu et al., 2023) and our
method.

Memory Consumptions. We compare the
memory consumption of the existing TTA mod-
els with our method. Since VoiceLDM re-
stricts generation to 10 seconds, we conduct our
experiments using AudioLDM. AudioLDM’s
memory usage increases as the length of the
generated audio grows. In contrast, our method
maintains consistent memory usage, regardless
of the desired audio length, as demonstrated in
Fig. 6. Consequently, our method allows for
generating longer audio content without signif-
icant performance degradation.

Generation Evaluations. We demonstrate the effectiveness of curved denoising strategy in Tab. 2.
While our framework is designed to generate long audio with fixed memory based on a pre-trained
model, it not only matches the performance of existing models but also achieves higher scores. We
demonstrate that our approach considering input attention relations represented in Fig. 3 achieves su-
perior performance compared to the equally spaced timesteps that are used in FIFO-Diffusion (Kim
et al., 2024) or other strategies with the same steps.

Since VoiceLDM generates long speech in 10-second segments, it exhibits a significantly higher
WER than InfiniteAudio, as demonstrated in Tab. 3. In contrast, InfiniteAudio’s alternating guid-
ance strategy further reduces both WER and CER, enhancing sentence intelligibility by mitigating
interference between sentences in text-to-long speech (TTLS) generation. For TTAS evaluation,
our method delivers superior performance over existing approaches, particularly in WER and CER
scores, with only a slight reduction in the CLAP score. As there is no ground truth for generating
both audio and speech simultaneously, we focus our evaluation on WER, CER, and CLAP scores.

4https://github.com/resemble-ai/Resemblyzer
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Table 3: Evaluation on TTS and TTAS. Guidance alternation and QKV sharing method can further
decreases WER, which contribute to speech intelligibility.

Task Method WER↓ CER↓ CLAP↑

TTLS

VoiceLDM 0.5363 0.4595

NA
w/ InfiniteAudio 0.5810 0.5119
w/ InfiniteAudio and Guidance alternation 0.3376 0.2635
w/ InfiniteAudio, Guidance alternation and QKV sharing 0.3038 0.2368

TTAS

VoiceLDM 0.8038 0.6070 0.1252
w/ InfiniteAudio 0.4604 0.3492 0.0988
w/ InfiniteAudio and Guidance alternation 0.3863 0.2825 0.1200
w/ InfiniteAudio, Guidance alternation and QKV sharing 0.3824 0.2888 0.0877

Table 4: Speaker consistency evaluation across different time regions. Ch
sim represents the cosine

similarity score between the first 10 seconds of speech and the subsequent 5 seconds. With QKV
sharing, the speaker embeddings remain consistent throughout the entire duration.

Resemblyzer VoxCeleb-disentangler (Nam et al., 2024)
Task Method

C1
sim ↑ C2

sim ↑ C3
sim ↑ C4

sim ↑ C1
sim ↑ C2

sim ↑ C3
sim ↑ C4

sim ↑

InfiniteAudio 0.7810 0.7564 0.7479 0.8218 0.4802 0.4336 0.4524 0.5481
TTLS

+ QKV sharing 0.7900 0.7680 0.7658 0.8415 0.5310 0.5207 0.5400 0.6154

InfiniteAudio 0.8101 0.8082 0.8019 0.8718 0.5016 0.4983 0.4997 0.6096
TTAS

+ QKV sharing 0.8406 0.8183 0.8254 0.8810 0.5699 0.5280 0.5463 0.6236

Voice Consistency. The test set comprises 60 long text samples, identical to those utilized in
the TTLS and TTAS evaluations. As shown in Tab. 4, sharing QKV yields speaker embedding
features that are more closely aligned across the entire speech segments while preserving speech
intelligibility.

5.3 QUALITATIVE RESULTS

(a) Equally spaced timesteps

(b) Middle focused timesteps

(c) Last focused timesteps

(d) Initial focused timesteps

Strategies to choose inference steps CLAP↑

0.1437

0.0857

-0.0061

0.3451

Figure 7: Analysis on various diffusion sampling
strategies on VoiceLDM (Lee et al., 2024).

Sampling Strategies. We propose curved de-
noising, where the sampling strategy is de-
termined by considering attention scores. As
shown in Fig. 7, in contrast to other strate-
gies, which show interruptions in the gener-
ated audio as observed in the spectrograms, our
method using initial-focused timesteps ensures
continuous audio generation, as evidenced by
both the spectrogram and the CLAP score.

Generation Quality. Fig. 8 illustrates the
mel-spectrograms of the generated audio along
with their corresponding evaluation scores. In-
finiteAudio excels in TTA generation, produc-
ing audio that adheres to the description prompts for durations exceeding 10 seconds. For evalu-
ating TTLS generation, we utilize WER as the primary metric. Our method consistently produces
intelligible speech, whereas VoiceLDM often struggles, frequently distorting speech segments to fit
within a 10-second constraint. Generating coherent audio and speech simultaneously, especially for
extended durations, is challenging due to the need to satisfy both the content prompt ccont and the
description prompt cdesc. In contrast, InfiniteAudio effectively generates speech that aligns with
both prompts.

5.4 ABLATION STUDY ON QKV SHARING

Figure 9 demonstrates our method for selecting QKV features, showing that sharing QKV features
consistently outperforms other approaches across all metrics. Notably, it achieves higher cosine
similarity scores, indicating better voice consistency, compared to the non-sharing method.
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Dobby has no master, Dobby is a free elf! And 
Dobby has come to save Harry Potter and his 
friends. Every great wizard in history has started 
out as nothing more than we are now. Can you tell 
me where I might find platform Nine and Three-
Quarters?

Harry looks up to the join works of the stairs with 
small amounts of dusts. Dudley comes down the 
stairs, and runs for the kitchen. Harry tries to come 
out of the closet but is pushed back in by Dudley. 
Harry leaves the living room area and picks up 
some letters, one of which had his name on it. 

VoiceLDM +InfiniteAudio

Birds 
chirping …

Conditions

𝐜!"#$ 𝐜$%&'

Score

Clean
Speech

She is 
talking in a 

park.

∅

…

…

Methods

VoiceLDM

WER :1.7%

+InfiniteAudio

CLAP : 0.3581
WER : 6.2%

WER↓ : 10.2%

CLAP : 0.3111
WER: 10.4%

CLAP↑ : 0.5247 CLAP : 0.5431

Figure 8: Qualitative results for TTA, TTLS, and TTAS. InfiniteAudio generates high-quality long
audio that accurately follows both the audio description prompt and the speech content prompt.

CLAP↑ WER↓ Cosine similarity↑

Figure 9: Ablation study on QKV combinations for speaker consistency.

5.5 ANALYSIS ON SAMPLING STEPS AND AUDIO LENGTH

Table 5: Comparison of sampling steps between
VoiceLDM (Lee et al., 2024) and InfiniteAudio.
InfiniteAudio requires fewer than 150 steps to
achieve superior results.

Sampling steps CLAP↑ FD↓ KL↓

w/ 200 equally spaced steps 0.3923 53.0555 2.3334
w/ 250 equally spaced steps 0.3941 50.5447 2.3937

InfiniteAudio 0.4107 51.5047 2.3498

InfiniteAudio is designed to minimize the num-
ber of sampling steps while preserving high au-
dio quality. As shown in Tab. 2, our method
outperforms other strategies with the same
number of steps. Furthermore, even when com-
pared to methods that increase sampling steps
to 200 or 250 using equally spaced timesteps,
our approach consistently achieves excellent
scores across all metrics, despite utilizing fewer
than 150 steps, as denoted in Tab. 5.

Table 6: Comparison of generated audio lengths
between a fixed duration of 10 seconds and
variable-length generation approaches.

Generated audio length CLAP↑ FD↓ KL↓

Fix 0.3207 43.3788 1.9650
Various 0.3257 48.3701 1.9058

InfiniteAudio aims to generate longer audio se-
quences while maintaining high quality. As
shown in Tab. 6, compared to the fixed 10-
second generation, it produces comparable re-
sults across a range of lengths, from 10 to 20
seconds. Notably, the CLAP score for this ex-
periment is measured using a different check-
point from the one used in other tables, as ex-
periments involving varying audio lengths require a distinct CLAP model5.

6 CONCLUSION

We introduce InfiniteAudio, a novel inference method designed to generate infinitely long, consistent
audio using pretrained text-to-audio models. InfiniteAudio effectively maintains a fixed memory
footprint, addressing the memory limitations of existing models. Additionally, we propose a new
guidance alternation method that can produce long speech with high intelligibility. By sharing QKV
pairs in the self-attention layers, InfiniteAudio ensures consistent speech generation and mitigates
issues such as voice variations. These contributions open up possibilities for long text-to-audio
generation and pave the way for continuous, coherent long audio content.

5https://github.com/LAION-AI/CLAP
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A ALGORITHMS OF INFINITEAUDIO

We present pseudo-code for InfiniteAudio for TTA, TTLS, and TTAS respectively.

A.1 TTA GENERATION WITH CURVED DENOISING

Algorithm 1 InfiniteAudio for TTA
Input:

• N : number of frames

• T : audio frames

• r: compression factor

• T
r = f : total timesteps

• ϵθ(·): noise prediction model

• Dec(·): decoder

• {ziτi}
f
i=2: initial latent variables

• {τi}fi=1: timesteps

• cdesc: description prompt

Output: v: generated audio sequence

1: v ← []

2: τ ← [τ1, τ1+P , τ1+2P ; ...; τf−2, τf−1, τf ] ▷ Curved denoising with focused initial timesteps
3: Q← [z1, z1+P , z1+2P ; ...; zf−2, zf−1, zf ] ▷ Latent variables for diffusion steps
4: for l to N do ▷ Generate N frames of audio
5: Q← ϵθ(Q, τ , cdesc, ∅) ▷ Update latent variables with noise prediction
6: zlτ0 ← Q.dequeue() ▷ Pop out the clean audio frame
7: v.append(Dec(zτ l

0
)) ▷ Decode the frame and add to output

8: z
l+Len(Q)
τf ∼ N (0, I) ▷ Generate new random noise

9: Q.enqueue(zl+Len(Q)
τf ) ▷ Insert new noise to latent sequence

10: end for
11: return v ▷ Return the generated audio sequence

14
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A.2 TTLS GENERATION WITH GUIDANCE ALTERNATION

Algorithm 2 InfiniteAudio for TTLS (Text-to-Long Speech)
Input:

• N : Number of frames

• T : audio frames

• r: compression factor

• f : total timesteps, T
r = f

• ϵθodd(·), ϵθeven
(·): Conditional/unconditional guidance models

• Dec(·): Decoder function to generate audio from latent states

• {ziτi}
f
i=2: Initial latent variables for each timestep

• {τi}fi=1: Timestep schedule

• cdesc: Description condition (high-level text description)

• ccont: Content conditions (detailed text split into segments)

• sn: Sentence number (starts at 0)

Output: Generated audio sequence v

1: v ← [] ▷ Initialize output audio
2: τ ← [τ1, τ1+P , τ1+2P ; ...; τf−2, τf−1, τf ] ▷ Curved denoising timestep schedule
3: Q← [z1, z1+P , z1+2P ; ...; zf−2, zf−1, zf ] ▷ Initialize latent queue for diffusion
4: [ccont1, ccont2, ..., ccontK ]← ccont ▷ Split content prompts into segments
5: S ← [Len(ccont1),Len(ccont2), ...,Len(ccontK)] ▷ Store segment lengths
6: ϵθ(·)← ϵθodd(·) ▷ Initialize with conditional guidance (odd)
7: for l to N do ▷ Iterate over N frames
8: while l ≤ S[sn] do ▷ Generate frames for the current sentence
9: Q← ϵθ(Q, τ , ∅, ccont) ▷ Apply noise prediction to latent states

10: zlτ0 ← Q.dequeue() ▷ Pop out clean audio frame
11: v.append(Dec(zτ l

0
)) ▷ Decode and append to output

12: z
l+Len(Q)
τf ∼ N (0, I) ▷ Generate new random noise

13: Q.enqueue(zl+Len(Q)
τf ) ▷ Insert new noise into latent queue

14: if l = S[sn]− 1 then ▷ Check if we reached the end of the sentence
15: sn← sn+ 1 ▷ Move to the next sentence
16: if ϵθ(·) = ϵθodd(·) then ▷ Switch conditional guidance
17: ϵθ(·)← ϵθeven

(·) ▷ Switch to unconditional guidance
18: else
19: ϵθ(·)← ϵθodd(·) ▷ Switch back to conditional guidance
20: end if
21: end if
22: end while
23: end for
24: return v ▷ Return the final generated audio sequence
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A.3 INFINITEAUDIO FOR TTAS

Algorithm 3 InfiniteAudio for TTAS (Text-to-Audio and Speech)
Input:

• N : Number of frames

• T : audio frames

• r: compression factor

• f : total timesteps, T
r = f

• ϵθodd(·), ϵθeven
(·): Conditional/unconditional guidance models

• Dec(·): Decoder function to generate audio from latent states

• {ziτi}
f
i=2: Initial latent variables for each timestep

• {τi}fi=1: Timestep schedule

• cdesc: Description condition (high-level text description)

• ccont: Content conditions (detailed text split into segments)

• sn: Sentence number (starts at 0)

Output: Generated audio sequence v

1: v ← [] ▷ Initialize output audio
2: τ ← [τ1, τ1+P , τ1+2P ; ...; τf−2, τf−1, τf ] ▷ Curved denoising timestep schedule
3: Q← [z1, z1+P , z1+2P ; ...; zf−2, zf−1, zf ] ▷ Initialize latent queue for diffusion
4: [ccont1, ccont2, ..., ccontK ]← ccont ▷ Split content prompts into segments
5: S ← [Len(ccont1),Len(ccont2), ...,Len(ccontK)] ▷ Store segment lengths
6: ϵθ(·)← ϵθodd(·) ▷ Initialize with conditional guidance (odd)
7: for l to N do ▷ Iterate over N frames
8: while l ≤ S[sn] do ▷ Generate frames for the current sentence
9: Q← ϵθ(Q, τ , cdesc, ccont) ▷ Apply noise prediction to latent states

10: zlτ0 ← Q.dequeue() ▷ Pop out clean audio frame
11: v.append(Dec(zτ l

0
)) ▷ Decode and append to output

12: z
l+Len(Q)
τf ∼ N (0, I) ▷ Generate new random noise

13: Q.enqueue(zl+Len(Q)
τf ) ▷ Insert new noise into latent queue

14: if l = S[sn]− 1 then ▷ Check if we reached the end of the sentence
15: sn← sn+ 1 ▷ Move to the next sentence
16: if ϵθ(·) = ϵθodd(·) then ▷ Switch conditional guidance
17: ϵθ(·)← ϵθeven

(·) ▷ Switch to unconditional guidance
18: else
19: ϵθ(·)← ϵθodd(·) ▷ Switch back to conditional guidance
20: end if
21: end if
22: end while
23: end for
24: return v ▷ Return the final generated audio sequence
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A hammer is hitting 
a wooden surface

CLAP Spectrograms for generated AudioText prompts

0.3888 

0.2047

0.5237

Length

20s

60s

20s

Trumpet

A capella

60s

0.4364 

0.2273

0.4267

20s

60s

Figure 10: Generated audio samples based on AudioLDM.

B GENERATED SAMPLES

B.1 AUDIOLDM

We present additional audio samples that showcase the capabilities of InfiniteAudio, which builds
upon AudioLDM. As illustrated in Fig. 10, InfiniteAudio can generate a variety of sounds exceeding
10 seconds in duration. Remarkably, the generated audio maintains consistency with the provided
text prompts for up to 20 seconds. Furthermore, the system demonstrates the ability to produce
coherent audio for durations of up to 60 seconds, as evidenced by CLAP scores.
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Spectrograms for generated Audio𝒄𝒄𝒐𝒏𝒕 Methods CLAP𝒄𝒅𝒆𝒔𝒄 WER

The closet door stuck a little as he pulled 
it open revealing a bare wooden floor 
covered on one side by a stack of old 
shoes boxes. 
For centuries after her death, Welshmen 
cried-out "Revenge for Gwenllian" 
when engaging in battle. 
The mixture will produce a chlorine 
solution of approximately five hundred 
milligrams per liter.
The boy wanted to believe that his 
friend had simply become separated 
from him by accident.
Sherman's mother-in-law, Margaret 
Odding, married secondly John Porter, 
another signer of the Portsmouth 
Compact. 

A person talking 
which later 
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of meow sounds

VoiceLDM

AudioFIFO
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0.2409 0.2386

Nevertheless, Hussey's "Country Life" 
articles on contemporary houses are 
often overlooked. 
When she called her friend for help 
with her computer, she repeatedly 
emphasized, that she hadn't done 
anything. 
When I have read a million of these 
sentences, I am going to apply as a 
professional narrator. 
The goal of the listed tools is to embed 
accessibility into various mainstream 
technologies.
These clubs organize inter-school 
workshops and symposia annually for 
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and explosions go 
off in the distance
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Anglia transmissions.
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speaking faintly

VoiceLDM

AudioFIFO

0.2662 0.4857
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This room

The closet door stuck a little as he pulled it open revealing a bare wooden floor covered on one side by a 
stack of old shoes boxes. 
For centuries after her death welshmen cried out revenge for gwenllian when engaging in battle.
The mixture will produce a chlorine solution of approximately 500 milligrams per liter. 
The boy wanted to believe that his friend had simply become separated from him by accident. 
Sherman is mother in law margaret odding married secondly john porter another signer of the 
portsmouth compact.

Nevertheless hussey is country life articles on contemporary houses are often overlooked. 
When she called her friend to help with her computer she repeatedly emphasized that she had not done 
anything. 
To goad a 1000000 of these scented tools as to invite as many as mainstream americans as she could.

Hussie is country life articles on contemporary houses are often overlooked.
For help with her computer she repeatedly emphasized that she had not done anything. 
When i have read a 1000000 of these sentences i am going to apply as a professional narrator.
The goal of the listed tools is to embed accessibility into mainstream technologies.
These clubs organize inter school workshops and symposia annually for students.

Queensland greens support the reintroduction of an upper house elected by proportional representation.
3 new low powered rail stations were built allowing easier access to anglia transmissions.
The local economy and agriculture and commercial fishing the next month will be a great year.

The queensland greens support the reintroduction of an upper house by proportional zentation greenloo. 
Relay stations were built allowing easier access to anglia transmissions.
The local economy of nomea is based primarily on agriculture and commercial fishing.
Hash trees allow and securefication of the contents of large data structures.
Teconderoga recovered her 2nd set of space voyagers near american samoa.

Figure 11: Generated audio samples based on VoiceLDM.

B.2 VOICELDM

In our exploration of VoiceLDM, we generate audio based on two distinct text prompts: ccont and
cdesc. As shown in Fig. 11, our approach produces significantly improved audio quality when pro-
vided with longer content prompts. However, it’s worth noting that VoiceLDM is limited to gener-
ating audio of no more than 10 seconds, often resulting in truncated or incomplete sentences. For
clarity, we have included the transcriptions of the sentences below each spectrogram, with any cut-
off portions highlighted in red. In contrast, our method ensures the generation of entire sentences
without omitting sections. The superiority of our approach is further supported by CLAP and WER
scores, which validate the enhanced intelligibility and coherence of the generated audio.
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C EXPERIMENT DETAILS

C.1 DATASET

Existing TTA models: AudioLDM is trained on a diverse combination of datasets, including Au-
dioSet (Gemmeke et al., 2017), the largest audio dataset with over 5,000 hours of data, as well as
AudioCaps Kim et al. (2019), Freesound (FS), and the BBC Sound Effect (SFX) library, covering
a wide range of sounds. Similarly, VoiceLDM is trained on AudioSet for TTA, the English subset
of the CommonVoice 13.0 corpus and VoxCeleb1 for speech generation, and the DEMAND dataset
for non-speech segments. AudioLDM is evaluated on both the AudioSet and AudioCaps datasets,
while VoiceLDM is tested exclusively on the AudioCaps dataset.

InfiniteAudio: We utilize the Audiocaps test set for text-to-audio generation, which comprises
audio files paired with corresponding caption texts. Each audio file is accompanied by several text
captions, from which we randomly select 860 audio-text pairs for evaluation.

For text-to-speech (TTS) evaluation, we employ the CommonVoice 13.0K test set. Unlike traditional
TTS evaluations, our focus is on generating longer speech segments. Therefore, we specifically
target sentences exceeding 90 characters in length. For each text input, we utilize more than four
selected sentences, resulting in a total of 60 text pairs and approximately 300 sentences for testing.

Both audio and speech generation evaluations leverage the aforementioned datasets. We include
captions categorized as ”speech” from the Audiocaps test set as prompts for audio descriptions and
randomly select 60 long speech pairs from the CommonVoice 13.0K test set for content prompts.

C.2 CONFIGURATION

We conducted experiments using InfiniteAudio alongside existing text-to-audio generation models,
AudioLDM and VoiceLDM. Both models are based on Latent Diffusion Models (LDM) utilizing a
U-Net architecture. We increased the number of inference steps to optimize performance, deviating
from the default settings of the original models, and employed DDIM sampling.

For AudioLDM, we set the inference steps to 300, aligning with the original model but omitting the
initial and middle regions, except for multiples of 4, while retaining the final steps, which introduce
slight noise into the spectrograms. In contrast, for VoiceLDM, we increased the inference steps
from the original 50 to 200, skipping the middle and final regions except for multiples of 5, while
including the initial timesteps to introduce Gaussian-like noise.

In text-to-long speech generation (TTLS), we segment long content prompts at the sentence level.
For QKV sharing, we apply the sharing mechanism every 200 audio frames. However, at the start
of each new sentence, the sharing process is reset, beginning again with the first 200 frames.

C.3 HUMAN EVALUATION

Subjective evaluation plays a vital role in the text-to-audio generation domain. For our assessment,
we randomly selected 30 generated audio samples, which were rated by 20 domain experts on a
scale from 1 to 5. The evaluation criteria focused on overall audio quality and the relevance of the
generated audio to the corresponding descriptive text.

Our model aims to generate longer audio segments while preserving the performance of pretrained
text-to-audio models. Despite the inherent challenges in evaluating these samples, our results indi-
cate comparable performance to existing models, with ground truth scores averaging around 4.
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CLAP↑ WER↓

Cosine similarity↑

CLAP↑ WER↓

Embedding Distance↓

(a) Impacts on long QKV sharing (b) Analysis on Unet

Figure 12: Analysis of QKV sharing: (a) Impact of extended QKV sharing and (b) Comparison of
U-Net decoder modules.

D ADDITIONAL EXPERIMENTS

D.1 IMPACT OF EXTENDED QKV SHARING

As illustrated in Fig. 12, sharing Query, Key, and Value (QKV) representations over 200 audio
frames proves effective based on CLAP, Word Error Rate (WER), and speaker embedding distance
scores. While sharing QKV for a single frame yields smaller speaker embedding distances, it can
adversely affect CLAP and WER metrics. In contrast, sharing QKV across 200 frames reduces
speaker embedding distances compared to the case with no sharing, while simultaneously enhancing
both CLAP and WER scores.

D.2 COMPARATIVE ANALYSIS OF U-NET DECODER MODULES

U-net

Inner Module

Middle Module

Outer Module

Encoder

Decoder

Figure 13: Architecture of the U-Net decoder.

The U-Net architecture comprises both encoder
and decoder components, typically organized
into multiple downsampling and upsampling
modules. In this study, we categorize these
modules into inner, middle, and outer groups.
Previous works, such as (Ceylan et al., 2023;
Kwon et al., 2024; Tumanyan et al., 2023), have
explored sharing mechanisms across various U-
Net decoder modules. We empirically deter-
mined the most effective module for sharing.
Our findings indicate that the outer module en-
hances speaker embedding similarity and im-
proves CLAP scores.
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VoiceLDM

Violin Trumpet Birds Chirping

Buffer 
Zone

Figure 14: Attention map analysis for robustness of sampling strategies.

D.3 ATTENTION MAP ROBUSTNESS

As shown in Fig. 14, VoiceLDM emphasizes the initial diffusion timesteps corresponding to the later
parts of the key matrices as the query sequences approach their endpoints. Moreover, the attention
maps are similar across different description prompts. This indicates that the sampling strategy
focusing on the initial timesteps is robust for all samples.
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D.4 EXISTING LONG GENERATION METHODS BASED ON DIFFUSION MODELS.

We briefly review key papers on long-form generation using pretrained diffusion models, focusing
specifically on methods that do not involve additional training in other generative domains.

D.4.1 MULTIDIFFUSION FOR TTI

MultiDiffusion6 is a robust framework for text-to-image generation that leverages a pre-trained dif-
fusion model without requiring additional training or fine-tuning. At its core, MultiDiffusion merges
multiple independent diffusion processes through an optimization algorithm, reconciling them into a
coherent and high-quality image. This approach enables user-controllable image generation, making
it highly adaptable for a wide range of tasks.

The primary innovation of MultiDiffusion lies in its ability to simultaneously process multiple image
regions, adhering to user-defined constraints such as text prompts, aspect ratios, and spatial layout
signals (e.g., segmentation masks or bounding boxes). However, a key limitation of the framework
is its inability to incorporate temporal information, restricting its utility to image generation. This
makes it unsuitable for video generation, where maintaining temporal coherence across frames is
essential.

Despite this limitation, the underlying optimization process ensures that all image regions conform
closely to the reference diffusion model, preserving both high image quality and visual consistency.
While not applicable to temporal tasks, MultiDiffusion remains a flexible and efficient solution for
generating complex images that meet diverse spatial constraints.

D.4.2 FREENOISE FOR TTV

FreeNoise7 is a framework designed to extend the capabilities of text-to-video diffusion models
for generating longer, temporally coherent videos. Traditional text-to-video models are typically
trained on a limited number of frames, restricting their ability to generate high-fidelity long videos
during inference. FreeNoise addresses this limitation by introducing a tuning-free paradigm that
dynamically reschedules noise over time to maintain consistency across frames.

Key Innovations

• Noise Rescheduling: Unlike traditional methods that initialize noise uniformly for all
frames, FreeNoise dynamically adjusts the noise distribution during video generation. This
method captures long-range temporal correlations, ensuring that visual consistency is pre-
served across extended video sequences.

• Temporal Attention Mechanism: FreeNoise incorporates a window-based temporal at-
tention mechanism, which helps maintain coherence over longer time frames. By focusing
attention over localized windows, the model can efficiently capture and retain relevant tem-
poral dependencies.

• Motion Injection for Multi-Prompt Videos: The framework supports multi-prompt video
generation by enabling dynamic changes in video content based on evolving text prompts.
This allows FreeNoise to generate videos where different segments adhere to different
prompts, accommodating more complex narrative transitions over time.

Limitations Despite its strengths, FreeNoise has certain limitations. Since the framework does
not involve any fine-tuning of the pre-trained models, it might not be optimally adapted to domain-
specific datasets, potentially leading to suboptimal performance in specialized contexts. Moreover,
while it addresses temporal consistency, the model’s reliance on pre-trained diffusion models can
limit its ability to handle diverse or complex motion dynamics inherent in specific generative tasks.

6https://github.com/omerbt/MultiDiffusion
7https://github.com/AILab-CVC/FreeNoise
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