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Abstract

Label prototype learning has emerged as an effective paradigm in Partial Multi-
Label Learning (PML), providing a distinctive framework for modeling structured
representations of label semantics while naturally filtering noise through prototype-
based label confidence estimation. However, existing prototype-based methods
face a critical limitation: class prototypes are the biased estimates due to noisy
candidate labels, particularly when positive samples are scarce. To this end, we
first propose a mutually class prototype alignment strategy bypassing noise inter-
ference by introducing two different transformation matrices, which makes the
class prototypes learned by the fuzzy clustering and candidate label set mutually
alignment for correcting themselves. Such alignment is also passed on to the
fuzzy memberships label in turn. In addition, to eliminate noise interference in the
candidate label set during the classifier learning, we use the learned permutation
matrix to transform the fuzzy memberships label for learning a label reliability
indicator matrix accompanied by the candidate label set. This makes the label
reliability indicator matrix absolutely prevent the occurrence of numerical values
located in non-label and simultaneously eliminate the introduction of incorrect
label as much as possible. The resulting indicator matrix guides a robust multi-
label classifier training process, jointly optimizing label confidence and classifier
parameters. Extensive experiments demonstrate that our proposed model exhibits
significant performance advantages over state-of-the-art PML approaches.

1 Introduction

Multi-Label Learning (MLL) is an important branch of machine learning that allows an instance to
belong to multiple categories simultaneously, with widespread applications in image annotation[1} 2],
text categorization[3l], and medical diagnosis [4]. However, in practical application scenarios,
obtaining precisely annotated data is often difficult due to high annotation costs and inherent
ambiguity[5, 16l [7, [8]. Annotators frequently provide a candidate label set when uncertain, con-
taining both ground-truth labels and noisy labels (i.e., false positive labels mistakenly included).
For example, in image annotation tasks, objects with similar visual appearances may be incorrectly
labeled, which will introduce interference to the classification prediction. To address this issue, Partial
Multi-Label Learning (PML) [9] has emerged as a new weakly supervised learning framework. The
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main task of PML is to learn from this uncertain supervisory information to accurately predict the
ground-truth labels for unknown instances.

PML research primarily focuses on identifying ground-truth labels from the candidate label set, known
as label disambiguation. Existing methods mostly adopt explicit learning strategies, directly removing
noisy labels from candidate label sets through various techniques. For instance, some methods use
low-rank and sparse decomposition to separate ground-truth labels from noisy ones [10} [11]; others
estimate the credibility of candidate labels through label propagation or label distribution learning
(12, [13) 14} [15]; while some utilize feature information to identify noisy labels [[16, 5], where the
practice of using feature information to impose correlation constraints or manifold constraints on
labels is the most popular [[17, 18] [19]]. Recently, feature selection has become a popular approach for
disambiguation [20, 21} 22]. Some researchers leverage label correlations or cluster assignments to
assist disambiguation [9, 23} 24} 25/ 126/ [19]. Additionally, some methods introduce complementary
classifiers that simultaneously leverage both positive and negative label information under the noise
sparsity assumption [27]. Another line of research adopts a phased processing approach: first
purifying noisy labels through methods like granular ball construction [25]] or label propagation
[12], then applying structured learning strategies such as confidence score regression or pairwise
classification paradigms [28| 29] to the refined labels. These explicit learning approaches, although
effective to some extent, still face limitations when handling complex noise patterns. On one hand,
methods based on sparsity assumptions often fail when real-world annotation scenarios produce
non-sparse noise distributions, leading to error accumulation during classifier training. On the other
hand, methods based on label confidence or manifold learning struggle with samples lacking sufficient
neighborhood information or when positive samples are scarce, making it difficult to fully fit the data
distribution.

Recently, prototype-based learning[9} 25| 30} [19] has emerged as a promising direction that constructs
class prototypes to guide label confidence estimation. As a cornerstone of prototype-based approaches,
clustering learning serves as an important tool for exploratory data analysis [31} [32], naturally
generating class prototypes without requiring prior labels while efficiently revealing inherent data
structure [33} 34]]. Building upon fuzzy clustering principles, FBD-PML [19]] advances this direction
by mining the correlation between sample instances and labels while learning confidence values
under sample manifold assumptions. However, existing prototype-based methods face a critical
limitation: prototypes derived from noisy candidate labels inevitably deviate from true semantic
centers—a representation bias problem pervasive under imperfect supervision[35}, 136} 37, [38]]. This
fundamental weakness becomes particularly pronounced when positive samples are scarce, as the
limited reliable supervision further exacerbates prototype distortion. This prototype bias propagates
through confidence estimation, ultimately degrading classification performance. Moreover, existing
methods struggle to effectively bridge the semantic gap between unsupervised clustering-derived
prototypes and weakly supervised label-based prototypes, leaving the potential complementarity
between these two prototype spaces largely unexplored.

Addressing these challenges, this paper proposes CAPML (Confidence-Aware with Prototype Match-
ing for Partial Multi-label Learning), a novel method that leverages unsupervised clustering to
bypass noise interference while enhancing weakly-supervised semantic representations through
effective prototype space alignment. Specifically, unlike traditional prototype-based methods that
solely rely on noisy candidate labels, the proposed approach introduces a transformation mechanism
that successfully bridges the gap between clustering-derived prototypes and label-based prototypes,
enabling discovery of their intrinsic correspondence despite noisy supervision. Subsequently, a
confidence-aware process is designed to convert fuzzy membership degrees into label reliability
indicators, guiding classifier training with sparse /> ;-norm constraints. Concurrently, the prototype
alignment mechanism is also utilized to guide the refinement of label confidence estimation. Finally,
the enhanced confidence values and learned classifiers work jointly to predict labels for unknown
instances. The main contributions of this paper are summarized as follows:

* This paper provides the first investigation into prototype misalignment between prototypes
derived from fuzzy clustering and prototypes computed from candidate label sets in PML
tasks, introducing a transformation mechanism that successfully bridges these two prototype
spaces and enables effective alignment despite noisy supervision.

* This paper designs a confidence-aware process that converts fuzzy label membership degrees
into label reliability indicator values, guiding classifier training with sparse ¢5 ;-norm
constraints that enhance feature selection while reducing overfitting to noisy labels.



» Extensive empirical evaluation demonstrates the proposed method’s efficacy in resolving
label ambiguity and prototype misalignment problems in PML, achieving superior general-
ization performance even with high noise rates and sparse positive samples.

This section introduces the concept of PML, its evolution, related work, and how our approach
differs from existing methods. The remainder of this paper is organized as follows: Section [2]
details the principles and optimization algorithm of CAPML. Section [3] and [ provide comprehensive
experimental results and analysis. Finally, Section[5| gives a conclusion and Section [f]illustrates the
limitations of the method proposed.

2 Method

In PML, let X C R? denotes the d-dimensional feature space and )) = {l1,15, ...,1,} denotes the
label space with ¢ class labels. The training dataset D = {(x;,y,)|1 < ¢ < n} contains n examples,
where &; € X is the i-th instance and y,; € {0, 1}7 represents its corresponding label vector. Let
X = [z1, T2, ..., T,] € RY™ denotes the feature matrix and Y = [y, ¥, ..., ¥,,] " € {0,1}7*4
represents the candidate label matrix containing wrong annotation. Here, y;; = 1 indicates the i-th
instance is annotated with the j-th label, and y;; = 0 indicates otherwise. Each instance correspond
to a set of candidate labels with unrelated labels incorrectly labeled as 1, which is called noisy label.
The goal of PML is to learn a classification function f : X — 2Y that minimizes the effect of
noisy label information and makes accurate label predictions. Figure [T](right) illustrates the overall
architecture of CAPML.
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Figure 1: Overview of the CAPML framework.

Left: The prototype misalignment problem—unsupervised prototypes (Prototype 1) and weakly
supervised prototypes (Prototype 2) lack optimal correspondence that require permutation matrix P
for class order alignment.

Right: The two-stage pipeline: (1) Prototype learning and alignment—fuzzy clustering produces
membership matrix F and unsupervised Prototype 1 while weakly supervised Prototype 2 is derived
from candidate label set, then permutation matrix P establishes optimal correspondence, transforming
memberships into label reliability (LR) indicator matrix C via element-wise product with Y and
normalization; (2) Confidence-aware classifier training—indicator matrix C guides the learning of
label confidence matrix R, which in turn supervises classifier training to effectively suppress noise
labels (marked in red) in Y and obtain proper predictions.

2.1 Class Prototype Learning and Alignment

Our approach begins with unsupervised prototype learning to capture the intrinsic structure of the
data, independent of potentially noisy label information. We employ an improved fuzzy clustering
approach incorporating entropy regularization[|39} 40] to obtain well-distributed class prototypes and
reliable fuzzy label membership degrees. The unified objective function is formulated as:

o min DD Fullw —mylE+AY 0 fijlog £ (1)

i=1 j=1 i=1 j—1

where M € R?*¢ denotes the class prototype matrix, F € R™*¢ represents the fuzzy label mem-
bership matrix indicating the association strength between instances and class prototypes, and A
controls the entropy regularization. The first term quantifies weighted clustering quality, while



the entropy term prevents degenerate solutions and enables flexible membership distributions that
can accommodate the multi-label nature by smoothly transitioning from unimodal to multimodal
assignments. Through alternating optimization, the update formulas for M and F' as follows:

_ Y fme e
: Dhe1 €

The membership degree f;; follows a softmax-like formulation, where instances have higher member-
ship degrees to closer prototypes. The parameter A controls the "softness" of the assignments—Ilarger
values result in more uniform distributions, while smaller values lead to more decisive assignments.
While the prototypes M derived from fuzzy clustering lack explicit semantic meaning, we can leverage
them by setting ¢ = ¢ to match the number of label classes. To incorporate label semantic information,
we construct class prototypes O € R*? from the candidate label matrix Y:

D1 YkiTk
0; = SELEWTE, 3)
> k=1 Ykj

Each prototype o; is computed as the centroid of instances associated with the j-th label in Y. Despite
the presence of noise, O can be viewed as weakly-supervised prototype[41]] that still contains valuable
semantic information. Although M and O are derived from different principles—unsupervised
clustering and weakly supervised label aggregation respectively—they fundamentally capture the
same underlying class structure.
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Then a critical problem emerges: although both M and O capture class-level representation, their
orderings are inherently misaligned due to the arbitrary indexing produced by clustering. For
example, as shown in Figure [I] (left), only the 3-rd prototype in M correctly corresponds to its
counterpart in O, while the remaining 1-st, 2-nd, 4-th unsupervised prototypes improperly correspond
to positions 4-th, 1-st, 2-nd respectively. To address this issue, we introduce a permutation matrix
P € {0,1}9%9 to align these orders:

min [ MP — o|%, stPl,=1,P'1,=1, Pc{0,1}% 4)

This formulation seeks the optimal one-to-one mapping between unsupervised and weakly supervised
prototypes by minimizing the Frobenius norm of their difference. The constraints ensure that P is a
valid permutation matrix, with exactly one entry of 1 in each row and column.

Theorem 1: When the fuzzy clustering successfully captures the underlying class structure, there
exists an optimal permutation matrix P* € {0, 1}9%9 such that the alignment error satisfies:

2
[MP* = O]z = 0 <e¢a+ \/D )

where € measures the label noise level (specifically, the fraction of noisy labels in Y ), n is the number
of training instances, and q is the number of classes.

The proof is provided in Appendix. This theorem reveals that the alignment error is governed by two
factors: (1) the label noise level e in the candidate set, and (2) the finite sample effect /2 /n, which
diminishes as more training data becomes available. Importantly, the bound suggests that even with
moderate noise, the permutation matrix P can establish meaningful correspondence when sufficient
data is present.

However, another key challenge remains: since Y contains noise, the weakly supervised prototypes
O deviate from true class centroids. Directly aligning M to O might propagate these noise-induced
shifts. To address this discrepancy and make P more reliable, we introduce an orthogonal rotation
matrix H € R?*9 to allow for more flexible alignment:

min [MP — OH|%, st.Pl,=1, P'1,=1, Pc{0,1}9, HH' =1,. (6)

The orthogonal rotation matrix H introduces geometric transformation that adapts the weakly su-
pervised prototypes O to better match the unsupervised structure, while preserving their relative
geometry through the constraint HH' = I,. This mitigates the negative impact of label noise:
rather than forcing M to directly align with the potentially biased O, we allow O to rotate in its
representation space, reducing the negative influence of noise-induced biases on the alignment quality.



Constructing label reliability indicator. Having obtained the optimal permutation matrix P and
rotation matrix H, we establish the correspondence between M and O. The permutation matrix P
not only aligns the prototype spaces but also reveals which cluster corresponds to which label class,
thereby enabling transformation of the fuzzy membership degree in F' into label-specific reliability
indicator for candidate labels.

We apply the learned permutation matrix P to reorder the membership matrix F, aligning each
column with its corresponding label class. To mitigate interference from misaligned entries, we
perform element-wise multiplication with the candidate label matrix Y to retain only candidate
positions, followed by row-wise min-max normalization Mpinmax (+) to amplify confidence contrasts:

Z= Nminmax(FP © Y) (7)

This operation filters out non-candidate noise while enhancing discrimination between reliable and
unreliable candidates. We then construct the label reliability (LR) indicator matrix C € R"™*? as:

1 if yi; =
Cij{7 ¥y”—0' ®)
Zigs lfyij—].

However, this initial formulation treats all instances uniformly, ignoring that instances with more
candidate labels typically contain more noise. To address this, we introduce instance-adaptive
weighting based on candidate label density:

_ Jllyills, ifyi; =0

Cij = . . (9)
(@ —llyill) * zij, ifyy; =1

This refined formulation assigns differentiated indicator values based on candidate label density,

which ensures that instances with denser candidate sets—which statistically contain more false

positives—receive more conservative reliability estimates.

2.2 Confidence-Aware Label Disambiguation

The LR indicator matrix C plays a crucial role in our label disambiguation process. A higher
indicator value c;; indicates a higher probability that r;; is a true label rather than noise. With
the label reliability (LR) indicator matrix C constructed, we now formulate the confidence-aware
objective for joint classifier learning and label disambiguation::

min [|Co (Y~ R)[F +[[¢(X) "W —Rf + ol Y =Rl + W21, s2. R >0, (10)

where () : R? — R" is a feature mapping function that transforms input features to a kernel
space for better separability, W € R"*7 represents the classifier parameters, R € R™*? denotes
the label confidence matrix, and «, 3 are regularization hyperparameters. The first term implements
reliability-weighted refinement through element-wise multiplication. For non-candidates, the weight
cij = 1 penalizes any deviation from zero in R, constraining r;; ~ 0. For candidates, varying
weights create differentiated penalties: high-reliability positions (large c;;) are tightly constrained
to Y, while low-reliability positions (small c;;) receive weaker constraints, allowing the classifier
consistency and ¢; terms to guide their refinement. The ¢; norm term further reduces the influence
of noise in candidate label set Y, while the /> ; norm term enhances the classifier’s discriminative
power by emphasizing features with high discriminative capacity across multiple labels.

2.3 Optimization

The proposed approach optimization is divided into two parts. After obtaining O and F through
Eq(@), we need to learn to obtain an effective permutation matrix P to obtain LE indicator matrix C.
Then C is reused for further refinement of the label confidence matrix R to guide the learning of the
classifier W. We optimize each variable by adopting an alternating iterative way.

Update H, fix P. We can obtain the following optimization problem about variant H.
in||A - OH|%, stHH' =1
min || [ @ (11)

where A = MP. Eq. presents a standard orthogonal Procrustes problem [42]], which we
efficiently solve following the optimization approach detailed in [43].



Algorithm 1: Training Process of CAPML

Input: The PML training dataset D; parameters A, «, (3; max iterations Tp, 74, T>; Unseen sample X.
Output: the predicted label for unseen sample §.
// Stage One: Prototype Learning and Alignment
Initialize membership matrix F =Y and prototypes M via Eq. . fort =11t T do

‘ Update M and F via Eq. ; // Fuzzy clustering for unsupervised prototype
end
Compute O via Eq. ; // Compute supervised prototype from candidate labels
Initialize permutation matrix P = I, and rotation matrix H = I,.
fort =1t T do

Update H by solving orthogonal Procrustes problem in Eq. (T

Update P using Hungarian algorithm in Eq. ; // Prototype alignment optimization
end
Compute label reliability indicator matrix C via Eq. @ ; // Construct LR indicator matrix

// Stage Two: Classifier Learning
Initialize W = 04, R =Y, and auxiliary variable Q = 0,,x4.
fort =11t T> do
Update W using Eq. (T3)
Update R using multiplicative rule in Eq. (10)
Update Q using soft-thresholding via Eq. (19)
if (WO — W2 4 |IR® —REV[Z < 107° then
| break;
end
end
return the predicted label §

Update P, fix H. Substitute the H obtained from the last iteration to Eq. @), and let M = OH, we
can obtain the following optimization problem.

min [MP — M|%, st.Pl,=1, PT1,=1, P € {0,1}7%9, (12)

Due to the binary constraints on P , direct optimization is infeasible. We solve this assignment
problem efficiently using the Hungarian algorithm via MATLAB’s matchpairs function [44]].

Update W, fix R. The subproblem regarding W can be obtained:
win [(X) "W — R|F + 5[ W]l21 & min [¢(X)"W ~ R|[} + gt (W DW) . (13)

where the diagonal elements of D are computed as D;; = 1/+/||w;||3(Vi = 1,2,3, ..., h). Taking
the derivative of Eq. (I3) w.r.t. W and setting it to 0, we can get the following equation:

W = (4(X)(X)" +8D) 'Y (X)R, (14)

Update R, fix W. We solve the optimization involving the non-convex ¢, ; norm and non-negative
constraint R > 0 by applying the Lagrange multiplier method, yielding the following Lagrangian
function:

. T
min |CO (Y —R)[%+ [¥(X) W =R|% +aQll +1/2Y —R— Qi —tr (ORT) , (15)
where p is a number large enough and © represents the Lagrange multiplier. Taking the derivative of
Eq. (I3) and setting the derivative to zero. Then based on condition of Karush-Kuhn-Tucker (KKT),

it can be given that: ® © R = 0, that is, 0;;7;; = 0. Fix Q, then take the derivative of Eq. W.I.L.
R and setting it to 0, we can get the following equation: We can get the update rules for R:

(t+1) (t) Bij
\ O . — 16
T4 T o+ s s (16)

where A;; = (2R4+2COROC+u(R+E));; and By, = (2¢(X) WW 4+2COY 0 C+puY);;,
With R fixed, we can get the sub-optimization of Q:

min £(Q) = al|Qlh + 5 Y - R - Qll}, a7



which is a typical LASSO regression problem [45]], and we apply PGD algorithm to optimize it. The
proximal operator of Eq. is:

@
TOX; (. = arg min — 7%+ — , 18
prosis) (@) = argmin |Q - ZJ + Q) 18)

where Z = Q' — £ VL(Q®), Q® represents the solution of Q from the ¢-th iteration, and VL£(Q)
is the gradient of the objective function £(Q), L is the Lipschitz constant of V£(Q) and ¢ denotes
the number of iteration. Eq. (I8)) can be iteratively updated by the soft-thresholding operator [46]:
(t+1) _ w _ 1 ¢«
4G; = Soft[Qij - fV£<qz‘ja E)L (19)
where Soft[b, v] = sign(b)maz{|b| — v, 0}. In addition, the Lipschitz constant of VL(Q) is 1, so

we set L = 1. The overall pseudo code of CAPML is summarized in Algorithm/[I].

3 Experiment

3.1 Experimental Setup

Datasets To evaluate the generalization performance of our proposed CAPML approach, we
conducted experiments on 10 datasets, including 6 real-world PML datasets[49]] and 18 synthetic PML
datasets generated from seven multi-label datasets[47,48]]. For clarity, the detailed characteristics of
these datasets are shown in Table[I] Specifically, the synthetic datasets are derived from multi-label
datasets by adding noise to the labels. For each instance, a portion of irrelevant labels is randomly
picked as candidate labels along with the relevant ones. Taking the birds dataset as an example, which
originally has 1.01 ground-truth labels per instance (avg.#GLs), we created three noisy variants
with 3, 4, and 5 candidate labels per instance (avg.#C Ls) by randomly injecting approximately 1.99,
2.99, and 3.99 false positive labels per instance, respectively.

Table 1: Characteristics of experimental data sets.

Datsets #Instances #Dim #Classes avg.#CLs avg.#GLs Domain
Mirflickr 10433 100 7 3.35 1.77 Images!
Music_emotion 6833 98 11 5.29 2.42 Music!
Msic_style 6839 98 10 6.04 1.44 Music!
YeastBP 6139 6139 217 5.93 5.54 Biology®
YeastCC 6139 6139 50 1.39 1.35 Biology®
YeastMF 6139 6139 39 1.04 1.01 Biology'!
emotions 593 72 6 3,4,5 1.86 Music?
birds 645 260 19 3,4,5 1.01 Audio?
medical 978 1449 45 57,9 1.25 Text?
image 2000 294 5 2,3,4 1.23 Images2
yeast 2417 103 14 7,9,11 4.24 Biology?
corel5k 5000 499 374 7,9, 11 3.52 lmages2

! http://palm.seu.edu.cn/zhangml/, 2 http://mulan.sourceforge.net/datasets.html

Comparison approaches The performance of CAPML is compared with seven state-of-the-art
methods, the following is a brief introduction for each comparison approach:

o fPML [16] [2019]: fPML removes noise by decomposing the candidate label matrix into
two low-rank matrices and utilizing the resulting low-error approximation. [configuration:
A1 =1, =1, A3 =10].

* PARTICLE(PAR-MAP and PAR-VLS) [12] [2020]: A two-stage PML approach that refines
candidate labels through label propagation and builds distinct predictive models [suggested
configuration: k = 10, a = 0.9, thr = 10.9].

e PML-NI [5] [2021]: Considering that fuzzy features may produce noise labels, the pre-
diction model matrix is decomposed into truth label prediction and noise label prediction
[configuration: A = 10, 8 = v = 0.5, max_iter = 500].

* PAMB [29] [2023]: PAMB uses ECOC techniques to convert PML into a binary clas-

sification problem, avoiding the error-prone estimation of individual label confidences
[configuration: z = avg.#CLs, L = 1001og,(q)].



Table 2: Comparision of CAPML with other state-of-the-art PML approaches on Average Precision
(mean=std), where the best experimental performance (the larger the better) is shown in boldface.

Data Sets avg #CLs CAPML FBD-PML LENFN PAMB PML-NI PARTICLE FPML
Mirflickr 3.35 0.820+0.008 0.815+0.007 0.800+0.009 0.791+0.019 0.786+0.009 0.813+0.136 0.814+0.009
Music emotion 5.29 0.628+0.010  0.607+0.011  0.608+0.010  0.626+0.011  0.608+0.012  0.506+£0.016 0.458+0.015
Music style 6.04 0.743+0.016  0.740+0.017  0.745+0.014 0.741+0.007 0.739+0.015 0.657£0.012  0.566+0.090
YeastBP 5.93 0.443+0.015  0.406+0.021  0.423+0.017 0.356+0.022 0.404+0.022 0.168+£0.016 0.328+0.012
YeastCC 1.39 0.609+0.023  0.584+0.011 0.603+0.019  0.556+0.024  0.454+0.025 0.348+0.016 0.458+0.032
YeastMF 1.04 0.495+0.021 0.431+0.017 0.484+0.023 0.405+0.014 0.418+0.016 0.228+0.012 0.326+0.009
3 0.807£0.039  0.783+0.008 0.783+0.035 0.804+0.017  0.777+0.028  0.747+0.035  0.663+0.020
emotions 4 0.787£0.027 0.765+0.006 0.761£0.030  0.783+0.036  0.749+0.034 0.739+0.033  0.651+0.016
5 0.756+£0.032  0.751+0.005 0.746+0.033  0.749+0.026  0.680+0.039  0.702+0.037  0.654+0.029
3 0.627+0.058  0.625+0.006 0.621+0.063 0.589+0.052 0.617+0.057 0.379+0.046 0.381+0.037
birds 4 0.590+£0.057  0.586+0.003  0.584+0.050  0.564+0.044  0.572+0.041 0.419+0.046 0.373+0.020
5 0.589+0.048 0.573+0.026  0.568+0.027 0.495+0.029 0.564+0.034 0.372+0.047 0.371+0.018
5 0.876+0.027 0.864+0.024  0.878+0.022 0.815+0.012 0.866+0.024 0.754+0.047 0.838+0.025
medical 7 0.866+0.031 0.856+0.031 0.864+0.018 0.796+0.031  0.835+0.036 0.741£0.049  0.832+0.029
9 0.852+0.033  0.842+0.020 0.851+0.028 0.771+0.011  0.798+0.031 0.715%0.022 0.817+0.019
2 0.814+0.021  0.778+0.026  0.777+0.023  0.798+0.024  0.770+0.020  0.743+0.070  0.711+0.018
image 3 0.7924£0.018 0.745+0.031 0.745+0.025 0.748+0.019  0.732+0.024  0.725+0.084  0.696+0.023
4 0.759+£0.022 0.691+0.011 0.671+£0.027 0.711+0.026  0.653+0.011 0.668+0.091 0.670+0.022
7 0.760£0.018  0.734+0.007 0.756+0.020 0.761+0.014 0.746+0.017 0.754+0.013 0.732+0.016
yeast 9 0.755£0.021  0.725+0.022  0.738+0.019  0.750+0.013  0.725%0.016  0.744+0.011  0.730£0.013
11 0.748+0.013  0.704+0.015 0.719+0.018 0.741x0.013  0.692+0.013  0.728+0.013  0.698+0.011
7 0.306+0.015 0.274+0.015 0.282+0.016 0.239+0.017 0.279+0.013  0.254+0.003  0.266+0.004
corel5k 9 0.303+0.017  0.267+0.015  0.273+0.015  0.230+0.008 0.273+0.013  0.234+0.004 0.264+0.001
11 0.299+0.017  0.266+0.018  0.265+0.015  0.228+0.019  0.266+0.015  0.230+0.014  0.262+0.005

Table 3: Comparision of CAPML with other state-of-the-art PML approaches on Ranking Loss
(mean=+std), where the best experimental performance (the smaller the better) is shown in boldface.

Data Sets avg #CLs CAPML FBD-PML LENFN PAMB PML-NI PARTICLE FPML
Mirflickr 3.35 0.110£0.005  0.126+0.006 0.121£0.004 0.112£0.038 0.126+0.007 0.127+0.103  0.115+0.006
Music emotion 5.29 0.236£0.007  0.249+0.012  0.245£0.012  0.234£0.007 0.246+0.008 0.362+0.014  0.410+0.005
Music style 6.04 .0.135+£0.010  0.139+£0.024  0.140+0.012  0.136+0.005 0.137+£0.010 0.221+0.010  0.317+0.033
YeastBP 5.93 0.203+£0.009  0.271+0.013  0.253+0.009 0.230+0.011  0.220+0.011  0.404+0.033  0.415+0.057
YeastCC 1.39 0.167£0.015  0.194+0.017 0.191+0.012  0.221£0.021  0.210+0.022  0.480+0.010  0.342+0.019
YeastMF 1.04 0.218+0.017 0.262+0.011 0.232+0.013  0.244+0.013  0.226+0.018 0.533+0.010 0.373+0.019
3 0.162+0.036  0.181+0.018  0.182+0.033  0.160£0.022  0.188+0.029  0.250+0.035  0.474+0.027
emotions 4 0.170£0.029  0.197+0.013  0.194+0.029 0.178+0.031 0.211+0.027  0.263+0.029  0.446+0.027
5 0.205£0.032  0.213+0.006 0.251+0.032 0.210£0.015 0.276+0.039  0.306+0.034  0.452+0.037
3 0.172£0.028 0.176+0.035 0.183+0.007  0.196+0.042  0.177+0.033  0.322+0.033  0.333+0.041
birds 4 0.195£0.042  0.195+0.034 0.211+£0.026 0.204£0.028 0.205+0.034  0.326+0.027  0.341+0.020
5 0.200£0.036  0.207+0.038  0.223+0.012  0.229+0.025 0.219+0.036 0.359+0.036  0.328+0.018
5 0.029+0.011  0.049+0.018 0.038+0.015 0.050+0.002 0.040+0.012  0.090+0.019  0.052+0.007
medical 7 0.032£0.010  0.047+0.016  0.045+£0.016  0.062+0.019  0.052+0.013  0.111+0.022  0.058+0.009
9 0.038+0.013  0.051+0.016  0.054+0.016  0.099+0.023  0.061£0.015 0.122+0.016  0.057+0.010
2 0.155£0.021  0.184+0.013  0.190£0.025 0.177£0.022 0.194+0.019 0.230+0.060 0.239+0.019
image 3 0.183+£0.020  0.206+0.011  0.214+£0.028 0.217£0.015 0.230+0.024  0.261+0.070  0.254+0.018
4 0.213£0.022  0.280+0.017 0.287+£0.019  0.255+0.025 0.303+0.010 0.328+0.095 0.280+0.022
7 0.173£0.013  0.187+0.005 0.180+£0.014 0.214+0.008 0.184+0.012 0.182+0.010 0.186+0.014
yeast 9 0.177£0.015  0.198+0.019  0.192+0.018  0.211£0.007  0.202+0.016  0.189+0.009  0.191+0.012
11 0.183+£0.012  0.225+0.015 0.219+0.010 0.231+0.014 0.199+0.010 0.195+0.010  0.216+0.008
7 0.176£0.007  0.175£0.007 0.223+0.012 0.310£0.034 0.215+0.008 0.317+0.008 0.255+0.013
corelSk 9 0.184+0.007  0.192+0.016  0.225+0.010  0.315£0.049  0.227+0.009  0.324+0.008 0.262+0.013
11 0.189+0.006  0.203+0.012  0.231+0.009  0.319+0.059  0.232+0.008  0.330+0.007 0.268+0.011

* PML-LENFN [50] [2024]: PML-LENEN improves label quality by jointly analyzing
local (neighbor) and global (distant) sample relationships, paired with a hybrid classifier
combining linear and nonlinear components [ A\; = 1075, X =1, A3 = 1072, Ay = 1072].

* FBD-PML [19] [2025]: FBD-PML performs manifold alignment by simultaneously learning
the prototypes of features and labels to achieve the smooth assumption. [configuration:

A1 = 10_4, A =1, 3= 10_3, A = 10_3,>\5 = 10_2]

For our CAPML approach A is set to 0.5, « and /3 are searched in {0.001, 0.01, 0.1, 1, 10, 100}.
For the feature mapping function v (-), we employ the Gaussian kernel with bandwidth parameter set
to the average pairwise distance between samples.

3.2 Experimental Metrics and Results

In our experiment, we evaluate the performance of CAPML and other state-of-the-art baselines using
five multi-label metrics: Hamming loss, Ranking loss, One-error, Coverage, and Average precision.



Details of these metrics can be found inl47. And we apply ten-fold cross-validation on each PML
dataset and report the mean and standard deviation for all eight comparison approaches. Due to page
limitations, our experimental evaluation focuses primarily on two representative metrics: Average
Precision and Ranking Loss, which are complementary metrics providing comprehensive insights
into both ranking quality and classification accuracy. Results for the other three metrics are provided
in the Appendix. Complete results are presented in Tables [2]and[3] respectively.

Moreover, to verify the statistical significance of CAPML’s performance advantages, we summarize
winltiel/loss counts across all evaluation metrics against each competing approach at the 0.05 signif-
icance level, which is shown in Table[d From the experimental results and subsequent statistical
analysis, we can draw several significant conclusions:

* Across all evaluation metrics, our method achieves state-of-the-art performance in 86% of
cases over the entire collection of 24 datasets. From Table[2]and [3] it can be observed that
in 87.5% and 83.3% of the datasets, the approach consistently outperforms in the Average
Precision and Ranking Loss metrics. The statistical advantages persist across diverse data
characteristics—f{rom high-dimensional biological datasets (Yeast BP, YeastCC) to low-
dimensional multimedia collections (Music, Image)—suggesting the method’s superior
generalization performance. Even on the challenging corelSk datasets, where label spaces
are particularly sparse, CA-PML maintains its statistical edge over all competitors.

From Table E] , CAPML demonstrates convincing statistical dominance, winning in 607
out of 720 total comparisons (84.3%) while achieving statistical ties in all remaining cases.
The smallest, though still significant, improvements are observed against LENFN, which
indicates our effective guidance of label reliability indicator.

* FBD-PML represents a notable baseline as it is also a prototype-based approach. Despite
this similarity, CAPML consistently outperforms FBD-PML, underscoring the efficacy of
mutually prototype alignment strategy and stage-wise gradual label disambiguation.

Table 4: Win/tie/loss counts of pairwise t-test (at 0.05 aignificance level) on CAPML against others

CAPML against FBD-PML LENFN PAMB PML-NI PARTICLE FPML

Hamming loss 21/3/0 16/8/0 21/3/0 20/4/0 20/4/0 18/6/0

Ranking loss 17/7/0 20/4/0 18/6/0 21/3/0 23/1/0 23/1/0

One-error 22/2/0 23/1/0 18/6/0 23/1/0 20/4/0 23/1/0

Coverage 20/4/0 17/7/0 18/6/0 19/5/0 23/1/0 22/2/0

Average precision 19/5/0 16/8/0 16/8/0 22/2/0 22/2/0 23/1/0
In Total 99/21/0 93/27/0 91/29/0 105/15/0 108/12/0 109/11/0

4 Further Analysis

Parameter Sensitivity We assess CAPML’s robustness through parameter sensitivity analysis,
examining how hyperparameters « and /3 influence the model’s Average Precision performance. We
vary each parameter individually while keeping the other fixed, with the results visualized as paired
bar charts in Figure 2] for direct comparison. Figure [2]shows remarkable robustness of CAPML to
parameter variations, with Average Precision remaining stable across a wide range of values. This
stability is particularly evident for parameter c, where performance fluctuations are minimal within
the reasonable range of [0.01, 100]. Similarly, when varying 3, the model maintains consistent
performance with only slight degradation at extreme values.

Computational Complexity The algorithm complexity is O(Todng + T (dq? + ¢°) + To(nhqg +
h%q + d* + nq)). Stage one in Algorithm [1|involves SVD of the d x ¢ matrix OT (M P) with
complexity O(dg?) for the orthogonal Procrustes problem in Eq. , plus O(g?) for the Hungarian
algorithm solving the assignment problem in Eq. , totaling O(dq? + ¢3) per iteration. Stage two
involves O(nhq + h?q) for matrix operations in W-update including the inversion of 4 x h matrix,
and O(nq) for both R and Q updates involving element-wise operations. The dominant computational
cost depends on the relative magnitudes of d, h, n, and g, but typically the O(nhgq) term dominates
when datasets are large, making the method practically scalable.
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Figure 2: AP variations with parameters « and /3 on birds(avg.#CLs=2), emotions(avg.#CLs=3),
image(avg.#CLs=2) and music style datasets.

Ablation Study To investigate the contribution of each key component in CAPML, we conduct
ablation studies by comparing our full model with two variants: (1) CAPML-ED, which replaces our
entropy-regularized fuzzy clustering with direct Euclidean distance between instances and prototypes
computed from candidate label set to derive membership degrees; (2) CAPML-NR, which removes
the orthogonal rotation matrix H from the prototype alignment process. (3) CAPML-NA, which sets
permutation matrix P to identity matrix, removing prototype alignment. (4)CAPML-CW, which
sets label enhancement indicator matrix C to all-ones, removing confidence indicator. Figure [3]
presents the comparative results across the seven of all benchmark datasets on Average Precision and
Ranking loss. These results validate the effectiveness of combining entropy-regularized clustering
with orthogonal transformation for prototype learning.
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Figure 3: AP variations with parameters « and [ on yeast(avg.#CLs=7), image(avg.#CLs=2),
medical(avg.#CLs=5), birds(avg.#CLs=2), YeastCC, music style and music emotion datasets.

5 Conclusions

This paper introduces CAPML, a novel PML approach addressing label disambiguation through
mutual prototype alignment. Unlike methods relying on noisy candidate labels alone, we align
unsupervised prototypes capturing clean data structure with supervised prototypes containing semantic
information. Through permutation matrices and orthogonal rotation, we transform fuzzy memberships
into reliable confidence indicators operating external to classifier learning. This dual-prototype
framework, combined with confidence-aware disambiguation and sparse regularization, effectively
identifies true labels under challenging noise conditions. Comprehensive experiments demonstrate
CAPML’s significant advantages over state-of-the-art methods.

6 limitations

Despite these promising results, CAPML assumes fuzzy clustering discovers structure aligned with
label semantics. Performance may degrade when high intra-class variability fragments categories
into multiple clusters, when similar features cause distinct labels to merge, or when label counts
considerably exceed natural cluster structures.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contributions:
(1)We make the first investigation into the prototype misalignment between prototypes
derived from fuzzy clustering and prototypes computed from candidate label set in PML
tasks. Our work introduces a transformation mechanism that successfully bridges these two
prototype spaces, enabling effective alignment and discovery of their intrinsic correspon-
dence relationships despite noisy supervision. (2)We design a confidence-aware process
that converts fuzzy label membership degrees into label reliability indicator values, guiding
our classifier training with sparse ¢2,1-norm constraint that enhance feature selection while
reducing overfitting to noisy labels. (3)Extensive empirical evaluation demonstrates our
method’s efficacy in resolving label ambiguity and prototype misalignment problem in
PML, even with high noise rates and sparse positive samples, and superior generalization
performance.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusion section (p.9), the paper acknowledges limitations has shown:
increased computational complexity for very large datasets and potential suboptimality when
label counts significantly exceed natural cluster structures.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides formal mathematical formulations with clear assumptions
in Section 2], including notation definitions and constraints. And there are some formula
derivations. The optimization process is thoroughly described in Section 2] with detailed
equations and algorithmic steps.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section |3| provides comprehensive experimental details including dataset
characteristics and url (Tablem), parameter settings, comparison methods, evaluation metrics,
and the implementation of 10-fold cross-validation, which should be sufffcient to reproduce
the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

15



* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: While the paper uses publicly available datasets (from mulan.sourceforge.net
and palm.seu.edu.cn), there is no explicit mention of releasing the implementation code for
the proposed CAPML method.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 speciffes implementation details including 10-fold cross-validation
for all datasets, hyperparameter search ranges for « and § and comparison with baseline
methods using their recommended conffgurations.

Guidelines:
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports mean and standard deviation for all experimental results
(Tables [2]and [3)) and we summarize win/tie/loss counts across all evaluation metrics against
each competing approach at the 0.05 significance level, which is shown in Table 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Due to space limitation, the paper does not provide speciffc details about
computing resources such as CPU/GPU speciffcations, memory requirements, or execution
times for the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research focuses on algorithmic improvements for partial multi-label
learning without raising ethical concerns. It uses standard public datasets and comparison
methods, and does not involve sensitive data, human subjects, or applications that could
cause harm.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: While our paper thoroughly addresses technical contributions and future re-
search directions, we do not explicitly discuss potential societal impacts (either positive
or negative) of the proposed method, as our work focuses primarily on algorithmic ad-
vances in the machine learning domain rather than specific applications with direct societal
implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: This paper introduces a partial multi-label learning algorithm using standard
benchmark datasets, presenting no high-risk models or significant ethical concerns requiring
safeguards.
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Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the sources of datasets used (Table|l|with footnotes
to source URLSs), and references original papers for comparison methods.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper introduces a new algorithm (CAPML) but does not release new
datasets, code, or models requiring documentation beyond what is presented in the paper
itself.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: This research does not involve crowdsourcing or human subjects. It focuses on
algorithmic development and evaluation using existing benchmark datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects, so IRB approval was not
required for this study.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not utilize large language models in its methodology. Our
CAPML method is based entirely on mathematical formulations and traditional machine
learning approaches.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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