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Abstract: We present Asymmetric Dexterity (AsymDex), a novel and simple re-
inforcement learning (RL) framework that can efficiently learn a large class of
bimanual skills in multi-fingered hands without relying on demonstrations. Two
crucial insights enable AsymDex to reduce the observation and action space di-
mensions and improve sample efficiency. First, true ambidexterity is rare in hu-
mans and most of us exhibit strong “handedness”. Inspired by this observation,
we assign complementary roles to each hand: the facilitating hand repositions and
reorients one object, while the dominant hand performs complex manipulations to
achieve the desired result (e.g., opening a bottle cap, or pouring liquids). Second,
controlling the relative motion between the hands is crucial for coordination and
synchronization of the two hands. As such, we design relative observation and
action spaces and leverage a relative-pose tracking controller. Further, we propose
a two-phase decomposition in which AsymDex can be readily integrated with re-
cent advances in grasp learning to facilitate both the acquisition and manipulation
of objects using two hands. Unlike existing RL-based methods for bimanual dex-
terity with multi-fingered hands, which are either sample inefficient or tailored to a
specific task, AsymDex can efficiently learn a wide variety of bimanual skills that
exhibit asymmetry. Detailed experiments on seven asymmetric bimanual dexter-
ous manipulation tasks (four simulated and three real-world) reveal that AsymDex
consistently outperforms strong baselines that challenge our design choices. The
project website is at https://sites.google.com/view/asymdex-2025/.
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1 Introduction
Bimanual dexterity is crucial for robots operating in human environments as they allow for complex
yet flexible manipulation compared to a single hand [1–6]. We are interested in learning a wide
range of bimanual dexterous skills on multi-fingered hands purely from reinforcement.

While learning on a single multi-fingered hand is known to be challenging [7–13], learning bimanual
dexterity is made more challenging due to the higher-dimensionality and the need for coordination
and synchronization of two hands [1, 14]. These challenges are only exacerbated when these skills
have to be learned from reinforcement, explaining why existing efforts often either resort to expert
demonstrations [15–18] or limit themselves to specific tasks [19, 20].

We rely on two insights to tackle the challenges of bimanual dexterity. First, we are inspired by how
humans and other great apes approach these challenges: there is a natural asymmetry in how we use
each of our hands when we perform most bimanual tasks [21]. Specifically, we tend to use one hand
to reposition and reorient an object so as to make it easier for the other hand to perform complex
manipulation. While leveraging such asymmetry might appear to restrict the class of bimanual skills
we can learn, rich bodies of work in human biomechanics and evolution reveal its prevalence and
necessity [21–24]. Evolutionary biologists posit handedness evolved to meet the escalating cognitive
demands of tool use, language, and complex manipulation [25]. Indeed, a large number of real-world
tasks admit such asymmetry (e.g., attachment, detachment, assembly, and pouring).

Looking closely at the asymmetry in bimanual dexterity reveals our second insight. Our non-
dominant hand tends to hold an object firmly as we reorient and reposition it relative to the dominant
hand or the object being held by the dominant hand (e.g., tilting a pen before uncapping). This sug-
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Figure 1: Our approach (AsymDex) efficiently learns asymmetric bimanual dexterous manipulation
skills based on reinforcement learning by effectively leveraging i) the natural asymmetry in the
hands’ roles and ii) relative state and action spaces that prioritize synchronization.

gests that there is often little to no in-hand movement of the object grasped by the non-dominant
hand, and robust synchronization can be achieved by ensuring relative movement of the two hands.

We contribute a novel RL-based learning framework for bimanual dexterity, dubbed Asymmetric
Dexterity (AsymDex) by operationalizing the above two insights (see Fig. 3). To incorporate asym-
metry, we define a dominant hand and a facilitating hand. While the dominant hand learns complex
skills across all its degrees of freedom, the facilitating hand learns to reposition and reorient the ob-
ject by controlling the 6D pose of its base (i.e., no finger movement). This allows us to both reduce
the dimensionality of the observation and action spaces and tightly integrate the roles of the two
hands. To ensure coordination and synchronization, AsymDex operates over relative observation
and action spaces that incentivize flexible coordination of the two hands without resorting to explicit
time-dependence or task-specific coordinate frame designs.

We also leverage the observation that bimanual manipulation in practice is composed of two distinct
phases: i) the acquisition phase in which objects are grasped, and ii) the interaction phase in which
the two hands coordinate to perform the bimanual task. Unlike many existing methods that entirely
ignore the acquisition phase[2, 14, 19, 26], we show that this decomposition enables AysmDex to
be seamlessly integrated with learned grasping policies to enable fluent execution.

In summary, we contribute AsymDex – a novel Rl-based framework for learning a wide variety of
bimanual dexterous skills by taking inspiration from two key aspects of human bimanual dexterity:
i) asymmetric hand roles, and ii) relative hand movement. We conduct comprehensive experiments
on seven complex tasks (four simulated and three real) and compare against strong baselines that
challenge the need for AsymDex’s structural inductive biases. Our results show that AsymDex
consistently outperforms these baselines in terms of both task performance and sample efficiency.

2 Related Work
Learning Bimanual Manipulation: Several existing methods focus on learning bimanual skills,
but are often limited to simple end-effectors. Imitation learning (IL) based approaches have been
particularly successful in bimanual manipulation [3, 26–28], and have led to novel and low-cost
infrastructure to collect bimanual manipulation data [4, 29]. These approaches rely on demonstra-
tions to provide the necessary supervision to learn effective coordination strategies. Reinforcement
learning (RL) has also been shown to be successful in learning bimanual manipulation skills [30–
33]. These methods implicitly incentivize coordination by learning to optimize reward functions
that favor task success and efficiency. In contrast to all of these works that only consider parallel jaw
grippers, AsymDex learns bimanual dexterous manipulation skills involving multi-fingered hands.

Asymmetry in Bimanual Manipulation: Motivated by the asymmetry in how humans use their two
hands (referred to as role-differentiated bimanual manipulation [22–24, 34]), recent works assign
different roles to each robot hand in the bimanual system [2, 35–38]. However, some of these
approaches restrict the role of the facilitating hand to stabilizing the object while the dominant
hand manipulates it [2, 35, 36]. In contrast, AsymDex allows the facilitating hand to reposition
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and reorient the object simultaneously as the dominant hand executes its role. Importantly, unlike
AsymDex, all these prior methods are limited to parallel jaw grippers.

Learning Dexterous Manipulation: Learning dexterous manipulation skills involves addressing
numerous challenges due to high dimensional state and action spaces and highly nonlinear dynamics.
Recent works have tackled these challenges using imitation learning (IL) or reinforcement learning
(RL) and demonstrate impressive performance [7–11, 13, 39–42]. However, IL-based methods rely
either on complex infrastructure and retargeting methods to collect demonstrations [7, 13, 40, 43,
44] or pre-trained expert policies [10, 11, 42]. On the other hand, RL-based methods do not share
these constraints as they learn skills via reinforcement, but tend to require significant exploration
even for dexterous manipulation with a single hand [8, 9, 39, 41]. As we show in our experiments,
naive application of RL-based methods is not effective for bimanual dexterous manipulation due to
the increased dimensionality and the need for coordination.

Learning Bimanual Dexterous Manipulation: A few recent studies have focused on learning bi-
manual dexterity. Some of these methods require the collection of expert demonstrations [5] and
suffer from the same limitations we discussed earlier for IL-based methods that use parallel jaw
grippers. To circumvent the need for collecting demonstrations, recent efforts have led to meth-
ods that only leverage RL and yet are capable of learning impressive bimanual manipulation skills,
such as playing the piano [6], twisting lids off containers [19], and dynamic handover [20]. While
these methods are specifically designed to solve a particular task, AsymDex is capable of efficiently
learning different bimanual dexterous manipulation tasks. Some recent studies investigate gener-
alized learning method by utilizing expert demonstration for efficient RL training [15–18], while
AsymDex can efficiently learn bimanual manipulation skills without relying on demonstration.

3 Problem Formulation
We first formulate the general problem of bimanual dexterous manipulation, and then introduce
asymmetric bimanual dexterity.

Consider the general problem of bimanual dexterous manipulation, in which two multi-fingered
hands coordinate to manipulate up to two objects. Formally, this problem can be defined as a
Partially-Observable Markov Decision Process (POMDP)M = (S,Z,A,R,P), where S ∈ Rn is
the state space, Z ∈ Rm is the observation space, A ∈ Ru is the action space, R : Rm × Ru → R
is the reward function, and P : Rn × Ru → Rn is the environment dynamics. Note that we do not
assume access to any demonstrations. Instead, we tackle of challenge of learning purely based on
reinforcement. Given this formulation, the problem boils down to learning a policy π : Z → A that
maximizes the expected discounted cumulative reward Eπ[ΣT−1t=0 γ

tR(z(t), a(t))].

Observation and Action Spaces: The observation space Z is composed of hand and object states.
At time step t, z(t) = [ξ1(t), ξ2(t), ξobj(t)], where ξ1(t) contains the first hand’s current full (fingers
+ wrist) configuration ξh1 (t) ∈ Rn1 and the 6 DOF pose of its base ξb1(t) ∈ SE(3), ξ2(t) contains
the corresponding elements for the second hand, and ξobj(t) contains the 6 DOF poses of either
two objects (e.g., stacking two cups) or parts of one object (e.g., bottle and lid). The joint action
at time step t is given by a(t) = [ξ̂1(t), ξ̂2(t)], where ξ̂1(t) denotes the target joint configuration of
the first hand ξ̂h1 (t) and the target 6 DOF pose of its base ξ̂b1(t), and ξ̂2(t) denotes the corresponding
targets for the second hand. With the above definitions, we can now define the problem of learning
bimanual dexterity as one of learning a monolithic symmetric policy: πsym(a(t)|z(t)).

Asymmetric Dexterity Problem: Asymmetric dexterity can be viewed as a broad subclass to the
above general class of problems. Inspired by strategies employed by humans and other great apes,
we are interested in tasks in which one multi-fingered hand performs complex and precise manip-
ulations while the other plays a facilitating role by supporting and actively reorienting objects of
interest (e.g., stacking, attachment, detachment, etc.). Note that our formulation does not restrict the
movement of the second hand; it merely restricts the relative movement between the second hand
and the object being held. As explained in Sec. 1, a large number of bimanual tasks exhibit asymme-
try, hinting at handedness in most humans. We are thus interested in learning an asymmetric policy
πAsymDex(·) with carefully-defined observation ZAsymDex and action AAsymDex spaces in an effort
to improve both effectiveness and sample efficiency.
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Note that our primary contributions and the asymmetric assumption pertain to the interaction phase
of bimanual dexterity, in which the two hands actively coordinate to complete the task after having
grasped the necessary object(s). Most existing works focus solely on the interaction phase [19, 20,
45]. In Sec. 4.4, we discuss how our approach can be readily extended to also tackle the acquisition
phase (learning to grasp the necessary objects before coordinating).

4 AsymDex: Learning Asymmetric Dexterity
While one could learn the symmetric policy πsym(·) as defined in Sec. 3, training such a policy can
be inefficient or ineffective due to the high dimensionality of the observation and action spaces (see
Sec. 5 for empirical evidence). Importantly, a symmetric approach ignores the natural asymmetry
found in most bimanual tasks. Below, we explain how AsymDex overcomes these challenges.

4.1 Incorporating Asymmetry

Motivated by the natural asymmetry in human bimanual manipulation [22–24], we assign different
roles to each robot hand during their interaction: a facilitating hand that is responsible for holding
and repositioning and reorienting the object, and a dominant hand which is responsible for fine-
grained dexterous manipulation of the object(s). We note that there tends to be no relative motion
between the facilitating hand and the grasped object in asymmetric dexterity since the facilitating
hand need only hold, move, and reorient the object (i.e., no in-hand reorientation). In contrast, the
dominant hand can interact freely with the object(s). This suggests that the asymmetric dexterity
is neither dependent on nor influences the finger joints of the facilitating hand during the interac-
tion phase. As such, we can considerably reduce the observation and action spaces by defining an
asymmetry-only bimanual policy: πasym(aasym(t)|zasym(t)) with actions aasym(t) = [ξ̂d(t), ξ̂

b
f (t)]

and observations zasym(t) = [ξd(t), ξ
b
f (t), ξobj(t)]. This change both reduces the dimensionality

and ensures that the facilitating hand doesn’t learn unproductive or unnecessary behaviors.

4.2 Incorporating Relative Observation and Action Spaces

Figure 2: AsymDex’s observation
and Action Spaces.

In addition to asymmetry, a key characteristic of bimanual dex-
terity is the synchronized and responsive movement of the two
hands. We can further reduce the size of the observation and ac-
tion spaces and introduce tight coupling between the hands’ be-
haviors by defining relative and object-centric coordinates that
capture the relationships between the movements of two hands
and the object(s) being manipulated. Indeed, the use of relative
state spaces has shown to considerably benefit bimanual manipu-
lation with simple end effectors [26, 46–48]. While some of these
prior works limit the relative space to a one-degree-of-freedom
(1-DoF) action space [26], AsymDex allows for complete 6-DoFs
relative space.

Let ξobjf (t) be the state of the object being held by the facilitating hand, and let ξobjd (t) be the state
of the object being manipulated by the dominant hand. We attach a coordinate frame to the object
being held by the facilitating hand: Pf . Now, we can transform the asymmetry-only observations
zasym(t) (originally defined in the absolute or world coordinate frame) into the new coordinate frame
Pf . Note that since there is no relative motion between the facilitating hand and the object that it is
holding, neither ξobjf (t) nor ξbf (t) change in Pf , and can thus be removed from our observation space
without losing any information. Now, transforming the observations (ξbd(t), ξ

obj
d (t)) onto Pf yields

zAsymDex = [ξhd (t), ξbr(t), ξ
obj
r (t)], where ξbr(t) and ξobjr (t) respective denote the 6D relative poses

of the dominant hand base and the object being manipulated by the dominant hand, both defined with
respect to the object being held by the facilitating hand. Note that since ξhd (t) denotes the dominant
hands’ joint states, it is not impacted by the change of coordinates. Similarly, we apply the same
modifications to the asymmetry-only action aasym(t), yielding aAsymDex(t) = (ξ̂br(t), ξ̂

h
d (t)), where

ξ̂br(t) is the target relative pose of the dominant hand now defined relative to the object being held
by the facilitating hand. Incorporating the above change of coordinates in addition to leveraging
asymmetry, allows us to define AsymDex’s policy as πAsymDex(aAsymDex(t)|zAsymDex(t)). Note
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Figure 3: We decompose asymmetric bimanual dexterous manipulation into two phases: An acqui-
sition phase and an interaction phase. We show that AsymDex can be readily integrated with learned
grasping policies in order to seamlessly acquire and manipulate objects.

that our formulation has significantly reduced the dimensions of both the state and action spaces,
compared to the symmetric policy πsym as defined in Section 3.

We parameterize the AsymDex policy πAsymDex(·) using an MLP and using Proximal Policy Opti-
mization (PPO) [49] to train it. See Appendix. A for details of the algorithm and policy architecture.

4.3 Relative Pose Tracking Controller

To control the hand bases based on the target relative pose ξ̂br(t) provided by πAsymDex, we designed
a bimanual controller that computes both the target dominant hand base pose ξ̂bd(t) and the target
facilitating hand base pose ξ̂bf (t) as follows

ξ̂bd(t) = αR
of
world · dist(ξ̂

b
r(t), ξ

b
r(t)) + ξbd(t),

ξ̂bf (t) = (α− 1)R
of
world · dist(ξ̂

b
r(t), ξ

b
r(t)) + ξbf (t),

(1)

where Rofworld denotes the rotational transformation from Frame Pf to the world frame PW , dist(·)
denotes the difference between two 6D poses, and α is a hyperparameter that controls the relative
involvement of each hand. The pseudo-code of the training process is included in Alg. 1.

4.4 Acquisition Phase

While our approach as explained thus far deals with the challenge of coordinating two hands to
accomplish asymmetric dexterous manipulation tasks, it assumes that the object(s) of interest have
already been grasped at the beginning of the task. However, in practice, robots must be learn to grasp
and pick up the necessary objects before the interaction between the two hands (and the objects) can
begin. We refer to this initial phase as the acquisition phase. Most recent works on bimanual dex-
terous manipulation often entirely ignore the acquisition phase and focus purely on the interaction
phase [6, 19, 20]. In contrast, we demonstrate that our approach can seamlessly accommodate the
acquisition phase by i) leveraging the observation that the acquisition phase doesn’t require the co-
ordination of two arms, and ii) employing recent advances in learning to grasp. Specifically, we
demonstrate that we can seamlessly integrate AsymDex with PDGM [50], which can efficiently
learn multi-fingered grasping policies by leveraging pre-grasp poses (see Fig. 3). Details about the
grasping reward design are available in Appendix. B. We begin by executing the grasping policy in
isolation and then ”turn on” the asymmetric policy learned by AsymDex after the object has been
firmly grasped by the facilitating hand. If the task requires the dominant hand to also grasp a second
object, we employ the same method to train a grasping policy for dominant hand to acquire the ob-
ject, but switch the control of the dominant hand’s joints over the asymmetric policy after the object
has been grasped.

5 Experimental evaluation
We evaluated AsymDex on four simulated and three real-world bimanual dexterous tasks and com-
pared its performance against strong baselines that challenge our key design choices.
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5.1 Simulation Experiments

Our experiments in simulation both systematically and rigorously evaluate AsymDex.

Tasks: We evaluated AsymDex and the baselines on the following four bimanual manipulation
tasks which contain both original (Block in cup, Bottle cap) and adapted tasks (Stack, Switch) from
BiDexHand [14] (see Fig. 1). All these tasks use two Shadow Hands – each a 30-DoF simulated
multi-finger hand system (24-DoF hand + 6-DoF floating wrist base) built with Isaac Gym [51].

• Block in cup: The two hands must coordinate to ensure that one hand places a block inside a cup
that is being held by the other without letting either the cup or the block fall to the ground.

• Stack: Two cups need to be stacked together. Each hand must hold a cup, and both must coordi-
nate such that the two cups are aligned as one slides into the other.

• Bottle cap: One hand must hold and reorient a bottle such that the other hand can grasp and
separate the bottle cap from the bottle.

• Switch: One hand holds and reorients a switch in a way that allows the other hand to turn it on.

Note that our task designs are more challenging than their counterparts in BiDexHand [14]. We
require that the two hands coordinate and synchronize to achieve success in each of the above four
tasks, especially since (unlike the original designs) we do not provide a support surface (e.g., a table)
that would significantly reduce the need for bimanual coordination. See Appendix. C for details on
state space design, sampling procedure, success criteria, and reward design.

Metrics: We quantify performance in terms of i) success rate (see Appendix. C for criteria) and ii)
sample efficiency. We report both metrics across five random seeds in all experiments.

5.1.1 Learning Bimanual Coordination

We first evaluated AsymDex’s effectiveness during the interaction phase. Following contemporary
practice in methods that learn bimanual dexterous skills [19, 20], we initialized the environment such
that the hands are at appropriate pre-grasp poses near the respective objects. This allows us to isolate
and examine AsymDex’s ability to learn to coordinate two multi-fingered hands. See Section 5.1.2
for the second experiment in which we also consider the challenge of acquiring the objects from a
tabletop surface before interaction begins.

We compared AsymDex against the following baselines:

• Sym: This policy assumes that both hands play an equal role in bimanual manipulation (see πsym
in Sec. 3). This baseline allows us to examine the necessity and effectiveness of leveraging the
asymmetry in hand roles as well as the relative action and observation spaces.

• Asym-w/o-rel: This policy leverages asymmetry in hand roles, but learns over absolute obser-
vation and action places (see Sec. 4.1). As such, this baseline allows us to examine the necessity
and effectiveness of relative action and observation spaces.

• Rel-w/o-asym: This policy leverages the relative observation and action places, but ignores
asymmetry. As such, it allows us to examine the necessity and effectiveness of asymmetry.

Both asymmetry and relative spaces are necessary for consistent performance: We report the
learning curves in Fig. 4 (a) and success rates in Table 1. Note that AsymDex consistently out-
performs all the baselines across all four tasks in terms of success rate and sample efficiency, with
significant margins in two tasks (Block in cup and Switch). Rel-w/o-asym performs better than
the other two baselines across all tasks except Switch, while Asym-w/o-rel performs better than
Monolithic on all tasks except Block in cup, on which both struggle.

(a) BiDexHand task training curve (b) Real-world task training curve

Figure 4: AsymDex consistently outperforms the baselines in terms of sample efficiency and success
rate. Solid lines indicate mean trends and shaded areas show ± std. dev., over five random seeds.
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Task
Method

Sym Asym-w/o-rel Rel-w/o-Asym AsymDex (ours)

Block in cup 0.0429± 0.0266 0.0164± 0.0190 0.1086± 0.1378 0.7701 ± 0.0559
Stack 0.0771± 0.0611 0.2185± 0.3232 0.6560± 0.3213 0.8392 ± 0.0596

Bottle cap 0.3111± 0.1813 0.4143± 0.1410 0.4730± 0.2011 0.6295 ± 0.1422
Switch 0.0563± 0.0126 0.1626± 0.0882 0.1149± 0.0176 0.6700 ± 0.0359

Table 1: Success rates (mean ± std. dev.) for the interaction phase.

Taken together, the above observations reveal a few key insights. First, when used in isolation,
neither asymmetry nor relative spaces are sufficient across all tasks. Second, the use of relative
spaces offers a larger boost in performance compared to asymmetry, likely due to the fact that
relative spaces avoid unnecessary exploration (e.g., when the two hands move in parallel) while
allowing the facilitating hand to exhibit more complex behaviors. Third, ignoring both asymmetry
and relative spaces (Sym) hardly leads to success.

5.1.2 Learning to Grasp and Coordinate

We next evaluated AsymDex’s ability to incorporate the object acquisition phase before the interac-
tion phase. Specifically, we initialize the environment for each task such that the objects of interest
are placed on a tabletop surface. As such, each method needs to learn both to grasp the necessary
objects and to coordinate the two hands to complete the tasks.

For AsymDex, we follow the same strategy introduced in Section 4.4, and comapare its performance
against the following baselines:

• Monolithic: This baseline uses a single policy to learn both the grasping and interaction phases
for both hands, allowing us to investigate the benefits of two-phase decomposition.

• 2-stage-sym: This policy benefits from the two phase decomposition but leverages neither
asymmetry nor relative spaces. As such, this baseline allows us to examine if merely employing
two-phase decomposition is sufficient.

To ensure a fair comparison, we provide pre-grasp pose annotations to both baselines. Further, we
ensure that the total number of env. interactions (the number of one stage or the sum of two stages)
is the same across AsymDex and the baselines. See Appendix. B for details of the grasping learning.

AsymDex can effectively combine the acquisition and interaction phases: We report the overall
roll-out success rate of all methods for two tasks across five random seeds in Table. 2. We find that
AsymDex significantly outperforms the other two baselines in both tasks, suggesting that combin-
ing phase decomposition with AsymDex’s other two design choices (asymmetry and relative spaces)
results in policies that can effectively handle both the acquisition and the interaction phases of bi-
manual dexterous manipulation. The fact that 2-stage-sym baseline outperforms the Monolithic
baseline points to the inherent benefits of phase decomposition. Our qualitative analysis of Block
in cup task revealed that Monolithic policy learns to tip the cup over and push the block towards
the cup. In contrast, both the two-stage policies learn more intuitive behaviors, suggesting that the
phase decomposition nudges the grasping and interaction policies to learn reasonable behaviors that
complement each other.

5.2 Real-world Experiments

We finally evaluated AsymDex and the same baselines on the following 3 real-world bimanual ma-
nipulation tasks inspired by recent bimanual manipulation works [5, 19, 26, 52–55].

Hardware setup: We use one 16-dof Allegro hand from Wonik Robotics and one 6-DoF Ability
Hand from Psyonic. They are mounted on two 7-DoF Kinova Gen3 robotic arms. We used the
Ability Hand for one of the hands since we only had access to one physical Allegro hand. For

Table 2: Success rates (mean ± std. dev.) after combining acquisition and interaction phases

Task
Method

Monolithic 2-stage-sym AsymDex

Block in cup 0.0321± 0.0251 0.1505± 0.1059 0.7938 ± 0.0897
Bottle cap 0.0± 0.0 0.2552± 0.1573 0.6116 ± 0.1328
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(a) Block in cup (b) Pour (c) Twist lid

Figure 5: We created simulation environments to match our hardware setup.

object pose information, we either employ an Realsense camera with AprilTag-based object tracking
method or estimate it directly from the end-effector’s pose, especially during occlusion.

Real-world Tasks: i) Block in Cup: Place a block with sides of 5 cm inside a cylindrical cup with
an internal diameter of 10 cm, ii) Pour: Pour dry beans from one cup into another, and iii) Twist Lid:
Twist the lid off a jar while holding the jar. Snapshots are shown in Fig. 5.

Simulation Evaluation: For each task, we first construct a simulated counterpart of our hardware
setup and then train all policies in simulation. We then compared their performance in terms of
success rate and sample efficiency, as reported in Fig. 4 (b). As observed in previous experiments,
AsymDex consistently and significantly outperformed all baselines in terms of both metrics.

Sim2Real Transfer: We deployed only the AsymDex policies on hardware since the baseline poli-
cies tended to exhibit either negligible success rates or aggressive behaviors that could damage the
hardware. To enable effective sim-to-real transfer, we apply domain randomization during reinforce-
ment learning, and details of the randomization process are provided in Appendix. D.

Block in cup Pouring Twist Lid

16/20 17/20 18/20

Table 3: Real-world task suc-
cess rates for AsymDex.

AsymDex enables zero-shot Sim2Real Transfer: As shown in
Table. 3, AsymDex achieves high success rates across all deploy-
ments. This once again highlights the effectiveness of AsymDex
in learning robust and reliable real-world bimanual dexterous ma-
nipulation skills. For the block in cup and pour task, AsymDex is
simply trained with observation noise component of common do-
main randomization technique to learn a policy that can be deployed in real world successfully. For
the most challenging twist lid task, we added observation noise and action noise, as well as other
randomization components for sim2real transfer. Though we utilized similar reward design as pre-
vious work [19] for this task, we observed that AsymDex learns a more natural and human-like
behavior compared to the previous work. Besides, unlike previous work which fixes the hand base
motion [2, 19], AsymDex is able to reposition and reorient both hand bases while two hands interact,
enabling more fluent bimanual coordination. See Appendix. D for the detailed reward design and
simulation success criterion for each task.

6 Conclusion
Our framework (AsymDex) is capable of learning complex asymmetric bimanual dexterous manip-
ulation tasks via reinforcement without relying on demonstrations. We introduced and validated
the need for AsymDex’s two crucial ingredients: assigning asymmetric roles to the two hands, and
using relative observation and action spaces. Our evaluation results reveal that the combination of
these choices consistently leads to better sample efficiency and success rates across different tasks.

7 Limitations and Future Work
Our work has revealed a number of limitations and avenues for future research. First, AsymDex in
its current form cannot handle certain bimanual tasks that require complex multi-finger manipulation
from both hands (e.g., reorienting a heavy object, dynamic handover). Second, AsymDex does not
consider the kinodynamic constraints that might result from manipulator arms. Three, behaviors
produced by AsymDex are not always natural or human-like due to lack of necessary incentives.
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Appendices
A Training Details
We use Proximal Policy Optimization (PPO) [49] algorithm to train all policies πnaive, πasym, and
πAsymDex with their corresponding value functions. Both policies and value functions are param-
eterized via a three-layer MLP network. The size of hidden layers for each is i) policy: (256,
256, 128), ii) value function: (512, 512, 512). The activation functions are all set as Exponen-
tial Linear Unit (ELU). We use the same PPO hyperparameters for all the baselines and AsymDex
(γ : 0.98, λ : 0.95, clip range: 0.2, minibatch size: 8092). We use an adaptive learning rate with KL
threshold of 0.016. We train the polices on a computer with a single Nividia RTX 4090 GPU.

Algorithm 1: AsymDex: Interaction Phase

1 Randomly initialize the two hand bases’ poses ξbf (0) and ξbd(0), and initialize object poses
of (0) and od(0) based on ξbf (0) and ξbd(0). Initialize policy πθ.

2 for iter ∈ {1, ...,max} do
3 Initialize replay buffer B = ∅ ;
4 for t ∈ {1, ...,M} do
5 Simulate:
6 Collect hand and object states ξbf (t), ξbd(t), ξhd (t), of (t), od(t);
7 Compute relative states ξbr(t) = ξba(t)�Pf , or(t) = od(t)�Pf ;
8 Policy πAsymDex(ξ̂br(t), ξ̂

h
d (t)|ξbr(t), ξhd (t), or(t)) outputs relative actions;

9 Bimanual controller (Eqn. 1) computes ξ̂bf (t) and ξ̂bd(t) based on ξ̂br(t);
10 if Meet reset condition then
11 Reset environment;
12 end
13 Environment physics steps with ξ̂bf (t), ξ̂bd(t), ξ̂

h
d (t);

14 Evaluate:
15 Compute reward r(t)
16 Collect observations (ξbr(t), ξ

h
r (t), or(t)), actions (ξ̂br(t), ξ̂

h
r (t)), and reward r(t)

into buffer B;
17 end
18 Update the Policy πAsymDex based on B;
19 end
20 Return: Trained policy πAsymDex

B Grasping Learning
Two-stage policy Both AsymDex (our approach) and 2-stage-sym policy (one of the baselines
in Sec. 5.1.2) are two-stage policies. Therefore, they can first learn a grasping policy for the facil-
itating hand (or two grasping policies for facilitating hand and dominant hand respectively). Such
policy πgrasp(ξ̂hf (t)|ξhf (t), ξbf (t) � Pf ) takes in the hand joint states and the relative pose between
hand and the object, and outputs the target hand joint positions to grasp the object firmly. We first
provide pre-grasp annotations [50], which allows the hands to initialize at the position close to the
objects with proper joint positions. Then we script the 6D lifting hand base motions and design the
the following rewards, which is the same across all objects.

Reward = Rrel pos +Rrel rot

The relative position rewardRrel pos = (α−||xobj−xinitial||)∗β, where xobj is the current relative
position between the object and the hand, and xinitial is the initial relative position between the
object and the hand. The α, β ∈ R+ are hyper-parameters. The relative rotation rewardRrel pos =<
uobj , uhand >, where uobj is the object direction vector, uhand is the hand direction vector, and
< ·, · > denotes the inner product of two vectors. We define the object direction vector and hand
direction vector to be the same at the beginning of the grasping phase. Both rewards encourage the
hand to keep a constant relative pose, i.e., grasping the object, during the script motion.
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One-stage policy Another baseline in Sec. 5.1.2, i.e., the monolithic policy, does not incor-
porate the task decomposition. Therefore, it only uses the task-specific interaction rewards (see
Appendix. C) to learn how to complete the entire bimanual task. For a fair comparison, both hands
also start at the pre-grasp poses.

C BiDexHands Task Design
In this section, we show the details for each BiDexHands simulation task.

State Space Design For each task, the hand joint states ξhf (t), ξhd (t) include the 24-DoF hand
joint positions and the 24-DoF hand joint velocities. We use quaternions to represent rotation part
of object and hand base poses. And for all policies, we also include the previous actions in the
policy input. For the block in cup task, ξobjf (t) and ξobjd (t) represent the poses of the cup and the
block respectively. For the stack task, ξobjf (t) and ξobjd (t) represent the poses of two cups. For the
Bottle cap task, ξobjf (t) and ξobjd (t) represent the poses of the bottle and the cap respectively. For the
Switch task, ξobjf (t) and ξobjd (t) represent the poses of the switch body and the button respectively.
The dimensions of the observation and action spaces of each policy are shown in Table. 4. It is
obvious that AsymDex policy significantly reduces the state dimensions.

Table 4: Dimension of Observation and action spaces. For all tasks, the dimensions are identical.
Sym Asym-w/o-rel Rel-w/o-Asym AsymDex (ours)

Observation 176 108 163 88
Action 52 32 46 26

Sampling Procedure

• Block in cup: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.3, 0.7), yd ∈ Y ∼ U(−0.2, 0.0), zd ∈ Z ∼ U(0.7, 1.1). For the rotation of the
dominant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.57, 1.57), in radians. The block is initialized in the dominant hand. Thus
its position and rotation is calculated based on the initial position and rotation of dominant
hand base. The initial position of the facilitating hand base is at [0.55, 0.6, 0.8].

• Stack: The initial position of dominant hand base is randomized: xd ∈ X ∼ U(0.3, 0.7),
yd ∈ Y ∼ U(−0.2, 0.0), zd ∈ Z ∼ U(0.7, 1.1). For the rotation of the dom-
inant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.57, 1.57), in radians. The cup is initialized in the dominant hand. Thus
its position and rotation is calculated based on the initial position and rotation of dominant
hand. The initial position of the facilitating hand base is at [0.55, 0.6, 0.8].

• Bottle cap: The initial position of dominant hand base is randomized: xd ∈ X ∼
U(0.58, 0.62), yd ∈ Y ∼ U(−0.21,−0.19), zd ∈ Z ∼ U(0.58, 0.62). For the rotation
of the dominant hand, we randomly rotate it around the axis along the arm at a random an-
gle, α ∈ A ∼ U(−1.0, 1.0), in radians. The initial position of the facilitating hand base is
randomized: xf ∈ X ∼ U(0.53, 0.57), yf ∈ Y ∼ U(0.59, 0.61), zf ∈ Z ∼ U(0.43, 0.45).
For the rotation of the facilitating hand, we randomly rotate it around the axis along the arm
at a random angle, β ∈ B ∼ U(−0.5, 0.5), in radians. The bottle is initialized in the facil-
itating hand. Thus its position and rotation is calculated based on the initial position and
rotation of facilitating hand base.

• Switch: The initial position of dominant hand base is randomized: xd ∈ X ∼ U(0.2, 0.6),
yd ∈ Y ∼ U(−0.25,−0.05), zd ∈ Z ∼ U(0.5, 0.9). For the rotation of the dom-
inant hand, we randomly rotate it around the axis along the arm at a random angle,
α ∈ A ∼ U(−1.0, 1.0), in radians. The initial position of the facilitating hand base is
randomized: xf ∈ X ∼ U(0.2, 0.6), yf ∈ Y ∼ U(0.05, 0.25), zf ∈ Z ∼ U(0.41, 0.81).
For the rotation of the facilitating hand, we randomly rotate it around the axis along the
arm at a random angle, β ∈ B ∼ U(−1.0, 1.0), in radians. The switch is initialized in the
facilitating hand. Thus its position and rotation is calculated based on the initial position
and rotation of facilitating hand base.
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Success Criteria

• Block in cup The task is considered successful if the distance of the block center and the cup
center is smaller than 0.035 meters. This distance makes sure the task is only considered
successful when the block is inside the cup. If the block falls on the ground or has not
entered the cup within a certain time step, the task is considered failed.

• Stack The task is considered successful if the distance between the cup centers is smaller
than 0.02 meters. If either cup falls on the ground or has not been stacked within a certain
time step, the task is considered failed.

• Bottle cap The task is considered successful if the cap is taken off from its original position
0.05 meters away within a time duration, and is considered failed otherwise.

• Switch The button and the switch body are connected by a revolute joint ranging from 0 to
0.5585 rads. The task is considered successful if the button is pressed and rotated 0.3585
rads within a time duration, and is considered failed otherwise.

Reward Design The reward design is similar across all tasks:

Reward = α1Rhand distance + α2Rprogress + α3Raction penalty + α4Rsuccess bonus

For each task, Raction penalty = −||a(t)||2, and the Rsuccess bonus is the task success reward.
Rhand distance and Rprogress are slightly different for each tasks.

• Block in cup: Rhand distance = e−||xpalm−xcup mouth||, where xpalm is the dominant hand
palm position, and xcup mouth is the position of the cup mouth. Rprogress = −||xcup −
xblock||, where xcup is the position of the cup, and xblock is the position of the block.

• Stack: Rhand distance = e−||xpalm−xcup mouth||, where xpalm is the dominant hand palm
position, and xcup mouth is the position of the cup mouth, which is grasped by the facilitat-
ing hand. Rprogress = −||xcupd − xcupf ||, where xcupf is the position of the cup grasped
by the facilitating hand, and xcupd is the position of the cup grasped by the dominant hand.

• Bottle cap: Rhand distance = (1− (||xindex− xcap||+ ||xthumb−xcap||))3, where xindex
and xthumb are the tip position of index finger and thumb respectively, and xcap is the
position of the bottle cap. Rprogress = ||xcap − xbottle top||, where xcap is the position of
the cap, and xbottle top is the position of the top of the bottle.

• Switch: Rhand distance = (1−(||xindex−xbutton||+||xthumb−xbutton||))3, where xindex
and xthumb are the tip position of index finger and thumb respectively, and xbutton is the
position of the button. Rprogress = 2 ∗ θbutton, where θbutton is the rotated angle of the
joint that connects the button and the switch body.

D Real-world Task Design
In this section, we present the details for each real-world task.

State Space Design For each task, the hand joint states ξhf (t), ξhd (t) include the 16-DoF hand joint
positions. We use quaternions to represent rotation part of object and hand base poses. For the block
in cup task, ξobjf (t) and ξobjd (t) represent the poses of the cup and the block respectively. For the
pour task, ξobjf (t) and ξobjd (t) represent the poses of two cups. For the twist lid task, ξobjf (t) and
ξobjd (t) represent the poses of the jar and the lid respectively. The dimensions of the observation and
action spaces of each policy are shown in Table. 5. AsymDex policy significantly reduces the state
dimensions in real-world tasks consistently.

Table 5: Dimension of Observation and action spaces. For all tasks, the dimensions are identical.
Sym Asym-w/o-rel Rel-w/o-Asym AsymDex (ours)

Observation 60 44 53 30
Action 44 28 38 22
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Sampling Procedure The corresponding simulation environments of real-world tasks include two
arms and two hands attached to them. Hence, we randomize the initial position of objects and hand
poses by randomizing the initial joint angles of two Kinova arms. Then we initialize the poses of
objects according to the initial hand poses.

• Block in cup: The default initial joint angles of the 7-DoF Kinova arms attached to the dom-
inant hand are [0.0, 0.8, 0, π/2+0.5, 0,−1.3,−π/2]. We randomized each angle by adding
a δθi: δθi ∈ Θi ∼ U(−0.1, 0.1), ∀i ∈ {1, . . . , 4}; δθi ∈ Θi ∼ U(−0.2, 0.2), ∀i ∈
{5, 6}; δθ7 ∈ Θ7 ∼ U(−0.3, 0.3). The default initial joint angles of the 7-DoF Ki-
nova arms attached to the facilitating hand are [−0.0, 0.8, 0, π/2 + 0.5, 0,−1.3, 0]. We
randomized each angle by adding a δθi: δθi ∈ Θi ∼ U(−0.0, 0.0), ∀i ∈ {1, . . . , 3};
δθi ∈ Θi ∼ U(−0.1, 0.1), ∀i ∈ {4, 7}.

• Pour: The default initial joint angles of the 7-DoF Kinova arms attached to the dominant
hand are [0.2, 0.8, 0, π/2+0.5, 0,−1.3,−π/2]. We randomized each angle by adding a δθi:
δθi ∈ Θi ∼ U(−0.1, 0.1), ∀i ∈ {1, . . . , 4}; δθi ∈ Θi ∼ U(−0.2, 0.2), ∀i ∈ {5, 6};
δθ7 ∈ Θ7 ∼ U(−1.1, 0.6). The default initial joint angles of the 7-DoF Kinova arms
attached to the facilitating hand are [−0.2, 0.8, 0, π/2 + 0.5, 0,−1.3, 0]. We randomized
each angle by adding a δθi: δθi ∈ Θi ∼ U(−0.0, 0.0), ∀i ∈ {1, . . . , 3}; δθi ∈ Θi ∼
U(−0.1, 0.1), ∀i ∈ {4, 7}.

• Twist lid: The default initial joint angles of the 7-DoF Kinova arms attached to the dom-
inant hand are [0.1, 0.5, 0, π/2 + 0.55, 0.75,−1.5,−π/2 − 0.2]. We randomized each
angle by adding a δθi: δθi ∈ Θi ∼ U(−0.0, 0.0), ∀i ∈ {1, . . . , 4}; δθ5 ∈ Θ5 ∼
U(−0.05, 0.05); δθ6 ∈ Θ6 ∼ U(−0.2, 0.0); δθ7 ∈ Θ7 ∼ U(−0.1, 0.1). The de-
fault initial joint angles of the 7-DoF Kinova arms attached to the facilitating hand are
[−0.1, 0.8, 0, π/2 + 0.5,−0.7,−1.35,−0.1].

Success Criteria

• Block in cup The task is considered successful if the distance of the block center and the cup
center is smaller than 0.035 meters. This distance makes sure the task is only considered
successful when the block is inside the cup. If the block falls on the ground or has not
entered the cup within a certain time step, the task is considered failed.

• Pour The task is considered successful if the distance between the rims of the two cups is
less than 0.035 meters and the cup grasped by the facilitating hand is up-right. If either
cup falls on the ground or the task is not success within a certain time step, the task is
considered failed.

• Twist lid We utilize the articulated bottle simulation of the previous work [19]. The lid and
bottle are connected by a single revolute joint. The task is considered successful if the lid
is rotated over 3× π rad within a time duration, and is considered failed otherwise.

Reward Design The reward function structure is similar across all tasks:

Reward = Rtask + α2Raction penalty + α3Rsuccess bonus

For each task, Raction penalty = −||a(t)||2, and the Rsuccess bonus is the task success bonus.

• Block in cup: Rtask = β1Rhand dist + β2Rprogress. Rhand dist = e−||xpalm−xcup rim||,
where xpalm is the dominant hand palm position, and xcup rim is the position of the cup
rim. Rprogress = −||xcup − xblock||, where xcup is the position of the cup, and xblock is
the position of the block.

• Pour: Rtask = β1Rhand dist + β2Rprogress + β3Rcup orient. Rhand dist =

e−||xpalm−xcup rim||, where xpalm is the dominant hand palm position, and xcup rim is
the position of the cup rim, which is grasped by the facilitating hand. Rprogress =
−||xcupd − xcupf ||, where xcupf is the position of the cup rim grasped by the facil-
itating hand, and xcupd is the position of the cup rim grasped by the dominant hand.
Rcup orient = zcupf · zworld, where zcupf is the z-axis unit vector of the cup grasped
by the facilitating hand, and zworld is the z-axis unit vector of the world frame.
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• Twist lid: Rtask = β1Rorient + β2Rtwist + β3Rfinger dist + β4Rhand dist penalty .
Rorient = zbottle ·zworld, where zbottle is the z-axis unit vector of the bottle grasped by the
facilitating hand, and zworld is the z-axis unit vector of the world frame. Rtwist = θtlid −
θt−1lid , where θtlid is the current bottle-lid revolute joint angle, and θt−1lid is the previous bottle-
lid revolute joint angle. And Rfinger dist is the finger contact reward we adopted from a
previous lid twisting work [19]. Rhand dist penalty = −min((||xf − xd|| − 0.1), 0.0),
where xf and xd are the position of the facilitating hand palm and the dominant hand
palm.

Domain Randomization The domain randomization details are shown in Table. 6

Table 6: Domain Randomization Setup.
Object: Friction (only for twist lid task) [0.5, 1.5]

Hand: Friction (only for twist lid task) [0.5, 1.5]

Object Pos Observation Noise +N (0, 0.02)
Hand Joint Observation Noise +N (0, 0.2)
Hand Pos Observation Noise +N (0, 0.02)
Hand Orientation Observation Noise +N (0, 0.05)
Action Noise (only for twist lid task) +N (0, 0.1)
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