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Abstract

Apart from performing arithmetic operations,001
understanding numbers themselves is still a002
challenge for existing language models. Sim-003
ple generalisations, such as solving 100+200004
instead of 1+2, can substantially affect model005
performance (Sivakumar and Moosavi, 2023).006
Among various techniques, character-level em-007
beddings of numbers have emerged as a promis-008
ing approach to improve number representa-009
tion. However, this method has limitations as it010
leaves the task of aggregating digit representa-011
tions to the model, which lacks direct supervi-012
sion for this process. In this paper, we explore013
the use of mathematical priors to compute ag-014
gregated digit embeddings and explicitly incor-015
porate these aggregates into transformer mod-016
els. This can be achieved either by adding a spe-017
cial token to the input embeddings or by intro-018
ducing an additional loss function to enhance019
correct predictions. We evaluate the effective-020
ness of incorporating this explicit aggregation,021
analysing its strengths and shortcomings, and022
discuss future directions to better benefit from023
this approach. Our methods, while simple, are024
compatible with any pretrained model and re-025
quire only a few lines of code, which we have026
made publicly available.1027

1 Introduction028

Numbers play an integral role in language029

(Thawani et al., 2021), and they are crucial across030

various domains such as finance (Chen et al., 2018),031

medicine (Jullien et al., 2023) or even sarcasm032

(Dubey et al., 2019). Despite, large language mod-033

els improving their capacity in many tasks, nu-034

merical reasoning still poses a challenge (Hong035

et al., 2024). Recent advancements in enhanc-036

ing numerical reasoning within language models037

have predominantly stemmed from using more038

extensive or higher-quality training datasets (Li039

et al., 2022a; Yu et al., 2024), scaling up models040

1github repository to be linked here.

(Lewkowycz et al., 2022; Kojima et al., 2022), or in- 041

tegrating methods like chain-of-thought reasoning 042

(Wei et al., 2022b; Yue et al., 2024). The effec- 043

tiveness of such methods is significantly amplified 044

when applied in conjunction with larger model ar- 045

chitectures. With smaller models, the improvement 046

shown is often minimal, for example, Wei et al. 047

(2022b) use of chain-of-thought on a 20B parame- 048

ter model only showed a 2.5% improvement on the 049

MAWPS (Koncel-Kedziorski et al., 2016) dataset 050

whereas it jumps to 14.7% with a 137B parameter 051

model. In addition, many of these solutions are 052

computationally expensive or inaccessible, alterna- 053

tively we seek a low cost approach that may have 054

minimal impact on small scale models but greater 055

effects on larger models. 056

One main problem for number understanding 057

is that the widely used tokenisation methods, like 058

Byte-Pair Encoding (BPE) (Sennrich et al., 2016), 059

work well for common words but not for num- 060

bers. Specifically, rarer numbers might be bro- 061

ken down into random and meaningless pieces. In 062

light of this, digit tokenisation (Spithourakis and 063

Riedel, 2018) stands out for its simplicity and ef- 064

ficacy at representing numbers. This technique 065

involves breaking down numbers into their individ- 066

ual digits, reducing vocabulary size and ensuring 067

all decimal numbers can be accurately represented 068

enhancing numerical reasoning abilities across var- 069

ious model architectures, tasks, and datasets (Geva 070

et al., 2020; Petrak et al., 2023; Sivakumar and 071

Moosavi, 2023). However, the aggregation of digit 072

embeddings into a complete number representation 073

is implicitly handled by the model, which raises 074

the question: can explicit aggregation using mathe- 075

matical priors improve numerical understanding? 076

In this paper, we investigate this hypothesis by in- 077

tegrating a mathematically grounded aggregation 078

of digit embeddings explicitly, rather than relying 079

solely on the model’s inherent capabilities. We 080

propose a novel approach to number embedding 081
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that requires no changes to the model’s architecture082

or additional pretraining. Our hypothesis is that083

an effective aggregation should meet two criteria:084

(1) it should distinguish between distinct numbers,085

ensuring unique representations for each value, and086

(2) the aggregated embedding should reflect nat-087

ural numerical proximity. We also explore two088

approaches for this integration: adding a special089

token before the representation of individual digits090

to enhance input number representations, and in-091

corporating an additional loss function to improve092

the representation of output digits.093

Our findings show that the integration of explic-094

itly aggregated digit embeddings enhances perfor-095

mance on small-scale models, potentially leading096

to even greater improvements in larger models. The097

effectiveness of our integration strategy depends098

on the size and pretraining of the model used. Our099

proposed method has promising prospects thus we100

also enumerate some future directions to further101

improve number understanding, consequently nu-102

merical reasoning.103

2 Related Work104

Numerical reasoning is the ability to interact with105

numbers using fundamental mathematical proper-106

ties and thus model an area of human cognitive107

thinking (Saxton et al., 2019). Given a maths108

worded problem, the model needs to interpret the109

relation between both numbers and the text to then110

solve the problem by means of arithmetic opera-111

tions (Ahn et al., 2024). Therefore, an accurate112

number representation is primordial to both distin-113

guish between different numbers but also predict114

an accurate answer. The literature focuses on five115

different areas to better represent numbers.116

2.1 Scaling117

Increasing the number of parameters of pretrained118

models has improved their numerical reasoning but119

it is still nowhere near perfect. For example, Min-120

erva (540B) (Lewkowycz et al., 2022) continued to121

struggle with higher than seven digit multiplication.122

Moreover, Frieder et al. (2023) evaluate ChatGPT123

and GPT4 to conclude that these very large models124

are inconsistent in their response when answering125

mathematical questions ranging from arithmetic126

problems to symbolic maths. This suggest that the127

models lack fundamental understanding of maths128

and thus also numbers. One approach to improve129

number representation is to scale up the vocabulary130

by having more individual number tokens. For ex- 131

ample, GPT3 has unique tokens from the numbers 132

0-520, whereas GPT4 has them up to 999. Despite 133

general better performance of GPT4, it is not feasi- 134

ble to represent infinitely many numbers in finite 135

memory capacity, making the vocabulary larger 136

would increase the computational costs as well. 137

2.2 Tokenisation 138

A more practical approach for representing all num- 139

bers is digit tokenisation (Spithourakis and Riedel, 140

2018; Geva et al., 2020); this separates numbers 141

into a sequence of individual digits. This method 142

improves upon conventional wordpiece tokenisa- 143

tion as shown with GenBERT (Geva et al., 2020) 144

and Mistral-7B (Jiang et al., 2023) by reducing vo- 145

cabulary size and ensuring precise representation 146

of all numbers. Despite its advantages over conven- 147

tional tokenisation algorithms, digit tokenisation 148

has limitations. It relies on the model to aggregate 149

digit embeddings into complete number represen- 150

tations, a process for which the model lacks direct 151

supervision. During pretraining, models typically 152

learn to aggregate subword tokens effectively for 153

common words. However, not all numbers are en- 154

countered frequently enough during pretraining for 155

the model to learn accurate aggregation. As an 156

example, when the same question is posed with 157

numbers represented differently (once as an inte- 158

ger and once scaled to the thousands), FLAN large 159

with digit tokenisation shows a performance drop 160

of 10% (Sivakumar and Moosavi, 2023). This in- 161

dicates that the model struggles with numerical 162

consistency and accurate aggregation of digit em- 163

beddings. 164

2.3 Architectural level 165

Change in model architecture also aids numerical 166

reasoning as shown by NumNET (Ran et al., 2019) 167

and xVAL (Golkar et al., 2024). NumNET extracts 168

the numbers from the input question and passage to 169

create a directed graph with magnitude information 170

about each number present, e.g. which is greater 171

than the others. This information is passed to the 172

model after encoding the input question to supple- 173

ment it with comparative information about each 174

number so that the model can use this to answer 175

the query. Alternatively, xVAL generates two input 176

encodings, one with the text where numbers are 177

replaced by [NUM], and one with empty space for 178

the text but the actual value of the number in their 179

corresponding positions. From the number preserv- 180

2



ing encoding, each number is converted to vector181

embeddings that are composed of themselves at182

each entry. The product of this vector with the183

embedding of [NUM] is then injected into the first184

layer of the transformer for each number in the in-185

put sequence. For decoding, a bespoke process is186

created to extract the predicted number instead of187

outputting the [NUM] token. Despite the positive188

contributions of these papers, their methods lack189

versatility as they are not adaptable off-the-shelf to190

any pretrained model.191

2.4 Loss Functions192

Another approach to improve numerical reason-193

ing is for models to intrinsically learn better rep-194

resentation by introducing an inductive bias in the195

loss function. A simple approach is Wallace et al.196

(2019)’s use of the mean squared error (MSE) loss197

across the batch to directly predict floats on a sub-198

set of DROP (Dua et al., 2019) which consists of199

numerical answers. However, this method is lim-200

ited to datasets that only predict numbers. Con-201

trastive loss is also used to manipulate the represen-202

tation of numbers, for instance, Petrak et al. (2023)203

draws nearer the representation generated by BPE204

and digit tokenisation of numbers through an aux-205

iliary loss when doing extended pretraining to im-206

prove arithmetic reasoning in worded problems like207

DROP but also tables like SciGen (Moosavi et al.,208

2021). Similarly, Li et al. (2022b) use contrastive209

learning but on computation trees. They first gen-210

erate computation trees for the mathematical op-211

erations and use contrastive loss to pull nearer the212

graph representing the same operation, e.g. addi-213

tion, and push other ones further. This is then inte-214

grated in the main loss and improves performance215

on two maths worded problem datasets, MathQA216

(Amini et al., 2019) and Math23K (Wang et al.,217

2017). While these loss functions are adaptable218

with different models, contrastive training is com-219

putationally expensive.220

2.5 Input Representation221

The most model agnostic method is changing the222

representation of the numbers in the input text. Wal-223

lace et al. (2019) explore worded forms of numbers,224

but this approach would overly rely on the tokeniser225

which would split them into subwords. Muffo et al.226

(2022) decomposes the numbers into place values227

in reverse order, e.g. 123 = 3 units, 2 tens, 1 hun-228

dreds which helps when working with remainders,229

e.g. when adding. However, this introduces many230

more tokens which is undesirable as well as either 231

creating new vocabulary for each place value term 232

or the danger of them being split into subword to- 233

kens. Zhang et al. (2020) preserves the numerical 234

aspect and converts all numbers into scientific no- 235

tation, e.g. 314.1 is represented as 3141[EXP]2, 236

improving models’ ability to identify the magni- 237

tude of a number. Despite providing magnitudinal 238

information, the number before [EXP] still needs 239

to be represented. In fact, all the above strategies 240

require the model to implicitly compute an overall 241

aggregation for the numbers based on their indi- 242

vidual components generated by the tokeniser of 243

the model, whether these are digits or subwords. A 244

simple, yet effective method is to introduce pause 245

tokens before predicting the answer (Goyal et al., 246

2024). This is evaluated by training a 1B parameter 247

transformer model on C4 using [PAUSE] tokens 248

and a 1% improvement is shown on the numerical 249

reasoning dataset, GSM8K (Cobbe et al., 2021). 250

While this method can be used for inference only, 251

they conclude that pretraining is recommended, 252

therefore less applicable to existing models. 253

Our work is versatile within this line of research. 254

Unlike previous methods that rely on the model to 255

implicitly learn aggregation, we focus on the ex- 256

plicit aggregation of digit embeddings using mathe- 257

matical priors. This provides direct supervision for 258

the aggregation process, improving the accuracy of 259

number representation. Furthermore, our method 260

ensures that the embedding for a given number 261

aligns with its numerical neighbours, enhancing 262

the model’s numerical reasoning capabilities with- 263

out altering the model architecture or requiring 264

extensive retraining. 265

3 Aggregation of Digit Embeddings 266

We explore an approach which is a natural con- 267

tinuation of digit tokenisation as this has demon- 268

strated its efficacy in enhancing numerical reason- 269

ing compared to BPE tokenisation. This improve- 270

ment can be attributed to digit tokenisation’s utilisa- 271

tion of pretrained embeddings for individual digits, 272

allowing the model to learn the overall representa- 273

tion through contextualised embeddings. In con- 274

trast, BPE may fragment longer and less frequent 275

numbers into random subsequences, resulting in 276

less meaningful aggregations than those achieved 277

through digit tokenisation. However, the implicit 278

aggregation process employed by digit tokenisa- 279

tion remains unclear; specifically, how the model 280
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Figure 1: A 2D projection of the neighbourhood of the
number token “55” in FLAN large is represented on the
left. Ideally, number embeddings should reflect natural
numerical proximity. In other words, the embedding for
any given number should closely align with those of its
immediate numerical neighbours, depicted on the right.

forms the overall aggregation of a number given281

the embeddings of its individual digits.282

In this paper, we investigate a mathematically283

motivated aggregation that takes into account the284

relative position of each digit within a number. Our285

approach generates an overall embedding for the286

number by considering the positional weight of287

each individual digit in that number. For example,288

given “123”, the common understanding of num-289

bers as base-10 is “1×100+2×10+3×1”, so left290

most digits are weighted higher as they represent a291

greater portion of the number.292

We design our weighted scheme such that (1) the293

embeddings of single-digit numbers remain intact,294

as these embeddings are effectively learned dur-295

ing pretraining, evidenced by the high performance296

of models on single-digit operations (Sivakumar297

and Moosavi, 2023), (2) the weights of consecu-298

tive place values increase exponentially to reflect299

base-10, and (3) the weights do not sum to 1, mean-300

ing that it is not normalising the sum, allowing for301

number composed of the same digits, e.g. “111”302

and “11”, to be represented differently. These prop-303

erties would introduce a bias towards an accurate304

length of numbers and the correct digits from left305

to right as the left most digits are amplified, hence306

preserving natural numerical order.307

We propose to calculate the weighted aggregated308

embedding a with ai =
∑

wi · di for 1 ≤ i ≤ N309

where N is the number of digits, and the weights310

wi are defined as:311

wi = 2N−i × 3(N + 1− i)(N + 2− i)

N(N + 1)(N + 2)
. (1)312

These weights are designed to satisfy three key313

properties. (1) Alignment with single-digit rep-314

resentations: when N = 1, w1 = 1, ensuring315
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Figure 2: Average F1-score of FLAN large layer 1 num-
bers using sum and our weighted aggregation function
with neighbourhood of 10.

compatibility with the model’s pretraining on sin- 316

gle digits. (2) Exponential growth: the exponen- 317

tial component 2N−i mimics the base-10 system, 318

providing an appropriate scale without causing the 319

weights to grow too rapidly. This also ensures that 320

the weights are not normalised. (3) Regularisation 321

Term: the fractional component acts as a regu- 322

larisation term, forming a normalised triangular 323

number sequence. For instance, for a 3-digit num- 324

ber, the sequence is 1,3,6, normalised to 0.1,0.3,0.6. 325

This ensures that the difference between consec- 326

utive digit weights increases proportionally, i.e., 327

wi − wi−1 = w0 × i, replicating the exponential 328

ratio between digit positions in a logarithmic space. 329

To validate the ability of an aggregated embed- 330

ding to accurately represent numerical relation- 331

ships, we use the F1-score to compare natural 332

k-Nearest Neighbours (nkNN) with embedding 333

k-Nearest Neighbours (ekNN). This comparison 334

serves two purposes: firstly, to assess the embed- 335

dings’ capacity to distinguish between distinct num- 336

bers, and secondly, to evaluate how well these em- 337

beddings mirror the natural numerical order. By 338

defining nkNN as the set of mathematically adja- 339

cent numbers to a given integer n, and ekNN as the 340

set of its closest neighbours in the embedding space, 341

we create a direct measure of the embedding’s ef- 342

fectiveness in preserving numerical proximity. The 343

F1-score evaluates the alignment between nkNN 344

and ekNN, penalising both the inclusion of incor- 345

rect neighbours and the omission of correct ones. 346

A strong correlation between nkNN and ekNN, 347

as reflected in a high F1-score, indicates that the 348

embeddings faithfully capture the essence of nu- 349

merical data as illustrated in Figure 1. 350

We compare our bespoke weighted aggregation 351
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function to a more standard aggregation function,352

sum. For a set of digit embeddings, we apply353

these functions along each dimension to generate354

a unique embedding for the number represented355

by these digits. Figure 2 graphs the F1-score for356

both functions and different digit length, i.e. 2-357

digit would be the numbers 10 to 99. Appendix A358

has results for other aggregation functions: max,359

min, mean and median; these have the lowest align-360

ment with natural order with an F1-score below361

5%. These functions all have a normalising prop-362

erty meaning that the length of the number has no363

bearing on the aggregated embedding, as the func-364

tions only retrieve one entry for each dimension365

therefore cases like “1111” would be equivalent to366

both “11” and “1”. Contrastingly, sum has better367

F1-scores for up to 3 digits as it possesses magnitu-368

dinal information since all the entries are summed369

up for each dimension distinguishing, for instance,370

a 2-digit set from a 3-digit set as it simply adds371

more numbers. However, it is position agnostic - it372

assigns equal weight to all the digit irrespective of373

their relative positions. Therefore, the embeddings374

generated from permutations of the same digits will375

always be equivalent, e.g. “85” and “58”. Since376

larger digit numbers have more such permutations,377

the F1-score reduces as the number of digits in-378

creases. Using this metric, the best aggregation379

is our weighted sum, the average F1-score rounds380

to 69% for 2 digits onwards suggesting that our381

weighted sum is closer to the ideal depiction in382

Figure 1. Undoubtedly, 1-digit F1-score is better as383

these embeddings are generated from pretraining,384

but also because the weighted scheme ensures that385

they are separated from the other number embed-386

dings.387

Despite this weighted scheme aligning the num-388

ber embeddings with their natural order, the389

weights generated by Equation 1 can become ex-390

cessively large after a certain point. This behaviour391

is, however, attenuated by the regularisation term392

which maintains the high F1-score of 69% for, at393

least, up to 6-digit long numbers.394

4 Integrating Aggregated Embeddings395

Given the construction of our mathematically396

grounded aggregation, we explore two distinct397

methodologies for enhancing numerical under-398

standing in models, each targeting different aspects399

of number representation. The first method focuses400

on enriching the input data by integrating a mathe-401

matical aggregation directly into the input embed- 402

ding as a special token. This approach requires no 403

changes to the model’s architecture, making it a 404

flexible solution compatible with various models 405

and suitable for a broad spectrum of tasks. 406

In contrast, the second approach aims to refine 407

the model’s output by improving how numbers 408

are represented in the learned outcomes. This is 409

achieved by incorporating the aggregation in the 410

loss function, encouraging the model to generate 411

number embeddings that align more closely to the 412

correct numerical values. Specifically, this method 413

includes an additional term in the loss calculation, 414

which accounts for the distance between the ag- 415

gregated embedding of the predicted numbers and 416

that of the true numbers. This targeted intervention 417

is particularly effective in tasks requiring precise 418

numerical predictions, helping the model develop a 419

more nuanced and accurate representation of num- 420

bers. 421

The baseline implementation for both methods 422

is the same as Petrak et al. (2023) with digit tokeni- 423

sation surrounded by [F] and [/F] tokens to mark 424

the start and end of the number identified using the 425

regular expression “(\d*\.)?\d+”. 426

4.1 Aggregation in Input Embeddings 427

In our first approach, we enhance the input embed- 428

ding by incorporating the computed aggregation 429

directly. This is achieved by first digitising num- 430

bers and delineating them with special tokens as 431

done by Petrak et al. (2023). Additionally, we intro- 432

duce a special token, [AGG], positioned as follows 433

where di represent the digit tokens: [F] [AGG] [d1] 434

... [dn] [/F]. The embedding for this [AGG] to- 435

ken is initialised with the aggregation of the digit 436

embeddings based on Equation 1. 437

4.2 Aggregation in Loss Function 438

Language generation models typically use a cross- 439

entropy loss function (LCE) (Lewis et al., 2020; 440

Raffel et al., 2020). To improve the model’s ability 441

to predict numbers accurately, we introduce an aux- 442

iliary loss (LAUX ) to calculate the mean squared 443

error between the aggregate embedding of the gold 444

and predicted numbers. Understanding and pre- 445

dicting numbers is inherently more complex than 446

predicting a single word or sub-word because they 447

consist of multiple digits, each carrying different 448

significance. For example, in answering the ques- 449

tion “Mary’s salary is £900 a month, but she pays 450

£579 in rent. How much salary does she have left 451
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at the end of each month?”, the answers 320, 230,452

32, or 456 are all incorrect. However, 320 is more453

accurate compared to others because its magnitude454

is closer to the correct answer, 321. Incorporat-455

ing this new auxiliary loss would help the model456

predict digits that are closer to the gold answer,457

enhancing its precision in numerical predictions by458

recognising the relative significance of each digit459

within a number.460

Given a prediction p and the gold label l, we461

compute the weighted sum of the digits2 for both p462

and l. This process generates two single embedding463

representations: W (p) for the prediction, and W (l)464

for the gold label. The distance between these two465

embeddings is then calculated using the log3 mean466

squared error (equivalent to the euclidean distance):467

LAUX = log2 ( ∥W (p)−W (l)∥2 ) (2)468

The two losses are linearly interpolated by a hyper-469

parameter, λ:470

L = λ× LCE + (1− λ)× LAUX (3)471

5 Experimental Setup472

Both methods are evaluated on two different pre-473

trained models, BART base (140M) (Lewis et al.,474

2020) and FLAN base (250M) (Wei et al., 2022a).475

Additionally, we evaluate on FLAN large (780M)476

to explore the effect of model size. All of these477

models are encoder-decoders. BART is pre-trained478

on five corrupted document tasks from books and479

Wikipedia data. FLAN is an instruction-finetuned480

version of T5 (Raffel et al., 2020) which is trained481

on C4 using transfer learning.482

We evaluate our proposed methods on two differ-483

ent test sets: FERMAT (Sivakumar and Moosavi,484

2023), and MAWPS (Koncel-Kedziorski et al.,485

2016). Both FERMAT and MAWPS consist of486

English maths worded problem that can be tackled487

by BART and FLAN as shown by Sivakumar and488

Moosavi (2023) and where the answer is a single489

number. This enables us to evaluate our method490

strictly on numerical outputs reducing the interfer-491

ence of other difficulties such as predicting words492

and units, or extracting spans. FERMAT is a multi-493

view evaluation set which has different test sets494

with different number representations while keep-495

ing the maths problem fixed. The different test sets496

2Should the answers not be numerical, the model is pe-
nalise by arbitrarily setting LAUX to 20.

3Log base 2 is used to regularise the auxiliary loss.

distinguish different number types of which we 497

select the ones that separate integers into number 498

lengths, mix integers less than 1000, mix integers 499

greater than 1000, one and two decimal place num- 500

bers, and a test set scaled up to more than 4-digit 501

numbers; these allow us to evaluate which num- 502

ber representation the models support better. FER- 503

MAT’s training set is augmented from templates 504

making it independent to its test sets. MAWPS, 505

on the other hand, has the same domain for both 506

training and testing. It is a widely used dataset to 507

evaluate numerical reasoning, chiefly because it 508

is small and easy to train with small models. We 509

finetune the models on each dataset’s respective 510

training data (see Appendix B) using the hyperpa- 511

rameters described in Appendix C. 512

Accuracy is the general metric used to evalu- 513

ate these datasets, however, since it is sometimes 514

too stringent and neglects to reflect some improve- 515

ments of the model, we also use a variation of edit 516

distance (Levenshtein, 1966) as a supplementary 517

metric. Edit distance helps see improvement in the 518

predictions despite being incorrect; it calculates 519

how many insertions, deletions or substitutions is 520

required for the prediction to be transformed into 521

the gold label number on a string level. In this pa- 522

per, we will use Character Error Rate (CER) which 523

is a character level (digit level) edit distance as a 524

percentage over the string length of the target. The 525

lower the CER, the closer the prediction is to the 526

gold label. 527

6 Impact of Integrating Aggregations 528

Table 1 presents the results of our exploration into 529

the effects of integrating mathematical aggregation 530

into the three models across two distinct settings. 531

The bold values indicate the stronger improvement 532

between the two incorporation strategies. For the 533

majority of the test splits, the strongest perfor- 534

mance of the examined models is observed when 535

the aggregation is incorporated into the auxiliary 536

loss. This suggests that incorporating aggregation 537

at the output level is more effective than incorpo- 538

rating it in the input embedding. However, this 539

may be due to the fact that adding a new token in 540

the input might require more than just fine-tuning, 541

such as an extended pretraining phase. This aligns 542

with the observations made by Goyal et al. (2024), 543

who found that the addition of the pause token only 544

became effective from pretraining. 545

FLAN large, on the other hand, has a more bal- 546
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[AGG] + Digits +2.00 +0.63 +1.53 -1.17 -0.90 -2.16 -0.27 +0.09 +0.09 +1.08 -0.27 -3.90 -0.74 +1.77 0.00

BART base
(140M)

Digits + Aux Loss +1.40 +1.89 +1.80 +0.54 +0.81 0.00 +0.81 +1.17 -1.26 +0.18 +0.63 +2.01 +0.19 +4.25 -1.27
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[AGG] + Digits +0.80 +2.79 +0.27 +2.52 +0.81 +1.80 +2.79 +1.80 +0.90 +0.45 -0.09 +4.48 +3.21 -0.27 +1.08

FLAN base
(250M)

Digits + Aux Loss +1.80 +2.25 +0.36 +3.15 +2.16 +1.71 +2.79 +0.81 +3.87 +1.89 -0.18 +3.90 +5.80 +0.27 +1.57
Digits 28.80 42.39 21.06 25.65 31.32 24.30 21.87 16.47 23.31 36.36 25.83 63.12 39.88 18.23 18.14
[AGG] + Digits +1.20 +0.45 +0.45 +0.81 +2.07 +2.79 +0.99 +1.35 +2.88 +0.27 +0.54 +6.17 +3.83 +0.53 +1.47FLAN large

(780M)
Digits + Aux Loss +1.00 +0.99 -0.18 +1.62 +2.88 +2.79 +0.72 +1.53 +1.26 +1.26 +0.63 -0.39 +1.79 +0.18 -1.08

Table 1: Results change from baseline after including aggregate embeddings in input embedding ([AGG] + Digits)
and auxiliary loss (Digits + Aux Loss) for BART base, FLAN base and FLAN large. Darker shades of green and red
indicate an absolute change greater than 1%.

anced performance but an overall higher improve-547

ment when the aggregation is incorporate in the548

input as shown particularly from all the green cells549

in the row [AGG] + Digits. Therefore, a certain550

model size may be required to learn a new token551

and leverage the information it provides. This re-552

inforces that an aggregated embedding provides553

useful signal to improve number understanding but554

how it is integrated is also crucial.555

When focusing on smaller integers (columns556

“Integers 0 to 1000” to “4-digit integers”), incor-557

porating the weighted embedding in the auxiliary558

loss consistently yields better performance, with all559

cells being green and showing the highest scores.560

For smaller integers, models likely already possess561

a strong implicit representation, making the explicit562

[AGG] token less impactful. However, at the de-563

coding stage, the auxiliary loss enhances precision564

by penalising incorrect predictions.565

For the 1000+ columns, using accuracy, the pat-566

tern is not evident, however, from Appendix D,567

using the auxiliary loss clearly reduces the CER568

more than explicitly using the aggregation in the569

input. The auxiliary loss encourages the model570

to predict the correct answer as the CER is lower.571

However, since the weights assigned to each digit572

position is lower as it gets closer to the units, the573

auxiliary accounts less for it, reducing precision.574

As a consequence, despite the CER reducing, since575

the entire number is not predicted correctly, im-576

provement fails to be reflect in the accuracy.577

7 Analysis of Aggregation Embedding in578

the Input579

The first integration method relies on prepending580

the aggregated embedding token, [AGG], before581

the digits. The position of the token is before what 582

it represents, similar in nature to BERT’s (Devlin 583

et al., 2019) [CLS] token, which is an aggregation 584

token of the entire input. However, Goyal et al. 585

(2024) use a [PAUSE] token posteriori to the digit 586

tokens to act as processing time after concluding 587

that prepending it had less impact. Consequently, 588

we also evaluate our proposed method by append- 589

ing the aggregation token, i.e. Digits + [AGG]. Ta- 590

ble 2 clearly shows that this configuration for both 591

base models underperforms compared to [AGG] 592

+ Digit as rows have more red entries. In fact, it 593

performs worse than the baseline with only digit 594

tokenisation. For FLAN large, the results between 595

[AGG] prepended and appended are closer to one 596

another, but prepended, the impact is positive for 597

each test set and on average better by 1% than 598

[AGG] used posteriori. Seeing the token before 599

the digits might provide magnitude information of 600

the overall number which would indicate the im- 601

portance of each digit to come, whereas having it 602

after might interfere with the representation that 603

the model has already started to create implicitly 604

from seeing the digits first. 605

Additionally, we test the impact of providing 606

the aggregated token by replacing it with a ran- 607

domly initialised [PAUSE] token akin to Goyal 608

et al. (2024). From Table 2, we observe that for 609

BART, nor [AGG], nor [PAUSE] have a great pos- 610

itive impact on the performance. This confirms 611

that BART struggles to learn new tokens from fine- 612

tuning alone. The FLAN models are more adapt- 613

able to the new tokens as seen by the greener rows. 614

However, the overwhelming bold entries with the 615

[PAUSE] token indicate that both FLAN base and 616

large perform better with a [PAUSE] token acting 617
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sa
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om
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ra
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om

a+
b

a-
b

a*
b

a/
b

Digits 19.20 16.65 8.73 10.26 13.41 10.89 7.74 5.58 10.89 17.82 8.37 40.91 10.62 9.56 11.76
Digits + [AGG] -1.40 -14.76 -7.74 -8.82 -10.98 -8.73 -6.75 -5.58 -10.35 -14.76 -7.83 -36.82 -9.38 -8.94 -9.51
[AGG] + Digits +2.00 +0.63 +1.53 -1.17 -0.90 -2.16 0.27 +0.09 +0.09 +1.08 0.27 3.90 0.74 +1.77 0.00

BART base
(140M)

[PAUSE] + Digits -1.40 +0.18 -0.45 -0.18 -0.63 -0.90 -0.36 -0.27 -3.87 -0.90 0.00 -8.51 -0.31 +1.68 -2.06
Digits 23.00 28.35 17.82 17.10 22.86 17.37 13.77 10.35 18.72 25.83 18.45 63.38 19.57 12.92 11.27
Digits + [AGG] +1.80 -1.53 -2.07 +0.99 -1.89 -0.36 +0.63 +1.35 -0.63 -1.98 -0.99 +0.45 +3.89 -2.39 -0.10
[AGG] + Digits +0.80 +2.79 +0.27 +2.52 +0.81 +1.80 +2.79 +1.80 +0.90 +0.45 -0.09 +4.48 +3.21 -0.27 +1.08

FLAN base
(250M)

[PAUSE] + Digits +1.00 +2.07 -0.54 +1.98 +1.44 +1.80 +2.61 +2.52 +2.16 +2.61 +1.71 +3.18 +5.99 1.95 +3.43
Digits 28.80 42.39 21.06 25.65 31.32 24.30 21.87 16.47 23.31 36.36 25.83 63.12 39.88 18.23 18.14
Digits + [AGG] -2.80 -2.16 +1.35 +1.89 +1.08 +1.44 +1.62 +2.16 +5.40 -1.17 +0.54 +8.57 -8.15 -0.97 +1.18
[AGG] + Digits +1.20 +0.45 +0.45 +0.81 +2.07 +2.79 +0.99 +1.35 +2.88 +0.27 +0.54 +6.17 +3.83 +0.53 +1.47

FLAN large
(780M)

[PAUSE] + Digits -1.40 -0.45 -0.45 +1.89 +3.69 +2.88 +3.06 +2.25 +5.04 +1.17 +2.61 +6.17 +1.17 -1.77 +3.53

Table 2: Comparing the aggregated embedding at the input level with a pause token and positioning the token after
the digits. Darker shades of green and red indicate an absolute change greater than 1%.

as a blank space for the model to process the in-618

formation. It may also be that the model uses this619

token to create an implicit representation of the620

number. Nevertheless, the average improvement621

between the [PAUSE] and [AGG] differs by less622

than 0.5% implying that a different aggregation623

function or a full hyperparameter search could re-624

verse the trend.625

8 Future Work626

Our proposed aggregation strategy has shown en-627

couraging steps towards better number representa-628

tion. However, as with observation made in previ-629

ous work, the effect of new strategies report min-630

imal improvement on smaller models but greater631

impact on larger models (Cobbe et al., 2021; Wei632

et al., 2022b). Therefore, an evaluation of our pro-633

posed method on larger scale models would verify634

the scalability of this approach.635

The weighting scheme, presented in Equation 1,636

offers a straightforward method for aggregating637

digit embeddings. However, as numbers increase638

in length, their aggregated embeddings tend to drift639

away from the original numerical embedding space.640

This divergence could be addressed by enabling641

the model to adapt to this new embedding space642

by exploring extended pretraining, or alternative643

weighting schemes that remain closer to the numer-644

ical subspace while satisfying the criteria outlined645

in Section 3.646

Our auxiliary loss, grounded in Mean Squared647

Error, shows promising results for penalising the648

model’s erroneous predictions and nudging it to-649

wards more accurate outcomes. Given that the650

values resulting from standard cross-entropy and651

the MSE of the aggregated embeddings may span 652

vastly different value ranges, crafting a loss func- 653

tion that aligns more closely in magnitude with the 654

output of cross-entropy could mitigate the risk of 655

exerting excessive regularisation pressure. 656

9 Conclusion 657

Improving numerical reasoning is a challenging 658

task, increasing model sizes or focusing on data 659

augmentation helps but at the cost of a substan- 660

tial additional training time or computations. Digit 661

tokenisation has been a pioneering work in improv- 662

ing how models encode and decode numbers, how- 663

ever the aggregation of the digit is done implicitly. 664

We advance this idea by explicitly providing an 665

aggregated number embedding that is more math- 666

ematically sound. These embeddings are gener- 667

ated as weighted sums of the digit embeddings by 668

accounting for the digits relative position in the 669

number. We then incorporate them in two model 670

agnostic forms: in the input level as an additional 671

token, and in an auxiliary MSE loss. Our promis- 672

ing results demonstrate that, as a proof-of-concept, 673

even a straightforward aggregation with simple in- 674

corporation techniques can positively impact num- 675

ber understanding. Therefore, testing it at larger 676

scale, developing sophisticated aggregation func- 677

tions, and refining the integration of the auxiliary 678

loss presents valuable avenues for future research. 679

10 Limitations 680

Some of the limitations of this work is discussed 681

in the Future Work section. However, we give 682

detail of more limitations relating to the size of the 683

models used, and the compatibility and growth of 684

8



our proposed weighted aggregation function.685

Due to financial and resource constraints the hy-686

pothesis that the methods for incorporating the ag-687

gregated embedding in larger architectures would688

lead to greater performance based on the improve-689

ment observed on smaller model is not verified.690

In addition, while the weighted scheme is de-691

signed using mathematical priors, it is specifically692

created for integers, therefore it may not be com-693

patible with decimals or alternative representation694

of numbers such as 01 for 1. Nonetheless, from695

Table 5, we note that CER reduces for both 1dp and696

2dp therefore our aggregated embedding method697

has promising scope for all numbers. Lastly, the698

weights function described in Equation 1 does not699

converge, therefore for a sufficiently large num-700

ber of digit it would grow beyond the accuracy701

provided by the model. However, we explain in702

Section 3 with the aid of Figure 2 that, for up to703

6-digits, the weighted scheme functions well with704

no signs of deterioration. Moreover, in natural text,705

very large numbers tend to be shorten using a more706

appropriate unit, for example, the world population707

of 8114693010 is more often expressed as 8 billion708

reducing the numbers of digits needed consider-709

ably.710
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Appendix 963

A Aggregation functions 964

Figure 3 shows that F1-score for numbers with up 965

to 6-digits across six different aggregation func- 966

tions. The F1-score for max, min, mean and me- 967

dian are all below 5%. 968

B Datasets 969

The datasets’ split is given in Table 3. MAWPS 970

is a dataset generated by combining different ones 971

ranging from addition and subtraction to simul- 972

taneous equations. The collation of questions is 973

split to create the train, development and test set. 974

FERMAT is a large dataset which has a training 975

and development set automatically generated from 976

100 templates using different numbers from the fol- 977

lowing four categories: small integers (less than 978

1000), large integers (between 1000 and 100000), 979

1 decimal place and 2 decimal place numbers. The 980

test set is independently generated from two maths 981

worded problem datasets, and then augmented to 982

create 21 test sets of which we use 11.

Datasets Train Dev Test
MAWPS 1500 373 500
FERMAT 200000 1000 1111x11

Table 3: Train, development, and test splits of MAWPS
and FERMAT.

983

C Hyperparameters 984

All experiments were conducted using an Nvidia 985

Tesla A100 with 80G and with a weight decay 986

of 0.005, warm-up of 100, float32 and 3 gener- 987

ation beams, max input length = 128, max target 988

length=16, and seed=42. Due to limited compu- 989

tational resources, a full grid search of hyperpa- 990

rameter was impossible, however, we do a lambda 991

search in the range 0.4 to 0.8 in 0.05 increments. 992

Specific hyperparameters as well as computation 993

time for dataset and model combinations can be 994

found in Table 4. 995

D Character Error Rate (CER) Results 996

Table 5 presents the character error rate (CER) for 997

incorporating the weighted aggregation as an input 998

token and in the auxiliary loss, for all three models. 999
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Figure 3: Average F1-score of FLAN large layer 1 numbers using max, min, median, mean sum and our weighted
aggregation function with neighbourhood of 10.

Datasets Models Learning Rate Epochs Batch Size Lambda Training Time

MAWPS
BART base

1.00E-04
150 128 0.6 1h

FLAN base 150 64 0.6 1h
FLAN large 100 16 0.65 1.5h

FERMAT
BART base

1.00E-05
50 128 0.6 37h

FLAN base 50 64 0.65 48h
FLAN large 50 16 0.4 87h

Table 4: Specific hyperparameters for MAWPS and FERMAT based on the models trained. Training time is also
provided as a rounded figure.
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a*
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a/
b

Digits 77.73 89.59 90.32 72.87 71.93 72.25 74.04 77.01 50.29 54.42 62.23 50.31 74.12 60.73 75.51
[AGG] + Digits -1.79 -12.40 -0.83 +0.46 +0.51 +1.19 -0.16 -0.44 +0.94 -1.38 -1.28 +3.08 -1.58 +1.21 -2.22BART base

(140M)
Digits + Aux Loss +0.76 -1.88 -0.53 +0.17 +0.20 +0.34 -1.06 -0.53 -1.89 -1.59 -1.78 -2.45 -0.23 -2.75 +0.26
Digits 67.71 75.32 169.52 67.37 67.68 67.94 67.86 68.86 50.95 43.77 47.80 39.84 87.81 60.96 91.52
[AGG] + Digits -0.98 -1.40 -0.29 -1.11 -1.41 -1.19 -1.67 -0.96 +1.26 -1.33 -0.39 -1.64 -1.94 -0.17 -0.50

FLAN base
(250M)

Digits + Aux Loss -1.54 -0.83 -1.09 -1.09 -1.15 -0.80 -1.39 -1.23 -2.09 -1.82 -0.30 -1.25 -3.15 -0.72 -0.93
Digits 63.13 69.71 76.46 63.02 62.69 63.53 63.96 66.67 49.90 37.63 42.31 39.00 58.84 52.84 70.49
[AGG] + Digits -2.57 -44.77 -10.81 -1.02 -0.10 -1.63 -0.65 -0.89 +1.78 -0.93 -1.23 -6.16 -7.80 -5.49 -7.19FLAN large

(780M)
Digits + Aux Loss -3.45 -45.42 -2.72 -1.20 -0.24 -1.09 -1.23 -1.31 -2.57 -1.11 -1.27 -3.47 -6.14 -2.93 -4.74

Table 5: Results in Character Error Rate (CER) as a percentage over the target string with change from baseline
after including aggregate embeddings in input embedding ([AGG] + Digits) and auxiliary loss (Digits + Aux Loss)
for BART base, FLAN base and FLAN large. With CER, lower CER indicates a better performance, green highlight
reduced CER i.e. negative change, and red the opposite. Darker shades of green and red indicate an absolute change
greater than 1%.
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