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ABSTRACT
Sequential recommendation methods play a pivotal role in modern
recommendation systems. A key challenge lies in accurately mod-
eling user preferences in the face of data sparsity. To tackle this
challenge, recent methods leverage contrastive learning (CL) to de-
rive self-supervision signals by maximizing the mutual information
of two augmented views of the original user behavior sequence. De-
spite their effectiveness, CL-based methods encounter a limitation
in fully exploiting self-supervision signals for users with limited
behavior data, as users with extensive behaviors naturally offer
more information. To address this problem, we introduce a novel
learning paradigm, named Online Self-Supervised Self-distillation
for Sequential Recommendation (𝑆4Rec), effectively bridging the
gap between self-supervised learning and self-distillation methods.
Specifically, we employ online clustering to proficiently group users
by their distinct latent intents. Additionally, an adversarial learning
strategy is utilized to ensure that the clustering procedure is not
affected by the behavior length factor. Subsequently, we employ
self-distillation to facilitate the transfer of knowledge from users
with extensive behaviors (teachers) to users with limited behav-
iors (students). Experiments conducted on four real-world datasets
validate the effectiveness of the proposed method.
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• Information systems → Recommender systems; • Comput-
ing methodologies → Learning paradigms.
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1 INTRODUCTION
As an important recommendation paradigm, sequential recommen-
dation has been playing a vital role in online platforms, e.g., Ama-
zon and Alibaba. Generally, sequential recommendation takes a
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(a) Sequence level (b) Cluster level

Figure 1: Visualization of clustering for sequence granularity
and cluster granularity on an amazon dataset.

sequence of user-item interactions as the input and aims to pre-
dict the subsequent user-item interactions that may happen in
the near future through modelling the complex sequential depen-
dencies embedded in the sequence of historical interactions. Early
works based on Markov Chains [10, 23] focus on modelling sim-
ple low-order sequential dependencies. Afterward, deep learning
networks, such as recurrent neural networks (RNN) [11, 12], convo-
lutional neural networks (CNN) [26, 34], andmemory networks [14]
have drawn attention for sequential recommendations due to the
powerful non-linear expressive capacity. In addition, transformer-
based [15, 24, 28] models have gained popularity for sequential
recommendations. They can effectively learn users’ preferences by
estimating an importance weight for each item.

Although these methods have achieved promising results, they
usually only utilize the item prediction task to optimize a huge
amounts of parameters, which suffers from data sparsity prob-
lem easily. To tackle the problem, inspired by the successes of
self-supervised learning in computer vision (CV) [3] and natural
language processing (NLP) [8], recent works attempt to use self-
supervised learning techniques to optimize the user representation
model for improving sequential recommendation systems. These
methods typically derive self-supervision signals through maximiz-
ing the mutual information of two augmented views of the original
user behavior sequence.

Despite their effectiveness, aforementioned methods fail to fur-
ther extract supervision information across historical interactions.
In practice, users consume each item based on their latent intents,
which can be perceived as a subjective motive for their interaction.
This motivates the exploration [19, 21] to extract shared underlying
intents among users, which can be utilized to guide the recommen-
dation system in providing more relevant recommendations. Since
these methods require labels to model the user’s intents, ICLRec [5]
learns users’ underlying intent distributions from all user inter-
action sequences via clustering. However, clustering algorithms
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typically involve operations over entire datasets, which can be com-
putationally challenging and less efficient dealing with large-scale
datasets.

Furthermore, these methods also encounter a limitation in fully
exploiting self-supervision signals for users with limited behavior
data, as users with extensive behaviors naturally offer more infor-
mation. As illustrated in Figure 1, the learned representations of
users with extensive behaviors (long sequences) tend to be clus-
tered by themselves which are relatively separated from users with
limited behaviors (short sequences). However, the learned user
representations should be affected by users’ latent intents and unaf-
fected by the observed sparsity of behavior sequence. Many studies
point that uniform representation distribution is a crucial factor
for the performance of contrastive learning methods [30, 33]. Pre-
vious CL-based and intention modelling methods fail to handle the
distribution discrepancy between these two types of users, which
hinders the sequence recommendation performance, especially for
the users with limited behaviors.

To address these problems, we introduce a novel learning para-
digm, named Online Self-Supervised Self-distillation for Sequential
Recommendation (𝑆4Rec), effectively bridging the gap between
self-supervised learning and self-distillation methods. Specifically,
we employ online clustering to proficiently group users by their
distinct latent intents. Additionally, an adversarial learning strategy
is utilized to ensure that the clustering procedure is not affected by
the behavior length factor. Subsequently, we employ self-distillation
to facilitate the transfer of knowledge from users with extensive
behaviors (teachers) to users with limited behaviors (students).

The main contributions of this paper are summarized as follows:

• We propose a novel learning paradigm for sequential recom-
mendation, which bridges the gap between self-supervised
learning and self-distillation methods. To the best of our
knowledge, this is the first work to apply self-distillation
techniques to the sequential recommendation.

• We propose online clustering and adversarial learning mod-
ules to learn user representation clusters which are unaf-
fected by the sparsity of behavior. Based on the learned clus-
ters, the cluster-aware self-distillation module is employed
to transfer knowledge from users with extensive behaviors
to users with limited behaviors.

• Extensive experiments are conducted on four real-world
datasets, which show the state-of-the-art performance of the
proposed 𝑆4Rec model.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation aims to learn users’ interests and fore-
cast the next items they would most like to interact with by model-
ing the sequences of their historical interactions.

Early works based on Markov Chains [10, 23] focus on model-
ing simple low-order sequential dependencies. These approaches
rely on rigorous assumptions and are powerless to handle com-
plex patterns. Afterward, deep learning networks, such as recur-
rent neural networks (RNN)[11, 12], convolutional neural networks
(CNN)[26, 34] and memory networks [14] have drawn attention for

sequential recommendations due to the powerful nonlinear expres-
sive capacity. Recently, transformer-based [28] models have gained
popularity for sequential recommendations. Typically, SASRec [15]
uses self-attention mechanism to dynamically assign weights to
each item. BERT4Rec [24] proposes a deep bidirectional transformer
model to extract both left and right-side behaviors information.
ASReP [20] further solves data sparsity problem by introducing
a pretrained transformer on the revised interaction sequences to
augment short sequences.

2.2 Intention Learning for Recommendation
Many approaches have been proposed to study users’ intents behind
each user’s behavior for improving recommendations [4, 21, 25].

DSSRec [21] introduces a sequence2sequence training strategy
to capture extra supervision information. An intent variable is
employed to extract mutual information between an individual
user’s past and future interaction sequences. ICLRec [5] learns users’
intent distribution from unlabeled user behavior sequences and
optimize SR models with contrastive learning by considering the
obtained intents. ISRec [17] extracts the intentions of the target user
from sequential contexts, then takes complex intent transition into
account through the message-passing mechanism on an intention
graph.

2.3 Self-Supervised Learning for
Recommendation

Self-Supervised Learning (SSL) become prevalent in different re-
search areas, including computer vision [3], natural language pro-
cessing [8], and more. The main target of SSL is to capture high-
quality and information-rich representations through the feature
itself. There have also been some recent works to apply SSL to
sequential recommendations. For example, S3-Rec [36] adopts a pre-
training and fine-tuning strategy with four self-supervised tasks,
and first proposes to maximize the mutual information between
historical items and their attributes. CL4SRec [31] introduces three
data-level augmentation approaches (crop/mask/reorder, referred
to as invasive augmentation methods in the paper) to structure
positive views. Later, CoSeRec [19] aims to produce robust aug-
mented sequences based on item denpendencies since random item
perturbations may weaken the confidence of positive pairs. ICLRec
[5] conducts clustering among all user behavior sequences to obtain
user’s intent, and optimizes sequential recommendation model by
maximizing the mutual information between sequence and corre-
sponding intentions.

3 PRELIMINARIES
3.1 Problem Formulation
We denoteU and I as the user set and item set, respectively. For
each user 𝑢 ∈ U, his/her chronological interaction sequence can
be represented as S𝑢 = [𝑠1𝑢 , ..., 𝑠𝑙𝑢 , ..., 𝑠𝐿𝑢 ], where 𝑠𝑙𝑢 denotes the
𝑙-th item that user 𝑢 interacted and 𝐿 is the maximum sequence
length. The goal of sequential recommendation is to predict the next
item 𝑠𝐿+1𝑢 which the user 𝑢 will most likely interact with given the
behavior sequence S𝑢 . To this end, the classical objective function
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for SR is usually formalized as follows:

L𝑆𝑅 =

|U|∑︁
𝑢=1

|𝐿∑︁
𝑙=2

− log𝑝𝜃 (𝑠𝑙+1𝑢 |𝑠1𝑢 , 𝑠2𝑢 , ..., 𝑠𝑙𝑢 ), (1)

where 𝜃 is the parameters of a neural network 𝑓𝜃 that encodes
sequential feature into latent vectors: z𝑢 = 𝑓𝜃 (S𝑢 ). The probability
𝑝 (𝑠𝑙+1𝑢 |z𝑙𝑢 ) is computed based on the similarity between the encoded
sequential patterns z𝑙𝑢 and the representation of the next item 𝑠𝑙+1𝑢 .
In serving stage, the items with the highest probability will be
recommended to the user 𝑢.

3.2 Sequence Augmentation Operators
Given an original behavior sequence S𝑢 , several random sequence-
level augmentation strategies can be employed [19, 31]:

• Mask. It randomlymasks a proportion of items in an original
sequence. This mask operation can be formulated as:

S𝑀𝑎𝑠𝑘𝑢 = [𝑠1𝑢 , ..., 𝑠𝑙𝑢 , ..., 𝑠𝐿𝑢 ], (2)

where 𝑠𝑙𝑢 represents the masked item if 𝑠𝑙𝑢 is selected, other-
wise 𝑠𝑙𝑢 = 𝑠𝑙𝑢 .

• Crop. It randomly removes a continuous sub-sequence from
positions 𝑙 to 𝑙 + 𝑙𝑐 in S𝑢 . The length to crop is set by 𝑙𝑐 =

𝛿 ∗ |S𝑢 | where empirically 𝛿 = 0.8. The formulation of the
cropped sequence is shown below:

S𝐶𝑟𝑜𝑝𝑢 = [𝑠1𝑢 , ..., 𝑠𝑙𝑢 , 𝑠
𝑙+𝑙𝑐
𝑢 , ...., 𝑠𝐿𝑢 ], (3)

• Reorder. It randomly shuffles a continuous sub-sequence
from positions 𝑙 to 𝑙 + 𝑙𝑐 in S𝑢 . The length to reorder is set
by 𝑙𝑐 = 𝛿 ∗ |S𝑢 | where empirically 𝛿 = 0.2. The formulation
of the reordered sequence is as:

S𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑢 = [𝑠1𝑢 , ..., 𝑠𝑙𝑢 , ..., 𝑠
𝑙+𝑙𝑐
𝑢 , ...., 𝑠𝐿𝑢 ], (4)

• Insert. It inserts an item chosen randomly from the inter-
action histories of other users into a randomly selected po-
sition within S𝑢 . This operation is employed repeatedly on
the sequence to obtain an augmented view. The augmented
sequence could be formulated by:

S𝐼𝑛𝑠𝑒𝑟𝑡𝑢 = [𝑠1𝑢 , ..., 𝑠1𝑢 , ..., 𝑠𝑖𝑢 , ...., 𝑠𝐿𝑢 ] . (5)

3.3 Latent Intent Modeling in SR
Due to subjective reasons, while users face various items in a rec-
ommendation system, they may have multiple intentions (e.g., pur-
chasing outdoor equipment, preparing for lectures, just killing time,
etc.). The intent variable can be formed as 𝜇 ∈ R𝐾×𝑑 . Then the prob-
ability of a user interacting with a certain item can be rewritten as
E𝜇 [𝑝 (𝑠𝑙+1𝑢 |z𝑙𝑢 , 𝜇)]. As users intents are usually implicit, some work
[5] attempts to infer this latent intents by unsupervised approach,
such as clustering.

4 METHODOLOGY
In this section, we discuss the details of our proposed 𝑆4Rec. The
overall framework is illustrated in Figure 2.

4.1 Clustering On The Fly
Previous work learns users’ implicit intents based on user interac-
tion data typically employ clustering methods, such as ICLRec[5].
It firstly encodes all the sequences {S𝑢 } |U |

𝑢=1 by a sequence encoder
𝑓𝜃 . Subsequently, ICLRec executes 𝐾-means clustering over all the
sequence representations {z𝑢 } |U |

𝑢=1 to obtain cluster assignment
P ∈ R |U |×𝐾 .

However, one main issue of these clustering-based methods is
that they do not scale well with the dataset as they require a pass
over the entire dataset to capture cluster assignments that are used
as targets during training. In addition, there is no correspondence
between two consecutive cluster assignments. Hence, the final
prediction layer learned from an assignment may become irrelevant
for the following one and thus needs to be reinitialized from scratch
at each epoch, which considerably disrupts the model training. In
this work, we describe an alternative [2] to mapping sequence
representations to prototype latent space on the fly in order to scale
to large uncurated datasets, and thus retain correspondence.

Firstly, the original interaction sequence is mapped into a vector
representation by an encoder as following:

z𝑢 = 𝑓𝜃 (S𝑢 ), (6)

where 𝑓𝜃 is an alternative sequence encoder, which is set as SASRec
[15] in this paper.

Then the soft cluster assignment p𝑢 of 𝑢 can be calculated as :

p𝑘𝑢 =
exp(z𝑢𝝁⊤𝑘 /𝜏1)∑
𝑘 ′ exp(z𝑢𝝁⊤𝑘 ′/𝜏1)

, (7)

where 𝝁𝑘 is the𝑘-th row of 𝝁 ∈ R𝐾×𝑑 , which represents𝐾 trainable
prototypes, i.e. intent representations. 𝜏1 is a temperature parame-
ter.

We then further refine the cluster assignment with the help of an
auxiliary target distribution q𝑢 , obtained by mapping z𝑢 to 𝝁. The
objective is trained by matching the soft assignment to the target
distribution, specifically defined as a cross entropy loss between
the soft assignment p𝑢 and the auxiliary target q𝑢 , i.e.,

L𝐶𝑙𝑢𝑠𝑡 (z𝑢 , q𝑢 ) = −
∑︁
𝑘

q𝑘𝑢 log p𝑘𝑢 . (8)

The objective function is jointly minimized with respect to the
prototypes 𝝁 and the parameters 𝜃 of the sequence encoder 𝑓𝜃 used
to produce the sequence representation z𝑢 .

We now introduce the method to obtain the auxiliary target and
update the prototypes. To make our proposal cluster online, we
iteratively compute the auxiliary target using only the sequence
features within a batch. We utilize the prototypes 𝝁 to compute the
auxiliary target and enforce all the instances in a batch equally par-
titioned by the prototypes as much as possible. This equipartition
constraint ensures that the auxiliary targets for different sequences
in a batch are distinct, thus preventing the trivial solution where
every sequence has the same auxiliary target [2].

Given 𝐵 embedding vectors Z = [z1, ..., z𝐵] in a mini-batch, we
are interested in mapping them to the prototypes 𝝁 = [𝝁1, ..., 𝝁𝐾 ].
We denote this mapping or target distribution as Q = [q1, ..., q𝐵],
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Figure 2: The overall framework of 𝑆4Rec. It augments original behavior sequences as contrastive views and employs online
clustering to proficiently group users by their distinct latent intents. Subsequently, 𝑆4Rec conducts cluster-aware self-distillation
to transfer knowledge from corresponding intents (teachers) that contain extensive behavior information to users with limited
behaviors (students). Additionally, an adversarial learning strategy ensures that the the clustering procedure is not affected by
the head-tail factor. The right part describes the online clustering process based on the Sinkhorn-Knopp algorithm.

and optimize Q to maximize the similarity between sequence em-
beddings and prototypes:

max
Q∈Q

𝑇𝑟 (Q𝝁Z⊤) + 𝜖𝐻 (Q),

𝐻 (Q) = −
∑︁
𝑖 𝑗

Q𝑖 𝑗 logQ𝑖 𝑗 ,
(9)

where 𝐻 is a entropy function and 𝜖 is a parameter adjusting the
smoothness of the auxiliary target.

We adopt the solution in [1, 2] that achieves an equal partition
by modelling the Q to belong to the transportation polytope within
mini-batch:

Q = {Q ∈ R𝐵×𝐾+ |Q1𝐾 =
1
𝐵
1𝐵,Q⊤1𝐵 =

1
𝐾
1𝐾 }, (10)

where 1𝐵 denotes the vector of ones in dimension of batch size 𝐵.
These constraints enforce that on average each prototype is selected
at least 𝐵

𝐾
times within a mini-batch.

One solution Q∗ of Eq. (9) over the set Q takes the form of a
normalized exponential matrix and is as following [6]:

Q∗ = 𝑑𝑖𝑎𝑔(m) exp(Z𝝁
⊤

𝜖
)𝑑𝑖𝑎𝑔(v). (11)

where m ∈ R𝐵 and v ∈ R𝐾 are re-normalized vectors that are
computed using the iterative Sinkhorn-Knopp algorithm [6], which
requires only a small number of matrix multiplications.

4.2 Cluster-aware Self-distillation
Once the prototypes 𝝁 and corresponding clustering assignments
p𝑢 are obtained, they are employed to construct the supervisory
signals for the self-supervision task. More precisely, we propose
cluster-aware two-fold self-distillation (CSD) modules: a sequence-
level contrastive module and a cluster-level self-distillation mod-
ule. Concretely, the sequence-level contrastive module maximizes

mutual information among the positive augmentation pair of the
sequence itself while promoting discrimination ability to the neg-
atives. In parallel, the cluster-level self-distillation module aligns
each user’s behavior sequence to its corresponding intents consis-
tently. The detail is described as follow.

4.2.1 Sequence-level Contrastive Learning. Users’ sequential be-
haviors naturally present extensive information for obtaining self-
supervised signals. Given a function set G of several data aug-
mented operators, such as mask, crop, reorder and insert [18]
and an user’s sequence S𝑢 , we can create two augmented views as:

S̃1
𝑢 = 𝑔1𝑢 (S𝑢 ), S̃2

𝑢 = 𝑔2𝑢 (S𝑢 ), 𝑔1𝑢 , 𝑔2𝑢 ∈ G, (12)

where 𝑔1𝑢 and 𝑔2𝑢 are augmentation functions sampled from G to
produce different views for S𝑢 . Generally, views captured from
the same sequence are treated as positive pairs, while those of
any other sequences are considered as negative pairs. Furthermore,
the contrastive views are mapping into representations z1𝑢 and
z2𝑢 by the sequence encoder 𝑓𝜃 . After that, we can maximize the
mutual information to provide self-supervised signals to improve
recommendation performance:

L𝑆𝐶𝐿 = L𝑆𝐶𝐿 (z1𝑢 , z2𝑢 ) + L𝑆𝐶𝐿 (z2𝑢 , z1𝑢 ),

L𝑆𝐶𝐿 (z1𝑢 , z2𝑢 ) = − log
exp(z1𝑢z2⊤𝑢 /𝜏2)∑
𝑛≠𝑢 exp(z1𝑢z⊤𝑛 /𝜏2)

,
(13)

where z𝑛 are negative views’ representations of sequence S𝑢 and
𝜏2 is the temperature parameter tuning the strength of penalties on
the hard negative samples [29].

The classical InfoNCE [27] loss Eq. (13) only utilized the super-
vision information of the sample itself. Now that we have gained
users’ intent, we consider further pushing users’ embedding away
from the cluster they do not belong to by adding extra negative
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intent information. Thus L𝑆𝐶𝐿 (·, ·) can be rewritten as:

L𝑆𝐶𝐿 (z1𝑢 , z2𝑢 ) =

− log
exp(z1𝑢z2⊤𝑢 /𝜏2)∑

𝑛≠𝑢 exp(z1𝑢z⊤𝑛 /𝜏2) +
∑
𝑘 ′≠ℎ (𝑢 ) exp(z1𝑢𝝁⊤𝑘 ′/𝜏2)

,
(14)

where ℎ(𝑢) is a function maps 𝑢 into the index of assigned intent.

4.2.2 Cluster-level Distillation Module. Considering the sparsity of
most users’ sequences, the capability of supervisory signals within
the instance scope is limited. Knowledge Distillation (KD) [13] is a
preferred choice for alleviating sparsity problems. However, most
KD methods require a large pretrained, and relatively complex
teacher model, which cannot be met in all cases.

Confronting the expensive KD process, self-distillation [32, 35]
is proposed to eliminate the requirement of complex teacher model
by sharing the same backbone network to serve as teachers and
students simultaneously. Hence, the distillation process is signif-
icantly simplified. Nevertheless, this work distinguishes teachers
and students through distinct sub-network configurations, which
is not preferred due to the complexities.

We propose a cluster-aware self-distillation loss that encourages
the sequence embedding (student) to be close to the assigned intent
distribution (teacher). Remember that the assigned intent of 𝑢 is
denoted as 𝝁ℎ (𝑢 ) . First, we derive the normalized distribution for
sequence embedding and corresponding intent embedding:

e𝑖𝑢,𝑡 =
exp(𝝁𝑖

ℎ (𝑢 )/𝜏3)∑
𝑖′ exp(𝝁𝑖

′
ℎ (𝑢 )/𝜏3)

,

e𝑖𝑢,𝑠 =
exp(z𝑖𝑢/𝜏3)∑
𝑖′ exp(z𝑖

′
𝑢 /𝜏3)

,

(15)

Here 𝜏3 is a hyper-parameter called distillation temperature, which
controls the smoothness of the normalized distribution. Then the
cluster-aware self-distillation loss can be directly defined as KL
divergence:

L𝐶𝐾𝐷 = L𝐶𝐾𝐷 (𝝁ℎ (𝑢 ) , z1𝑢 ) + L𝐶𝐾𝐷 (𝝁ℎ (𝑢 ) , z2𝑢 ),

L𝐶𝐾𝐷 (𝝁ℎ (𝑢 ) , z1𝑢 ) =
∑︁
𝑖

e𝑖𝑢,𝑡 log
e𝑖𝑢,𝑡
e𝑖𝑢,𝑠

,
(16)

The distillation loss makes use of intent representation which pro-
vides additional supervision signals to the sequence embedding and
endows the generalization ability to infer the next item.

4.3 Head-tail Adversarial Learning
Clustering can easily group long and short sequences into separate
clusters, indicating that the clusters possess semantic information
regarding the sequence sparsity. While the tail sequences are clus-
tered together, the information beyond the length of the sequence
within the cluster would be very sparse, thereby impacting the
efficacy of distillation on the tail sequences.

Taking inspiration from the advancement in generative models
[9], we propose incorporating an additional adversarial task of head-
tail classification. This new task aims to promote a more uniform
distribution of head and tail sequences across different clusters,
ultimately boosting the overall recommendation performance.

To achieve this, we enhance the recommendation model by in-
troducing a classifier that utilizes the learned sequence embeddings
as input. The objective is to train the classifier to accurately predict
the category of each sequence. Simultaneously, we aim to optimize
the encoder to generate sequence embeddings that can effectively
deceive the classifier. By jointly training the classifier and the en-
coder, we strive to eliminate the length information, leading to a
more uniform clustering distribution.

In our experiments, we employ a fully connected layer as the clas-
sifier for sequence category classification and utilize cross entropy
loss to optimize the classifier. The formula is:

ĉ = Wz𝑢 ,

L𝐴𝑑𝑣 = −ĉ[𝑐] + log(
∑︁
𝑖

exp(ĉ[𝑖])), (17)

where ĉ is output logits of the classifier, and 𝑐 is the corresponding
category of sequence S𝑢 . Under the setting of adversarial learning,
the object for the sequence category classifier is to minimize L𝐴𝑑𝑣 ,
and the object for the encoder is to minimizeL𝑆𝑅−𝛾L𝐴𝑑𝑣 , where 𝛾
is introduced to balance the main task and the additional adversarial
task.

With respect to the classifier, the classification loss is minimized
by finding the category of sequence embeddings. While for the
recommendation model, the classification loss is reversed which
pushes sequence embeddings of the same category far from each
other and not to form clusters. Meanwhile, the main task of min-
imizing the recommendation loss forces the learned embedding
space to retain interest preference semantics.

In the context of implementing adversarial learning, one elegant
approach is to incorporate a Gradient Reversal Layer (GRL) within
the backward propagation process which is initially introduced in
DAN [7]. Since we expect the classifier to minimize L𝐴𝑑𝑣 , while
forcing the main encoder to maximize L𝐴𝑑𝑣 , we insert a GRL layer
between the main encoder and the fully connected classifier. Dur-
ing the backpropagation process, the gradients for minimizing the
classification loss flow backward through the classifier, and after
the GRL, the gradients will be reversed, which further flows to the
encoder. That is, we perform gradient descent on the parameters of
the classifier while performing gradient ascent on the parameters
of the encoder, with respect to L𝐴𝑑𝑣 . for other objectives, gradient
descent is applied to the encoder. Through this subtle design, we
successfully implement the adversarial learning task.

With the help of adversarial learning, the impact of the head-tail
property sequence would be eliminated to some extent.

4.4 Multi-task Training
We adopt a multi-task strategy where the main next-item prediction,
the cluster assignment, the cluster-aware self-distillation and the
adversarial learning task are jointly optimized. The joint loss is a
linear weighted sum calculated as:

L = L𝑆𝑅 + 𝛼L𝐶𝑙𝑢𝑠𝑡 + 𝛽1L𝑆𝐶𝐿 + 𝛽2L𝐶𝐾𝐷 + 𝜆L𝐴𝑑𝑣 . (18)

where 𝛼 , 𝛽1,𝛽2 and 𝜆 are hyper-parameters.
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5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on four widely used
benchmark datasets with diverse distributions: Beauty, Sports
and Toys are three subcategories constructed from Amazon review
datasets [22];ML-1M 1 is a famous movie rating dataset comprising
one million ratings. We pre-process these datasets in the same
manner following [15, 19, 26] by removing items and users that
occur less than five times. Table 1 shows dataset statistics after
pre-processing.

5.1.2 Evaluation Metrics. Following previous works [5, 19, 24],
we adopt two metrics evaluating the performance of SR models:
top-𝑘 Hit Ratio@𝑘 (HR@𝑘) and top-𝑘 Normalized Discounted Cu-
mulative Gain (NDCG@𝑘) with 𝑘 chosen from {5, 20}. For each
user’s behavior sequence, we reserve the last two items for valida-
tion and test, respectively, and use the rest to train SR models.

5.1.3 Baseline Models. We compare our proposed 𝑆4Rec with
three categories of methods:

• Standard sequential models. Caser [26] is a CNN-based
approach, GRU4Rec [12] is an RNN-based method, and SAS-
Rec [15] is one of the state-of-the-art Transformer-based
baselines for SR. They optimize the same objective but differ
in sequence encoder structures.

• Sequential models considering SSL. BERT4Rec [24] pro-
poses a deep bidirectional transformer model to extract
both left and right-side behaviors information. S3-Rec [36]
adopts a pre-training and fine-tuning strategy with four self-
supervised tasks. CL4SRec [31] introduces three data-level
augmentation approaches to construct positive views. This
line of works all utilize the transformer as sequence encoder
but adopt distinct constrastive learning tasks.

• Sequential models with additional latent factors. DSS-
Rec [21] introduce an intent variable to extract mutual infor-
mation between an individual user’s past and future inter-
action sequences. ICLRec [5] leverages the clustered latent
intent factor and contrastive self-supervised learning to op-
timize SR.

5.1.4 Implementation Details. For BPR-MF and GRU4Rec, we
use the source code provided by Wang et al.2 in PyTorch. For Caser,
SASRec, BERT4Rec and 𝑆3Rec, the source code is provided by Zhao
et al.3 in PyTorch. For DSSRec4, ICLRec5 and CL4SRec, we use the
source code provided by their authors. Our method is implemented
in PyTorch as well. For all models, the dimension of embedding
is set as 64, and the maximum sequence length is set as 50 for
alignment, following previous works [15, 24, 36]. For each baseline
model, all other hyper-parameters are set following the suggestions
from the original papers.

For our proposed 𝑆4Rec, the optimizer is Adam [16], learning rate
is 0.001, batch size 𝐵 is 512, dropout rate is 0.5, number of clusters
𝐾 is 128, number of hidden layers is set from {1, 2, 3}. Multi-task
1grouplens.org/datasets/movielens/1m
2https://github.com/THUwangcy/ReChorus
3https://github.com/RUCAIBox/RecBole
4https://github.com/abinashsinha330/DSSRec
5https://github.com/salesforce/ICLRec

Table 1: Statistics of used datasets.

Datasets Beauty Sports Toys ML-1M
#Users 22363 35598 19412 6041
#Items 12101 18357 11924 3417
#Actions 0.2m 0.3m 0.17m 0.99m
Avg.length 8.9 8.3 8.6 165.5
Sparsity 99.95% 99.95% 99.93% 95.15%

objective weights 𝛼, 𝛽1, 𝛽2, 𝜆 ∈ {0, 0.01, 0.1, 1.0}. The temperature
parameters 𝜏1, 𝜏2, 𝜏3 are chosen from {0.1, 1.0}.

5.2 Overall Performance
In Table 2, we present the consistent performance gain of the pro-
posed 𝑆4Rec against baselines on different datasets. The major
results are summarized as follows:

• 𝑆4Rec achieves remarkable improvement over the strongest
baseline ICLRec w.r.t HR@5 by 2.63%∼9.26% and NDCG@5
by 2.25%∼10.13%, respectively. It demonstrates that the pro-
posed framework is dataset agnostic and performs stably
given distinct behavior distributions. Further, it is beneficial
to employ the adversarial classifier to alleviate the distribu-
tion discrepancy between head and tail users in the clustering
process.

• Compared to standard sequential models, 𝑆4Rec indisputably
outperforms all benchmarks. Although the Transformer-
based encoder achieves the best performance in standard
sequential models, it still performs relatively poorly against
𝑆4Rec. Thus, it is critical to utilize self-supervised signals to
sufficiently optimize model parameters.

• Compared to sequential models with SSL, 𝑆4Rec introduces
latent prototypes that summarize the semantics of entire
user behavior sequences. Although self-supervised signals
are utilized in most benchmarks, they focus on augmented
behavior-level views to obtain separated user behavior repre-
sentations but fail to leverage intent-level information from
the augmented sequences. As a result, 𝑆4Rec achieves con-
siderable performance gains against this line of research.

• The performance of 𝑆4Rec leads in each metric compared
to ICLRec. The performance of ICLRec is limited as there is
no correspondence between two consecutive cluster assign-
ments in ICLRec. Hence, the final prediction layer learned
from an assignment may become irrelevant for the following
one and thus needs to be reinitialized from scratch at each
epoch, which considerably disrupts the model training. On
the contrary, 𝑆4Rec maps user behavior sequences to K pro-
totypes in an online fashion. In addition, ICLRec suffers from
the head-tail problem, which leads to suboptimal clustering.
The results validate the effectiveness of the online clustering
and adversarial strategy.

5.3 Head-tail Study
As discussed in Section 1, the uniform distribution is a significant
factor in contrastive learning. Thus, we further study the impact
of adversarial learning for head-tail on clustering results through
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Table 2: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the second
highest. "∗" denotes the statistical siginificance for 𝑝 < 0.01 compared to the best baseline methods with paired 𝑡-test.

Dataset Metric BPR GRU4Rec Caser SASRec DSSRec BERT4Rec 𝑆3-Rec CL4SRec ICLRec Ours

Beauty

HR@5 0.0212 0.0111 0.0251 0.0374 0.0410 0.0360 0.0189 0.0423 0.0475 0.0519*
HR@20 0.0589 0.0478 0.0643 0.0901 0.0914 0.0984 0.0487 0.0994 0.1050 0.1071*
NDCG@5 0.0130 0.0058 0.0145 0.0241 0.0261 0.0216 0.0115 0.0281 0.0316 0.0348*
NDCG@20 0.0236 0.0104 0.0298 0.0387 0.0403 0.0391 0.0198 0.0441 0.0478 0.0505*

Sports

HR@5 0.0141 0.0162 0.0154 0.0206 0.0214 0.0217 0.0121 0.0217 0.0267 0.0284*
HR@20 0.0323 0.0421 0.0399 0.0497 0.0495 0.0604 0.0344 0.0540 0.0644 0.0656*
NDCG@5 0.0091 0.0103 0.0114 0.0135 0.0142 0.0143 0.0084 0.0137 0.0177 0.0181*
NDCG@20 0.0142 0.0186 0.0178 0.0216 0.0220 0.0251 0.0146 0.0227 0.0283 0.0292*

Toys

HR@5 0.0120 0.0097 0.0166 0.0463 0.0502 0.0274 0.0143 0.0526 0.0571 0.0586*
HR@20 0.0312 0.0301 0.0420 0.0941 0.0975 0.0688 0.0235 0.1038 0.1110 0.1148*
NDCG@5 0.0082 0.0059 0.0107 0.0306 0.0337 0.0174 0.0123 0.0362 0.0392 0.0407*
NDCG@20 0.0136 0.0116 0.0179 0.0441 0.0471 0.0291 0.0162 0.0506 0.0545 0.0565*

ML-1M

HR@5 0.0467 0.1412 0.1331 0.1444 0.1219 0.1142 0.1579 0.1520 0.1482 0.1557*
HR@20 0.1295 0.3379 0.3187 0.3337 0.2855 0.2921 0.3435 0.3537 0.3431 0.3547*
NDCG@5 0.0295 0.0916 0.0845 0.0939 0.0798 0.0713 0.0982 0.0969 0.0964 0.1012*
NDCG@20 0.0524 0.1469 0.1370 0.1476 0.1257 0.1213 0.1510 0.1539 0.1513 0.1570*

(a) Beauty (b) Sports

(c) Toys (d) ML-1M

Figure 3: The quartile boxplots of head rate.

the distribution of head rate, defined as the proportion of head
sequences within a cluster. As Figure 3 presents, 𝑆4Rec has more
compact box plots on all four datasets than ICLRec. This observa-
tion indicates the distribution of head sequences across clusters
generated by 𝑆4Rec is more uniform than that of ICLRec. When we
eliminate the impact of the head-tail problem on clustering, both
the performance on head samples and tail samples increases as
shown in Figure 4. Therefore, our adversarial strategy optimizes
the clustering distribution, leading to better SR performance.

5.4 Ablation Study
Our proposed 𝑆4Rec contains two essential modules: cluster-aware
two-fold self-distillation (CSD) module and Gradient Reversal (GR)

(a) HR@5 (b) NDCG@5

Figure 4: The head/tail performance of 𝑆4Rec compared to
ICLRec on the Beauty dataset.

layer as an adversarial learning module. To understand the impact
of the sub-modules of 𝑆4Rec, an ablation study is carried out by
removing one sub-module at a time. The results reported in Table 3
are based on experiments conducted in the Amazon Beauty dataset.
Similar results are also achieved in other datasets.

• SR only: standard sequential recommendation model SASRec
• SR+CSD: apply additional CSD module based on SR
• SR+CSD+GR: apply both CSD and GR module based on SR
• 𝑆4Rec w/o CSD: apply GRmodule and remove CSD on 𝑆4Rec
• 𝑆4Rec w/o GR: apply CSD module and remove GR on 𝑆4Rec
• 𝑆4Rec: the complete configuration 𝑆4Rec

Overall, both the standard SR model and 𝑆4Rec considerably
enjoy performance gain from CSD and GR modules. The complete
configuration 𝑆4Rec is ahead of SR+CSD+GR by 1.61% in terms
of NDCG@20. Moreover, the performance of SR and 𝑆4Rec both
improve consistently as sub-modules are introduced. Based on the
results, we validate the effectiveness of the proposed design choices.

Imapct of Cluster-aware Self-distillation.We report that the
performance declines significantly as the CSD module is removed,
regardless of the sequential recommendation model or the pro-
posed 𝑆4Rec. Concretely, SR without the help of the CSD module
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Table 3: Ablation study of 𝑆4Rec on the Beauty dataset.

HR@5 HR@20 NDCG@5 NDCG@20
SR only 0.0374 0.0901 0.0241 0.0387
SR+CSD 0.0499 0.1041 0.0332 0.0485
SR+CSD+GR 0.0517 0.1044 0.0349 0.0497
𝑆4Rec w/o CSD 0.0382 0.0922 0.0258 0.0397
𝑆4Rec w/o GR 0.0487 0.1035 0.0329 0.0480
𝑆4Rec 0.0519 0.1071 0.0348 0.0505

suffers a 20.21% performance drop at NDCG@20, and compared
to the complete configuration of 𝑆4Rec, the NDCG@20 of 𝑆4Rec
without CSD drops 21.39%. We argue that cluster-aware distillation
transfers knowledge by extracting additional supervisory signals
from the intent-level representation. Therefore, the instance of lim-
ited behaviors benefits from intent-level generalization, though
the information is limited at the sequence-level. Consequently, the
CSD module can efficiently alleviate the problem of insufficient
self-supervision signals given users limited behaviors.

Impact of Head-tail Adversarial Learning. The adversarial
classifier is indispensable since we aim to prevent the semantics
of the sequence length from dominating the clustering process.
Through the gradient reversal technique, we report that it brings
2.4% and 5.2% NDCG@20 improvement in terms of SR+CSD+GR
and 𝑆4Rec, respectively. Both models enjoy clear resolution on
disentangling head-tail semantics, leading to better performance of
intent-level clustering.

5.5 Hyper-parameter Sensitivity Study
In this subsection, we investigate and report the impact of a group
important hyper-parameters on model performance.

• Impact of the number of intent cluster 𝐾 . The number
of intent clusters 𝐾 is vital in the clustering process. We
argue that improper choice heavily affects the final perfor-
mance since 𝐾 fundamentally influences the user’s intention
distribution. In terms of HR@5, 𝑆4Rec enjoys its best perfor-
mance at 𝐾 = 128 and suffers mild loss when 𝐾 is smaller.
On the contrary, the performance drops significantly when
𝐾 is greater than 128. We speculate that sufficiently large 𝐾
results in false negative representations. Concretely, each
intent prototype depletes the resolution of the user’s real in-
tentions and further harms the effectiveness of cluster-aware
self-distillation.

• Impact of multi-task objective weight. As each weight of
the objective determines the strength of the gradient during
the training process, we vary 𝛼 , 𝛽1,𝛽2, and 𝜆 at different
scales to analyze the impacts on the performance of 𝑆4Rec.
As shown in Figure 6, we observe that performance reaches
the peak with the combination 𝛼=0.01, 𝛽1=0.1,𝛽2=0.1 and
𝜆=1.0, and then deteriorates sharply as the weight continues
to increase. Coinciding with the discussion of Section 4.3,
larger 𝜆 enforces the CSD module to dispatch the instance
into different clusters based on the user’s behavior sequence
length. As the boxplot Figure 6(b) demonstrates, head users
allocated to each cluster concentrate as 𝜆 increases.

Figure 5: The impact on the choice of the cluster number 𝐾 .

(a) HR@5 on 𝛼 (b) HR@5 and boxplot on 𝜆

(c) HR@5 on 𝛽1 (d) HR@5 on 𝛽2

Figure 6: Parameter analysis of 𝛼 , 𝜆, 𝛽1 and 𝛽2 on the Beauty
dataset.

6 CONCLUSION
In this paper, we present 𝑆4Rec, a practical attempt to address
the head-tail problem for the sequential recommendation, which
bridges the gap between self-supervised learning and self-distillation
methods.
𝑆4Rec utilizes online clustering and adversarial learning mod-

ules to optimize user intention clusters unaffected by the sparsity
of behavior. Subsequently, the sequence-level contrastive learning
considers negative intents augments the representation express
capability, while the cluster-aware self-distillation module trans-
fers knowledge from users with extensive behaviors to users with
limited behaviors. Experimental results on benchmark datasets con-
firm and validate the effectiveness of the proposal. We will further
investigate how to explore the hyper-parameters automatically
used in the model. The code is currently under the legal process
and will be soon publicly available.
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