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Abstract

In human-AI collaborative tasks, the distribution of human behavior, influenced
by mental models, is non-stationary, manifesting in various levels of initiative and
different collaborative strategies. A significant challenge in human-AI collaboration
is determining how to collaborate effectively with humans exhibiting non-stationary
dynamics. Current collaborative agents involve initially running self-play (SP)
multiple times to build a policy pool, followed by training the final adaptive policy
against this pool. These agents themselves are a single policy network, which
is insufficient for handling non-stationary human dynamics. We discern that
despite the inherent diversity in human behaviors, the underlying meta-tasks
within specific collaborative contexts tend to be strikingly similar. Accordingly,
we propose Collaborative Bayesian Policy Reuse (CBPR1), a novel Bayesian-
based framework that adaptively selects optimal collaborative policies matching
the current meta-task from multiple policy networks instead of just selecting
actions relying on a single policy network. We provide theoretical guarantees
for CBPR’s rapid convergence to the optimal policy once human partners alter
their policies. This framework shifts from directly modeling human behavior to
identifying various meta-tasks that support human decision-making and training
meta-task playing (MTP) agents tailored to enhance collaboration. Our method
undergoes rigorous testing in a well-recognized collaborative cooking simulator,
Overcooked. Both empirical results and user studies demonstrate CBPR’s superior
competitiveness compared to existing baselines.

1 Introduction

An ongoing challenge in artificial intelligence (AI) involves training agents capable of effective
collaboration with humans Klien et al. [2004], Bard et al. [2020], Dafoe et al. [2020]. Unlike
typical AI-only multi-agent collaboration, human-AI collaborative scenarios such as two-player
cooking games, autonomous driving, and managing power grid stability incorporates a non-stationary
component, humans Jagerman et al. [2019], Chandak et al. [2020], Chandak [2022]. As humans
may vary in their level of initiative, alter their collaboration strategies, or sometimes even do not
collaborate at all. This variability suggests that for cooperative agents, the probability distribution
P (A|st) of a human action A given an environmental state st changes over time, reflecting different
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Figure 1: Left: The drawbacks of current collaborative agents, which train a stationary policy
to manage the non-stationary dynamics of human collaborators but fail to determine the specific
collaborative policies executed by humans. Right: Our approach focuses on identifying the meta-tasks
underlying human decision-making and trains collaborators to match these meta-tasks in a one-to-one
manner. This strategy enables effective ad-hoc collaboration with non-stationary humans.

mental states. Such non-stationarity poses a significant challenge in training collaborative agents,
as it requires strategies that can adapt to the unpredictable nature of human behavior, which departs
from the stable action-outcome associations expected in scenarios dominated by AI.

Recent works mainly develop collaborative agents through two workflows: (1) explicitly model
human behavior by using real human trajectories Carroll et al. [2019], and then train a collaborator
by teaming up with human models. (2) train Self-Play (SP) agents to form a policy pool (a diverse
set of AI agents assumed to encompass all potential human policies) and then train a collaborator
pairing with policies in the policy pool Strouse et al. [2021], Yu et al. [2023], Zhao et al. [2023].
However, despite their ability to achieve commendable performance by amassing extensive human
data collection or SP agent training, these collaborators share a common fundamental flaw: they are
essentially policy networks following a stationary distribution, thus making it difficult to cope with
non-stationary human dynamics.

In this work, we propose Collaborative Bayesian Policy Reuse (CBPR), which reuses multiple
stationary policies tailored to meta-tasks within a specific collaborative scenario. CBPR builds upon
Bayesian Policy Reuse (BPR) Rosman et al. [2016], Chen et al. [2022], extending its application to
human-AI collaborative tasks with theoretical guarantees. CBPR avoids modeling the non-stationary
dynamics of human collaborators, focusing instead on heuristically modeling available meta-tasks
within defined collaborative contexts. For example, in the multi-player cooking game Overcooked,
meta-tasks include {place onions in pot, deliver soup, place onions in pot & deliver soup, others}
(Figure 1) are available. Noticing that for a complex human-AI collaborative task, all of the undefined
meta-tasks are categorized as "others," we subsequently train stationary meta-task-playing (MTP)
collaborators using reinforcement learning (RL) to precisely match meta-task models on a one-to-one
basis. During collaboration, CBPR identifies the meta-task being performed by the human partner
based on recent actions, subsequently adapting the optimal MTP collaborator for use.

We evaluate CBPR in a fully-observable two-player common-payoff collaborative cooking simulator
based on the game Overcooked Carroll et al. [2019], which has recently been proposed as a coordina-
tion challenge for AI Carroll et al. [2019], McKee et al. [2022], Wang et al. [2020], Wu et al. [2021],
Knott et al. [2021]. State-of-the-art performance of this game was achieved in Carroll et al. [2019],
Strouse et al. [2021], Yu et al. [2023] via training stationary cooperation policy. Both simulated
experiments and user studies show that the proposed CBPR agent can collaborate effectively with
non-stationary agents and real humans. The novel contributions of this paper can be summarized as
follows:

2



1. We introduce a human-AI collaboration framework, CBPR, which addresses the challenge
of modeling non-stationary human dynamics. This framework identifies the meta-tasks
performed by human partners and reuses the optimal collaborative policy.

2. Theoretically, based on the Non-Stationary Markov Decision Process (NS-MDP), we provide
theorems on Collaboration Convergence and Collaboration Optimality to support CBPR’s
convergence to the optimal collaborative policy over time in human-AI collaboration.

3. Empirically, we demonstrate CBPR’s capability to collaborate effectively with non-stationary
agents who frequently switch strategies, agents with various collaboration skills, and real
humans.

2 Related Work

2.1 Human-AI Collaboration

Training agents to collaborate with humans has been extensively studied. Recent research can be
categorized into two groups based on whether human data is used during training. BCP Carroll et al.
[2019] is trained by pairing with a supervised human model, while Boltzmann Policy Distribution
(BPD) Laidlaw and Dragan [2022] updates its prior based on online human actions. These approaches
require human data collection and are prone to distributional shifts. In contrast, another category
focuses on achieving zero-shot coordination without extensive human data Hu et al. [2020]. These
works (e.g., FCP Strouse et al. [2021], Hidden-Utility Self-Play (HSP) Yu et al. [2023], and Maximum
Entropy Population-based Training (MEP) Zhao et al. [2023]) train Self-Play (SP) agents to form a
policy pool—a diverse set of AI agents assumed to encompass all potential human policies—and
then train a collaborator to pair with policies in this pool. However, these collaborative agents remain
single stationary models despite their diverse training partners.

Our work represents a fundamental departure from previous studies by avoiding the need to model
human behavior and instead focusing on constructing meta-tasks that underpin human decision-
making. Furthermore, our CBPR framework does not restrict the construction of meta-tasks, which
can be categorized into two streams: reliant on human data (e.g., behavior cloning) and independent
of human data (e.g., rule-based methods).

2.2 Policy Reuse

Policy reuse is a kind of transfer learning method that can greatly speed up reinforcement learning
for a new task by using policies for relevant tasks. Initial methods like PRQL Fernández and
Veloso [2013] and OPS-TL Li and Zhang [2018], Li et al. [2018] integrated source policies with
limitations in transfer efficiency. Subsequent approaches such as CAPS and CUP Zhang et al. [2022]
improved policy selection and introduced more efficient algorithms without the need for extra training
components.

Bayesian policy reuse (BPR) Rosman et al. [2016] represents a specialized stream within policy
reuse. Utilizing a Bayesian optimization approach, BPR efficiently computes posteriors for novel
tasks. Extensions like BPR+ Hernandez-Leal et al. [2016a,b] and Bayes-Pepper Hernandez-Leal
and Kaisers [2017] adapt BPR to multiagent scenarios, aligning tasks with opponent strategies and
policies with optimal responses to these strategies. However, most BPR methodologies Rosman et al.
[2016], Hernandez-Leal et al. [2016a], Hernandez-Leal and Kaisers [2017], Zheng et al. [2018, 2021],
Chen et al. [2022], Xie et al. [2022] primarily address multi-task problems or copy with competitive
scenarios. Several studies, such as Zheng et al. [2018, 2021], investigated deep BPR+ in collaborative
games.

However, these approaches primarily rely on policy inference to adjust to the changing strategies
of opponents (or partners), which may not be optimal for human-AI collaboration given the wide
spectrum of potential human policies. To our knowledge, our research is pioneering in applying
and tailoring Bayesian policy reuse-based algorithms specifically for the human-AI collaboration
challenge.
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Figure 2: Overview of the CBPR Framework. This framework is divided into two main phases. Left:
Offline Training Phase. This includes (1) constructing meta-task models using collected data and
creating a meta-task library; (2) developing cooperative policies for each meta-task to compile an AI
policy library; (3) establishing a performance model by evaluating each meta-task and AI policy pair.
Right: Online Collaboration Phase. During a collaboration round, the process involves (a) gathering
a list of historical and current human data; (b) determining the current meta-task undertaken by
the human using Bayesian policy inference (refer to Equation 3-4); (c) selecting the most suitable
AI policy for cooperation (as per Equation 5); and finally, (d) the AI collaborator executes actions
according to the chosen policy.

3 Collaborative Bayesian Policy Reuse

3.1 Vanilla Bayesian Policy Reuse

Bayesian policy reuse is a general framework of transfer learning to cope with unknown tasks or
frequently changing opponents. These classes of methods typically involve two phases: an offline
learning phase and an online reusing phase. The workflow of a typical BPR can be summarized as
follows: In the offline phase, it is presupposed that there exists a library of tasks T and a corresponding
library of learned policies Π. Through conducting multiple simulations with varied policies across
different tasks, a performance model P (U | T ,Π) is derived, where U = Σk

i=0ri is cumulative utility.
This model works as a mapping operator, associating each task and policy with a distribution of a
predefined utility measure, such as reward.

During the online phase, BPR identifies the current task or opponent policy by maintaining a belief
model β(·). This model is periodically updated based on observations, as defined by the observation
model P (σ | τ, π), where σ represents any signal aiding cooperation, such as reward or interaction
trajectory. Significantly, this update adheres to Bayes’ rule as follows:

βk(τ) =
P (σk | τ, πk)βk−1(τ)∑

τ ′∈T P (σk | τ ′, πk)βk−1 (τ ′)
(1)

With this belief model, the BPR agent can select the optimal response policy by solving the following
optimization problem:

π⋆ = argmaxπ∈Π

∫ Umax

Ū

∑
τ∈T

β(τ)P
(
U+ | τ, π

)
dU+ (2)

where Ū = maxπ∈Π

∑
τ∈T β(τ)E[U | τ, π] represents the average performance of a single policy

across all tasks. It’s important to note that using Ū as the lower limit of the integral, this optimization
problem essentially seeks the policy with the highest likelihood of achieving utility above the average.

3.2 CBPR Framework

Offline stage Initially, we train meta-task processing (MTP) agents π ∈ Π using the Proximal
Policy Optimization (PPO) algorithm by individually pairing them with meta-tasks within a specific
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collaborative context, as exemplified by tasks such as place onions in pot, deliver soup, place onions
in pot & deliver soup, and others in the Overcooked collaboration benchmark. Meta-task models
τ ∈ T are constructed through supervised learning, utilizing trajectories from either rule-based
agents enhanced with noise or real humans performing the tasks. In this study, we employ the
rule-based agents developed by Yu et al. [2023]. Subsequently, we construct the performance model
P (U | T ,Π) (i.e., observation model) by fitting a Gaussian distribution over the mean episodic return
given a stochastic AI policy π and a noisy rule-based agent τ .

In previous BPR-based algorithms, the belief is designed for measuring the similarity between
different tasks or opponents in transfer learning. These algorithms update belief using a observation
model P (σ | τ, π) which only considers the game result but overlooks opponent’s behavior. This
leads to a poor collaborative performance when humans switch policy in a long-episode game. In
this study, we used intra-episode belief ξt(τ) at timestep t to measure the similarity between current
meta-task τ and τ ′ in meta-task model library T . The intra-episode belief was firstly proposed in
Chen et al. [2022] and we extend it to the human-AI collaborative scenario.
Online policy reuse At the beginning of online policy reuse, the inter-episode belief β0(τ) is
initialized with a uniform distribution. For each episode, CBPR maintains a first-in-first-out (FIFO)
human behavior queue Q of length l, which records the latest human behavior tuples (si, ai). The AI
selects initial response MTP agents according to the inter-episode belief β0(τ) (line 5 in Algorithm
1). CBPR collects human state-action pairs and updates the intra-episode belief ξt(τ):

ξt(τ) =
P (Q | τ)ξt−1(τ)∑

τ ′∈T P (Q | τ ′) ξt−1 (τ ′)
(3)

where P (Q | τ) =
exp(

∑l
i=0 log τ(ai|si))∑

τ′∈T exp(
∑l

i=0 log τ ′(ai|si))
. Then the intra-episode belief and inter-episode

belief are integrated:
ζt(τ) = ρtβk−1(τ) +

(
1− ρt

)
ξt(τ) (4)

Where ρ ∈ [0, 1] is a hyperparameter controlling the weight of the inter-episode and intra-episode
beliefs. As the timestep t increases in a game with a long episode, the integrated belief ζt(τ) primarily
depends on the intra-episode belief ξt(τ). The AI then uses the integrated belief ζt(τ) to select a
policy to cooperate with the human at each timestep.

π⋆
t = argmax

π∈Π

∫ Umax

Ū

∑
τ∈T

ζt(τ)P
(
U+ | τ, π

)
dU+ (5)

At the end of each episode, CBPR collects the episodic return uk and updates the inter-episode belief
βk(τ). To adapt to non-stationary human dynamics, we store human-AI trajectories in a replay buffer
R of the current MTP agent and update its policy. The detailed pseudo-code for the policy reuse of
CBPR is presented in Algorithm 1.

3.3 Theory Analysis of CBPR

The selection of cooperative policies (line 11 in the Algorithm 1) is crucial to the performance of
CBPR in collaborating with humans. In this section, we propose theorems on the convergence and
optimality of CBPR to support our viewpoint: CBPR will converge to the optimal cooperative strategy
during the human-AI interaction process. We formulate collaborative process between humans and
AI as a Non-Stationary MDP (NS-MDP) Chandak et al. [2020]. In this process, the non-stationarity,
resulting from the dynamic nature of human policy, can be mitigated by decomposing the entire
non-stationary decision process into several stationary ones. Each stationary MDP corresponds
to a specific meta-task executed by the human. Specifically, for a given NS-MDP {Mi}∞i=1, the
transition function integrates human actions as part of the environment itself, which can be denoted as
Pi : S×AAI×Ahu → ∆(S). Within each stationary MDP Mi, the human policy πhu,i : S → ∆(A)
is assumed to be stationary, although it may exhibit variations across different stationary MDPs.
Under this assumption, the CBPR agent could establish a convergent human-AI collaboration:

THEOREM 1 (Collaboration Convergence of CBPR Agent). Let Hi := {Sj
i , πhu,i(S

j
i ), R

j}∞j=0 be a
trajectory collected from a single stationary MDP Mi within the overall NS-MDP {Mi}∞i=1 under the
human meta-task policy πhu,i. Denote D := {(i,Hi) : i ∈ [1, k]} as a random variable representing
a set of trajectories observed prior to the most recently completed stationary MDP Mk. Given D, the
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Algorithm 1 Online Policy Reuse of CBPR
Input: Meta-task model library T , meta-task playing (MTP) agent library Π, performance model
P (U |Π, T ), human behavior queue Q = ∅, total timesteps T in one episode

1: Initialize β0(τ) with a uniform distribution
2: for episode k=1,2,3,. . . ,K do
3: Empty the queue Q
4: ξ0(τ)← βk−1(τ)
5: Select initial MTP agent π to cooperate with human using Eq. 5
6: while t < T do
7: Human chooses action ai and AI choose action according to π(a | s)
8: Append the human behavior tuple (st, at) to Q
9: Update belief ξt(τ) using Eq. 3

10: Update integrated belief ζt(τ) using Eq. 4
11: Select a optimal MTP agent π to cooperate with human in next timestep by using Eq. 5
12: ξt(τ)← ζt(τ)
13: t← t+ 1
14: end while
15: βk(τ)← ξT (τ)
16: Update belief βk(τ) using episodic return uk as observation signal following Eq. 1
17: end for

response policy of CBPR agent could almost sure converge when interacting with a human partner,
even when the human’s policy is non-stationary.

We provide all proofs and a detailed explanation in Appendix A. In addition to being able to
converge in cooperation with non-stationary humans, the CBPR agent can also establish the optimal
collaboration policy:

THEOREM 2 (Collaboration Optimality of CBPR Agent). Denoting CBPR for CBPR algorithm, let
ρ(π,m) := E[

∫ Umax

Ū
P (U+ | τ(m), π) dU+] be the expected return of exploiting AI policy π with

human meta-task policy τ(m) in MDP Mm. Given a positive integer k and a set of trajectories D
observed prior to the MDP Mk, it follows that for any subsequent stationary MDP Mk+δ , we have:

Pr
(
ρ
(
CBPR(D), k + δ

)
≥ ρ(π⋆

k, k + δ)
)
→ 1 (6)

when k →∞, where π⋆
k is the optimal response policy for human meta-task policy at MDP Mk.

4 Experiments

In the context of Overcooked, we use rule-based policies developed in Yu et al. [2023] for each game
layout (see Appendix C.1). These rule-based policies such as place onions in pot, deliver soup are
used to train corresponding MTP agents in a one-to-one manner. In this section, we conduct extensive
experiments to answer the following questions:
Q1: When interacting with non-stationary agents who switch their strategies, can CBPR outperform
established baselines? Additionally, can CBPR adapt its collaborative strategies to better synchronize
with partner behaviors?
Q2: When interacting with non-stationary agents of various collaboration skills, can CBPR surpass
other baselines?
Q3: Can CBPR exceed the performance of other baselines in collaboration with real humans?
Q4: How do hyperparameters and number of predefined meta-tasks influence the collaborative
performance (mean reward) of CBPR agents?

Overcooked environment Overcooked is a popular two-player common-payoff game. It has become
a typical environment for studying human-AI collaboration Carroll et al. [2019], Knott et al. [2021],
Strouse et al. [2021], McKee et al. [2022], Yu et al. [2023]. In this game, players should place three
onions or tomatoes in a pot and deliver as many cooked soups as possible within a time limit. Good
coordination between two players is crucial for achieving a high score. We employed four layouts in

6



our experiments: Cramped Room, Coordination Ring, Asymmetric Advantage and Soup Coordination
(Figure 8 in Appendix) in our experiments. Notably, in the Asymm. Adv. and Soup Coord., the players
do not interfere with each other, and their movements are unobstructed by their partners.

Baselines We compare CBPR against three well-established baselines: (1) the Behavioral Cloning
Play (BCP) Carroll et al. [2019], a human model-based method designed for human-AI collaboration;
(2) Fictitious Co-Play (FCP) Strouse et al. [2021], a two-stage approach trained with partners
of varying skill levels; (3) Self-Play (SP) Silver et al. [2017], a common RL method trained by
playing against itself. For a fair comparison, we employed PPO Schulman et al. [2017] as the
underlying algorithm of CBPR and reimplemented all baselines using identical hyperparameters in
our experiments. Further details about environment setting and agents are illustrated in Appendix C.

4.1 Cooperating with Rule-Based Agents Under Dynamic Policy Switching

To answer question Q1, we conduct a thorough investigation into the collaboration performance
of CBPR when paired with non-stationary agents. These agents exhibited changes in their rule-
based policies (Appendix Table 3), both inter-episodically and intra-episodically. We maintained a
consistent random seed for policy switching during the evaluations to ensure fairness when comparing
CBPR with baseline methods.

In our experiment, we evaluate the collaborative performance of agents at four different policy
switching frequencies, as shown in Figure 3. The results show that CBPR consistently outperforms
baseline methods in most cases. In particular, BCP, which was trained using a stationary human
model, exhibited significantly poorer performance compared to CBPR. In addition, FCP and SP
agents show greater fluctuations in episodic rewards, primarily due to their inability to effectively
collaborate with all agents. In some instances, SP agents opted not cooperate, resulting in zero
reward.
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Figure 3: Comparative performance analysis against baselines when collaborators switch their rule-
based policies per episode. All agents were evaluated over 50 continuous episodes. The shaded areas
denote standard deviation calculated from five random seeds.

Our findings indicate that CBPR is particularly effective at collaborating with partners exhibiting
varying degrees of non-stationarity. For a detailed overview of the results across the additional three
policy switching frequencies (i.e., per 2 episodes, per 200 timesteps, and per 100 timesteps), please
refer to the Appendix C.

4.2 Cooperation with Partners of Various Collaboration Skills

The cooperative capacity of non-stationary humans is typically suboptimal. A generalized agent must
be capable of collaborating with partners possessing diverse collaboration skills.

During the initial training phase of FCP Strouse et al. [2021], a policy pool is created by preserving
various agent "checkpoints" that represent different levels of expertise. To answer question Q2,
we pair CBPR with agents with varying collaboration skills preserved during the first stage of the
FCP training. We evaluate collaborative performance over 50 episodes on four layouts. The results
show that CBPR consistently achieved higher mean episode rewards than FCP, particularly when
collaborating with lower-skilled partners (Figure 4). It is noteworthy that BCP performs better in
the Asymm. Adv. and Soup Coord. in which players’ movements are not hindered by their partners.
We replayed the trajectories of BCP in Cramped Rm. and Coord. Ring and observed that BCP
occasionally became immobilized and failed to collaborate with partners (Figure 4b).
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Figure 4: Comparative performance analysis against baselines in cooperation with partners of diverse
skill levels (low, medium and high). All agents were evaluated over 50 episodes and errors bars
denote 95% confidence intervals.

4.3 Cooperation with Real Humans

To address question Q3, we recruited 25 volunteers from a local university, comprising 5 females
and 20 males, ranging in age from 21 to 34 years, to participate in a study involving collaboration
with CBPR and baseline agents. These volunteers were randomly assigned to one of four groups,
each corresponding to a different game layout. Prior to the experiment, nearly all volunteers were
unfamiliar with Overcooked. We provided comprehensive instructions from scratch and allowed them
to play at least five practice rounds before beginning the evaluation. Subsequently, participants were
instructed to interact with both the CBPR and baseline agents through the human-AI web applications
developed by Carroll et al. [2019]. Each volunteer participated in two episodes, during which we
recorded the average reward obtained.
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Figure 5: Rewards distribution of agents
collaborating with real humans over four
layouts. *, p < 0.05; **, p < 0.01;
***, p < 0.001, and n.s., not significant.
(Statistical significance was assessed by
a one-sided Mann-Whitney U test.)

According to the reward distribution (Figure 5), we ob-
serve that CBPR achieves more efficient collaboration
than other baselines. In most comparisons, CBPR dis-
plays significant higher reward according to the one-sided
Mann-Whitney U test.

Case study To further demonstrate how the CBPR is
more superior than baseline algorithms when collaborating
with real humans, we present a case in Figure 6. In this
case, we record five frames from the Overcooked game
interface to show that the ability of CBPR to adaptively
adjust cooperative policies. Initially, CBPR agent is ready
to use a dish to serve the soon-to-be-ready soup. When
the human partner picks the soup, CBPR will set down
the dish and continue to place onions to the pot for a new
round. Meanwhile, FCP, after putting down the dish, will
appear confused until the human served the soup. BCP, on
the other hand, will not put down the dish and stubbornly
prepare to serve the soup, ignoring the fact that the soup
had already been served.

4.4 Ablation Study

Ablation on the queue size l and inter-episodic belief weight ρ. In CBPR, the length l of human
behavior queue and weight ρ of inter-episodic belief mainly influence the collaborative performance.
The larger l in P (Q | τ) of Eq. 3 means that CBPR chooses policy considering more past human
behaviors. The larger ρ determines that CBPR needs to consider inter-episodic belief more at the
beginning of an episode. To answer question Q4, we expand on the experiments from section 4.2
demonstrate the results in Figure 7 and Appendix D.2. Overall, the results show that l=20 performs
best, and in a relative simple layout (i.e., Cramped Rm.), since the belief of cooperative policy
converges easily, variation in ρ has little impact on the reward. However, in complex layout (e.g.,
Soup Coord.) (Figure 16), adjusting ρ can enhance cooperative performance to a certain extent.

Ablation on the number of predefined meta-tasks. The performance of CBPR depends on
the design of the meta-tasks. To address the challenge of predefined meta-tasks not covering all
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Figure 6: This case study analyzes five discontinuous frames from the Overcooked game interface to
demonstrate the superiority of the CBPR algorithm. When a human player picks the cooked soup
from the pot, the CBPR agent adapts by altering its initial plan to deliver the soup: it sets down the
dish and places new onions in the pot, thereby showcasing its ability to adjust to human policies. In
contrast, the FCP agent displays confusion when the human retrieves the soup and resumes placing
onions only after the soup is served. The BCP agent rigidly adheres to its predetermined plan,
continuously holding the plate without switching tasks to place onions, ignoring the fact that the soup
has already been served.

possible ones in complex task scenarios, we introduce a meta-task category as "other" (Figure 1,
bottom-right) which is represented using a random agent in practice. To demonstrate the impact
of the number of predefined meta-tasks in the Soup Coord. We pair CBPR of different numbers of
predefined meta-tasks with agents employing various skill levels. The results in Table 1 show that
without "others" category, the performance deteriorates significantly, while the performances degrade
relatively gracefully with less meta-tasks defined and more included in "others" category.

Table 1: Collaboration performance of CBPR with different numbers of meta-tasks and agents
employing various skill levels. We report the mean reward over 10 episodes and the values in bracket
represent the standard deviation. Here, we additionally define four meta-tasks (i.e., place onion &
deliver soup, place tomato & deliver soup, pickup tomato & place mix and pickup ingredient & place
mix), which are not included in Table 4.

7 predefined
w/ "others"

5 predefined
w/ "others"

3 predefined
w/ "others"

3 predefined
w/o "others"

High 620.3 (193.3) 600.7 (234.0) 647.7 (159.3) 622.8 (205.8)
Medium 757.8 (100.3) 735.8 (98.7) 717.1 (148.1) 607.3 (278.5)
Low 689.8 (43.9) 680.5 (51.6) 668.9 (49.0) 40.0 (59.1)

4.5 Additional Findings and Analysis

The inherent advantage of SP and FCP agents. Checkpoints, which are essentially SP agents,
represent partners with low, medium, and high skill levels at the beginning, middle, and end of FCP
training. Therefore, SP and FCP agents have an inherent advantage in the evaluation presented in
Figure 4. Despite this, CBPR performs better when dealing with partners of lower skill levels. When
collaborating with real humans, FCP and SP no longer hold the same advantages. This leads to almost
all FCP and some SP performing well against agents of various skill levels, but falling short when
facing human players.

The cooperative advantage of CBPR in non-separated layouts. In separated layouts (i.e., Asymm.
Adv. and Soup Coord.), agents can usually complete tasks independently without considering the
hindrance of the other partner’s moves to themselves. However, players’ own position (e.g., stand still
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in front of the serving areas) can obstruct their partners from completing the task in the non-separated
layouts. Therefore, non-separated layouts require more cooperation between players compared to
separated layouts. As shown in Figure 4, CBPR’s better performance in Cramped Rm. and Coord.
Ring suggests its advantage in collaborative tasks.
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Figure 7: Episodic reward by using different length
l of human behavior queue and weight ρ of inter-
episodic belief in Cramped Rm. layout. All agents
are evaluated over 50 episodes and error bars de-
note 95% confidence intervals.

The double-edged sword of SP’s simple policy.
In Asymm. Adv., SP agent exhibits outstanding
performance when it cooperates with the agent
of high skill level (Figure 4c). We replayed
the game and found that the SP agent learned
the simplest and most effective policy (i.e., in
the right room, just pick an onion from onion
dispenser and then place it in a pot within the
shortest path). On the contrary, other agents
exhibit some superfluous actions due to their
own complexity. However, when cooperating
with the agent of low skill level, SP performs
poorly because the SP agent on the right only
learned the simplest policy (putting onions in
the pot), and when the agent with low skill level
on the left does not deliver the cooked soup, SP
will wait in place rather than deliver the cooked soup. In a more complex layout Soup Coord., we
found that the SP agent learned a policy of putting only one onion in the pot and starting to cook,
leaving its partner confused and uncertain about what went wrong. Therefore, cooperation with SP
agents leads to low performance (Figure 4d).

5 Conclusion and Discussion

Conclusion In this work, we proposed CBPR framework and evaluated it in the well-known game
Overcooked. CBPR could effectively tackle the challenge of collaborating with humans by utilizing
a suite of meta-task aware agents. In response to the non-stationary nature of human behavior,
CBPR adeptly selects MTP agent based on the most recent human actions and episodic returns.
We have theoretically underpinned the collaborative efficacy of the CBPR approach. Empirically,
we demonstrated that CBPR outperforms baselines when collaborates with simulated humans that
change their policies frequently, simulated humans that employ different skill levels and real human
players. We remark our primary argument that, given the non-stationary inherent in human behaviors,
it is more effective to design various agents tailored to corresponding humans in different mental and
behavioral states, rather than relying on a seemingly omnipotent single agent. After all, two heads
are better than one.

Limitations and future work In this work, meta-tasks are modeled by manually-designed rule-based
policies. In real-world application domains such as assessing power system transient stability in
power grid dispatching and autonomous driving, it is time consuming to design various rule-based
policies.CBPR offers a viable strategy to model meta-tasks, facilitating the training of multiple
specialized experts to handle distinct meta-tasks. A notable challenge, however, is the manual
summarization of domain experts’ meta-tasks. As a direction for future research, we are keen to
address the task of clustering policies automatically based on human trajectories. While this study
Zhang et al. [2023] has made strides in this direction, the clustering approach adopted therein tends
to obscure semantic understanding, presenting hurdles for AI in comprehending human behaviors.
Splitting human trajectories according to the key state may be a possible solution. Additionally,
perceiving the acquisition of a specific class of shaped rewards by an agent as the execution of a
meta-task merits future consideration. This approach also does not depend on human data or models
and offers enhanced universality and interpretability.
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A Proof of collaboration performance

A.1 Proof of collaboration convergence

THEOREM 1 (Collaboration Convergence of CBPR Agent). Let Hi := {Sj
i , πhu,i(S

j
i ), R

j}∞j=0 be a
trajectory collected from a single stationary MDP Mi within the overall NS-MDP {Mi}∞i=1 under the
human meta-task policy πhu,i. Denote D := {(i,Hi) : i ∈ [1, k]} as a random variable representing
a set of trajectories observed prior to the most recently completed stationary MDP Mk. Given D, the
response policy of CBPR agent could almost sure converge when interacting with a human partner,
even when the human’s policy is non-stationary.

To establish the convergence of the posterior distribution, we first note that Doob’s Martingale
Convergence Theorem applies to our setting. Specifically, we have the following theorem:
THEOREM 3 (Doob’s Martingale Convergence Theorem). Let Xn be a martingale (or sub-martingale
or super-martingale) with respect to the sequence of sigma-algebras Fn, such that E[|Xn|] <∞ for
all n. If there exists a constant C such that E[|Xn+1 −Xn||Fn] ≤ C for all n, then there exists a
random variable X such that Xn converges to X almost surely and in L1.

With the aforementioned theorem, we can readily establish the proof of our theorem.

Proof. For non-stationary MDPs, demonstrating convergence involves showing that the algorithm can
adapt to changing convergence points and ultimately reach them. Therefore, we will first establish the
convergence property of the Bayesian update. Specifically, it will be demonstrated that the posterior
distribution converges almost surely to the true parameter value. Subsequently, we will prove that,
when using Bayesian updates, CBPR algorithms always converge to a fixed response policy, provided
that the human policy remains unchanged before reaching the fixed response policy.

To establish the convergence of posterior distribution, we first proof that the Doob’s Martingale
Convergence Theorem holds for the Bayesian updating: βk(τ) =

P(σk|τ,πk)βk−1(τ)∑
τ′∈T P(σk|τ ′,πk)βk−1(τ ′) .

ConsiderFk as the sequence of sigma-algebras generated by observations up to time k. A fundamental
property of Bayesian updating is that the expected value of the posterior distribution conditioned
on past data equals the current posterior distribution, expressed as E[βk+1(τ)|Fk] = βk(τ). This
holds because the posterior distribution βk(τ) encapsulates all relevant information up to time k.
Thus, conditioning on Fk accounts for all past observations, and in the absence of new data, the
expected future posterior must align with the current posterior. This relationship signifies that, given
the information available up to time k, the expectation of the next posterior does not deviate from the
current posterior, establishing βk(τ) as a martingale with respect to Fk.

Moreover, the bounded nature of βk(τ) within the interval [0, 1] ensures that the Bayesian update satis-
fies the conditions of Doob’s Martingale Convergence Theorem. Since βk(τ) represents a probability,
it is inherently bounded, which guarantees that the expected absolute change E[|βk+1(τ)−βk(τ)||Fk]
remains bounded. Additionally, with E[βk(τ)] = 1, the integrability condition required for martin-
gale convergence is also satisfied. This combination of boundedness and integrability provides the
mathematical foundation that guarantees the convergence of the sequence βk(τ).

In conclusion, the sequence of Bayesian updates βk(τ) adheres to the defining properties of a
martingale and satisfies the conditions of Doob’s Martingale Convergence Theorem through its
inferent property and boundedness. As a result, we can conclude that the belief βk(τ) regarding the
human meta-task will converge as k →∞:

Pr
(
βk(τ)

)
→ 1 (7)

Secondly, to prove that the calculated best response policy of AI π⋆ converges to a fixed value as
k →∞, we consider both the structure of the Bayesian update and the decision-making process in
CBPR framework.

Given βk(τ) converges, we note that the uncertainty about the human behavior policy τ diminishes
with an increasing number of observations. The convergence of βk(τ) to a specific distribution
implies that the belief about the human’s policy stabilizes. In mathematical terms, as k → ∞,
βk(τ)→ β(τ) for some fixed distribution β(τ).
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Then the stabilized response policy of AI π⋆⋆ is given by:

π⋆⋆ = argmaxπ∈Π

∫ Umax

Ū

∑
τ∈T

β(τ)P
(
U+|τ, π

)
dU+ (8)

Here, the decision-making is a function of both the belief β(τ) and the expected utility P (U+|τ, π)
for each AI response policy π. As βk(τ) converges to β(τ), the decision-making process becomes
increasingly dependent on a stable belief about the human’s policy. Thus, the variability in the choice
of π⋆ diminishes, leading to a convergence of π⋆ as well.

Formally, the convergence of π⋆ can be shown by demonstrating that the integral expression defining
π⋆ becomes stable as k →∞. Since β(τ) stabilizes, the integral’s value, which depends on the belief
about τ , also stabilizes. Consequently, by the linearity of convergence, the policy that maximizes this
expression, π⋆, will almost sure converge to a fixed policy.

Given the convergence property of π⋆, the almost sure convergence for the response policy of our
CBPR agent is established.

A.2 Proof of collaboration optimality

THEOREM 2 (Collaboration Optimality of CBPR Agent). Denoting CBPR for CBPR algorithm, let
ρ(π,m) := E[

∫ Umax

Ū
P (U+ | τ(m), π) dU+] be the expected return of exploiting AI policy π with

human meta-task policy τ(m) in MDP Mm. Given a positive integer k and a set of trajectories D
observed prior to the MDP Mk, it follows that for any subsequent stationary MDP Mk+δ , we have:

Pr
(
ρ
(
CBPR(D), k + δ

)
≥ ρ(π⋆

k, k + δ)
)
→ 1 (9)

when k →∞, where π⋆
k is the optimal response policy for human meta-task policy at MDP Mk.

Proof. Considering the CBPR algorithm within the framework of MDPs, we define the expected
return ρ(π,m) as the integral of the probability of achieving utility U+ given the AI policy π and the
human meta-task policy τ(m) in MDP Mm.

Assuming that the human policy library and AI policy library encompass all possible human meta-task
policies and their corresponding best AI response policies. Then, we need to prove that the expected
return of exploiting the CBPR algorithm’s policy in any subsequent stationary MDP Mk+δ will be
greater than or equal to that of the optimal response policy π⋆

k at Mk. Formally, we can express this
and derive it as follows:

Pr
(
ρ
(
CBPR(D), k + δ

)
≥ ρ(π⋆

k, k + ρ)
)

=Pr

(∫ Umax

Ū

∑
τ∈T

β(τ)P
(
U+ | τ, πCBPR

)
dU+ ≥

∫ Umax

Ū

P
(
U+ | τ(k + δ), π(k⋆

)
dU+

)

=Pr

(∫ Umax

Ū

∑
τ∈T

β(τ)P
(
U+ | τ, πCBPR

)
dU+ −

∫ Umax

Ū

P
(
U+ | τ(k + δ), π(k⋆

)
dU+ ≥ 0

)

=Pr

(∫ Umax

Ū

[
β(τ(k + δ))P

(
U+ | τ(k + δ), πCBPR

)
− P

(
U+ | τ(k + δ), π⋆

k

) ]
dU+

+

∫ Umax

Ū

∑
τ∈T −{τ(k+δ)}

β(τ)P
(
U+ | τ, πCBPR

)
dU+ ≥ 0

)
(10)

Where τ(k + δ) represent the true stationary human meta-task policy at MDP Mk+δ, π(k⋆) is the
best response of AI at MDP Mk, πCBPR is the response policy generated by CBPR algorithm.

From theorem 1, we have Pr
(
βk(τ(k + δ))

)
→ 1, when k →∞.
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Then we have:
∀τ ∈ T − {τ(k + δ)}, β(τ)→ 0. (11)

And thus the second term:∫ Umax

Ū

∑
τ∈T −{τ(k+δ)}

β(τ)P
(
U+ | τ, πCBPR

)
dU+ → 0, (12)

while the first term:∫ Umax

Ū

[
β(τ(k + δ))P

(
U+ | τ(k + δ), πCBPR

)
− P

(
U+ | τ(k + δ), π⋆

k

) ]
dU+

converge to ρ(π⋆
k+δ, k+ δ)−ρ(π⋆

k, k+ δ). Since π⋆
k+δ is the best response policy at MDP Mk+δ , the

inequality ρ(π⋆
k+δ, k+δ) ≥ ρ(π⋆

k, k+δ) would always hold. Consequently, we have Pr
(
ρ(π⋆

k+δ, k+

δ)− ρ(π⋆
k, k + δ) ≥ 0

)
→ 1, when k →∞. And we finally we achieve Pr

(
ρ
(
CBPR(D), k + δ

)
≥

ρ(π⋆
k, k + ρ)

)
→ 1, when k →∞.

Note that the above derivation holds when the human meta-task policy library and AI policy library
encompass all possible human meta-task policies and their corresponding best AI response policies.
In practice, this assumption is seldom met and is not necessarily required to be satisfied. However,
we can still enable to optimality guarantee by augmenting both human and AI policy library with
primitive policies Πp = {π1, π2, · · · , π|A|}, where policy πi ∈ Πp takes action ai ∈ A for all
states Li et al. [2018].

B Environment settings

The Overcooked environment, as introduced in Carroll et al. [2019], presents a cooperative game
where two players aim to complete as many orders as possible within a limited timeframe. In this
study, we set the time constraint to 600 timesteps. The players navigate the environment to interact
with various objects essential for order completion. An important aspect to note is that the current
version of Overcooked requires an additional ‘interact’ action to initiate cooking in the pot, deviating
from the version used in Carroll et al. [2019]. This change necessitates an adaptation of the previously
collected human data, potentially affecting the performance of the BCP baseline. To align with this
modification, we have adapted the latest version of the game to support auto-cooking when three
ingredients are in a pot.

The environment’s action space comprises the set {up, down, left, right, stay, interact}. The
observation space is represented by a 96-dimensional vector, capturing each player’s facing direction,
absolute position, and relative positions to various game elements such as the partner, the nearest
onion, pot, dish, serving area, etc. Our experiments utilize four distinct layouts as depicted in Figure 8.
These layouts are chosen to illustrate a range of collaborative challenges and rewards associated with
different cooking tasks. Detailed specifications of these layouts, including ingredients and reward
schemes, can be found in our released code repository.

Figure 8: The four Overcooked experiment layouts used in our study (from left to right): Cramped
Room, Coordination Ring, Asymmetric Advantage, and Soup Coordination. The game mechanics
involve two players collaborating to prepare and serve dishes, like soups made of onions or tomatoes.
Effective teamwork is reflected in the successful delivery of multiple orders. It is noteworthy that the
Marshmallow Experiment layout differs from the others in terms of cooking time and reward settings.
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C Implementation details

In our study, we rigorously implemented MTP within the CBPR framework and ensured that all
baselines (BCP, FCP, and SP) adhered to a unified methodology. This approach utilized the Proximal
Policy Optimization (PPO) algorithm, a widely acclaimed reinforcement learning technique Schulman
et al. [2017], under a standardized set of parameters (refer to Table 2). The adoption of PPO was
motivated by its balance between sample efficiency and simplicity, making it a popular choice in
recent multi-agent learning research Yu et al. [2022]. To optimize the learning process and mitigate the
often challenging exploration in the environment, we incorporated tailored reward shaping parameters
as delineated in Table 3. This strategy aligns with the established practices in reinforcement learning
that emphasize the importance of structured rewards in complex environments Gupta et al. [2022].
Additionally, our empirical analyses revealed a distinct performance advantage of feature-based
observation models over the image-based ones, leading to their adoption across all agents. The entire
training process was facilitated by the computational prowess of an NVIDIA 3080 GPU.

Table 2: PPO hyperparameters for MTP, BCP, FCP and SP agents. Lambda is used in generalized
advantage estimation (GAE) to calculate advantage function. Reward shaping parameters in Table 3
gradually anneals to zero over Reward shaping horizons.

Parameter Value
Learning rate 5e-4
Entropy coefficient 0.01
Epsilon 0.05
Gamma 0.99
Lambda 0.95
Batch size 4096
Clipping 0.05
Hidden dim of actor and critic 128
Reward shaping horizons 0.5 * total timesteps

Table 3: Reward shaping parameters for PPO.
Action Reward
Place in pot 3
Dish pickup 3
Soup pickup 5

C.1 Collaborative Bayesian Policy Reuse (CBPR)

The CBPR’s offline phase is a multi-faceted process encompassing meta-task modeling, MTP, and
performance modeling.

Initial efforts involved the manual definition of rule-based policies for each layout (Table 4), a step
inspired by the scripted policies detailed in Yu et al. [2023].

This was followed by the training of MTP agents π ∈ Π, which were systematically paired with
rule-based agents to facilitate robust policy development. The training phase, as illustrated in Figure 9,
was underpinned by a commitment to capturing a diverse range of strategic interactions. Subsequently,
we developed meta-task models τ ∈ T , leveraging a two-layer feed-forward neural network. This
network, initialized orthogonally and optimized at a learning rate of 1e-3, was instrumental in
deciphering the nuanced mappings from observations to actions.

In the final stage, performance models were crafted by pairing each MTP agent π with rule-based
meta-tasks across 50 episodes, adopting a Gaussian distribution approach to model episodic rewards.
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Table 4: Predefined rule-based meta-tasks.
Layouts Meta-tasks
Cramped Room 1. Place onion in pot

2. Deliver soup
3. Place onion and deliver soup
4. Others

Coordination Ring 1. Place onion in pot
2. Deliver soup
3. Place onion and deliver soup
4. Others

Asymmetric Advantage 1. Place onion in pot
2. Deliver soup
3. Place onion and deliver soup
4. Others

Soup Coordination 1. Place tomato in pot
2. Deliver soup
3. Mixed order
4. Others
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Figure 9: Training curves of meta-task playing (MTP) agents over five random seeds. The shaded
area denotes the standard deviation. Noticing that the reward should not be directly compared to each
other because agents vary in the partners they train with.

C.2 Baselines

C.2.1 Behavior Cloning (BC) and Behavioral Cloning Play (BCP) Carroll et al. [2019]

The BC models were trained using human-human trajectory data from Carroll et al. [2019]. This
process, partitioning 85% of data for training and 15% for validation, aligns with the standard
practices in supervised learning. The neural network, characterized by two layers with a hidden size
of 64 and an orthogonal initialization, was optimized for performance with a learning rate of 1e-4 and
an Adam epsilon of 1e-8. Each model underwent a rigorous 120-epoch training regimen across four
layouts and five seeds, reflecting a commitment to robustness and generalizability in agent training.
The BCP agents, trained in tandem with BC partners, represent a novel amalgamation of cloning and
playing strategies, with training curves depicted in Figure 10.

C.2.2 Self-Play (SP) and Fictitious Co-Play (FCP) Strouse et al. [2021]

The training of FCP agents, utilizing a pool size of 36 in the initial stage, was a strategic choice to
ensure a diverse range of policy interactions. This diversity was further augmented by selecting five
seeds from the first stage of FCP training for SP.

The second stage of training, involving a prolonged and intensive regimen over 50,000 episodes
(amounting to 3e7 timesteps), was designed to refine and solidify the agents’ strategies. Such
extensive training is critical in environments characterized by high complexity and variability, as it
allows agents to encounter and adapt to a wide array of scenarios. This comprehensive approach
to training is evident in the detailed training curves presented in Figures 11 and 12, which provide
insights into the progression and refinement of agent strategies over time.
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Figure 10: Training curves of BCP agents over five random seeds. The shaded area denotes the
standard deviation. Noticing that the reward should not be directly compared to each other because
the difficulty of the task varies with different game layouts.
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Figure 11: Training curves of FCP over five random seeds. The shaded area denotes the standard
deviation. Noticing that the reward should not be directly compared to each other because the
difficulty of the task varies with different game layouts.

D Additional results

D.1 Collaborating with rule-based agents with various policy switching frequencies

In this section, we delve deeper into the dynamics of collaboration with rule-based agents under
different policy switching frequencies. We present a series of additional experiments to complement
the findings discussed in Subsection 4.1. These experiments are critical in understanding how frequent
policy shifts impact the overall performance and coordination in multi-agent environments.

Figure 13 illustrates the comparative performance when rule-based agents switch policies every 2
episodes. Notably, the frequent policy changes introduce a unique set of challenges and opportunities
for adaptation, as evidenced by the performance fluctuations across 50 continuous episodes. The
standard error shaded areas, based on five random seeds, highlight the variability in performance
under these conditions.

Similarly, Figures 14 and 15 offer insights into the performance impacts when the policy switching
occurs every 200 and 100 timesteps, respectively. These results are pivotal in understanding the
optimal frequency of policy shifts to achieve efficient collaboration without overwhelming the
learning agents with too frequent changes.
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Figure 12: Training curves of self-play agents over five random seeds. The shaded area denotes the
standard deviation. Noticing that the reward should not be directly compared to each other because
the difficulty of the task varies with different game layouts.
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Figure 13: Comparative performance analysis against baselines when rule-based agents swith policies
every 2 episodes. All agents were evaluated over 50 continuous episodes. The shaded areas denote
standard errors over five random seeds.
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Figure 14: Comparative performance analysis against baselines when rule-based agents swith policies
every 200 timesteps. All agents were evaluated over 50 continuous episodes. The shaded areas denote
standard errors over five random seeds.
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Figure 15: Comparative performance analysis against baselines when rule-based agents swith policies
every 100 timesteps. All agents were evaluated over 50 continuous episodes. The shaded areas denote
standard errors over five random seeds.

D.2 Ablation study: collaborating with partners of diverse skill levels

In the following ablation study, we focus on the aspect of collaborating with partners exhibiting
diverse skill levels. This study is vital to assess how agents adapt to varying competencies within a
team setting. The results of this study are shown in Figures 16 and 17, where we examine different
weights and behavioral queue lengths.
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Figure 16: Episodic reward by using different weight rho of inter-episodic belief in other three
layouts. All agents were evaluated over 50 episodes and error bars denote 95% confidence intervals.
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Figure 17: Episodic reward by using different length l of human behavior queue in other three layouts.
All agents were evaluated over 50 episodes and error bars denote 95% confidence intervals.

In Figure 16, we explore the episodic rewards obtained by varying the weight ρ of the inter-episodic
belief across three different layouts – Coordination Ring, Asymmetric Advantage, and Soup Coordi-
nation. Each layout presents a unique challenge and thus allows us to evaluate the adaptability of
the agents to different team dynamics over 50 episodes. The 95% confidence intervals depicted here
underscore the consistency of our findings.

Additionally, Figure 17 presents the effects of altering the length l of the human behavior queue. This
modification helps us understand how the memory of past interactions influences current decision-
making processes in different environmental layouts. The episodic rewards over 50 episodes, along
with the error bars, provide a clear depiction of the performance trends under these varied conditions.
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