

000 BENCHMARKING LONG-TERM MEMORY WITH CON- 001 002 TINUOUS DIALOGUE LIFELOGS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Memory system in the real world holds considerable promise, especially in the
012 potential continuous dialogue lifelogs scenarios, where wearable devices with mi-
013 crophone always-on can keep recording the surrounding dialogue. Existing bench-
014 marks mostly focus on Person-AI interaction or Person-Person conversations, ne-
015 glecting the continuous dialogue lifelogs scenarios, integrating multi-person in-
016 teraction, causal and temporal event threads and so on. In this paper, we propose
017 two benchmark, named **EgoMemBench** and **LifeMemBench**, with a hierarchical
018 life simulation framework. EgoMemBench is built in a bottom-up manner from
019 a real-world lifelogging video dataset EgoLife over a seven-day period, while
020 LifeMemBench is simulated by LLMs with a top-down elaboration to generate
021 year-long personal lifelogs. Based on the hierarchical data with different temporal
022 granularities, we design an automatic question-answering construction pipeline to
023 generate four types with high-quality. Regarding the evaluation mode, employing
024 both online and offline approaches—with the online mode prioritized, as it better
025 aligns with the continuous dialogue lifelogs scenario. Experiments across four
026 representative memory systems show that MemOS consistently outperforms oth-
027 ers, achieving overall accuracies of 67.59% and 66.16% on the benchmarks. This
028 highlights the value of fine-grained memory management and the effectiveness
029 of our benchmarks. Moreover, we show that event-level semantic segmentation of
030 continuous dialogues yields superior results compared to naive chunking, pointing
031 to more effective ways of structuring lifelog memories. In conclusion, we define a
032 continuous dialogue lifelogs scenario, positioning it as a potential cornerstone for
033 next-generation terminal AI assistants.

034 1 INTRODUCTION

035 Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
036 tasks (OpenAI, 2022; OpenAI et al., 2024; Yang et al., 2025a), especially in the single-turn scenario
037 with short-term conversational context. Subsequently, LLMs show superior reasoning ability as
038 automatic agents to process a series of complex tasks in real world (Schick et al., 2023; Yang et al.,
039 2023), meanwhile, place a higher requirements on the context length. To explore long-term memory
040 capability of LLMs, one line of works (Chen et al., 2024; Grattafiori et al., 2024; Yang et al., 2025a)
041 focus on probing the accuracy of locating evidence in extremely long-context passages, such as
042 Needle In A Haystack (NAIH). However, the strategy of increasing context length indefinitely is not
043 a solution to long-term memory, due to the exponential growth in inference costs and the ability of
044 long-term memory utilization (Hsieh et al., 2024; Li et al., 2024; Liu et al., 2024). Consequently, the
045 development of memory system has emerged. It requires LLMs to adaptively remember and retrieve
046 relative evidence from massive information over extended periods.

047 Meanwhile, there exist various benchmarks primarily focus on dialogue scenarios, covering Person-
048 AI interaction (Jiang et al., 2025; Wu et al., 2024) and dyadic dialogues (i.e., person-person con-
049 versations; Maharana et al. (2024)). However, the above-mentioned studies neglect a promising
050 scenario as illustrated in Figure 1: **continuous dialogue lifelogs**. Nowadays, there emerges a se-
051 ries of commercial wearable devices with potential to achieve microphone always-on, such as smart
052 glasses (e.g., Ray-Ban Meta, RayNeo V3/X3, Xiaomi AI Glasses), and recording machines (e.g.,
053 Plaud). Equipped with these wearable devices, users can continuously record the surrounding audio
which fully filled with intensive dialogue content. Using automatic speech recognition (ASR), the

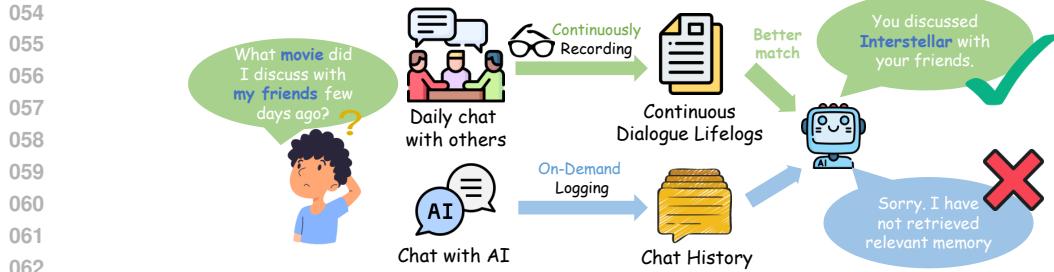


Figure 1: Comparison between (1) The microphone-always-on scenario, which continuously recording dialogue with others in daily life, and (2) Chatting with AI scenario, which on-demand logging to form the chat history.

audio stream is transcribed into text and stored in a long-memory database after post-processing. Compared to prior passages and Person-AI interaction, continuous dialogue lifelogs have several unique characteristics: (1) The daily conversations integrate multi-person interactions, casual and temporal event threads, and simulated social networks. (2) Through round-the-clock recording, the lifelogs enables the AI assistant to accumulate an extensive understanding of users’ facts, perfectly embodying the highly promising usage scenario of an personalized assistant.

To systematically evaluate the long-term memory capacity of agents in continuous dialogue lifelogs, we introduce two complementary benchmarks as shown in Figure 2: **EgoMemBench** and **LifeMemBench**. Both benchmarks adopt a hierarchical life simulation framework to generate the dataset. EgoMemBench is constructed using a bottom-up (i.e., from second to week) summarization based on the real-life first-person video dataset EgoLife (Yang et al., 2025b), which records egocentric video from six individuals over a seven-day period. To extend the temporal span and ensure long-horizon coherence, we further use LLMs with a top-down (i.e., from year to day) elaboration to simulate a year-long personal lifelog rich in multi-party conversations, forming the LifeMemBench. For both benchmarks, we generate QA pairs from multi-level event summaries, enabling systematic probing of memory retrieval across different temporal granularities. Notably, we first propose a **online evaluation** protocol that follows the linear flow of time with information update and conflict, offering a more realistic assessment of long-term memory in real-world conditions.

In experimental results, we evaluate four representative memory systems based on Qwen3-8B on both EgoMemBench and LifeMemBench, yielding critical insights into lifelog memory system design. MemOS consistently outperforms all baselines, with its vector-based variant (MemOS-V) often matching or exceeding the graph-based (MemOS-G) design. This phenomenon challenges the assumption that complex structured storage is indispensable and underscores the value of fine-grained memory management. Notably, several state-of-the-art approaches underperform a simple RAG baseline, finding that reinforces the criticality of preserving raw textual evidence in lifelog scenarios. The most pronounced challenge across all methods emerged in temporal retrieval tasks, which require precise timestamp alignment-a core lifelog capability that remains underexplored in prior work. Under our proposed online evaluation protocol, where difficulty escalates gradually with extended interaction horizons, systems demonstrate improved performance. This reflects the realism of continuous lifelog dynamics. Finally, our results validate that event-level semantic segmentation of continuous dialogues significantly outperforms naive chunking strategies, offering a clear pathway for optimizing lifelog memory structuring. Collectively, these findings establish the dual importance of preserving raw context and implementing intelligent memory organization for next-generation lifelog-aware systems.

2 RELATED WORK

Memory Systems. The architecture of memory systems can be summarized as Figure 3. The system collaborates with a chat agent, usually containing a summary agent to summarize memories (Xu et al., 2025), a memory manager to manage the database (Chhikara et al., 2025), a retriever for searching, and a database stores memories. Several works have implemented this framework in various ways. Wang et al. (2025), Xu et al. (2025), and Chhikara et al. (2025) used a Summary Agent to condense memories before storing them in a vector database. While Chhikara et al. (2025),

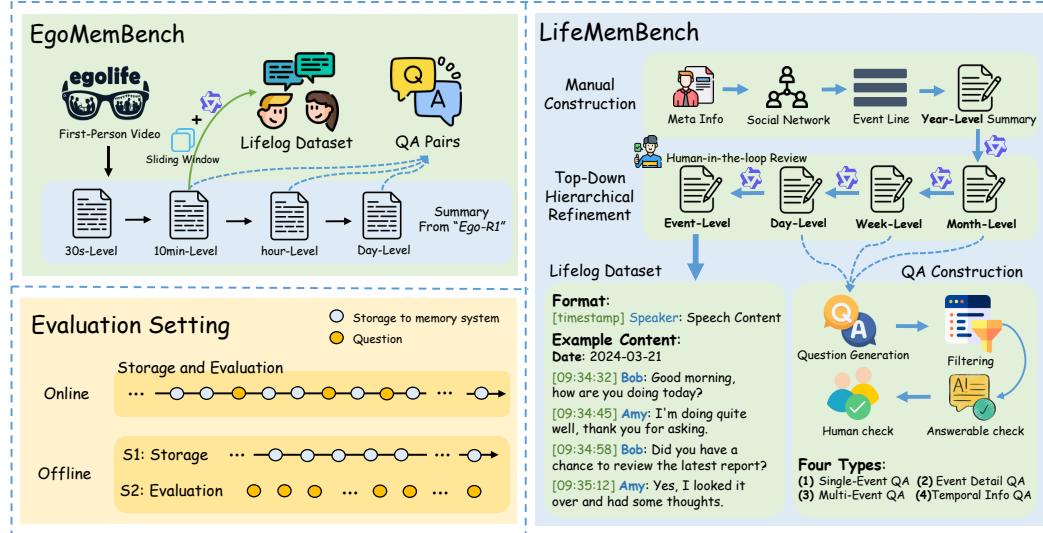


Figure 2: We propose two benchmarks: **EgoMemBench** (top right), constructed from real-world egocentric videos (EgoLife), and **LifeMemBench** (left), a more comprehensive benchmark built upon Top-Down Hierarchical Life Simulation Framework. We also introduce a novel online evaluation method that assesses performance incrementally during data storage, unlike conventional end-of-storage evaluation.

Gutiérrez et al. (2025), and Rasmussen et al. (2025) maintain a graph rather than vector. Other approaches borrow ideas from operating system to manage the memories, such as Packer et al. (2023) and Li et al. (2025).

Benchmarks for Long-Term Memory. With the development of memory systems, several benchmarks are developed for evaluation. These benchmarks aimed at different application scenarios, as shown in Table 1. Zhong et al. (2024) manually constructed 97 QA-pair for simple QA. LoCoMo (Maharana et al., 2024) creates a long-term dataset for Person-Person dialogue and evaluates the ability on different dimensions. Jiang et al. (2025) creates a larger dataset for Person-AI dialogue with a context length of 1M. LongMemEval (Wu et al., 2024) further expanded the data scale, with each dialogue record containing 500 sessions and up to 1.5M tokens. They made well efforts for chatbot-like memory system, however, remaining a gap between real world scenarios—the scenarios of multi-person communication, and the situation where the memory system is continuously activated, such as an always-on personal agent. In this paper, we purposed a benchmark contains multi-person dialogue, which is rolling from day to night, and continuous for year-long. This benchmark behaves closer to the real world compared to previous works.

3 BENCHMARKS

To explore the long-term memory capacity of agents in continuous dialogue lifelogs, we specifically construct two complementary benchmarks for egocentric memory (Cheng et al., 2024), as illustrated in Figure 2. The first benchmark, named **EgoMemBench**, is constructed based on the existing EgoLife dataset (Yang et al., 2025b) which contains daily video recording across seven days. Moreover, to mimic the continuous dialogue lifelogs in real-life with more time span and scene diversity, we further adopt data synthesis to construct a year-long benchmark, named **LifeMemBench**. Both benchmarks are constructed with a hierarchical life simulation framework, where use bottom-up and top-down manners due to different data source. More details will be introduced in this section.

3.1 EGOMEMBENCH

Data source. We construct our dataset based on the Ego-R1 summarization corpus (Tian et al., 2025), which is derived from the EgoLife dataset (Yang et al., 2025b). EgoLife consists of over 300 hours of real-world, first-person recordings collected from six participants living together, each wearing Meta Aria smart glasses to capture approximately eight hours of egocentric video and audio per day for one week. Built upon this foundation, Ego-R1 organizes the raw data into multi-

162 Table 1: Comparison of memory benchmarks. The key properties are summarized including the
 163 type of scenario (**Scenario**), the temporal coverage (**Time Span**), number of sessions (**#Sessions**),
 164 whether continuous recording is supported (**Cont. Rec.**), whether the queries contain explicit times-
 165 stamp for simulation (**TS**), whether support for online evaluation (**Online**).
 166

Benchmark	Scenario	Time Span	#Sessions	Cont. Rec.	TS	Online
LoCoMo (Maharana et al., 2024)	Person-Person	Few months	1k	✗	✗	✗
MemoryBank (Zhong et al., 2024)	Person-AI	10 days	300	✗	✓	✗
LongMemEval (Wu et al., 2024)	Person-AI	N/A	50k	✗	✓	✗
MemBench (Tan et al., 2025)	Person-AI	N/A	65k	✗	✗	✗
EgoMemBench	Multi-Person	7 days	1.7k	✓	✓	✓
LifeMemBench	Multi-Person	1 year	3.8k	✓	✓	✓

174 scale textual summaries through a hierarchical pipeline: 30-second clips are first described by a
 175 Vision-Language Model (VLM), and these fine-grained descriptions are progressively aggregated
 176 into 10-minute, 1-hour, 1-day, and 1-week summaries. Rather than relying on direct transcription
 177 from EgoLife, we leverage the structured 10-minute summaries from Ego-R1 as prompts for a large
 178 language model (LLM) to generate plausible multi-turn dialogues. This generative strategy expands
 179 the dataset scale beyond the original recordings while preserving the semantic fidelity and temporal
 180 coherence of the egocentric narratives.

181 **Data Curation.** There are two critical challenges for data curation: (1) the inherent scarcity of long-
 182 form, naturally occurring lifelog data, and (2) the need to maintain narrative coherence and informa-
 183 tion density across extended temporal horizons. To this end, in the *granularity selection*, we choose
 184 the 10-minute summary level as a deliberate compromise. The reason is that finer-grained 30-second
 185 summaries are too fragmented to support coherent dialogue generation, while coarser summaries
 186 (i.e., 1-hour or 1-day) lead to superficial content and a loss of episodic detail. Crucially, we find
 187 that generating dialogues from concatenated 10-minute segments produces more information-rich
 188 outputs than direct generation from hour-long summaries, a phenomenon we attribute to the limited
 189 attention span of current LLMs (Mudarivov et al., 2025). The 10-minute granularity thus maximizes
 190 the utility of the data for downstream memory tasks. Then, we transform the 10-minute summary to
 191 our lifelog dataset. Specifically, we design a *sliding-window generation strategy* to ensure narrative
 192 continuity. Rather than directly generate lifelog dataset based on each separated 10-minute segment,
 193 we ask the LLMs to additionally conditioned on the six preceding segments, using the prompt as
 194 shown in Appendix D. This 60-minute context window is empirically determined to balance two
 195 needs: providing sufficient history to maintain speaker consistency and topic flow, while avoiding
 196 excessive repetition and staying within practical computational limits.

197 **Data Review.** We employ a hybrid quality assurance process combining human annotators and LLM
 198 assistance. Annotators evaluate dialogues for (1) naturalness, (2) coherence across segments, and
 199 (3) factual consistency with source summaries. Following the *text-grad*(Yuksekgonul et al., 2024)
 200 paradigm, the LLM first flags issues and provides targeted feedback, which are then used by
 201 annotators to revise the text, selectively accepting improvements. This iterative workflow, combining
 202 LLM feedback and human verification, provides an efficient review process that produces coherent,
 203 accurate, and high-quality data.

204 3.2 LIFEMEMBENCH

205 While EgoMemBench is constructed from real-life recordings, it has several limitations: (i) The
 206 dataset spans only seven days of daily activities, which is insufficient to capture long-term patterns of
 207 individual’s daily life. (ii) It lacks the diversity of social contexts and location changes characteristic
 208 of real-world scenarios. To complement EgoMemBench and enable the study of long-term memory
 209 phenomena at scale, we therefore simulate continuous dialogue lifelogs of an individual, forming
 210 LifeMemBench. Our goal is to establish a more comprehensive and scalable benchmark that reflects
 211 longitudinal dynamics of daily life, incorporating realistic routines, diverse social interactions, and
 212 natural scene transitions over extended periods.

213 **Data Curation.** In order to simulate real *social networks*, we begin by constructing a virtual user
 214 profile and the corresponding social relationship. The user profile specifies demographic attributes
 215 (e.g., age, occupation), while the comprehensive social relationship network encompassing family,

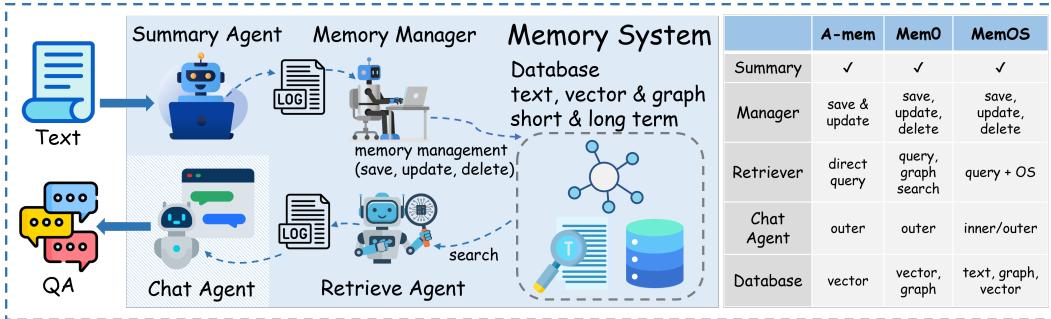


Figure 3: Definition of the structure of a memory system, and a comparison table of current memory system approaches under this structure.

colleagues, and friends. Instead of directly generate high-level annual experience based on this simulated social network, we first construct eleven *event lines* for the year across key life dimensions, such as work and family. These event lines serve as structured narrative threads that capture diverse and realistic life dynamics. By anchoring the simulation in carefully designed event structures, we establish a solid basis for generating lifelog data that maintains semantic richness and long-horizon coherence. We then align all event lines into *year-level summary*, and further employ a *top-down refinement strategy* to progressively generate lifelog narratives at monthly, weekly, and daily scales. Each refinement proceeds in two stages: (i) allocation, where we use LLMs to distribute high-level descriptions into lower-level placeholders (e.g., mapping annual events into monthly summaries); and (ii) enrichment, where LLMs expand each placeholder into detailed narratives constrained by the higher-level context. To further align the simulated lifelog with real-world temporal structures, we incorporate external calendar signals such as statutory holidays, weekends, and workdays. Through iterative allocation and enrichment, we obtain richly detailed *monthly*, *weekly*, and *daily experience* descriptions that preserve both narrative continuity and contextual realism. However, directly generating lifelogs based on daily experience often leads to coarse or repetitive descriptions, as LLMs cannot capture the fine-grained variations that naturally arise within a day. To address these issues, we segment daily descriptions into *event-level narratives*, each annotated with temporal boundaries, locations, and participants. Finally, we generate the *continuous dialogue lifelogs*. Each dialogue is conditioned on the event context, the virtual user’s background, and the social relationship network, ensuring natural conversational flow. Applying this framework, we obtain a year-long lifelog comprising rich, dialogue-centric daily records. Beyond the dataset itself, this framework establishes a scalable methodology for simulating long-term, always-on scenarios, providing a foundation for benchmarking memory-intensive AI assistants in realistic yet privacy-preserving settings.

Data Review. During the top-down generation process, data from each stage undergo human inspection and revision before proceeding to the next stage. Only when the quality of the current stage passes the review does the data advance to the subsequent stage. For example, “monthly experience descriptions” must first pass manual quality checks before “weekly experience descriptions” are generated. This iterative verification reduces hallucinations and logical inconsistencies, while keeping the overall cost of human involvement manageable.

3.3 QUESTION-ANSWERING PAIRS CURATION

Task Format. To elicit the stability and usability of assessment, we officially opt for *multiple-choice* format over open-ended question-answering (QA). For each question, we provide one ground-truth answer and three distractor options: the question serves as a query, tasking the system with retrieving relevant memories to select the optimal choice. This setup evaluates the memory system’s capacity to store, manage, and retrieve memories. While the benchmark can be transformed to support open-ended QA, with evaluation conducted via LLM-as-a-Judge (Zheng et al., 2023), which aligns more closely with real-world scenarios and further assesses the chat agent’s ability to organize information and generate clear responses.

Question Types. The primary question types in the memory system (Maharana et al., 2024) can be categorized into three main classes: temporal reasoning, event recall, and detail retrieval. Temporal reasoning requires agents to integrate information from multiple event fragments to derive reasoned conclusions. Event recall involves ambiguous queries, where agents need to mine lifelog data to retrieve the most relevant contextual evidence. Detail retrieval focuses on pinpointing specific event attributes, often buried in dense lifelog streams, requiring precise snippet-level recall. Based

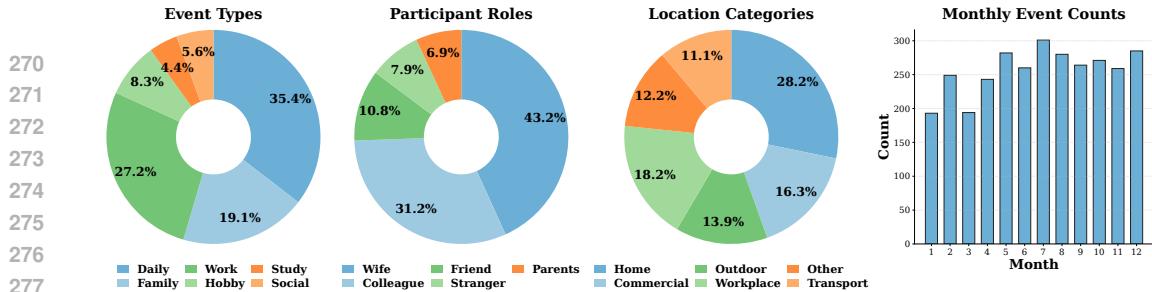


Figure 4: Distributional statistics of the LifeMemBench dataset. The plots summarize event types, social roles, locations, and monthly dialogue counts, showing that the dataset is balanced and closely aligned with real-world lifelog patterns.

on the categories above, we further refine our design to construct four distinct question types: (i) *QT1: Event Content Recall*: This type encompasses questions that demand the retrieval of core event content, and it falls under the broader category of Event Recall. (ii) *QT2: Event Detail Retrieval*: Questions of this type require precise retrieval of specific event details, and they are classified under Detail Retrieval. (iii) *QT3: Multi-hop Event Reasoning*: These questions involve both retrieving and reasoning across multiple events, and they belong to the Temporal Reasoning category. (iv) *QT4: Temporal Information Question Answering*: As a lifelog-specific subcategory of Detail Retrieval, this unique type requires accurately pinpointing the exact timestamp of a particular event to generate a valid answer.

Question-Answering Construction. Based on the constructed EgoMemBench and LifeMemBench with hierarchy structure, we propose an automatic pipeline to generate question-answering (QA) pairs as shown in Figure 2. We use 10-minute, hour-level and day-level in EgoMemBench to construct QA pairs, while use day-level, week-level, and month-level for LifeMemBench. As a result, the generated QA pairs can span over different temporal granularities. Based on these data, we prompt *Qwen3-235B-Thinking-2507*¹ (Yang et al., 2025a) to generate the expected types of QA pairs and the corresponding distractors. The query timestamp is set a few days after the evidence timestamp, and manually added into the question’s metadata. However, the generated QA pairs often contain information leakage (e.g., timestamps). This problem enables agents to “cheat” in answering, as they only need to retrieve based on the timestamp in the query rather than truly understanding the question. Therefore, we prompt a *Qwen3-32B* (Yang et al., 2025a) to filter out questions with potential information leakage, then erase such leakage and rebuild those questions. Moreover, considering that certain questions may be unanswerable, we further design an answerability check process. Specifically, we concatenate the lifelog, the question, and the corresponding options, then put this combined context into *qwen3-max-preview* to generate an answer. For questions answered incorrectly by the LLM, human annotators are tasked with screening them further: questions deemed unanswerable by annotators are marked and discarded, while those for which annotators can identify the correct option are labeled as answerable, retained, and categorized as “hard” questions. Table 2 reports the total number of questions generated in the construction stage, and the final questions in benchmark after applied LLM filtering and human annotation. The model accuracy shows that *qwen3-max-preview* is managed to answer nearly all questions correctly with evidences provided, indicating that the generated questions are answerable. After filtering, EgoMemBench obtains 1774 questions, while LifeMemBench obtains 1717 questions. The detailed prompts for question generation are discussed in Appendix D.1.

Evaluation Modes. Due to the unique character of continuous dialogue lifelogs scenario, we define two different evaluation modes, including offline and online. *Offline mode* is traditional evaluation mode in previous memory benchmarks (Maharana et al., 2024; Wu et al., 2024), where the memory

Table 2: The number of generated questions, the number of questions remained after filtering and human annotation, and the model accuracy in the final answerable verification.

LifeMem	Total	Filted	Keep Rate	Model Acc.
Daily	1464	1430	97.68%	99.23%
Weekly	248	241	97.18%	98.76%
Monthly	48	46	95.83%	100%
All	1760	1717	97.56%	99.18%

¹<https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507>

agent answers all questions at once after the memory system has processed all the data. Although widely adopted for evaluation, this paradigm differs fundamentally from real-world daily interactions, where user queries emerge spontaneously rather than being constrained to post-conversation intervals. To better align with continuous dialogue lifelogs, we propose a novel evaluation mode, termed *online mode*. As illustrated in Figure 2, the online mode operates across the temporal dimension in a streaming fashion: as time progresses, the memory agent answers queries using memories from the current timestamp, while the memory system concurrently processes incoming data. This design more closely emulates real-world memory systems, where users do not abruptly halt memory updates to pose all questions at once. Instead, they interleave queries about past events with continuous updates of new information to the memory system.

3.4 STATISTICS

Figure 4 illustrates the distributional characteristics of our synthetic dataset LifeMemBench, encompassing four key dimensions: event types, social roles, locations, and monthly dialogue counts. Overall, the dataset exhibits a balanced structure that aligns with realistic lifelog patterns. The event distribution spans both routine necessities and higher-level pursuits, while the social role distribution includes intimate interactions, professional contexts, and casual engagements. Geographically, conversations are distributed across diverse settings such as homes, workplaces, transportation hubs, and outdoor spaces, further grounding the dataset in real-world scenarios. Temporally, monthly event counts remain stable, with no significant seasonal bias. This stability is particularly valuable for long-horizon memory evaluation, as it avoids skewing results toward time-specific patterns. Collectively, these properties establish LifeMemBench as a reliable testbed for memory agents: its balanced coverage minimizes distributional skew, while its diversity (across events, roles, and locations) and temporal regularity enable robust benchmarking under the “always-on” conditions that characterize real-world lifelog interactions. For the QA pairs, Figure 7 in Appendix D.2 displays the specific proportion of each QA type (introduced in Section 3.3) that remained after the filtering process. In LifeMemBench, the four question types—event content recall, event detail retrieval, multi-hop event reasoning, and temporal information QA—are distributed as 25.3/25.0/25.0/24.6. In EgoMemBench, their proportions are 25.1/25.1/24.9/24.9. The balanced distribution of question types enables a more comprehensive evaluation of memory systems’ multifaceted capabilities.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We extensively evaluate EgoMemBench and LifeMemBench across a suite of representative memory systems, whose overall architecture is illustrated in Figure 3. Specifically, we select four memory systems for assessment: (1) **RAG** (Lewis et al., 2021): A straightforward retrieval-augmented generation (RAG) baseline that directly stores and retrieves text chunks; (2) **A-Mem** (Xu et al., 2025): An enhanced RAG variant that augments stored text with additional semantic signals; (3) **Mem0** (Chhikara et al., 2025): A paradigm that stores structured observations distilled from raw text, rather than verbatim conversational history; and (4) **MemOS** (Li et al., 2025): A framework that manages memories via a memory operating system. Two sub-variants are tested: **MemOS-V**, which uses a vector database for memory storage, and **MemOS-G**, which employs a graph database. More information about methods in Appendix E. All experiments are conducted using Qwen3-8B on both EgoMemBench and LifeMemBench. To investigate how model size impacts memory system performance, we further perform comparative experiments with Qwen3-32B and Qwen3-Plus². For any embedding-related requirements, we use Qwen3-embedding-8B. Experiments are conducted under both offline and online modes.

4.2 RESULTS AND ANALYSIS

Comparison across methods. Table 3 presents the experimental results of various memory systems using Qwen3-8B as backbone across both benchmarks. The results indicate that MemOS consistently outperforms other methods, with its vector database variant (MemOS-V) achieving better

²Owen3-Plus corresponds to qwen3-plus-latest

378 Table 3: Main results of memory systems’ performance on two evaluation datasets. The method
 379 with the best overall performance are **bold**, the second are underlined. Within the same method, the
 380 question type with the lowest score is marked as `xx.xx`, the second is marked as `xx.xx`

(a) EgoMemBench question type performances on Qwen3-8B

Method	QT1		QT2		QT3		QT4		overall	
	online	offline	online	offline	online	offline	online	offline	online	offline
RAG	53.59	49.49	67.42	52.69	56.46	52.83	35.52	32.81	53.27	49.49
A-Mem	60.92	<u>56.73</u>	66.36	<u>47.42</u>	53.49	56.92	39.21	43.44	55.03	51.13
Mem0	49.78	<u>40.82</u>	51.91	52.81	40.82	48.88	30.54	21.49	43.29	41.84
MemOS-V	72.74	70.57	82.43	80.03	69.44	68.77	45.98	45.48	67.59	66.16
MemOS-G	71.89	57.64	81.42	61.24	64.52	55.45	42.89	32.79	<u>65.12</u>	<u>51.75</u>

(b) LifeMemBench question type performances on Qwen3-8B

Method	QT1		QT2		QT3		QT4		overall	
	online	offline	online	offline	online	offline	online	offline	online	offline
RAG	59.45	56.59	80.77	77.27	53.44	53.86	40.96	38.18	58.66	56.47
A-Mem	<u>57.95</u>	<u>65.45</u>	65.00	66.80	65.00	66.13	32.95	32.95	55.23	57.84
Mem0	61.14	59.31	46.35	45.90	37.81	36.13	26.14	24.77	43.86	41.53
MemOS-V	75.00	70.68	82.50	81.36	68.41	66.59	48.18	48.86	<u>68.52</u>	66.87
MemOS-G	73.18	67.50	84.09	67.73	72.27	63.64	46.59	42.27	69.03	<u>63.18</u>

399 performance than the graph database variant (MemOS-G). Notably, neither A-Mem nor Mem0 out-
 400 perform the simple RAG baseline. Diving into their methodology, both A-Mem and Mem0 rely on
 401 LLMs to summarize lifelogs and extract what the models deem “useful” memories, which inadver-
 402 tently discards critical information such as timestamps, event details, and key evidence necessary for
 403 multi-hop reasoning. In contrast, RAG directly stores raw lifelog text chunks, preserving maximal
 404 original information. MemOS, however, achieves the strongest overall performance by explicitly
 405 incorporating detailed information through prompting, segmenting individual events into multiple
 406 memory units, and organizing them via a memory operating system.

407 **Performances of different question type.** Table 3 presents the performance of different memory
 408 systems across the four question types in LifeMemBench. Among these types, multi-hop reasoning
 409 and temporal information QA pose the greatest challenges. Temporal information QA is uniquely
 410 demanding, as queries are tightly tied to the timestamps of event logs. While most systems can
 411 readily locate the relevant event, they fail to answer correctly if time-related information is not
 412 preserved. The results show that many systems performs poor on this task—particularly Mem0
 413 and A-Mem, whose accuracy is only slightly higher than random guessing. In contrast, MemOS
 414 and RAG achieve stronger performance, as both are designed to store and retrieve memories with
 415 explicit timestamp annotations. Multi-hop event reasoning is another challenging task, not only in
 416 LifeMemBench but also in other memory benchmarks. A key distinction from temporal information
 417 QA emerges here: A-Mem outperforms RAG on this task. This is likely because A-Mem organizes
 418 memories into more logically structured chunks, whereas RAG simply stores raw text without such
 419 structural optimization.

420 **Online vs. Offline evaluation.** Online evaluation more closely mirrors real-world deployment
 421 conditions. Across methods, we observe that online performance is generally higher than offline,
 422 primarily because the online setting maintains a smaller memory pool at each step, thereby reducing
 423 interference from irrelevant memories during retrieval. This suggests that current memory systems
 424 may achieve better practical performance when deployed in real-world scenarios. Furthermore, the
 425 online setting introduces a dynamically increasing level of difficulty over time, as the continual
 426 accumulation of memories poses greater retrieval challenges compared to the static nature of offline
 427 evaluation. This property makes online evaluation particularly valuable for assessing long-term
 428 memory retention and adaptability.

429 **Model capabilities comparison.** Under a certain capability threshold, stronger LLMs as the back-
 430 bone of the memory system would achieve better performance than weaker ones, for example,
 431 Qwen3-32B/Qwen3-Plus compared to Qwen3-8B. However, there is no significant gap be-
 432 between Qwen3-32B and Qwen3-Plus. This indicates that a more powerful LLM does not neces-
 433 sarily result in a more powerful memory system.

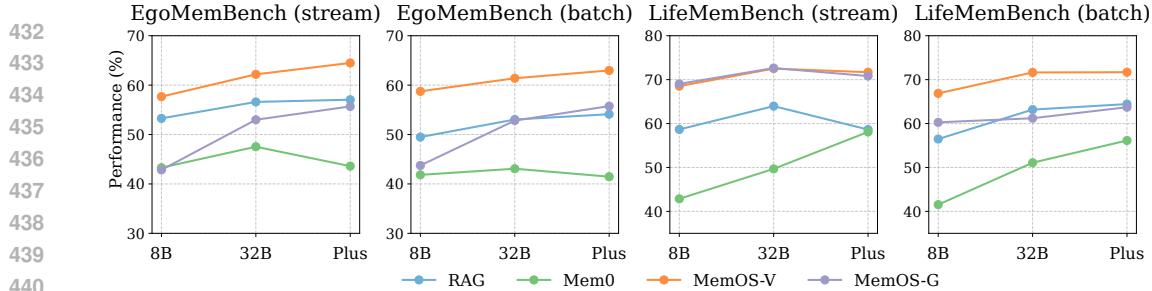


Figure 5: Comparison on the performances of memory systems using different backbone LLMs.

4.3 OTHER EXPLORATION

Impact of Segmentation Granularity and Strategy on Performance. We investigate how different segmentation granularities and event-based segmentation affect performance. In LifeMemBench, an event on average spans 13.7 dialogue turns, so we choose 8, 14 and 32 turns as the segmentation granularities, as well as event-level and day-level. Table 4 shows that event-level segmentation performs the best, while other granularities did not perform any regular pattern. Therefore, it would be better to manually train a model for event segmentation in memory system.

Impact of Top- k on Performance. Figure 6 shows how the number of retrieved memo-ries (top- k) affects the system’s performance in MemOS evaluated on LifeMemBench using Qwen3-8B. It is obvious that the accuracy improves steadily for both MemOS-V and MemOS-G as k increases, under both online and offline evaluation protocols. This demon-strates that increasing k is a simple yet effec-tive strategy to boost memory-augmented sys-tem performance. However, in practice, LLMs are often constrained by the inference latency of long-context. Therefore, we suggest setting a larger k as if the latency is bearable.

5 CONCLUSION

This paper addresses a critical gap in memory system evaluation by focusing on continuous dialogue lifelog scenarios—a highly promising real-world application where memory systems must handle unbroken, timestamped, and context-rich daily interactions (e.g., from always-on wearable microphones). To fill this void, we construct two complementary benchmarks with hierarchical life simulation framework, including **EgoMemBench** and **LifeMemBench**, supported by extensive experiments and analysis. Moreover, we design four targeted question types to comprehensively test memory system capabilities in lifelog scenarios. Among these, Temporal Information QA emerges as uniquely critical to lifelog scenarios—it requires systems to preserve and retrieve exact timestamps. In evaluation, we are the first to propose a online mode to align with the real-world streaming dialogue. In experiments, MemOS consistently outperforms all other three methods, while A-Mem and Mem0 do not even outperform a simple RAG baseline. This highlights a critical pitfall: aggressive summarization discards critical information that is indispensable for lifelog QA, whereas RAG’s raw text storage and MemOS’s structured preservation better retain this context. In summary, this work defines the continuous dialogue lifelog scenario as a critical testbed for memory systems, and offers actionable insights for designing memory systems that excel in real-world lifelog contexts. As wearable devices and terminal AI assistants increasingly adopt always-on sensing, our benchmarks and findings lay the groundwork for developing memory systems that can reliably sup-port long-term, context-aware user interactions—positioning lifelog-aware memory as a key feature of next-generation AI.

Table 4: Comparison across different segmen-tation granularities. The best scores are **bold**, the second are underlined.

Method	Eval Setup	8-turn	14-turn	32-turn	event	day
MemOS-V	online	69.77	66.92	66.16	<u>67.79</u>	65.40
	offline	65.93	65.81	64.76	68.38	64.59
MemOS-G	online	65.58	63.60	63.72	<u>66.80</u>	68.32
	offline	46.19	54.22	47.06	56.61	46.13

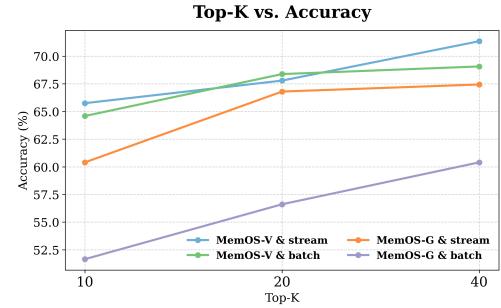


Figure 6: Comparison on accuracies of different retrieval Top-k in MemOS.

486 ETHICS STATEMENT
487488 This work focuses on routing strategies and evaluation frameworks for collaborative LLM systems.
489 We do not involve sensitive personal data, human subjects, or potentially harmful content. Our
490 methods aim to improve efficiency and robustness without introducing new ethical risks.
491492 REPRODUCIBILITY STATEMENT
493494 We provide detailed descriptions of our framework, metrics, and experimental setup in the main text
495 and appendix. All datasets used are publicly available, and we will release code, training scripts,
496 and evaluation pipelines to ensure full reproducibility.
497498 REFERENCES
499500 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
501 Efficient fine-tuning of long-context large language models, 2024. URL <https://arxiv.org/abs/2309.12307>.
502503 Sijie Cheng, Kechen Fang, Yangyang Yu, Sicheng Zhou, Bohao Li, Ye Tian, Tingguang Li, Lei Han,
504 and Yang Liu. Videogothink: Assessing egocentric video understanding capabilities for embodied
505 ai. *arXiv preprint arXiv:2410.11623*, 2024.
506507 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
508 production-ready ai agents with scalable long-term memory, 2025. URL <https://arxiv.org/abs/2504.19413>.
509510 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
511 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and Others. The llama 3 herd of models,
512 2024. URL <https://arxiv.org/abs/2407.21783>.
513514 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: neuro-
515 biologically inspired long-term memory for large language models. In *Proceedings of the 38th*
516 *International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY,
517 USA, 2025. Curran Associates Inc. ISBN 9798331314385.
518519 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
520 Boris Ginsburg. RULER: What's the real context size of your long-context language models? In
521 *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=kIoBbc76Sy>.
522523 Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar,
524 Camillo J. Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic
525 user profiling and personalized responses at scale, 2025. URL <https://arxiv.org/abs/2504.14225>.
526527 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
528 Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
529 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL <https://arxiv.org/abs/2005.11401>.
530531 Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. LooGLE: Can long-context lan-
532 guage models understand long contexts? In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
533 mar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
534 guistics (Volume 1: Long Papers)*, pp. 16304–16333, Bangkok, Thailand, August 2024. As-
535 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.859. URL <https://aclanthology.org/2024.acl-long.859/>.
536537 Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei
538 Yang, Chunyu Li, Qingchen Yu, et al. Memos: A memory os for ai system. *arXiv preprint*
539 *arXiv:2507.03724*, 2025.
540

540 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 541 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 542 *Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 543 <https://aclanthology.org/2024.tacl-1.9/>.

544

545 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
 546 Fang. Evaluating very long-term conversational memory of LLM agents. In Lun-Wei Ku, Andre
 547 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association*
 548 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 13851–13870, Bangkok, Thailand,
 549 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.747.
 550 URL <https://aclanthology.org/2024.acl-long.747/>.

551

552 Timur Mudarisov, Mikhail Burtsev, Tatiana Petrova, and Radu State. Limitations of normalization
 553 in attention mechanism, 2025. URL <https://arxiv.org/abs/2508.17821>.

554

555 NAIH. GitHub - gkamradt/LLMTest_NeedleInAHaystack: Doing simple retrieval from LLM mod-
 556 els at various context lengths to measure accuracy — [github.com](https://github.com/gkamradt/LLMTest_NeedleInAHaystack). https://github.com/gkamradt/LLMTest_NeedleInAHaystack. [Accessed 18-09-2025].

557

558 OpenAI. Chatgpt, 2022. URL <https://chat.openai.com/chat>. Accessed: September 15,
 559 2024.

560

561 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 562 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, and Others. Gpt-4 tech-
 563 nical report, 2024. URL <https://arxiv.org/abs/2303.08774>.

564

565 Charles Packer, Vivian Fang, Shishir G. Patil, Kevin Lin, Sarah Wooders, and Joseph E. Gonzalez.
 566 Memgpt: Towards llms as operating systems. *CoRR*, abs/2310.08560, 2023. URL <https://doi.org/10.48550/arXiv.2310.08560>.

567

568 Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a tem-
 569 poral knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.

570

571 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 572 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 573 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 574 68551, 2023.

575

576 Haoran Tan, Zeyu Zhang, Chen Ma, Xu Chen, Quanyu Dai, and Zhenhua Dong. Membench:
 577 Towards more comprehensive evaluation on the memory of llm-based agents, 2025. URL
 578 <https://arxiv.org/abs/2506.21605>.

579

580 Shulin Tian, Ruiqi Wang, Hongming Guo, Penghao Wu, Yuhao Dong, Xiuying Wang, Jingkang
 581 Yang, Hao Zhang, Hongyuan Zhu, and Ziwei Liu. Ego-r1: Chain-of-tool-thought for ultra-long
 582 egocentric video reasoning. *arXiv preprint arXiv:2506.13654*, 2025.

583

584 Bing Wang, Xinnian Liang, Jian Yang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma,
 585 and Zhoujun Li. Scm: Enhancing large language model with self-controlled memory framework,
 2025. URL <https://arxiv.org/abs/2304.13343>.

586

587 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 588 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International*
 589 *Conference on Learning Representations*, 2024.

590

591 Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
 592 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

593

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, and
 594 Others. Qwen3 technical report, 2025a. URL <https://arxiv.org/abs/2505.09388>.

594 Jingkang Yang, Shuai Liu, Hongming Guo, Yuhao Dong, Xiamengwei Zhang, Sicheng Zhang,
 595 Pengyun Wang, Zitang Zhou, Binzhu Xie, Ziyue Wang, Bei Ouyang, Zhengyu Lin, Marco
 596 Cominelli, Zhongang Cai, Bo Li, Yuanhan Zhang, Peiyuan Zhang, Fangzhou Hong, Joerg Wid-
 597 mer, Francesco Gringoli, Lei Yang, and Ziwei Liu. Egolife: Towards egocentric life assistant. In
 598 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 599 pp. 28885–28900, June 2025b.

600 Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
 601 large language model to use tools via self-instruction. *Advances in Neural Information Processing
 602 Systems*, 36:71995–72007, 2023.

603 Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
 604 James Zou. Textgrad: Automatic “differentiation” via text, 2024. URL <https://arxiv.org/abs/2406.07496>.

605 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 606 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
 607 ica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann,
 608 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Infor-
 609 mation Processing Systems*, volume 36, pp. 46595–46623. Curran Associates, Inc., 2023.
 610 URL https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf.

611 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 612 language models with long-term memory. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
 613 Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
 614 Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
 615 Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,
 616 Vancouver, Canada*, pp. 19724–19731. AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29946.
 617 URL <https://doi.org/10.1609/aaai.v38i17.29946>.

618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648
649

A LLM USAGE

650
651
652
653
In the preparation of this paper, large language models (LLMs) were used solely as auxiliary tools.
Specifically, we employed LLMs for grammar correction and text polishing, as well as to support
dataset generation and assist in the manual review of data quality.654
655

B DETAILS OF HUMAN-IN-THE-LOOP REVIEW

656
657
658
659
660
661
662
663
664
665
666
667
668
669

Overall Procedure and LLM-Assisted Inspection. The overall procedure begins with *monthly-level summary*, where annotators perform comprehensive reading, inspection, and revision. This is followed by *weekly-level summary*, which involves several checks: **(2.1) Consistency between parent and child summaries** verifies that weekly content does not contradict monthly content (e.g., ensuring events are not mistakenly placed before a meeting); **(2.2) Factual correctness** checks for obvious factual errors (e.g., accurately reflecting the initials on a ring); **(2.3) Repetition checking** uses an LLM to extract event descriptions, retrieves the five most similar events via similarity search, and inspects them to prevent unreasonable repetition (e.g., the protagonist reading the same book chapter and having identical reflections in different months); and **(2.4) Random sampling**, where 20 revised summaries are randomly selected for additional verification. The *day-level and event-level summaries* follow the same checking procedure as the weekly-level summaries. Given the substantial volume of content at the weekly, day, and event levels, we employ an LLM (specifically, Qwen3-235B-Instruct) to conduct a first-pass review for detecting potentially problematic segments, after which human annotators perform full manual inspection and correction.

670
671
672
673
674
675
676

Issue Detection and Final Quality. The proportions of issues detected by the LLM during the initial review are as follows: for parent-child consistency, weekly (11%), day (14%), and event (16%); for factual correctness, weekly (13%), day (17%), and event (19%); and for repetition checking, weekly (7%), day (10%), and event (12%). Following revisions based on these checks and subsequent human review, the final quality is confirmed through random sampling, which yields a pass rate of 100% for the weekly, day, and event-level summaries. All review work is conducted by several data annotators within our team.

677
678

C BENCHMARK DATA SAMPLES

679
680

C.1 EXAMPLES OF DATASET

681
682
683
In this section, we provide illustrative snippets from the LifeMem Dataset. The EgoMem Dataset
adopts the same formatting and structural schema.684
685
Table 5: Jeremy and Jane at Home Organizing Old Items (2024-01-01)

686 687 Time	688 689 Speaker	690 691 Utterance
[08:10:15]	Jane	All done eating. I'll go clear the bowls first, and then shall we tidy up the cabinet in the living room?
[08:10:22]	Jeremy	Okay, I'll help you clear up. No point letting them pile up.
[08:10:30]	Jane	Yeah, and give the tablecloth a good shake while you're at it, there are some breadcrumbs.
[08:10:38]	Jeremy	Alright, you go change into some clothes you don't mind getting dirty. I'll be over as soon as I finish here.
[08:11:05]	Jane	Hey, the bottom drawer of the cabinet is stuck. Can you give it a pull?
[08:11:10]	Jeremy	Let me see... Push it in a bit, then give it a sharp tug – There, it's open.
[08:11:18]	Jane	Wow, how did this box get so dusty? I think it's the old photo albums, right?
[08:11:24]	Jeremy	Should be. That was before we switched to a digital camera, all these were developed from film.
[08:11:30]	Jane	This one... was our first trip to Hangzhou? You were wearing that blue checkered shirt that year.

700
701
Continued on next page...

Table 5 – continued from previous page

Time	Speaker	Utterance
[08:11:36]	Jeremy	Haha, yes, taken at the entrance of Lingyin Temple. You insisted that monk was peeking at us while we took the picture.
[08:11:42]	Jane	He was looking! And you started laughing, the photo turned out all blurry.
[08:11:50]	Jeremy	Check the back, I think there are some from that Yunnan trip too?
[08:12:00]	Jane	Yes, here they are. At the gate of Dali Old Town, you had to wear your sunglasses crooked, trying to look all artsy.
[08:12:06]	Jeremy	That was called ‘creating a vibe’. Look how happy you’re laughing in this one.
[08:12:12]	Jane	Hmm... My hair wasn’t gray back then.
[08:12:20]	Jeremy	It wasn’t that long ago, was it? Seven or eight years?
[08:12:25]	Jane	Almost. Time really flies. Oh, how did this USB drive box get here too?
[08:12:32]	Jeremy	Used that for storing photos ages ago. I think it’s labeled “2016 Family Photos”.
[08:12:38]	Jane	Can we still read it? Should we find a computer and try?
[08:12:42]	Jeremy	I’ll try it later on my study computer. The port should still be compatible.
[08:12:50]	Jane	No rush, let’s sort these albums first. The old ones go on this side, the newer ones over here.
[08:13:00]	Jeremy	This yellow-edged one was from your mom, right? She said we should pick only the best ones to develop and keep.
[08:13:06]	Jane	Yes, she kept saying back then that when we got old, we could look through them together.
[08:13:12]	Jeremy	She was right. Isn’t it nice looking through them now?
[08:13:20]	Jane	Mmm... This box also has a group photo from Weizhou’s wedding.
[08:13:26]	Jeremy	Oh, look at him in the suit with a bow tie, like he stepped right out of a period drama set in the Republic of China era.
[08:13:32]	Jane	You’re one to talk! Your tie was crooked, and he had to retie it for you.
[08:13:38]	Jeremy	Haha, you remember everything. We gotta keep this photo to tease him with next time we see him.
[08:13:45]	Jane	Don’t overdo it. He’s “Boss Zhang” now, you know.
[08:13:50]	Jeremy	To me, he’ll always be that goofball who fell into the flowerbed playing basketball.
[08:14:00]	Jane	Oh, this one is of your dad fixing his bike in the yard...
[08:14:06]	Jeremy	Yeah, that old Phoenix brand bike. The chain kept falling off, he’d spend the whole afternoon fixing it.
[08:14:12]	Jane	He was so handy. All your repair skills, you learned from him.
[08:14:18]	Jeremy	Yeah... This is a really good photo. The light on his face, so peaceful.
[08:14:25]	Jane	Let’s not throw these old things away. Let’s find a box and store them properly.
[08:14:30]	Jeremy	Okay, I’ll go get a storage bin from the storage room later.

Table 6: Jeremy with Family Watching Spring Festival Gala (2024-02-10)

Time	Speaker	Utterance
[16:00:12]	Jeremy	Mom, Jane, the Spring Festival Gala replay has started. The tea is freshly brewed, have it while it’s hot.
[16:00:18]	Mother	Oh, this tea aroma is so comforting. Hangzhou Longjing really is something else.
[16:00:25]	Jane	Mmm, so light and refreshing. One sip and I feel completely relaxed.
[16:03:40]	Mother	These hosts look the same as always, wearing red dresses every year, smiling like flowers.
[16:05:10]	Jeremy	Mom, don’t just look at what they’re wearing. There’s a cross-talk performance later, you love those.
[16:08:33]	Jane	I recognize this skit actor. He was hilarious last time playing that delivery guy.
[16:12:15]	Mother	Oh my, this kid acts so well, the way he talks is exactly like Auntie Wang next door back in my hometown.

Continued on next page...

Table 6 – continued from previous page

Time	Speaker	Utterance
756		
757		
758		
759	[16:18:44] Jeremy	Here, Mom, let me top up your tea. Careful, don't spill.
760	[16:19:01] Jane	Did Dad used to love watching the Gala too? I remember you saying he always liked memorizing the punchlines.
761	[16:19:10] Mother	Oh yes, your father-in-law would even take notes in a little notebook, saying he'd tell the students when school started.
762	[16:25:20] Jeremy	This cross-talk is okay, but not as good as last year's.
763	[16:27:05] Jane	Don't be so picky. Just being able to sit and watch it together as a family is nice enough.
764	[16:30:18] Mother	Oh, speaking of cross-talk, it just reminded me—when Mingyuan was little, he went to pick bayberries on the hill behind the village. He fell out of the tree but insisted he didn't!
765	[16:30:30] Jeremy	Mom, not this story again...
766	[16:30:33] Jane	Huh? Tell me, tell me! I haven't heard this one!
767	[16:30:38] Mother	That day, he insisted the sweetest bayberries were on the highest branch. Well, his hand slipped, and he landed right on his backside. Came back still stubbornly saying "I didn't cry," but his face was all swollen. Saying that with one side of his face puffed up, he looked like a little steamed bun.
768	[16:31:05] Jane	Huh? Stung by a bee? Did you just say a bee?
769	[16:31:08] Mother	Oh yes, right, it was a bee! I got mixed up—that was another time! Picking wild strawberries, there was a beehive in the grass, "buzz" and it stung him right on the face!
770	[16:31:18] Jeremy	I really didn't cry, it's just... the tears came out on their own.
771	[16:31:22] Jane	Hahaha, stop it! "Tears came out on their own"? What's that if not crying?
772	[16:31:27] Mother	Exactly! He was so swollen even your dad couldn't recognize him, still insisting "I didn't cry." I put a cold towel on his face, and he's sniffling, saying "It's just a little itchy."
773	[16:31:40] Jane	That's adorable! I have to write this down—(sound of typing on phone) Title it "Future Parenting Material".
774	[16:31:48] Jeremy	Hey, don't write that down. What kind of positive example is that...
775	[16:31:52] Mother	Why not? Stubborn kid, full of spirit! Kids these days don't have that kind of grit anymore.
776	[16:32:10] Jane	When we... if we have kids in the future, I'll tell them this story. I'll add a subtitle: "On the Art of Graceful Stubbornness".
777	[16:32:18] Jeremy	Don't you two gang up on me...
778	[16:32:25] Mother	This isn't ganging up, it's family memories! Come on, Mingyuan, pour some more tea, let's keep watching.
779	[16:35:40] Jane	This dance is so beautiful, the backdrop looks like an ink wash painting.
780	[16:36:15] Mother	Yes, the costumes are lovely too, the colors are elegant, not too flashy.
781	[16:40:30] Jeremy	The special effects here are used quite cleverly, they sync up well with the performers' movements.
782	[16:42:10] Jane	See, isn't this what you called "cross-boundary integration"?
783	[16:42:15] Jeremy	Heh, I guessed the start, but I didn't expect the effects to be this smooth.
784	[17:00:20] Mother	This song is sung so beautifully, warms your heart listening to it.
785	[17:05:35] Jane	This skit is starting to get interesting. This dad acts exactly like the department head at my clinic.
786	[17:10:12] Jeremy	Shh—the accompaniment is coming up, I really like this melody.
787	[17:30:45] Mother	Oh my, it's almost six o'clock. Shouldn't we start preparing dinner?
788	[17:31:00] Jeremy	No rush. I've got some chicken soup with Chinese yam simmering, just need to heat it up, and there are dumplings too.
789	[17:31:10] Jane	I'll set the table and pan-fry the leek dumplings we made yesterday.
790	[17:31:18] Mother	Good, I'll help you with the tea. Time just flies when you're drinking this tea.
791	[19:02:10] Jane	The song and dance numbers on the Gala are one after another, it's making me sleepy.
792	[19:02:25] Mother	Yes, when I was young I could stay up until midnight, but now I feel like closing my eyes past nine.

Continued on next page...

810 **Table 6 – continued from previous page**
811

812 Time	813 Speaker	814 Utterance
[19:03:05]	Jeremy	How about we take a break? We can get up again closer to midnight?
[19:03:12]	Jane	Okay, I'll go charge my phone first, and I need to organize my notes.
[19:03:20]	Mother	I'll just stay put here. You two go ahead, I'll just listen to the Gala.

816
817 **Table 7: Jeremy in Emergency Project Post-Mortem Meeting (2024-06-03)**
818

819 Time	820 Speaker	821 Utterance
822 [10:15:00]	Jeremy	Is everyone here? Let's get started. As you all saw, last night's incident had a significant impact. We need to quickly piece together the timeline and identify the root causes.
823 [10:15:45]	Mike	Yes, we came straight from the morning stand-up. Wei and the Ops reps are here too.
824 [10:15:55]	Jeremy	Good. Let me briefly recap the timeline. Last night at 21:47, our monitoring platform started receiving a flood of 503 errors, concentrated on the user login and permission verification APIs. Frontend service response times spiked from an average of 80 milliseconds to over two seconds, lasting roughly twenty minutes.
825 [10:17:10]	Alex	On the backend side, we didn't receive alerts until 21:49, two minutes after the problem started. Furthermore, the initial alerts were scattered; no one realized it was a systemic issue initially.
826 [10:17:45]	Wei	The test environment monitoring didn't trigger because we hadn't simulated failure states for that authentication component. It appears a vulnerability in the third-party SDK was triggered by a scanning tool, causing it to crash outright, which then cascaded to our authorization service.
827 [10:18:35]	Other	Correct. Checking the logs confirms it's the CVE-2024-3187 mentioned in their urgent patch bulletin – a high-severity privilege escalation vulnerability. When their service restarted, our persistent connections were all severed, and we lacked reconnection safeguards.
828 [10:19:40]	Jeremy	So, fundamentally, it wasn't our code at fault. But the core issue is that our monitoring didn't flag the anomaly immediately. From 21:47 to 21:58 – a full 11 minutes – there was no clear, high-severity "service meltdown" alert.
829 [10:20:35]	Mike	That's unacceptable. Users couldn't access the app, and we were in the dark?
830 [10:20:50]	Jeremy	Exactly. Reviewing the Grafana dashboards, while we had heartbeat metrics, we lacked aggregated alerting for them. Also, the alert rules are too fragmented; a sea of red dots ended up masking the critical issue.
831 [10:21:45]	Wei	I checked the logs last night. The first call was to Alex at 21:55, reporting login timeouts. That's when we first suspected a common problem, but the command chain was unclear – no one took clear ownership of the emergency response.
832 [10:22:30]	Alex	I was initially checking logs, thought it might be a database issue, and even had the DBA team investigate. It took time to realize the upstream auth service was the root cause.
833 [10:23:15]	Ops Rep	We were also reactive. By the time we noticed the abnormal traffic drop and intervened, the golden window for mitigation had passed.
834 [10:24:00]	Jeremy	Therefore, while the trigger was a third-party component failure, this incident exposed our own weaknesses: insufficient monitoring sensitivity and a lack of a formalized emergency response process.
835 [10:24:50]	Mike	Agreed. The responsibility for the cause isn't ours, but our response was too slow. This has to change.
836 [10:25:15]	Jeremy	I propose we focus on two key areas moving forward. First, integrate health checks for external dependencies into our core monitoring. Heartbeat, version status, abnormal reconnection states – all need real-time, prominent alerting.
837 [10:26:20]	Wei	We can integrate that with our existing component health dashboard. Wasn't that already in progress?

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Continued on next page...

Table 7 – continued from previous page

Time	Speaker	Utterance
864		
865		
866		
867	Jeremy	Yes, this fits perfectly. Second, I've been thinking since last night: we need to prioritize implementing a robust canary release and automated rollback mechanism. If we could have automatically detected the spike in abnormal call rates and rolled back to the previous stable version, we could have halved the outage duration.
868		
869		
870		
871	Alex	Automated rollback? Isn't that a bit aggressive? What about false positives?
872		
873	Jeremy	Not a full, automatic rollback for all traffic. We can start with a canary release for a small percentage of users, say 1%, while closely monitoring key metrics – error rate, latency, authentication failure rate. If these exceed thresholds, automatically route traffic back to the old version and trigger alerts.
874		
875		
876	Ops Rep	We support this approach. We can configure the traffic switching using K8s; we've tested similar setups in our test environment before.
877		
878	Wei	Then our release process needs updating too. The current manual tagging and manual image push is prone to missed steps.
879		
880	Jeremy	Exactly. I want to implement a pre-release checklist, similar to the one we drafted earlier. Items like dependency scans, permission verification, rollback plan confirmation – all must be checked off before deployment.
881		
882	Mike	I agree with this direction. Especially regarding external dependencies, we must confirm there are no known vulnerabilities and have a degradation plan before any future deployment.
883		
884		
885	Jeremy	I'll take the lead on drafting an improvement plan covering monitoring enhancements, the release process, and the emergency response mechanism. Target is to have a first draft by the end of this week.
886		
887		
888	Mike	Okay. You coordinate. Wei, you support with testing validation. Ops team, please provide a feasibility report for the automated traffic switching.
889		
890	Ops Rep	Understood. We can schedule a technical alignment meeting this afternoon.
891		
892	Jeremy	Good. Additionally, I suggest we conduct a failure drill next week, simulating a third-party service outage, to test if our current response procedures can handle it.
893		
894	Wei	Agreed. I'll design the scenario, maybe add some complications like alerts being incorrectly marked as low priority.
895		
896	Alex	I'll prepare an emergency procedure document then, clarifying roles and responsibilities – who does what under which circumstances – to prevent the lack of leadership we saw.
897		
898		
899	Jeremy	Alright, let's proceed on that basis. We'll schedule follow-up meetings for the details. Let's wrap up this post-mortem for now?
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		

918 C.2 EXAMPLES OF QUESTIONS
919920 The following examples demonstrate the four distinct question types included in our benchmark,
921 featuring the question query, associated timestamp, and candidate options.
922923
924
925 **Single Event:** What was the main topic of discussion between Jeremy and Jane during the
926 organization of old items?
927 [query_timestamp=2024-01-03]928 • **Options:** A. Memories of their 2018 trip to Dali and Lijiang in Yunnan; B. Preliminary
929 planning for the Spring Festival holiday; C. Optimization solutions for household clutter
930 management; D. Discussion on edge computing communication protocols.931
932 **Event Detail:** What specific item did Jane mention when recalling the Yunnan trip?
933 [query_timestamp=2024-01-01]
934935 • **Options:** A. A tie-dyed scarf; B. A bicycle; C. A hat; D. A pair of shoes.936
937
938 **Multi Event:** During which activities did Jeremy and Jane discuss topics related to children's
939 health?
940 [query_timestamp=2024-01-01]941 • **Options:** A. During breakfast and balcony reading; B. While organizing old items and
942 watching a movie; C. During grocery shopping and dinner preparation; D. During lunch
943 and while debugging the projector.944
945 **Temporal Info:** What was the specific time when Jeremy and Jane began immersing them-
946 selves in the photos from their Yunnan trip?
947 [query_timestamp=2024-01-03]948 • **Options:** A. 9:00 AM; B. 10:30 AM; C. 11:00 AM; D. 1:00 PM.950 D PROMPTS USED TO CURATE LIFELOG
951952 Here is the prompt we use for transforming 10-minutes summarization to lifelog:
953954 Prompt Template to Allocate
955956 You are required to transform the target first-person narrative into lifelog-style conversation
957 records. **Lifelog** refers to authentic daily spoken conversations captured by portable
958 recording devices. Your task is not storytelling but converting the given narrative into
959 natural dialogues that sound like real speech.
960961 # Character name
962 {character_name}963 # Previous Narratives (context for coherence):
964 {previous_narratives}965 # Target First-person Narrative:
966 {first_person_narrative}967 # Time range in target narrative:
968 {time_range}

972
 973 # Conversation Generation Requirements
 974 **Core Conversion Principles:**
 975 1. **Narrative-to-Lifelog Transformation**: Convert the target first-person narrative into
 976 lifelog dialogues, ensuring all important details from the narrative are preserved in the
 977 conversations.
 978 2. **Continuity and Non-redundancy**: Previous narratives are provided to maintain time-
 979 line consistency, character relationships, and avoid repeating the same details unnecessarily.
 980 3. **Authenticity**: The dialogues must sound natural, spontaneous, and spoken in real
 981 daily English, avoiding formal or literary expressions.
 982
 983 **Format Specifications:**
 984 - Strictly use the format: [yyyy-mm-dd, HH:MM:SS] Character: Speech content
 985
 986 **Content Requirements:**
 987 1. **Detail Preservation**: Every concrete detail in the target narrative (actions, observa-
 988 tions, emotions, objects, times, etc.) must appear in the dialogues.
 989 2. **Logical Flow**: Keep the event flow consistent with both the target narrative and
 990 previous lifelogs.
 991 - Ensure continuity of relationships between characters.
 992 - Keep the timeline reasonable and coherent.
 993 3. **Boundary Control**: Do not introduce cross-day planning, greetings, farewells, or
 994 artificial summaries. End conversations naturally when the described event ends.
 995
 996 **Output Format:**
 997 - Only output lifelog dialogues in English, without explanations, notes, or extra text.
 998
 999 # Example Format
 1000 [2025-09-17, 09:23:11] Speaker A: Actual spoken words
 1001 [2025-09-17, 09:23:15] Speaker B: Dialogue continues
 1002
 1003 Now please generate lifelog conversations according to the above requirements.

1004 The following prompts were employed in the Top-Down Hierarchical Life Simulation Framework.
 1005 Year-level summaries are progressively allocated and enriched at the month level to generate detailed
 1006 monthly summaries, while the prompts for the "month-to-week" and "week-to-day" stages have
 1007 been slightly adjusted.

Prompt Template to Allocate

1008 You are a professional lifelog analyst. Based on the provided annual experience summary,
 1009 restructure and expand the content by month to generate detailed, coherent, and realistic
 1010 monthly life records.
 1011
 1012 {holidays}
 1013 {important_days}
 1014
 1015 # Annual Experience Summary:
 1016 {year_summary}
 1017
 1018 # Requirements
 1019 - Each monthly record must clearly describe the time, location, people involved, process,
 1020 and outcomes of events.
 1021 - While strictly reconstructing the annual experiences by month, you may expand each
 1022 month's record.
 1023 - Your expansions must be realistic; ensure the content is substantial and natural, and avoid
 1024 fabricated dramatic plots or supernatural elements.
 1025 - After reconstruction and expansion, each month's record must cover major events, work,

1026
 1027 exercise, entertainment, family communication, and social activities.
 1028 - If a specific time point for an event is clearly stated in the annual summary, you must not
 1029 change it; if it is not specified, assign a reasonable time.
 1030
 1031 # Output Format
 1032 Output strictly as a standard JSON array, and output only the JSON array without any ex-
 1033 planations or comments. Each item in the JSON array should have the following structure:
 1034 [{ "Month": "{year} January", "Monthly Record": "..." }, { "Month": "{year} Febru-
 1035 ary", "Monthly Record": "..." }, ...]
 1036
 1037

Prompt Template to Enrich

1038 You are a professional lifelog analyst. Below are this person's monthly records for the target
 1039 month and the adjacent months. Please enrich the current record for the target month to
 1040 make the description more comprehensive.
 1041
 1042 {prev_months}
 1043
 1044 # Existing monthly record for {month}:
 1045 {month_data}
 1046
 1047 # Date information for {month}:
 1048 {month_dates_info}
 1049
 1050 # Requirements:
 1051 - Each monthly record must clearly describe the time, location, people involved, process,
 1052 and outcomes of events.
 1053 - Unless the current month's record already contains such mentions, do not add any cross-
 1054 month plans during enrichment; for example, do not schedule April activities in the March
 1055 record.
 1056 - The enriched content must be realistic; ensure the content is substantial and natural. Avoid
 1057 fabricated dramatic plots or supernatural elements.
 1058 - The enriched record should cover all facets of life, including but not limited to major
 1059 events, work, exercise, entertainment, family communication, and social activities.
 1060 - The enriched content must cover the entire month—early, mid, and late—and distribute
 1061 events as evenly as possible. If the original record provides specific dates/times, you must
 1062 keep them.
 1063 - The enriched content must remain temporally consistent with the records of the previous
 1064 and following months, ensuring coherence without contradictions.
 1065 - Note that workdays are typically Monday through Friday, rest days are Saturday and Sun-
 1066 day, and public holidays are rest days. Arrange work and life content accordingly.
 1067
 1068 # Output Format
 1069 Output strictly as standard JSON, and output only the JSON without any explanations or
 1070 comments. The JSON fields are:
 1071 { "Month": "{month}", "Monthly Record": "..." }
 1072
 1073

D.1 QUESTION GENERATION PROMPT

1074 The following prompt is an example prompt for daily-level question-answer pairs generation. To
 1075 adapt this prompt for weekly, monthly, or other temporal granularities' generation, it only needs to
 1076 adapt the description from Daily Events to xx Events.
 1077
 1078

1079

```

1080
1081
1082 # Prompt for Event Extractor Evaluation Data Generation
1083 You need to generate evaluation data for an event extractor. The event extractor will extract
1084 useful information from users' life records and store it in a database.
1085 Now you will be provided with a user's daily experiences, and you need to generate four
1086 questions based on the content, with four options (A, B, C, D) for each question (one correct
1087 answer and three distractor options). These questions and options will be used to evaluate
1088 the extraction performance of the event extractor.
1089
1090 ## Daily Events (date)
1091 {all_day_events}
1092
1093 ## Question Requirements
1094 - Generate 4 question-answer pairs, which should ask about the following four aspects
1095 respectively:
1096 - The content of a specific event
1097 - A specific detail of a specific event
1098 - The content of multiple events
1099 - The specific time when a specific event occurred
1100 - Question Guidelines:
1101 - Frame questions about events that involve interactions with others and can generate
1102 dialogue data; do not frame questions about events that cannot generate dialogue data.
1103 - The events targeted by the questions must be unique enough and must not be daily routine
1104 events.
1105
1106 ## Output Requirements
1107 - You need to output a JSON list, where each JSON element contains the following fields:
1108 - 'question': The content of the question
1109 - 'options': A list containing four options, formatted as ["A. Option content", "B. Option
1110 content", "C. Option content", "D. Option content"]
1111 - 'answer': The option letter of the correct answer, e.g., 'A'
1112 - Do not output any content other than the JSON list of question-answer pairs

```

D.2 QUESTION TYPES DISTRIBUTION

The distribution of four question types are in Figure 7. We ensure that both benchmark would have a balance question-type proportion.

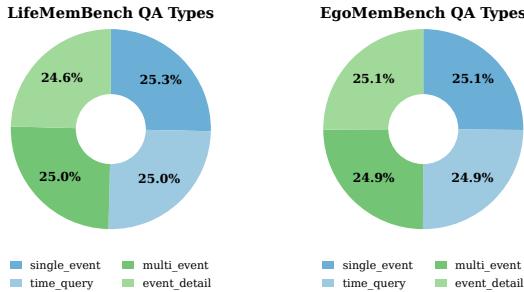


Figure 7: The Distribution of QA types.

E IMPLEMENTATION DETAILS ABOUT MEMORY SYSTEMS

RAG The simple RAG baseline include a chat-agent and an embedding model to save and retrieve the relevant text. Therefore, no summary agent, no LLM memory manager, and no LLM retriever inside the system. It directly embed and retrieve the liflog text chunks into a vector database.

1134 **A-Mem, Mem0 and MemOS** We follow the official code of these memory systems’ on github
1135 repositories for evaluation. The prompts inside these systems are specifically refined to fit the re-
1136 quirement for our benchmark evaluation.
1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187