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Towards data-driven sign language interpreting Virtual Assistant

ABSTRACT
Sign Languages (SL) are a form of communication in the visual-
gestural modality, and are full-fledged natural languages. Recent
years have seen the increase in the use of virtual avatars as assis-
tants for sign language users. Research into sign language recog-
nition has demonstrated promising potential for the improvement
of the communication with deaf people. However, the area of sign
language synthesis is still in its infancy. This explains the underde-
velopment of virtual intelligent signing systems, which could bridge
the communication with the deaf and make it more favorable. In
addition, existing models are often restricted to manually written
rules and require expert knowledge, while data-driven approach
could provide the better solution.

In this paper, we present a user study on the evaluation of the
data-driven Virtual Assistant that performs manual gestures for
Kazakh-Russian Sign Language using sign sequences. The study
sets out to answer three research questions concerning the users’
perceptions and feedback on the performance of the four signing
avatars, namely two data-driven avatars, one motion capture an-
imation avatar and a human sign interpreter. The results of the
questionnaire suggest that while the signing avatars generally per-
form well, they could not outperform the human agent in terms of
naturalness and likeability. Hence, a further study might include the
improvements necessary to increase the naturalness of the manual
gestures.
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sign language, virtual assistant, generation, HRI
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1 INTRODUCTION
The presence of intelligent virtual assistants (IVA) in our day-to-
day lives is not at all a new phenomenon. They have become an
integral part of human-agent interaction, providing a wide range of
functionalities, including the establishment of contact with humans
through verbal and non-verbal communication channels [30].

While a majority of existing work focuses on spoken/written
languages, another large class of languages exists that uses the
visual-gestural modality for interaction, namely sign languages.
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Sign languages are full-fledged natural languages used by deaf com-
munities around the world. Similar to spoken languages, different
sign languages exist in different countries and regions, and they
vary in phonology, morphology, lexicon, semantics, syntax and
pragmatics [27]. A majority of existing works that focused on the
synthesis of spoken/written natural languages inspired the sign lan-
guage synthesis, resulting in integration of the existing techniques
to animate sign languages [30].

Despite the common misconception, sign languages are not ar-
ticulated solely by the hands [29]. In fact, both manual and non-
manual gestures are crucial components of sign languages [26] [33].
More precisely, the former includes gesture features such as those
related to hands (e.g., hand configuration and motion trajectory of
hands), whereas the latter involves head and body movements and
movements of facial muscles (e.g., facial expressions, gaze direction,
lip pattern, and head and body postures) to convey information
[26] [29].

In a manner resembling humans, IVAs present a range of advan-
tages for the communication of the deaf, offering synthesis and
interpretation from a spoken/written language to a sign language
and vice versa [5]. Compared to videos of human sign language
interpreters, computer-supported sign language systems are sought
after due to their flexibility [9]. Delorme et al. [9] highlight the abil-
ity of a signing avatar to produce various sentences from a database
of isolated signs as one of its advantages. A considerable literature
has grown up around the theme of sign language synthesis, giving
insight into various methods and frameworks for modeling sign
language recognition and generation systems [30] [31] [21] [17].

Most of the existing models for sign language synthesis are
based on rules [36] [24] [12] [35]. While rule-based algorithms
perform well, they are often costly, time-consuming and bound
up to expert knowledge. In addition, rule-based models are often
limited to certain pre-defined types of gestures [20], and therefore
might fail to produce both the manual and non-manual parameters
of the sign language.

In contrast, data-driven systems learn from data without the need
of expert knowledge [20]. Creating an automatic sign language gen-
eration for virtual avatars has gained importance with the rise of
data-driven systems (see Kipp et al. [19]). Earlier works relied on
parametric and geometric approaches [9], while most recently Kipp
et al. [19] presented a fully synthesized model and Gibet et al. [11]
and Ebling and Huenerfauth [10] proposed semi-automatically syn-
thesized models for sign language generation using small corpora
of manual gesture data. It is noteworthy that these models were
generally designed for the well-researched sign languages such as
American Sign Language (ASL), German Sign Language (DGS) [10],
and French Sign Language (LSF) [11], compared to the relatively
less explored sign languages [5].

The goal of this work is to create a data-driven avatar for sign
language generation and evaluate its performance in a user study
with participants who have a command of Kazakh-Russian Sign
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Language (K-RSL). The evaluation is based on the standard ques-
tionnaire (Godspeed [4]) encompassing certain sets of evaluation
metrics designed for the general use in the human-robot interaction
(HRI) research.

We begin by training our IVA/VA mock avatar on the dataset of
recorded videos where people perform K-RSL sentence sequences.
To estimate human poses, we utilize OpenPose Cao et al. [6]. The
obtained 3D movement predictions are then converted to a Visual
Molecular Dynamics (VMD) [13] format file. Consequently, VMD
files are uploaded to Unity3D, where they program motions of vir-
tual characters. The resulting video of virtual avatar’s performance
of the K-RSL sentences is watched by 18 participants recruited for
the user study for the purpose of acquiring their perceptions and
feedback on the presented avatars.

2 OBJECTIVE
This study addresses the Signing VAs’ performance and perception
by deaf signers, and answers the following research questions:

- How is the concept of data-driven Signing Virtual Assistant
perceived by deaf respondents? Performance feedback.

- Comparison of data-driven and manually programmed signing
virtual assistants.

- What can be improved according to deaf feedback?

3 UNSUCCESSFUL ATTEMPTS
To begin with, we surveyed the state-of-the-art models andmethods
designed to capture gestures and movements for sign language
generation so as to integrate them as subparts into a fully-fledged
Signing Virtual Avatar.

3.1 Monocular Total Capture.
A proper and understandable signing requires accurate finger map-
ping, facial expressions, head and body tilt. The first approach we
came across was Monocular Total Capture (MTC) [37]. MTC is the
first method that captures the 3D total motion of humans from
monocular images or videos and reconstructs the whole body pose
by a 3D deformable mesh model. Authors use representation called
3D Part Orientation Fields in the first stage. In the second stage,
image measurements produced by CNN are taken and then fitting
deformable the human mesh model on these measurements. After
this, motion jitters reducing. To train CNNs, the authors involved
40 subjects who performed different motions of body, hands, and
face. We tested it on videos taken from our dataset, which has
been collected almost completely and will be presented further.
This dataset is supposed to be a subpart of Kazakh-Russian Sign
Language Corpus together with other subparts [18] [26] [14].

As can be seen in Figure 1 a, Monocular Total Capture (MTC)
performs perfectly for the hands: the reconstruction of finger con-
figurations is highly accurate, except for cases of slight overlapping,
which are normally insignificant. Unfortunately, face reconstruc-
tion that expresses the mouthing and facial expressions could not
be obtained. This complicates the recognition of the sentence either
as a question or a statement. Additionally, sentiment recognition
in general turns out to be tricky.

Figure 1: a) Performance of Monocular Total Capture ap-
proach for videos containing Kazakh-Russian Sign Lan-
guage sentences, b) Performance of Monocular Total Cap-
ture approach for a fake generated video. Video was gener-
ated byMoCoGAN approach trainedwith videos taken from
the K-RSL dataset.

3.2 MoCoGan
Wehave also attempted to testMTC’s performance on fake-generated
videos. We trained Motion and Content Generative Adversarial Net-
work (MoCoGAN) [34] on our videos.

As a generative adversarial framework for fake video generation,
MoCoGAN generates video by vectors with two subparts for motion
and content, where the ’content’ part is fixed and the ’motion’ part
is stochastic. While the content is for objects that appeared in a
video, ’motion’ shows the dynamics of these objects.

The architecture of MoCoGAN contains 4 RNNs: Motion sub-
space 𝑍𝑚 = 𝑅𝑚 as one-layer GRU, image generator 𝐺𝑖 , image
discriminator 𝐷𝑖 , and video discriminator 𝐷𝑣 . 𝐷𝑖 criticizes𝐺𝑖 based
on individual images (it can determine if an image is from real
videos), and 𝐷𝑣 criticizes 𝐺𝑖 based on generated videos. Experi-
ments showed that MoCoGAN can generate videos of the same
object with different motions or of different objects performing
the same motion. That is why we generated fake videos based on
videos from our dataset and ran Monocular Total Capture on them.

Monocular Total Capture performed relatively well as it could
reconstruct the fingers, considering thatMoCoGANproduced 96x96
pixel fake videos (see Figure 1 b). Despite promising results on hand
reconstruction, it still fails to provide proper facial expressions,
concomitantly lacking human-likeness.

4 METHODOLOGY
Initially we intended to test the performance on an NAO avatar,
with the intention to transfer obtained coordinates to a real NAO
robot available in the lab in the foreseeable future. For this reason,
we chose only signs with configurations involving only the open
palm (with all fingers selected), as the robot can only perform such
configurations. However, the NAO avatar does not have enough
DOFs to even express these hand configurations. At this stage,
we tried free characters from the Unity Asset Store [1] to express
signing sequences. We aimed at summarizing user experience and
evaluation of signing gained during the experiment sessions when
participants watched videos of four avatars performing sign lan-
guage sequences. To formalize the mock of a signing avatar we
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present it as a concept, we used implementations that utilize several
tools such as OpenPose [6] and Unity3D. These implementations
include Autotrace [2] and OpenMMD [28]. We tried to check the
performance of the first one. It consists of the four steps (see Figure
2) described further.

Figure 2: Pipeline of tested approach

4.1 OpenPose (Extraction of 2D human body
coordinates from videos)

OpenPose is a tool developed by Carnegie Melon University re-
searchers aimed at Human Pose estimation in 2D. Generally, it
finds and localizes anatomical keypoints (see Figure 5). It simulta-
neously utilizes two techniques: Confidence Maps for body parts
detection and Part Affinity Fields to associate body parts if they
belong to the same human and then match them to get keypoints
representation. We utilized OpenPose to extract signers’ full-body
coordinates.

4.2 Depth estimation
(Mannequinchallenge-vmd)

A video’s depth estimation is implemented as the second step. Au-
thors of the method [22] present a data-driven approach that aimed
at depth prediction for videos where people and a monocular cam-
era move freely. For this, they collected a dataset called Mannequin-
Challenge [3] and performed supervised learning to train their
depth prediction model. They used the Multi-View Stereo (MVS)
[32] approach for depth generated and then applied regression. This
step extracts human depth regions from the videos, which helps to
segment human region and increase accuracy of separate person’s
keypoints extraction.

4.3 3D-pose-baseline to VMD (Converting 2D
coordinates into 3D)

There are several considerably similar implementations of the ap-
proach described and presented in [25]. This approach provides
proper and accurate conversion of human body coordinates from
2D videos into the 3D domain. Authors claim that their method
outperforms the other 2D to 3D shifting techniques by almost 30%
tested on the Human3.6M dataset [15] (see Figure 3). Also, accord-
ing to the authors, they use a simple six-layer architecture. Thus,
we leveraged the pre-trained models proposed by [25] and tested
on our sign language videos (see Figure 4).

To the best of our knowledge, one of the implementations also
includes an adversarial subpart (GAN), since the prediction of the

Figure 3: Approach performance on Human3.6M [15] test
set. From left to right: 2D observation, 3D ground truth, 3D
predictions. Image taken from [25].

Figure 4: 3D prediction of a Kazakh-Russian sign language
sequence.

Figure 5: 3D prediction keypoints move earlier than actual
body parts.

3D pose precedes the actual movements of the person/signer in the
resulting videos (see Figure 5). It is noticeable that red and green
body key points of the 3D prediction are outpacing the movements
of the body parts.

4.4 3D coordinates into VMD model
At this stage, the obtained coordinates of the 3D movement pre-
diction were converted to a Visual Molecular Dynamics (VMD)
[13] format file. VMD was primarily designed for computational
biophysics studies to make possible modeling of biological sys-
tems, namely biological macromolecules such as carbohydrates,
proteins, nucleic acids, and lipids. Nowadays it is widely used for
3D visualizations and representations in general.

Once we obtain a VMD model, we upload it into a Unity3D
project and link it to the free humanoid characters we chose (see
Figure 6). There are screenshots taken when standard free avatars
from the Unity Asset Store performing common sentences from
the general K-RSL domain.

5 USER STUDY
We recruited 18 people and asked them to take our survey. Our on-
line survey consists of a mixture of open and closed questions and
questions measured by the Likert scale [16]. The participants were

3
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Figure 6: Four types of avatars: two data-driven ones, one manually programmed one and a human.

provided with videos of four avatars performing signing sequences
and were tasked to evaluate its performance by the proposed cri-
teria. Our task is closer to the areas of HRI, HCI and social robots
acceptability.

We rely on the use of Likert scale-based questionnaires because
of their simplicity and comprehensibility as well as time-efficiency
compared to open questions. Our questionnaire is based on the
Godspeed [4] questionnaire generally used for human-robot inter-
action studies. We also formulated and added several new questions
since they focused on previously unmentioned situations related to
signing performance by IVA as authors of Robotic Social Attributes
Scale (RoSAS) [7] done.

There were 10 Likert-scale questions from the Godspeed ques-
tionnaire, 11 additional Likert-scaled questions, and four yes/no
questions.

The consent form and all the instructions and questions were
translated to K-RSL, filmed as short videos and presented to par-
ticipants during the experiment. Participants received promised
monetary compensations for their time and contribution.

5.1 Background information
In the beginning, we collected demographic information about our
participants along with the information on their level of proficiency
in sign language and experience of using it. The questions were
designed so as to acquire background information and distinguish
between different groups based on their everyday usage of the sign
language.

5.2 Participants
In total, 18 respondents were involved in the study: 12 deaf partici-
pants and 6 hearing interpreters, aged from 18 to 57 (mean age - 33),
with the gender distribution of 4 male and 14 female participants.
Two participants were from Russia, Yakutsk and graduated from
the same school (RSL and K-RSL are very close since both of them
originated from the same signing system that was used within the
former USSR). The other respondents were from Kazakhstan (Nur-
Sultan, Petropavlovsk, Karagandy). Respondents currently located
in Nur-Sultan mostly came from different cities and studied in dif-
ferent special education schools. Concerning the education levels,
the majority of the participants holds a completed college degree,
while only four participants hold a bachelor degree (including one

Table 1: Participants

Gender Age Location Education Usage of SL

M 36 Nur-Sultan 9th grade Deaf
F 37 Nur-Sultan College Interpreter
F 18 Petropavlovsk College Deaf
F 28 Nur-Sultan Bachelor Interpreter
M 33 Nur-Sultan College Deaf
F 20 Nur-Sultan Bachelor Interpreter
F 30 Nur-Sultan College Deaf
M 38 Karagandy 11th grade Deaf
F 35 Yakutsk College Deaf
F 30 Nur-Sultan College Deaf
F 31 Jaksy College Deaf
F 37 Nur-Sultan Bachelor Interpreter
F 21 Nur-Sultan College Interpreter
F 30 Karagandy College Deaf
F 43 Nur-Sultan College Interpreter
F 28 Petropavlovsk College Deaf
M 37 Yakutsk Bachelor Deaf
F 57 Nur-Sultan College Deaf

deaf participant) and the rest vary from the completed upper high
school to high school grades (i.e., 9th grade and 11th grade).

5.3 Four avatars
Weaimed to understand user perception of two implemented avatars
in comparison to manually programmed avatar and a human who is
new to sign language. In the study, participants were asked to watch
four videos with four avatars (see Figure 6) and answer questions
about each avatar. Two of them were our proposed data-driven
avatars: the woman in a white blouse and the man wearing a black
vest. These two avatars performed sign language phrases that con-
tained signs with an open palm configuration only. Avatar 3 was a
manually programmed avatar from [8], [23]. Avatar 3 was created
in the laboratory at Queens College of the City University of New
York for CUNY ASL Motion-Capture Corpus. This project aimed at
the collection of digital 3D body movement and hand-shape data.
They use motion capture equipment (sensory gloves) to extract

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards data-driven sign language interpreting Virtual Assistant Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 7: Average ratings for each question comparing four avatars

data from the motions of native signers. Since it was originally
designed for American Sign Language (ASL), we could find only
one of the signing output demo videos that contain open palm signs
that also have meaning in K-RSL. We cut it to a short video that was
presented to participants. Avatar 4 is a human who is new to sign
language and simply repeated a sentence in front of the camera
following a real interpreter. We asked Avatar 4 to do so ensure that
participants would watch videos closely and to check will some of
them notice the lack of sign language experience or not. An online
questionnaire consisted of five sections: four sections were used
to evaluate each avatar after watching each video using questions
from the Godspeed questionnaire. Two data-driven avatars were ad-
ditionally asked about. We used counterbalancing to swap avatars
among each other to avoid ordering effect.

To this end, each avatar expressed one sentence only: Avatar 1
expressed the sign sequence “Nothing new", Avatar 2 performed
“Hello" sign twice, Avatar 3 showed “I will stop", while Avatar 4
performed “I like fish". We tried to provide short sequences roughly
equivalent in complexity. Participants could watch videos several
times.

We conducted a series of Friedman tests to understand if there
are significant differences between avatars for each measure. Table
2 displays the results with significant differences presented in bold.
For example, we found significant differences in the ratings of
Humanlikeness of the avatars: 𝜒2 (3) = 39.281;𝑝 < 0.001. with
Avatar 1’s rating being 1.58, Avatar 2’s rating - 1.62, Avatar 3’s
rating - 1.91, and Avatar 4’s rating - 5 (see Figure 7). Pairwise
comparison revealed that Avatar 4 was rated significantly higher
than other three avatars. Differences between pairs of other avatars
were not significant.

Similarly, Table 2 demonstrates that we found significant differ-
ences for almost all ratings suggesting that a human was rated as
significantly more natural, more lively, more lifelike, more organic
as well as more intelligent. These findings suggest that our data-
driven avatars need significant improvements to reach the ratings
of a human avatar. Interestingly, people did not give significantly
different ratings for Moving Elegantly - Moving Rigidly, Competent
- Uncompetent, Like-Dislike and Pleasant - Unpleasant between
four avatars. This could suggest that our participants generally had
mixed feelings towards the appearances of all avatars and perceived
them as moderately pleasant.

Table 2: Friedman test results. Significant findings are in
bold.

Measurement Friedman test output

Fake - Natural 𝜒2 (3) = 43.795;𝑝 = 0.000.
Machinelike - Humanlike 𝜒2 (3) = 39.281;𝑝 = 0.000.
Moving elegantly - Moving rigidly 𝜒2 (3) = 6.614;𝑝 = 0.085.
Stagnant - Lively 𝜒2 (3) = 40.452;𝑝 = 0.000.
Lifelike - Artificial 𝜒2 (3) = 8.955;𝑝 = 0.03.
Mechanical - Organic 𝜒2 (3) = 42.022;𝑝 = 0.000.
Like-Dislike 𝜒2 (3) = 6.060;𝑝 = 0.109.
Competent - Incompetent 𝜒2 (3) = 6.944;𝑝 = 0.074.
Pleasant - Unpleasant 𝜒2 (3) = 3.358𝑝 = 0.340.
Unintelligent - Intelligent 𝜒2 (3) = 30.163;𝑝 = 0.000

6 DISCUSSION
One of the most valuable results is that 13 out of 18 participants
correctly understood Avatar 2. It could be biased by the fact that
that sign was quite easy in comparison to other phrases.

We would like to refer to non-significant differences between
data-driven avatars and a manually coded one: Avatar 3 received
slightly better ratings but it was never significantly different. We be-
lieve that this is a promising finding for our data-driven avatars as
they were generated in a completely autonomous manner with mul-
tiple limitations, such as an absence of face and fingers movements.
Even though we deliberately selected signs that did not require
fingers and face movements, our data-driven avatars need further
work to avoid this major shortcoming. One of the participants after
the experiment mentioned that despite the fact that Avatar 3 per-
formed finger articulations well, hand movements were very fast
while the body and head did not move, which was unnatural and
probably led to ratings being low for that avatar type.

7 CONCLUSIONS AND FUTUREWORK
Although some promising results showed that one of our data-
driven avatars (Avatar 2) could deliver its message and performed
understandable signing for participants, there is still room for im-
provement. Respondents’ feedback indicates that they need accu-
rate finger articulations, emotions, and mouthing should add for
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easier understanding and proper sign language delivery by avatars.
This implies that the balance between manual and non-manual
features of sign languages is crucial.

The overall results suggest that participants are quite optimistic
about the future capabilities of signing IVA technology. That is why
we need to improve the performance by adding precise reconstruc-
tion for fingers accompanying relevant facial expressions.
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