
Causal Discovery with Fewer Conditional Independence Tests

Kirankumar Shiragur * 1 Jiaqi Zhang * 1 2 Caroline Uhler 2

Abstract
Many questions in science center around the
fundamental problem of understanding causal
relationships. However, most constraint-based
causal discovery algorithms, including the well-
celebrated PC algorithm, often incur an expo-
nential number of conditional independence (CI)
tests, posing limitations in various applications.
Addressing this, our work focuses on character-
izing what can be learned about the underlying
causal graph with a reduced number of CI tests.
We show that it is possible to a learn a coarser
representation of the hidden causal graph with
a polynomial number of tests. This coarser rep-
resentation, named Causal Consistent Partition
Graph (CCPG), comprises of a partition of the
vertices and a directed graph defined over its com-
ponents. CCPG satisfies consistency of orienta-
tions and additional constraints which favor finer
partitions. Furthermore, it reduces to the under-
lying causal graph when the causal graph is iden-
tifiable. As a consequence, our results offer the
first efficient algorithm for recovering the true
causal graph with a polynomial number of tests,
in special cases where the causal graph is fully
identifiable through observational data and poten-
tially additional interventions.

1. Introduction
Causal discovery is a fundamental task in various scientific
disciplines including biology, economics, and sociology
(King et al., 2004; Cho et al., 2016; Tian, 2016; Sverchkov
& Craven, 2017; Rotmensch et al., 2017; Pingault et al.,
2018; de Campos et al., 2019; Reichenbach, 1956; Wood-
ward, 2005; Eberhardt & Scheines, 2007; Hoover, 1990;

*Equal contribution; alphabetic order 1Eric and Wendy Schmidt
Center, Broad Institute 2Laboratory for Information & Decision
Systems, Massachusetts Institute of Technology. Correspondence
to: Kirankumar Shiragur <kshiragu@broadinstitute.org>, Jiaqi
Zhang <viczhang@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Friedman et al., 2000; Robins et al., 2000; Spirtes et al.,
2000; Pearl, 2003). Directed acyclic graphs (DAGs) stand
out as a popular choice for representing causal relations,
with edge directions signifying the flow of information be-
tween variables. The core objective of causal discovery is to
identify both the edges and their orientations based on avail-
able data. While certain structures can be recovered from
observational data (Verma & Pearl, 1990), orienting the full
graph often requires additional experiments or interventions.

Research on causal structure learning from observational
data dates back to the 1990s (Verma & Pearl, 1990; Spirtes
et al., 1989). As a pioneering work in this direction, the
PC algorithm (Spirtes et al., 2000), named after the authors
Peter Spirtes and Clark Glymour, still remains one of most
popular and widely used algorithms. It recovers the structure
using observational data through conditional independence
(CI) tests, with the number of tests being exponential in the
degree of the graph. Following this, many causal discovery
algorithms emerged (Kalisch & Bühlman, 2007; Brenner
& Sontag, 2013; Alonso-Barba et al., 2013; Schulte et al.,
2010), accommodating diverse and more general settings, in-
cluding the presence of latent variables (Spirtes et al., 1999;
2013) and interventional data (Eberhardt et al., 2005; 2006).
However, a common challenge shared by these algorithms is
their reliance, to different extents, on an exponential number
of CI tests in certain graph parameters. This inherent de-
pendence on an exponential number of tests poses practical
challenges, making them unsuitable for many real-world
scenarios. Moreover, it suggests that achieving exact causal
structure learning can be highly challenging.

As performing exponential number of tests is limited in
many applications, it motivates us to study the following
question:

What useful information about the underlying causal graph
can be inferred with fewer conditional independence tests?

Aligned with this motivation, our work also explores the
role of interventions in the structure learning process.

In our work, we study these questions under standard
Markov, faithfulness and causal sufficiency assumptions
(Lauritzen, 1996; Spirtes et al., 2000). The primary con-
tribution of our work is an efficient algorithm that uses a
polynomial number of CI tests and recovers a representation

1



Causal Discovery with Fewer Conditional Independence Tests

of the underlying causal graph with observational and op-
tionally interventional datasets. This representation consists
of a partition of the vertices and a DAG defined over its
components which is consistent with the underlying causal
graph. In addition, our representation is designed to avoid
dummy partitions that group all the vertices into a single
component. The definition of our representation ensures
that the components in the partition satisfy several addi-
tional properties, guaranteeing that each component either
contains a single vertex or comprises an edge that could
only be oriented after an intervention is performed on one of
its endpoints. We refer to this representation as the Causally
Consistent Partition Graph (CCPG) representation.

An important implication of our results is that if the under-
lying causal graph is fully identifiable using only observa-
tional data, our algorithm yields a CCPG with a partition
containing components, each of which is of size one. The
size-one property of each component means that our algo-
rithm recovers the true causal graph using only a polynomial
number of conditional independence tests. We extend this
result in the presence of interventions and provide an al-
gorithm that recovers the true causal graph, when the set
of interventions provided is sufficient to identify the un-
derlying causal graph. To the best of our knowledge, our
algorithms present the first to guarantee recovering the true
causal graph using a polynomial number of tests when the
graph is either entirely identifiable from observational data
or with an additional set of interventions.

1.1. Related Works

Efficient algorithms for causal structure learning (Spirtes
et al., 2000; Claassen et al., 2013) exist for constant bounded
degree graphs, recovering the causal graph with a polyno-
mial number of CI tests. For general causal graphs, current
methods often entail an exponential number of CI tests,
where (Xie & Geng, 2008; Zhang et al., 2024) aimed to to
reduce such complexity. For Bayesian network learning,
finding a minimal Bayesian network is NP-hard, even with
a constant-time CI oracle and nodes with at most k ≥ 3
parents. Chickering et al. (2004) demonstrated this hardness
through a polynomial reduction from the NP-complete prob-
lem, Degree-Bounded Feedback Arc Set. These findings
highlight the contrast between causal structure and minimal
Bayesian network learning, suggesting that causal structure
learning is notably more straightforward. Our results further
reinforce this notion by identifying a special class of causal
graphs that can be recovered with a polynomial number of
conditional independence tests. For other hardness results
on Bayesian network learning, we refer readers to Bouckaert
(1994); Chickering et al. (2004) and references therein.

Learning causal relationships from observational data
(Verma & Pearl, 1990; Spirtes et al., 1989; 2000; Chickering,

2002; Geiger & Heckerman, 2002; Nandy et al., 2018) and
interventional data (Eberhardt, 2010; Hu et al., 2014; Shan-
mugam et al., 2015; Greenewald et al., 2019; Squires et al.,
2020; Choo et al., 2022; Choo & Shiragur, 2023; Shiragur
et al., 2024) is a well studied problem with a rich literature.
We encourage interested readers to explore Glymour et al.
(2019); Squires & Uhler (2022) and references therein for a
more comprehensive understanding and further details.

1.2. Organization

The rest of our paper is organized as follows. Section 2 is
our preliminary section. In Section 3, we provide all the
main results of the paper. In Section 4 and Section 5 com-
bined, we provide our CCPG recovery algorithm when just
observational data is available. In Section 6, we extend our
results to the case of interventions. We provide numerical
results in Section 7. Finally in Section 8, we conclude with
a short discussion and few open directions.

2. Preliminaries
2.1. Graph Definitions

Let G be a directed acyclic graph (DAG) on n vertices in V .
For a vertex v ∈ V , let Pa(v),Anc(v), and Des(v) denote
the parents, ancestors, and descendants of v respectively.
Let Anc[v] = Anc(v) ∪ {v} and Des[v] = Des(v) ∪ {v}.

For a set of vertices S ⊂ V , denote Pa(S) = ∪v∈SPa(s).
Similarly define Anc(S),Des(S),Anc[S], and Des[S].
We write src(S) as the set of source nodes within S, that is,

src(S) = {v ∈ S | Anc(v) ∩ S = ∅} .

Denote S̄ = V \S. Let G[S] be a subgraph of G by removing
all vertices in S̄.

A v-structure refers to three distinct vertices u, v, w such
that u→ v ← w and u,w are not adjacent. An edge u→ v
is a covered edge (Chickering, 1995) if Pa[u] = Pa(v). A
path in G is a list of distinct vertices, where consecutive
vertices are adjacent. We can associate a topological order-
ing π : V → [n] to any DAG G such that any u → v in G
satisfy π(u) < π(v). Note that such topological ordering is
not necessarily unique.

2.2. D-Separation and Conditional Independence

DAGs are commonly used in causality (Pearl, 2009), where
vertices represent random variables and their joint distribu-
tion P factorizes according to the DAG: P (v1, . . . , vn) =∏n

i=1 P (vi | Pa(vi)). This factorization entails a set of
conditional independencies (CIs) in the observational dis-
tribution P . These CI relations are fully characterized by
d-separation (Geiger & Pearl, 1990). Formally, for disjoint
vertex sets A,B,C ⊂ V , sets A,B are d-separated by C

2



Causal Discovery with Fewer Conditional Independence Tests

if and only if any path connecting A and B in G is inactive
given C. A path is inactive given C when it has a collider1

d ̸∈ Anc[C] or a non-collider c ∈ C; otherwise the path is
active given C. Figure 1 illustrates these concepts.

Figure 1. (Left). {1} and {4} are d-separated by {2}, as all paths
are inactive given {2}. (Right). {1} and {4} are not d-separated
by {2, 3}, as path 1→ 3← 4 is active given {2, 3} by collider 3.

We write A ⊥ B | C2 when A,B are conditionally indepen-
dent given C in the observational distribution P . If any set
among A,B,C contains only one node, e.g., A = {a}, we
write a ⊥ B | C for simplicity. When C d-separates A,B,
then it holds that A ⊥ B | C (known as the global Markov
property (Geiger & Pearl, 1990)). Under the faithfulness
assumption, the reverse also holds, i.e., all CI relations in P
are implied by d-separation in G.

Setup. In this work, we assume that the causal DAG G is
unknown. But we assume causal sufficiency (i.e., no latent
confounders), faithfulness and access to enough samples
from P to determine if A ⊥ B | C for any A,B,C ⊂
V . As all CIs are implied by d-separations, we may infer
information about G using these tests.

2.3. Interventions

An intervention I ⊂ V is an experiment where the condi-
tional distributions P (v | Pa(v)) for v ∈ I are changed
into P I(v).3 Such interventions eliminate the dependency
between v and Pa(v). Let GI denote the modified ver-
sion of G, where all incoming edges to v ∈ I are re-
moved. Let P I denote the interventional distribution, i.e.,
P I(v1, . . . , vn) =

∏
v∈I P

I(v)
∏

v ̸∈I P (v | Pa(v)). Then
P I factorizes with respect to GI . We denote A ⊥I B | C
for CI tests in the interventional distribution P I .

Setup with Interventions. Similar to the observational
setting, we assume faithfulness of P I to GI and access to
enough samples from P I to determine if A ⊥I B | C.

2.4. Verifying Intervention Sets and Covered Edges

When it is possible to perform any number of CI tests: with
observational data, a DAG G is in general only identifiable

1Vertex d is a collider on a path iff · → d← · on the path.
2For simplicity, we also write A ⊥ B | C for potential over-

lapping sets to denote A ⊥ B | C \ (A ∪B)
3We consider hard interventions in this work.

up to its skeleton, v-structures (Andersson et al., 1997), and
possibly additional edges given by the Meek rules (Meek,
1995). Identifiability can be improved with interventional
data (Hauser & Bühlmann, 2012), where I allows us to infer
the edge orientation of any edge cut by I and V \ I .

A verifying intervention set I for a DAG G (Choo et al.,
2022) is a set of interventions that fully orients G, possibly
with repeated applications of the Meek rules. We will make
use of the following result in our work.

Proposition 2.1 (Theorem 9 in (Choo et al., 2022)). Set I
is a verifying intervention set if and only if for every covered
edge u→ v in G, there is |I ∩ {u, v}| = 1 for some I ∈ I.

The verification number ν(G) is defined as the minimum
size of any verifying intervention set of G. This proposition
tells us that ν(G) equals to the minimum size of any vertex
cover of the covered edges in G.

3. Main Results
Here we present our main findings. As highlighted in the
introduction, the key contribution of our work lies in recov-
ering a representation of the underlying causal graph that
satisfies various desirable properties with very few CI tests.
We now provide a formal definition of this representation.

Definition 3.1 (CCPG & I-CCPG). A Causally Consistent
Partition Graph (CCPG) representation of a DAG G on V
consists of a partition of V into components V1, . . . , Vk and
a DAG D between the components such that,
(intra-component property): for each i ∈ [k], it holds that
|src(Vi)| = 1. Furthermore, if |Vi| > 1, then G[Vi] has at
least one covered edge.
(inter-component property): D is topologically ordered,
i.e., i→ j in D only if Vi < Vj . It is also consistent with G:
(1) if there is no directed edge i→ j in D, then there are no
edges between Vi and Vj in G; (2) if there is a directed edge
i→ j in D, then there is u ∈ Vi such that u ∈ Pa(src(Vj)).

We further define an Interventional Causally Consistent Par-
tition Graph (I-CCPG) representation of G with respect to
an intervention set I: an I-CCPG is a CCPG representation
of G that additionally satisfies the following strong intra-
component condition: for each i ∈ [k], if |Vi| > 1 then
G[Vi] has at least one unintervened4 covered edge.

Figure 2 illustrates these concepts. Note that when I = ∅,
I-CCPG reduces to CCPG.

In Definition 3.1, the first property prefers finer partitions,
while the second property ensures consistency. Formally, we
can show the following properties of these representations,
which establish the significance of CCPGs. Proofs for all
lemmas in this section can be found in Appendix A.

4An edge is intervened by I if only one of the vertices is in I .

3



Causal Discovery with Fewer Conditional Independence Tests

Figure 2. Example of CCPG & I-CCPG. (Left). Ground-truth
G. (Right). A CCPG representation of G, where V1, V2, V3 are
indicated by green boxes and D is illustrated in chalk strokes.
Vertices 3, 4 can be in one component as 3 → 4 is a covered
edge. For I = {4}, the only I-CCPG is G itself (due to strong
intra-component condition in Definition 3.1).

Lemma 3.2 (Properties of CCPG). For any intervention set
I (including ∅), the following arguments hold:

• D = G (i.e., partitioning V into individual vertices) is
a valid I-CCPG of G.

• If the verification number of G is zero, i.e., ν(G) = 0,
then D = G is the unique valid I-CCPG of G.

• If I is a verifying intervention set of G, then D = G is
the unique valid I-CCPG of G.

The key algorithmic contribution of our work, proven in
Section 5, lies in an efficient algorithm that learns a valid
CCPG with only polynomial number of CI tests.

Theorem 3.3 (Learning CCPG). Given observational data,
there exists an efficient algorithm that performs at most
O(n5) CI tests, and outputs a CCPG representation.

This result extends to the interventional setting as follows;
the proof is given in Section 6.

Theorem 3.4 (I-Learning CCPG). Given observational
data and interventional data from interventions in I, there
exists an efficient algorithm that performs at most O(n5) +
|I| ·O(n3) CI tests, and outputs an I-CCPG representation.

Combining these results with the properties of CCPG in
Lemma 3.2, this provides an efficient algorithm for learning
the causal graph with polynomial number of conditional
independence tests under certain cases, detailed below.

Corollary 3.5 (Causal Discovery with Polynomial CI
Tests). For a DAG G and its verifying intervention set I
(can be ∅), our algorithm recovers the full causal graph
with at most O(n5) + |I| · O(n3) CI tests.

We remark here that Eberhardt et al. (2012) provides a con-
struction of verifying intervention set of size log2(n) that
is independent of the underlying DAG G. Together with
Corollary 3.5, this implies that our algorithm can learn the
full causal graph with at most O(n5) CI tests.

To the best of our knowledge, our results present the first
formal characterization of the information recoverable about
general causal graphs using polynomial number of CI tests.
Prior works showed that it is possible to learn sparse causal
graphs with nO(k) CI tests (Claassen et al., 2013; Spirtes
et al., 2000). Here k is an upper bound on the vertex degrees.
Note that, the number of CI tests our algorithm requires,
O(n5), is a polynomial of n that is independent of any graph
parameters.

3.1. Proxy V-structure and Meek Rule Statements

In our derivations, we will make use of the following results,
which we believe is of separate interest well beyond the
scope of this work.
Lemma 3.6 (Proxy V-Structure). Let S ⊆ V and u, v, z ∈
V \S. If u ⊥ v|S and u ̸⊥ v|S ∪ {z}, then u, v ̸∈ Des[z].5

Definition 3.7 (Prefix Vertex Set). We call S ⊆ V a prefix
vertex set if it satisfies: for all w ∈ S, Anc[w] ∩ S̄ = ∅
(vertices in S appear first in the topological order).

Lemma 3.8 (Proxy Meek Rule 1). Let S be a prefix subset.
If u, v and w are such that u ∈ S, v, w ̸∈ S and u ̸⊥ v|S
and u ⊥ w|S ∪ {v} then v ̸∈ Des[w].

The results stated above serve as proxy statements of v-
structure and Meek Rule 1. Given the CI tests in the preced-
ing lemmas, if we additionally have confirmed adjacencies
between specific pairs of vertices, stronger statements could
be made; e.g.,in Lemma 3.6, we could conclude that z is a
child (or descendant) of both u and v, and in Lemma 3.8
that w is a child of v. However, since our lemma statements
do not assume any knowledge of adjacency, we can only
ascertain weaker statements, in the first case that u and v
are not descendants of z, and in the second case that v is not
a descendant of w.

While our proxy results reveal weaker relationships among
variables, they achieve this using a constant number of CI
tests. Uncovering stronger relationships requires adjacency
information, which may entail an exponential number of
CI tests. Our main contribution lies in leveraging these
weaker relationships, along with other favorable properties
embedded in our algorithm, to implement the prefix vertex
procedure and reconstruct the CCPG representation of the
underlying causal graph using few CI tests.

4. Prefix Vertex Set
The core component of our CCPG algorithm involves a
procedure that produces a series of prefix vertex sets. We
now show how such prefix vertex sets can be learned by
performing few CI tests.

5Similar argument is also proven in Lemma 1 of Magliacane
et al. (2016).

4



Causal Discovery with Fewer Conditional Independence Tests

This will be helpful to obtain a CCPG representation of G,
since the components V1, . . . , Vk satisfy that V1 ∪ · · · ∪ Vi

is a prefix vertex set for all i ∈ [k].

4.1. Algorithm for Learning

We begin by presenting our algorithm for learning a prefix
vertex set. This algorithm takes as input a prefix vertex set
S ⊊ V (which can be ∅) and produces a larger prefix vertex
set S′.

The analysis of Algorithm 1 will be provided in the next
section. For an input prefix vertex set S ⊊ V , it makes use
of three types of CI tests, which we formalize below.6

Definition 4.1 (Type-I Set DS). For all w ∈ S̄, let w ∈ DS

if and only if u ⊥ v | S and u ̸⊥ v | S ∪ {w} for some
u ∈ V and v ∈ S̄.

By the proxy v-structure in Lemma 3.6, these two CI tests
indicate that v ̸∈ Des[w]. Therefore w can potentially
be a descendant of v. Thus DS contains vertices that are
potential descendants of some other vertex in S̄. We will
rule out this set when searching for prefix S′ ⊋ S. Similarly,
we can define a type-II set ES .

Definition 4.2 (Type-II Set ES). For all w ∈ S̄ \DS , let
w ∈ ES if and only if u ⊥ v′ | S ∪ {v} and u ̸⊥ v′ |
S ∪ {v, w} for some u ∈ S and v, v′ ∈ S̄ \DS .

We also exclude any type-III set FS , defined as follows.

Definition 4.3 (Type-III Set FS). For all w ∈ S̄ \DS , let
w ∈ FS if and only if u ̸⊥ v | S, u ⊥ w | S ∪ {v}, and
v ̸⊥ w | S for some u ∈ S and v ∈ S̄ \DS .

By the proxy Meek Rule 1 in Lemma 3.8, the first two
CI tests u ̸⊥ v | S and u ⊥ w | S ∪ {v} guarantee that
v ̸∈ Des[w]. The remaining CI test v ̸⊥ w | S is to ensure
that we do not exclude too many vertices in FS , in particular
src(S̄), as we show in the next section.

Algorithm 1 Learning a Prefix Vertex Set
1: Input: A prefix vertex set S ⊊ V . CI queries from G.
2: Output: A prefix vertex set S′ such that S′ ⊋ S.
3: Compute type-I set DS .
4: Compute type-II and III sets ES , FS .
5: Let U = S̄ \ (DS ∪ ES ∪ FS).
6: return S′ = S ∪ U .

4.2. Correctness and Guarantees

Algorithm 1 satisfies the following guarantees. All omitted
proofs can be found in Appendix B.

6We note that u, v, v′ and w in the definitions below are mutu-
ally distinct. We omit writing this for simplicity.

Figure 3. DS , ES , FS satisfy that (1) they contain all downstream
vertices of any vertex in them; (2) they do not intersect with src(S̄).

Theorem 4.4. Algorithm 1 outputs a prefix vertex set in
O(n4) number of CI tests. In addition, this prefix vertex set
contains all the remaining source nodes, i.e., src(S̄) ⊂ S′.

For its proof, we will make use of the following properties
of the type-I, II, and III sets (illustrated in Figure 3).

Lemma 4.5. Let S be a prefix vertex set. If w ∈ DS , then
Des[w] ⊂ DS . Furthermore, DS ∩ src(S̄) = ∅. The same
properties hold for ES .

Lemma 4.6. Let S be a prefix vertex set. If w ∈ FS , then
Des[w] ⊂ ES ∪ FS . Furthermore, FS ∩ src(S̄) = ∅.

Proof of Theorem 4.4. We first show that S′ returned by
Algorithm 1 satisfies src(S̄) ⊂ S′. By Lemmas 4.5 and
4.6, we have (DS ∪ ES ∪ FS) ∩ src(S̄) = ∅. As S̄′ =
DS ∪ ES ∪ FS , it must hold that src(S̄) ⊂ S′.

Next we show that S′ is a prefix vertex set. For this, we only
need to show that ∀w ∈ S̄′ and y ∈ Des(w), it holds that
y ∈ S̄′. Since S̄′ = DS ∪ ES ∪ FS , one of the following
three scenarios must hold: (1) if w ∈ DS , then y ∈ DS by
Lemma 4.5; (2) if w ∈ ES , then y ∈ ES by Lemma 4.5; or
(3) if w ∈ FS , then y ∈ ES ∪ FS by Lemma 4.6.

Therefore S′ must be a prefix vertex set. We now bound the
number of CI tests performed by Algorithm 1: computing
DS takes O(n3) CI tests; computing ES takes O(n4) CI
tests; computing FS takes O(n3) CI tests, which completes
the proof.

4.3. Relation to Covered Edges

In Theorem 4.4, we showed that src(S̄) ⊂ S′. In fact, when
there are no covered edges coming from src(S̄), one can
show that S′ = src(S̄) ∪ S via the following Lemma 4.7.

Lemma 4.7. Let S be a prefix vertex set. For w ∈ S̄ \DS ,
if w ̸∈ src(S̄) and there is no covered edge from Anc[w] ∩
src(S̄) to Anc[w], then w ∈ ES ∪ FS .

5



Causal Discovery with Fewer Conditional Independence Tests

Corollary 4.8. Let S be a prefix vertex set. If there is no
covered edge in S̄, then S′ = src(S̄) ∪ S.

This result will be useful when deriving CCPG representa-
tions using Algorithm 1. To see this, consider the simple
case where there is no covered edge in G. Then running
Algorithm 1 with S = ∅ we can learn src(V ) by Corol-
lary 4.8. Then running Algorithm 1 with S = src(V ), we
can learn the source vertices of V \ src(V ). Applying this
iteratively, we can obtain the ground-truth topological order
of G. As a consequence, one can easily learn G,7 which is
the sole CCPG representation as there is no covered edge.

5. Learning Causally Consistent Partition
Graph Representations

We now present our algorithm for learning causally consis-
tent partition graph representations. All omitted proofs can
be found in Appendix C.

Algorithm 2 contains three parts, indicated by colored boxes
below. In the first part, we use Algorithm 1 iteratively to
learn prefix vertex sets of the form ∅ ⊊ . . . S ⊊ S′ ⊊ · · · ⊊
V . In the second part, we break each S′ \ S into smaller
components that are pairwise independent given S. As we
will see, these components satisfy the property of CCPG in
Definition 3.1. In the third part, we build the acyclic graph
between the CCPG components.

Algorithm 2 Learning a CCPG Representation
1: Input: CI queries from G.
2: Output: A CCPG representation of G.
3: Set S = ∅ and S as empty ordered list.
4: while S ̸= V do
5: Run Algorithm 1 on S to obtain S′.
6: Add S′ \ S to the end of S.
7: Update S = S′.
8: end while
9: Initialize l1 = 1.

10: for Si in S = [S1, . . . , Sm] do
11: Create empty graph T on vertices in Si.
12: Add v − w to T iff v ̸⊥ w | S1 ∪ · · · ∪ Si−1.
13: Split Si into components Vli , Vli+1, . . . , Vli+1

based
on connected components in T .

14: end for
15: Create empty graph D on vertices in [lm+1].
16: for Vi, Vj with i < j do
17: Add i→ j to D iff Vi ̸⊥ Vj | V1 ∪ · · · ∪ Vj−1.
18: end for
19: return V1, . . . , Vlm+1

and D

To show that the components we obtain in the second part

7For i < j in the topological order, the corresponding edge
vi → vj ∈ G iff vi ̸⊥ vj | v1, . . . , vj−1.

Figure 4. Illustration of S̄ \ DS (inside the dashed box). It can
be split into connected subgraphs based on vertices in src(S̄)
(indicated by the fill color of each vertex in S̄ \DS).

satisfy the property of CCPG, we will use the following
result. Essentially, we can show that the subgraph G[S′ \ S]
can be split into connected subgraphs based on individual
vertices in src(S′ \ S) (= src(S̄) by Theorem 4.4). This is
illustrated in Figure 4.

Lemma 5.1. Let S be a prefix subset. For any w ∈ S̄\DS ,
there is |Anc[w] ∩ src(S̄)| = 1 . Furthermore, for any
other w′ ∈ S̄ \ DS , there is w ̸⊥ w′ | S if and only if
Anc[w] ∩ src(S̄) = Anc[w′] ∩ src(S̄).

Based on this result, we can establish that Algorithm 2
outputs a CCPG representation by proving Theorem 3.3.

Proof of Theorem 3.3. We show that Algorithm 2 outputs a
CCPG representation of G. Since it runs in polynomial time
and uses O(n5) CI tests, this will prove Theorem 3.3.

Intra-component Property. Consider Si. Denote S1 ∪
· · · ∪ Si−1 = S. We will show that Si is split into
Des[s] ∩ Si for each s ∈ src(S̄). Since Si ⊂ S̄, we
have Si = ∪s∈src(S̄)(Des[s] ∩ Si). By Theorem 4.4, we
know that S is a prefix vertex set. Since Si ⊂ S̄ \ DS ,
by Lemma 5.1, Des[s] ∩ Si for different s ∈ src(S̄)
are disjoint. Furthermore, by Theorem 4.4, these disjoint
sets are non-empty because s ∈ Des[s] ∩ Si. Therefore
src(Des[s]∩Si) = {s} and we have |src(Des[s]∩Si)| = 1.
Thus by Lemma 5.1, each of Vli , Vli+1, . . . , Vli+1

corre-
sponds to Des[s] ∩ Si for some s ∈ src(S̄).

If |Des[s] ∩ Si| > 1, then it contains a vertex that is not s.
Suppose w ∈ Des(s)∩Si. By Lemmas 4.7 and 5.1, there is
a covered edge from s to some vertex x ∈ Anc[w]. Since S
and S ∪ Si are prefix vertex sets, s, w ∈ Si implies x ∈ Si.
Thus x ∈ Des[s]∩ Si and there is a covered edge s→ x in

6



Causal Discovery with Fewer Conditional Independence Tests

Des[s] ∩ Si. Thus, we have proven that each component in
V1, . . . , Vlm+1 satisfies the first property of CCPG.

Inter-component Property. For each Vi, denote the subset
that it came from as Shi

, i.e., Vi ⊂ Shi
. By the construction

ofD in Algorithm 2, no edge i→ j inD means either i > j
or Vi ⊥ Vj | V1 ∪ · · · ∪ Vj−1. If i > j and hi ̸= hj , then
by the fact that S1 ∪ · · · ∪ Shi

is a prefix vertex set, there is
no edge from Vi to Vj in G. If hi = hj = h, then we know
that there exists si ̸= sj such that Vi = Des[si] ∩ Sh and
Vj = Des[sj ] ∩ Sh. If there is an edge from Vi to Vj in
G, denoted as v → w, then w ∈ Des[v] ⊂ Des[si] which
means Vi ∩ Vj ̸= ∅, a contradiction. Therefore there is no
edge from Vi to Vj in G. If Vi ⊥ Vj | V1 ∪ · · · ∪ Vj−1, then
clearly there is no edge from Vi to Vj in G. Thus when there
is no i→ j in D, there is no edge from Vi to Vj in G.

If there is an edge i → j in D, then we have i < j and
Vi ̸⊥ Vj | V1 ∪ · · · ∪ Vj−1. Note that since S1 ∪ · · · ∪ Shj

is prefixed, it holds that Pa(Vj) ⊂ S1 ∪ · · · ∪ Shj
and

Des[Vj ]∩ (S1 ∪ . . . Shj−1) = ∅. As shown above, there is
no edge between any other Vj′ ⊂ Shj and Vj . Thus we have
Pa(Vj) ⊂ V1∪· · ·∪Vj and Des[Vj ]∩(V1∪· · ·∪Vj−1) = ∅.
Similarly Pa(Vi) ⊂ V1∪· · ·∪Vi. Thus by the local Markov
property and Bayes rule,8 Vi ̸⊥ Vj | V1 ∪ · · · ∪ Vj−1 only
if there is a direct edge u → v from u ∈ Vi to v ∈ Vj .
We now show that there is also an edge u → s where
{s} = src(Vj). Assume on the contrary that there is no
edge u → s. Since s is the source node of Vj and thus a
source node of Shj

, we have from Pa(Vj) ⊂ S1∪ · · · ∪Shj

that Pa(s) ⊂ S1∪ · · ·∪Shj−1. In addition, Des[s]∩ (S1∪
· · · ∪ Shj−1) = ∅. Thus by the local Markov property,
u ⊥ s | S1 ∪ · · · ∪ Shj−1. However as u → v and v ∈
Des[s], we have u ̸⊥ s | S1 ∪ · · · ∪ Shj−1 ∪ {v}. As
a consequence, v ∈ DS1∪···∪Shj−1

. By Algorithm 1, it is
impossible that v ∈ Shj

, a contradiction. Therefore we must
have u ∈ Pa(s). This proves that D satisfies the second
property of CCPG.

6. Interventions
In Sections 4 and 5, we showed how to learn a CCPG rep-
resentation using observational data. Here we generalize
these methods to interventions. This results in a more re-
fined I-CCPG representation of G. All omitted proofs can
be found in Appendix D.

6.1. Learning Refined Prefix Vertex Sets

In Section 4.1, we obtained a prefix vertex set by excluding
three types of sets DS , ES and FS . With interventions,
we can exclude an additional set. To define it, we first
characterize what can be learned using interventions.

8See Lemma A.1 in Appendix A.

Figure 5. Illustration of JI
S , where I is indicated by the purple

circle. JI
S satisfies similar properties as DS , ES and FS .

Lemma 6.1. Let S be a prefixed vertex set. Given an inter-
vention on vertices I ⊆ V . For any u ̸∈ I , we have u ̸⊥I v
for some v ∈ I \ S if and only if u ∈ Des(I \ S) \ (I \ S).

Note that when the number of CI tests is not restricted, one
can learn all edges cut by I as well as their orientations.
Lemma 6.1 shows that it is possible to learn the joint set of
descendants using O(n2) CI tests.

With this set and a few more CI tests, it is possible to learn
additional directional information.

Lemma 6.2. Let S be a prefix subset. Given an intervention
I and v ∈ I\S, denote HI

S(v) = {u ̸∈ S∪Des[I\S] : u ̸⊥
v | V \ Des[I \ S]}.9 Then Pa(v) \ (S ∪ Des[I \ S]) ⊆
HI

S(v) ⊆ Anc(v) \ (S ∪ Des[I \ S]).

Such sets can be useful when deciding if a target of I \ S
should be excluded when learning a prefix vertex subset
S′ ⊃ S. Formally, we define the type-IV set as follows.

Definition 6.3 (Type-IV Set JI
S). Let S be a prefix vertex

set. For an intervention I , let JI
S = Des(I \ S) ∪ {v ∈

I \ S : HI
S(v) ∩ S̄ ̸= ∅}.

Analogous to Lemma 4.5, we can show that JI
S satisfies

similar properties (illustrated in Figure 5).

Lemma 6.4. Let S be a prefix vertex set. Then ∀w ∈ JI
S ,

we have Des(w) ⊆ JI
S . Furthermore, JI

S ∩ src(S̄) = ∅.

Therefore we can exclude JI
S as well, which results in the

following modification of Algorithm 1 and for which we
can show similar guarantees using Lemma 6.4.

9Note that Des[I \ S] can be obtained via Lemma 6.1 and
(Des(I \ S) \ (I \ S)) ∪ (I \ S).

7



Causal Discovery with Fewer Conditional Independence Tests

Algorithm 3 Learning a Prefix Vertex Set (w. Interventions)
1: Input: A prefix vertex set S ⊊ V . CI queries from G

and GI for each intervention I ∈ I.
2: Output: A prefix vertex set S′ such that S′ ⊋ S.
3: for I ∈ I do
4: Compute type-IV set JI

S .
5: end for
6: Compute type-I set DS .
7: Compute type-II and III sets ES , FS .
8: Let U ′ = S̄ \

(
∪I∈I JI

S ∪DS ∪ ES ∪ FS

)
.

9: return S′ = S ∪ U ′.

Theorem 6.5. Algorithm 3 outputs a prefix vertex set in
O(n4)+|I|O(n2) CI tests. In addition, this prefix vertex set
contains all the remaining source nodes, i.e., src(S̄) ⊂ S′.

Proof. Similar to the proof of Theorem 3.3, we can use the
additional Lemma 6.4 to show that: (1) S′ is a prefix vertex
set, (2) it contains src(S̄). We now bound the number of
CI tests performed by Algorithm 3: note that it bears the
additional need to compute JI

S compared to Algorithm 1.
By Lemmas 6.1 and 6.2, computing JI

S for each I ∈ I takes
O(n2). Thus the total complexity isO(n4)+|I|O(n2).

In addition, we can show the following property for covered
edges coming from src(S̄).

Lemma 6.6. Let S be a prefix vertex set, v ∈ src(S̄) and
v → w be a covered edge. Given any intervention I , if
|I ∩ {v, w}| = 1, then w ∈ JI

S .

Proof. If I ∩ {v, w} = {v}, then w ∈ Des(I \ S). If
I ∩ {v, w} = {w}, then w ∈ I \ S. We will show that
HI

S(w)∩S̄ ̸= ∅. This in turn proves that w ∈ JI
S . Note that

since v ∈ src(S̄), we have v ̸∈ S∪Des[I \S]. Furthermore,
since v → w is an edge, we have v ∈ Pa(w). Thus by
Lemma 6.2, we have v ∈ Pa(w) \ (S ∪ Des[I \ S]) ⊆
HI

S(w).

6.2. Learning I-CCPG Representations

We obtain the final algorithm by plugging Algorithm 3 into
Algorithm 2, i.e., replacing Algorithm 1 in line 5 by Algo-
rithm 3.

Proof of Theorem 3.4. By Theorem 6.5, for any i, set S =
S1 ∪ · · · ∪ Si−1 is a prefix vertex set. Therefore using the
proof in Theorem 3.3 and the fact that src(S̄) ⊂ S ∪ Si

(Theorem 6.5), we immediately have |src(Vi)| = 1 and D
satisfies the second property of I-CCPG in Definition 3.1.

We now show that when |Vi| > 1, subgraph G[Vi] has at
least one unintervened covered edge. Suppose on the con-
trary that G[Vi] has no unintervened covered edge. Denote

{s} = src(Vi). Let w ∈ Vi such that w ̸= s. Similar to The-
orem 3.3, we can show that w ∈ Des(s). By Lemma 4.7,
there is a covered edge from s to some vertex x ∈ Anc[w]
and x ∈ Vi. Since G[Vi] has no unintervened covered edge,
s→ x is intervened by some I ∈ I. Then by Lemma 6.6,
we have x ∈ JI

S . This contradicts x ∈ Vi.

7. Experiments
In this section, we test our proposed method and compare it
to existing causal discovery methods on synthetic data and a
toy real-world example. Source code for these results can be
found at https://github.com/uhlerlab/CCPG.

7.1. Synthetic Data

In these experiments, we consider the observational set-
ting and generate samples from linear causal models with
additive Gaussian noise, governed by identifiable causal
graphs, in particular, in-star-shaped DAGs with varying
number of nodes. In such settings, with enough samples,
our algorithm is guaranteed to return the ground-truth DAG
(Corollary 3.5).

We compare our Algorithm 2, termed CCPG, to other
constraint-based and hybrid methods that rely on condi-
tional independence tests. The constraint-based methods we
include are: PC (Spirtes et al., 2000), FCI (Spirtes et al.,
1999), and RFCI (Colombo et al., 2012), where we use the
order-independent variants from Colombo et al. (2014) (i.e.,
“stable” versions). The hybrid methods we included are:
GSP with depth = 4 and depth = ∞ (Solus et al., 2021).
Implementation details can be found in Appendix E.

20 40 60 80 100
Number of Nodes

10 3

10 2

10 1

100

101

102

103

Ti
m

e 
(s

)

CCPG
PC
PC (stable)
PC (stable)
FCI (stable)
RFCI (stable)
GSP
GSP (depth = )

constraint-based
hybrid

Python
R (with C++)

Figure 6. Runtime comparison across graphs of different sizes.
CCPG is as fast as hybrid methods (GSP) and significantly more
efficient than constraint-based methods (PC, FCI, and RFCI). The
programming language behind each implementation is indicated
by dashed or solid lines (see Appendix E for details).

8

https://github.com/uhlerlab/CCPG


Causal Discovery with Fewer Conditional Independence Tests

CC
PG PC

PC
 (s

ta
ble

)
FC

I (
sta

ble
)

RF
CI

 (s
ta

ble
)

GS
P

GS
P (

de
pt

h=
)

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f S
am

pl
es

w/ causal sufficiency
w/o causal sufficiency

Figure 7. Sample complexity comparison. CCPG requires the
least number of samples to recover the true graph. Methods that
do not assume causal sufficiency are indicated by shading (see
Appendix E for details).

Runtime Analysis. To test the computational efficiency of
our method, we generated 100k samples across graphs of
different sizes and reported the runtime averaged across five
runs. Figure 6 shows that CCPG is as fast as hybrid methods
(GSP) and significantly more efficient than constraint-based
methods (PC, FCI, and RFCI), which can only scale to 20
nodes with reasonable runtime.

Sample Complexity Analysis. To test the sample efficiency
of CCPG, we consider a 10-node in-star-shaped DAG. For
each method, we increase the number of samples until it
returns the ground-truth DAG and repeat this procedure
for five runs. Figure 7 shows that CCPG requires the least
number of samples to recover the true graph.

In general, constraint-based methods (PC, FCI, and RFCI)
have better sample efficiency than hybrid methods, while
being significantly more runtime inefficient. In comparison,
CCPG, with its polynomial-number of CI test guarantee,
enjoys low sample complexity and low runtime complexity.

7.2. A Real-world Example

To illustrate the utility of the coarser representation learned
by CCPG in real-world settings, we include a simple 6-
variable Airfoil example (Asuncion & Newman, 2007; Lam
et al., 2022); see Lam et al. (2022) for a detailed description
of this example. Although there is no known ground-truth
DAG in this setting, a few causal relations are known: (1)
velocity, chord, and attack should be source nodes; (2) pres-
sure is downstream of all other nodes.

The coarser representation learned by CCPG is shown in Fig-
ure 8. Compared to PC, which returns the partially directed

PC

components [{'Chord'}, {'Velocity'}, 
{'Frequency', 'Attack', 'Pressure', 
'Displacement'}] 
edges {(0, 2), (1, 2)}

Velocity Chord

Attack Displacement

Frequency Pressure

Velocity

Frequency Attack

Displacement Pressure

Chord
Figure 8. Learned coarser representation by CCPG in the Airfoil
example. PC

components [{'Chord'}, {'Velocity'}, 
{'Frequency', 'Attack', 'Pressure', 
'Displacement'}] 
edges {(0, 2), (1, 2)}

Velocity Chord

Attack Displacement

Frequency Pressure

Velocity

Frequency Attack

Displacement Pressure

Chord

Figure 9. Learned partially directed graph by PC in the Airfoil
example.

graph in Figure 9, CCPG seems to be more consistent with
the known causal relations while it contains less information
due to a coarser representation.

8. Discussion
In our work, we studied causal structure learning under the
constraint of fewer CI tests. Since exact structure learning
may demand an exponential number of CI tests, we defined
a representation (CCPG) that captures partial but crucial
information about the underlying causal graph. Moreover,
we provided an efficient algorithm that recovers a CCPG
representation in a polynomial number of CI tests. This
result enabled us to design efficient algorithms for the full
recovery of causal graphs in two specific settings, utilizing
only a polynomial number of CI tests.

We hope that our work will motivate further exploration
of the causal discovery problem under the constraint of
fewer CI tests, extending to various settings, including those
involving latent variables. Furthermore, our research estab-
lishes a foundation for addressing the search problem10 with
reduced tests, suggesting the potential existence of search
algorithms capable of recovering the causal graph with a
polynomial number of independence tests while performing
an approximately optimal number of interventions.

10The search problem involves finding the minimum set of inter-
ventions that orient the entire causal graph.

9



Causal Discovery with Fewer Conditional Independence Tests

Acknowledgements
We thank the anonymous reviewers for helpful feedback.
J.Z. was partially supported by an Apple AI/ML PhD Fel-
lowship. K.S. was supported by a fellowship from the Eric
and Wendy Schmidt Center at the Broad Institute. C.U. was
partially supported by NCCIH/NIH (1DP2AT012345), ONR
(N00014-22-1-2116), DOE-ASCR (DE-SC0023187), the
MIT-IBM Watson AI Lab, and a Simons Investigator Award.

Impact Statement
This paper presents theoretical work whose goal is to ad-
vance the field of causal inference. There are many potential
societal applications of our work, none of which we feel
must be specifically highlighted here.

References
Alonso-Barba, J. I., Gámez, J. A., Puerta, J. M., et al. Scal-

ing up the greedy equivalence search algorithm by con-
straining the search space of equivalence classes. Interna-
tional journal of approximate reasoning, 54(4):429–451,
2013.

Andersson, S. A., Madigan, D., and Perlman, M. D. A char-
acterization of Markov equivalence classes for acyclic
digraphs. The Annals of Statistics, 25(2):505–541, 1997.

Asuncion, A. and Newman, D. Uci machine learning repos-
itory, 2007.

Bouckaert, R. R. Properties of bayesian belief network
learning algorithms. In Uncertainty Proceedings 1994,
pp. 102–109. Elsevier, 1994.

Brenner, E. and Sontag, D. Sparsityboost: A new scoring
function for learning bayesian network structure. arXiv
preprint arXiv:1309.6820, 2013.

Chickering, D. M. A Transformational Characterization
of Equivalent Bayesian Network Structures. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, UAI’95, pp. 87–98, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc. ISBN
1558603859.

Chickering, D. M. Optimal Structure Identification with
Greedy Search. Journal of machine learning research, 3
(Nov):507–554, 2002.

Chickering, M., Heckerman, D., and Meek, C. Large-
sample learning of bayesian networks is np-hard. Journal
of Machine Learning Research, 5:1287–1330, 2004.

Cho, H., Berger, B., and Peng, J. Reconstructing Causal
Biological Networks through Active Learning. PLoS
ONE, 11(3):e0150611, 2016.

Choo, D. and Shiragur, K. Subset verification and
search algorithms for causal dags. arXiv preprint
arXiv:2301.03180, 2023.

Choo, D., Shiragur, K., and Bhattacharyya, A. Verification
and search algorithms for causal DAGs. Advances in
Neural Information Processing Systems, 35, 2022.

Claassen, T., Mooij, J., and Heskes, T. Learning
sparse causal models is not np-hard. arXiv preprint
arXiv:1309.6824, 2013.

Colombo, D., Maathuis, M. H., Kalisch, M., and Richard-
son, T. S. Learning high-dimensional directed acyclic
graphs with latent and selection variables. The Annals of
Statistics, pp. 294–321, 2012.

Colombo, D., Maathuis, M. H., et al. Order-independent
constraint-based causal structure learning. J. Mach. Learn.
Res., 15(1):3741–3782, 2014.

de Campos, L. M., Cano, A., Castellano, J. G., and Moral, S.
Combining gene expression data and prior knowledge for
inferring gene regulatory networks via Bayesian networks
using structural restrictions. Statistical Applications in
Genetics and Molecular Biology, 18(3), 2019.

Eberhardt, F. Causal Discovery as a Game. In Causality:
Objectives and Assessment, pp. 87–96. PMLR, 2010.

Eberhardt, F. and Scheines, R. Interventions and Causal
Inference. Philosophy of science, 74(5):981–995, 2007.

Eberhardt, F., Glymour, C., and Scheines, R. On the number
of experiments sufficient and in the worst case necessary
to identify all causal relations among N variables. In Pro-
ceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, pp. 178–184, 2005.

Eberhardt, F., Glymour, C., and Scheines, R. N-1 Experi-
ments Suffice to Determine the Causal Relations Among
N Variables. In Innovations in machine learning, pp.
97–112. Springer, 2006.

Eberhardt, F., Glymour, C., and Scheines, R. On the Number
of Experiments Sufficient and in the Worst Case Neces-
sary to Identify All Causal Relations Among N Variables.
arXiv preprint arXiv:1207.1389, 2012.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. Using
bayesian networks to analyze expression data. Journal of
computational biology, 7(3-4):601–620, 2000.

Geiger, D. and Heckerman, D. Parameter priors for directed
acyclic graphical models and the characterization of sev-
eral probability distributions. The Annals of Statistics, 30
(5):1412–1440, 2002.

10



Causal Discovery with Fewer Conditional Independence Tests

Geiger, D. and Pearl, J. On the logic of causal models. In
Machine Intelligence and Pattern Recognition, volume 9,
pp. 3–14. Elsevier, 1990.

Glymour, C., Zhang, K., and Spirtes, P. Review of causal
discovery methods based on graphical models. Frontiers
in genetics, 10:524, 2019.

Greenewald, K., Katz, D., Shanmugam, K., Magliacane, S.,
Kocaoglu, M., Boix-Adserà, E., and Bresler, G. Sample
Efficient Active Learning of Causal Trees. Advances in
Neural Information Processing Systems, 32, 2019.

Hauser, A. and Bühlmann, P. Characterization and greedy
learning of interventional Markov equivalence classes of
directed acyclic graphs. The Journal of Machine Learning
Research, 13(1):2409–2464, 2012.

Hoover, K. D. The logic of causal inference: Econometrics
and the Conditional Analysis of Causation. Economics &
Philosophy, 6(2):207–234, 1990.

Hu, H., Li, Z., and Vetta, A. Randomized Experimental
Design for Causal Graph Discovery. Advances in neural
information processing systems, 27, 2014.

Kalisch, M. and Bühlman, P. Estimating high-dimensional
directed acyclic graphs with the pc-algorithm. Journal of
Machine Learning Research, 8(3), 2007.

Kalisch, M., Hauser, A., Maechler, M., Colombo, D., Entner,
D., Hoyer, P., Hyttinen, A., Peters, J., Andri, N., Perkovic,
E., et al. Package ‘pcalg’. 2024.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K.,
Bryant, C. H., Muggleton, S. H., Kell, D. B., and Oliver,
S. G. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(6971):
247–252, 2004.

Lam, W.-Y., Andrews, B., and Ramsey, J. Greedy relax-
ations of the sparsest permutation algorithm. In Uncer-
tainty in Artificial Intelligence, pp. 1052–1062. PMLR,
2022.

Lauritzen, S. L. Graphical models, volume 17. Clarendon
Press, 1996.

Magliacane, S., Claassen, T., and Mooij, J. M. Ancestral
causal inference. Advances in Neural Information Pro-
cessing Systems, 29, 2016.

Meek, C. Causal Inference and Causal Explanation with
Background Knowledge. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence,
UAI’95, pp. 403–410, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc. ISBN 1558603859.

Nandy, P., Hauser, A., and Maathuis, M. H. High-
dimensional consistency in score-based and hybrid struc-
ture learning. The Annals of Statistics, 46(6A):3151–
3183, 2018.

Pearl, J. Causality: models, reasoning, and inference.
Econometric Theory, 19(4):675–685, 2003.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Pingault, J.-B., O’reilly, P. F., Schoeler, T., Ploubidis, G. B.,
Rijsdijk, F., and Dudbridge, F. Using genetic data to
strengthen causal inference in observational research. Na-
ture Reviews Genetics, 19(9):566–580, 2018.

Reichenbach, H. The direction of time, volume 65. Univ of
California Press, 1956.

Robins, J. M., Hernan, M. A., and Brumback, B. Marginal
structural models and causal inference in epidemiology.
Epidemiology, pp. 550–560, 2000.

Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., and
Sontag, D. Learning a Health Knowledge Graph from
Electronic Medical Records. Scientific reports, 7(1):1–11,
2017.

Schulte, O., Frigo, G., Greiner, R., and Khosravi, H. The
imap hybrid method for learning gaussian bayes nets.
In Advances in Artificial Intelligence: 23rd Canadian
Conference on Artificial Intelligence, Canadian AI 2010,
Ottawa, Canada, May 31–June 2, 2010. Proceedings 23,
pp. 123–134. Springer, 2010.

Shanmugam, K., Kocaoglu, M., Dimakis, A. G., and Vish-
wanath, S. Learning Causal Graphs with Small Inter-
ventions. Advances in Neural Information Processing
Systems, 28, 2015.

Shiragur, K., Zhang, J., and Uhler, C. Meek separators and
their applications in targeted causal discovery. Advances
in Neural Information Processing Systems, 36, 2024.

Solus, L., Wang, Y., and Uhler, C. Consistency guarantees
for greedy permutation-based causal inference algorithms.
Biometrika, 108(4):795–814, 2021.

Spirtes, P., Glymour, C., and Scheines, R. Causality from
probability. 1989.

Spirtes, P., Meek, C., and Richardson, T. An algorithm for
causal inference in the presence of latent variables and
selection bias (vol. 1), 1999.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, Prediction, and Search. MIT press, 2000.

11



Causal Discovery with Fewer Conditional Independence Tests

Spirtes, P. L., Meek, C., and Richardson, T. S. Causal
inference in the presence of latent variables and selection
bias. arXiv preprint arXiv:1302.4983, 2013.

Squires, C. Causaldag: Creation, manipulation, and
learning of causal models. 2018. URL https://github.
com/uhlerlab/causaldag.

Squires, C. and Uhler, C. Causal structure learning: a
combinatorial perspective. Foundations of Computational
Mathematics, pp. 1–35, 2022.

Squires, C., Magliacane, S., Greenewald, K., Katz, D., Ko-
caoglu, M., and Shanmugam, K. Active Structure Learn-
ing of Causal DAGs via Directed Clique Trees. Advances
in Neural Information Processing Systems, 33:21500–
21511, 2020.

Sverchkov, Y. and Craven, M. A review of active learning
approaches to experimental design for uncovering bio-
logical networks. PLoS computational biology, 13(6):
e1005466, 2017.

Tian, T. Bayesian Computation Methods for Inferring Reg-
ulatory Network Models Using Biomedical Data. Trans-
lational Biomedical Informatics: A Precision Medicine
Perspective, pp. 289–307, 2016.

Verma, T. and Pearl, J. Equivalence and synthesis of causal
models. In Proceedings of the Sixth Annual Conference
on Uncertainty in Artificial Intelligence, pp. 255–270,
1990.

Woodward, J. Making Things Happen: A theory of Causal
Explanation. Oxford university press, 2005.

Xie, X. and Geng, Z. A recursive method for structural learn-
ing of directed acyclic graphs. The Journal of Machine
Learning Research, 9:459–483, 2008.

Zhang, J., Shiragur, K., and Uhler, C. Membership testing
in markov equivalence classes via independence queries.
In International Conference on Artificial Intelligence and
Statistics, pp. 3925–3933. PMLR, 2024.

12



Causal Discovery with Fewer Conditional Independence Tests

A. Useful Lemmas
A.1. Proof of Lemma 3.2

Lemma 3.2 (Properties of CCPG). For any intervention set I (including ∅), the following arguments hold:

• D = G (i.e., partitioning V into individual vertices) is a valid I-CCPG of G.

• If the verification number of G is zero, i.e., ν(G) = 0, then D = G is the unique valid I-CCPG of G.

• If I is a verifying intervention set of G, then D = G is the unique valid I-CCPG of G.

Proof. Note that if |Vi| = 1, then CCPG is actually G. If |Vi| > 1, then it means that there is a covered edge in this subset
that is not intervened. By Proposition 2.1, this is impossible when I is a verifying intervention set.

A.2. Proof of Lemma 3.6

Lemma 3.6 (Proxy V-Structure). Let S ⊆ V and u, v, z ∈ V \S. If u ⊥ v|S and u ̸⊥ v|S ∪ {z}, then u, v ̸∈ Des[z].11

Proof. Let P be an active path (that carries dependency) between u and v when conditioned on S ∪ {z}. Since u ⊥ v|S
and u ̸⊥ v|S ∪ {z}, we get that there exist a set of vertices w1 . . . wk that are colliders on P and satisfy: Des[wi] ∩ S = ∅
and z ∈ Des[wi].

Consider the path P and note that it takes the form P = u − · · · → w1 ← · · · → wi ← · · · → wk ← · · · − v. Define
P1 = u − · · · → w1 and P2 = wk ← · · · − v. Since all the colliders on paths P1, P2 are in or have their descendants in
S and all non-colliders do not belong to S, we have that P1, P2 are active given S. We prove our lemma using the proof
by contradiction strategy. For contradiction, let us assume that one of the vertices in {u, v} belong to the set Des[z] and
without loss of generality let that vertex be u. Then since z ∈ Des[wi] for all i, there must be u ∈ Des[wi] for all i.

Since u ∈ Des[wk], let Q be the directed path in the graph that connects wk to u. Note that all the vertices in path Q are all
descendants of wk and they do not belong to the set S (because Des[wk] ∩ S = ∅). Now consider the path (P2, Q) that
connects vertices v and u and note that the vertex w is a non-collider on the new path (P2, Q). Since P2 and Q are active
paths given S and since w ̸∈ S, we immediately get that the path (P2, Q) is an active path given S, which further implies
that u ̸⊥ v|S; a contradiction and we conclude the proof.

A.3. Proof of Lemma 3.8

Lemma 3.8 (Proxy Meek Rule 1). Let S be a prefix subset. If u, v and w are such that u ∈ S, v, w ̸∈ S and u ̸⊥ v|S and
u ⊥ w|S ∪ {v} then v ̸∈ Des[w].

Proof. Suppose on the contrary that there is u, v, w such that u ∈ S, v, w ̸∈ S and u ̸⊥ v|S and u ⊥ w|S ∪ {v} and
v ∈ Des[w].

Since u ̸⊥ v | S, let P be the active path connecting u and v given S. As u ∈ S and v ̸∈ S, there is an edge u′ − v′ on P
such that u′ ∈ S but v′ ̸∈ S.

Now denote the vertex on P that is immediate next to v as x. If x ← v, then there must be a collider on P between u′

and v as S is a prefix subset where u′ ∈ S and v ̸∈ S. Let y be the collider on P between u′ and v that is closest to u′,
then u′ → v′ · · · → y. Since P is active given S, the collider y ∈ Anc[S]. However v′ ∈ Anc[y] ⊆ Anc[S] and v′ /∈ S, a
contradiction to S being prefix. Thus there must be x→ v on P .

Since we assumed on the contrary that v ∈ Des[w], we can consider the path Q joined by P and the directed path from w
to v. Compared to P , the path P has one additional collider v, and has a few additional colliders that lie between v and
w which are not in S (as they are all descendants of w and w ̸∈ S). Therefore Q is active given S ∪ {v}. This means
u ̸⊥ w | S ∪ {v}, a contradiction.

11Similar argument is also proven in Lemma 1 of Magliacane et al. (2016).

13



Causal Discovery with Fewer Conditional Independence Tests

A.4. Additional Lemma

In addition, we will make use of the following lemma.

Lemma A.1. For disjoint sets A,B,C ⊂ V , if Pa(A) ⊂ C ∪A, Pa(B) ⊂ C ∪B and Des(B)∩C = ∅, then A ⊥ B | C.

Proof. Assume without loss of generality that the vertices in B have the following topological order b1, . . . , bm. Then for
any i ∈ [m], by the local Markov property (Spirtes et al., 1989), we have A ⊥ bi | C ∪ {b1, . . . , bi−1}. Therefore using
Bayes rule, we have

P (B | C,A) = P (b1 | C,A)P (b2 | C,A, b1) . . . P (bm | C,A, b1, . . . , bm−1)

= P (b1 | C,A)P (b2 | C, b1) . . . P (bm | C, b1, . . . , bm−1)

= P (B | C),

and thus A ⊥ B | C, which completes the proof.

B. Missing Proofs of Prefix Vertex Set
B.1. Proof of Lemma 4.5

We restate the lemma below.

Lemma 4.5. Let S be a prefix vertex set. If w ∈ DS , then Des[w] ⊂ DS . Furthermore, DS ∩ src(S̄) = ∅. The same
properties hold for ES .

B.1.1. TYPE-I SET DS

Proof of Lemma 4.5 for DS . We first show that if w ∈ DS , then it must hold that Des[w] ⊂ DS : since w ∈ DS , there
exists a vertex u ∈ V and v ∈ S̄ such that u ⊥ v | S and u ̸⊥ v | S ∪ {w}. We now show that for any x ∈ Des[w], we
have u ̸⊥ v | S ∪ {x}.

Since u ̸⊥ v | S ∪ {w}, there is a path P from u to v that is active given S ∪ {w}. Therefore, all non-colliders on P are not
in S ∪ {w} and all colliders on P are in Anc[S ∪ {w}]. Since x ∈ Des[w], all colliders on P are in Anc[S ∪ {x}]. If all
non-colliders are not in S ∪ {x}, then P is an active path from u to v given S ∪ {x}, and thus u ̸⊥ v | S ∪ {x}. Otherwise
there is a non-collider on P that is x.

Since u ⊥ v | S, the path P is inactive given S. From above we know that all non-colliders on P are not in S. Therefore
there exists a collider on P that is not in Anc[S]. Suppose the leftmost and rightmost such colliders are k, k′ (it is possible
that k = k′), then k, k′ must be in Anc[S ∪ {w}] \ Anc[S] ⊆ Anc[w] ⊂ Anc[x]. Consider the path Q in the graph by
cutting out the parts between k, x (and k′, x) on P and replacing them with directed edges from k to x (and from k′ to x).
Compared to P , the additional non-colliders on Q are all on the directed path from k to x (or k′ to x). They are not in S
since k, k′ /∈ Anc[S], and thus Q has no non-colliders in S.

Compared to P , there is no collider on P that is not in Anc[S] and is still on Q by the fact that k, k′ are leftmost and
rightmost colliders on P that are not in Anc[S]. Therefore, x must be a collider on Q, or else Q is active given S and
u ̸⊥ v | S. Therefore all non-colliders on Q are not in S ∪ {x}. Every collider on Q is either x or a collider of P , which is
in Anc[S ∪ {x}]. Thus Q is active given S ∪ {x}. Therefore u ̸⊥ v | S ∪ {x}.

Next we show that DS ∩ src(S̄) = ∅: for contradiction assume that there exists a vertex a ∈ src(S̄) such that a ̸∈ S̄\DS ,
that is a ∈ src(S̄) and for some vertex u ∈ V, v ∈ S̄, v ⊥ u|S and v ̸⊥ u|S ∪ {a}.

Since v ⊥ u|S and v ̸⊥ u|S ∪ {a}, there exists a path P between v and u which is inactive when conditioned on S but is
active upon conditioning on S ∪{a}. Moreover, this path contains a vertex b that is a collider on P and satisfies: a ∈ Des[b]
and Des[b] ∩ S = ∅. Since Des[b] ∩ S = ∅, we have that b ∈ S̄. Furthermore, since b ∈ S̄, a ∈ src(S̄) and a ∈ Des[b],
this implies that b = a. Therefore, the path P takes the form: P = v · · · → a← . . . u. All the colliders on the path P either
belong to or have descendant in the set S ∪ {a}.

Now consider the path v · · · → a and note that it is active given S. Let k be the number of vertices between v and a on this
path v − v1 . . . vk → a. It is immediate that vk ∈ S since a ∈ src(S̄). However, since vk ∈ S, and since we condition on

14



Causal Discovery with Fewer Conditional Independence Tests

the set S, this should be a collider for the path Q to be active, which is not possible. Thus we get a contradiction, which
completes the proof.

B.1.2. TYPE-II SET ES

Proof of Lemma 4.5 for ES . We first show that if w ∈ ES , it must hold that y ∈ ES for any y ∈ Des(w): since w ∈ ES ,
there is u ∈ S and v, v′ ∈ S̄ \DS , such that u ⊥ v′ | S ∪ {v} and u ̸⊥ v′ | S ∪ {v, w}. We will show u ̸⊥ v′ | S ∪ {v, y}.

Since u ⊥ v′ | S ∪{v} and u ̸⊥ v′ | S ∪{v, w}, by Lemma 3.6 (note that the set “S” in the exposition of Lemma 3.6 can be
an arbitrary subset), we know that v′ ̸∈ Des[w]. Assume on the contrary that u ⊥ v′ | S ∪ {v, y}. Since u ⊥ v′ | S ∪ {v}
and u ̸⊥ v′ | S ∪ {v, w}, there is a path P between u, v′ that is active given S ∪ {v, w} but inactive given S ∪ {v} or
S ∪ {v, y}. This means that (1) y is a non-collider on P , (2) all colliders on P are in Anc[S ∪ {v, w}], (3) P has a collider
that is in Anc[w] \ Anc[S ∪ {v}].

Note that v′ ̸∈ Des[y] since y ∈ Des[w] but v′ ̸∈ Des[w]. In addition, we also have u ̸∈ Des[w] since u is in the
prefix vertex set S but w ∈ S̄. Therefore y being a non-collider on P means there is a collider x on P such that
y ∈ Anc(x). Note that this collider has to be in Anc[S ∪ {v, w}]. However, since y ̸∈ Anc[S ∪ {w}] and y ∈ Anc(x),
it must hold that x ∈ Anc[v], which means y ∈ Anc(v). Since y ∈ Des(w), this means v ∈ Des(w), which makes
Anc[w] \ Anc[S ∪ {v}] = ∅. This violates (3) above, a contradiction.

Next we show that ES ∩src(S̄) = ∅: if there exists w ∈ S̄\DS such that w ∈ ES ∩src(S̄). Then u ⊥ v′ | S∪{v} and u ̸⊥
v′ | S ∪ {v, w} for some u ∈ S and v, v′ ∈ S̄ \DS . Thus there is a path P connecting u and v′ such that P is active given
S ∪ {v, w} but inactive given S ∪ {v}.

Therefore all non-colliders on P are not in S ∪ {v, w}, and there is a collider x on P such that x ∈ Anc[w]. Note that since
w ∈ src(S̄), it must hold that x ∈ S. Since x is a collider, there is y ̸= u such that y → x on P . Since S is a prefix and
x ∈ S, we have y ∈ S. However, y is a non-collider on P , which contradicts P active given S ∪ {v, w} and completes the
proof.

B.2. Proof of Lemma 4.6

Lemma 4.6. Let S be a prefix vertex set. If w ∈ FS , then Des[w] ⊂ ES ∪ FS . Furthermore, FS ∩ src(S̄) = ∅.

Proof. We first show that if w ∈ FS , then for any y ∈ Des(w), we have y ∈ ES ∪ FS . Since w ∈ FS , we have
u ̸⊥ v | S, u ⊥ w | S ∪ {v}, and v ̸⊥ w | S for some u ∈ S and v ∈ S̄ \DS .

Since v ̸⊥ w | S, there is an active path between v, w given S. Consider extending this path by the directed path from w
to y. Note that none of vertices on the directed path from w to y are in S, since S is prefixed and w ̸∈ S. Therefore, this
extended path is also active given S, which means v ̸⊥ y | S.

Thus, if y ̸∈ FS , then it must hold that u ̸⊥ y | S ∪ {v}. This means there is an active path, denoted by P , between u
and y given S ∪ {v}. Consider extending this path by the directed path from w to y, denoted as Q (which exists in the
graph). Compared to P , the additional non-colliders on Q are not in S ∪ {v}: for S, this is because S is prefix, w ̸∈ S,
and all additional non-colliders are descendants of w; for v, this is because v ̸∈ Des(w) (by Lemma 3.8, u ̸⊥ v | S and
u ⊥ w | S ∪ {v}). Thus Q is active given S ∪ {v} unless y is a collider on Q. Since u ⊥ w | S ∪ {v}, the path Q
must be inactive given S ∪ {v}, which means y is a collider on Q. This means Q is active given S ∪ {v, y}. Therefore,
u ̸⊥ w | S ∪ {v, y}. Together with u ⊥ w | S ∪ {v}, we have y ∈ ES .

Next we show that FS ∩ src(S̄) = ∅. Assume on the contrary that w ∈ FS ∩ src(S̄). Since w ∈ FS , we have
u ̸⊥ v|S, v ̸⊥ w|S and u ⊥ w|S ∪ {v} for some u ∈ S and v ∈ S̄ \DS . By Lemma 3.8, we have v /∈ Des[w]. However,
since v ̸⊥ w | S, there must be an active path P between v and w given S. This path cannot have any vertex in S; otherwise
consider the first vertex that is in S; since v ̸∈ S and S is prefix, such vertex must be a non-collider which would make P
inactive given S. Therefore P is fully in S̄. Since w ∈ src(S̄), we must have P : v − · · · ← w. However since v ̸∈ Des[w],
there must be an edge→ on P . This means that there must be a collider on P . Since this collider is not in S, it makes P
inactive given S, a contradiction.

15



Causal Discovery with Fewer Conditional Independence Tests

B.3. Remarks

The above proofs suffice as intermediate results to show Theorem 4.4, which we proved in Section 4.2.

Regarding Lemma 4.7 in Section 4.3, we will prove it in Appendix C after proving Lemma 5.1, since it depends on
Lemma 5.1.

C. Missing Proofs of Causally Consistent Partition Graph Representations
C.1. Proof of Lemma 5.1

To prove Lemma 5.1, we will make use of the following lemma.

Lemma C.1. Let S ⊆ V be a prefix subset, then the following statements hold:

• u ⊥ v | S for all u, v ∈ src(S̄).

• S ∪ U is a prefix subset for any U ⊆ src(S̄).

Proof. We first prove condition one. For contradiction, we assume that u ̸⊥ v|S, which implies that there exists an active
path between u and v when conditioned on S. Let P = u− u1 . . . uk − v be the path and u1, . . . , uk be the vertices along
the path. Note that k > 0 as u and v are not connected; because an edge between u and v would mean that one of these
vertices is not a source node in S̄.

Consider u1 and note that there are two possibilities u→ u1 or u← u1. We start with the first case u→ u1. Since S is a
prefix subset and u ∈ S̄, u→ u1 implies that u1 ∈ S̄. Since no vertex in S̄ is conditioned upon, we have that the vertex u1

is not a collider on the path P and we have that the edge u1 − u2 is directed as u1 → u2. Repeating the same argument for
u2 and all the other vertices in the path, we see that the path P takes the form P = u→ u1 → · · · → uk → v. The previous
argument implies that v ∈ Des[u] and therefore does not belong to src(S̄), which is a contradiction to our assumption that
u, v ∈ src(S̄).

Now consider the other case where u ← u1. Note that since u ∈ src(S̄), it is immediate that u1 ∈ S. Furthermore,
irrespective of the orientation between u1 and vertex u2, it holds that vertex u1 is a non-collider on the path P . Moreover,
since P is an active path, u1 should not be conditioned upon. However, since we condition on S and as u1 ∈ S, we have a
contradiction.

In the above case analysis, we showed that there does not exist an active path between u and v when conditioned on S,
which implies that u ⊥ v|S and we conclude the proof for condition one.

In the remainder of the proof, we focus our attention on condition two. Consider any subset U ⊆ src(S̄). For contradiction
assume that S ∪ U is not a prefix subset, which implies that there exists a vertex v ∈ V \(S ∪ U) such that v ∈ Anc[u] for
some vertex u ∈ S ∪ U . Since S is a prefix subset, it is immediate that u ̸∈ S. Therefore, the only case is that u ∈ U . Note
that both u and v belong to the set S̄ and v ∈ Anc(u); both these expressions combined contradict the fact that u ∈ src(S̄).
Therefore, it should be the case that S ∪ U is a prefix subset and we conclude the proof.

Now we prove Lemma 5.1 restated below.

Lemma 5.1. Let S be a prefix subset. For any w ∈ S̄\DS , there is |Anc[w] ∩ src(S̄)| = 1 . Furthermore, for any other
w′ ∈ S̄ \DS , there is w ̸⊥ w′ | S if and only if Anc[w] ∩ src(S̄) = Anc[w′] ∩ src(S̄).

Proof. We first show that for any w ∈ S̄ \ DS , we have |Anc[w] ∩ src(S̄)| = 1. Since w ∈ S̄, it must hold that
|Anc[w] ∩ src(S̄)| ≥ 1. Assume now that there is w ∈ S̄ such that |Anc[w] ∩ src(S̄)| ≥ 2. Let v1, v2 ∈ Anc[w] ∩ src(S̄)
such that v1 ̸= v2. By Lemma C.1, we have v1 ⊥ v2 | S. Now consider the path P by stitching together the two directed
paths, one from v1 to w and another from v2 to w. All non-colliders on P are not in S since S is a prefix subset. The only
collider on P is w. Therefore P is active given S ∪ {w}. We have v1 ̸⊥ v2 | S ∪ {w}, which means w ∈ Dv1,S ⊂ DS , a
contradiction to w ̸∈ DS .

Next we show that for any other w′ ∈ S̄ \DS , we have w ̸⊥ w′ | S if and only if Anc[w] ∩ src(S̄) = Anc[w′] ∩ src(S̄).
For the if direction, denote s = Anc[w] ∩ src(S̄) = Anc[w′] ∩ src(S̄) and consider the trek by joining the two directed

16



Causal Discovery with Fewer Conditional Independence Tests

paths from s to w and from s to w′. Since this path has no colliders and it is fully in S̄ (since S is a prefix and
s ∈ S̄), it is active given S. Thus w ̸⊥ w′ | S. For the only if direction, assume on the contrary that w ̸⊥ w′ | S
but Anc[w] ∩ src(S̄) ̸= Anc[w′] ∩ src(S̄). Let P be the active path between w,w′ given S. Then all non-colliders on
P are in S̄ and all colliders on P are in Anc[S] = S. This means that P has no colliders; otherwise this collider is a
child of the vertex next to it, which is a non-collider that is in S̄. This means there is an edge from S̄ to S, which is a
contradiction with S being prefix. Since P has no colliders, it must satisfy P ∩ Anc[w] ∩ Anc[w′] ̸= ∅. However, since
Anc[w]∩src(S̄) ̸= Anc[w′]∩src(S̄), |Anc[w]∩src(S̄)| = 1 and |Anc[w′]∩src(S̄)| = 1, P ∩Anc[w]∩Anc[w′] ̸= ∅ ∈ S̄.
This means there is a non-collider on P that is in S, which would make it inactive given S, a contradiction.

C.2. Proof of Lemma 4.7

To prove Lemma 4.7, we will make use of the following results.
Lemma C.2. Let S be a prefix subset and w ∈ S̄ \ (DS ∪ src(S̄)). By Lemma 5.1, let Anc[w] ∩ src(S̄) = {v}. Then for
any u ∈ S, if there is no directed path from u to w that does not intersect src(S̄), then

u ⊥ w | S ∪ {v} .

Proof. Assume on the contrary that u ̸⊥ w | S∪{v}. Let P be an active path from u to w conditioned on v. If P ∩S ̸= {u},
then consider the last node on P that is in S. Since w ̸∈ S, this node must be pointing into a node in S̄ on P , which makes
this node a non-collider. However, this node belongs to S, which means P is inactive given S ∪ {v}, and thus P ∩ S = {u}.

There is also no collider on P . Otherwise consider the first collider; it will be in S̄ since P ∩ S = {u}. However, since
P is active, it will be in Anc[S ∪ {v}]. This is impossible since v ∈ src(S̄) and from Lemma C.1, we know that S ∪ {v}
is prefixed. Therefore, P must be a directed path from u to w, where the node x adjacent to u is in S̄. This means that
x ∈ Anc[w]. If x ̸∈ src(S̄), then P is a directed path from u to v that does not intersect src(S̄). If x ∈ src(S̄), since
Anc[w] ∩ src(S̄) = {v}, then it must hold that x = v. This means P is inactive given S ∪ {v}, a contradiction.

Lemma C.3. Let S be a prefix subset and v ∈ src(S̄). Then for any w ∈ S̄, either v ⊥ w | S or w ∈ Des[v].

Proof. Suppose w ̸∈ Des[v]; we will show that v ⊥ w | S. Assume on the contrary that v ̸⊥ w | S. Let P be the active
path between v and w given S. If P intersects with S, then consider the last vertex on P that is in S. This vertex must be a
non-collider since w ̸∈ S. This contradicts P being active given S. Therefore, P is fully in S̄. Since v ∈ src(S̄), we have
P : v → . . . w. Since w ̸∈ Des[v], there must be a collider on P . However, this collider is not in S and S is prefix, which
means that P is active given S, a contradiction.

We now prove Lemma 4.7, restated below.
Lemma 4.7. Let S be a prefix vertex set. For w ∈ S̄ \DS , if w ̸∈ src(S̄) and there is no covered edge from Anc[w]∩ src(S̄)
to Anc[w], then w ∈ ES ∪ FS .

Proof of Lemma 4.7. Assume w ̸∈ src(S̄). For contradiction, assume that there is no covered edge from Anc[w] ∩ src(S̄)
to Anc[w] and w ∈ S̄ \ (DS ∪ ES ∪ FS).

Since w ̸∈ src(S̄), there is v ∈ src(S̄)∩ Anc[w]. As v ∈ Anc[w], there is a directed path from v to w. Consider the longest
directed path P from v to w. Let v′ be the adjacent vertex to v on P , i.e., P : v → v′ · · · → w. By Lemma 4.5 and w ̸∈ DS ,
we must have v′ ̸∈ DS . Since v → v′ is not a covered edge, there could only be two cases:

• There is u → v such that u ̸∈ Pa(v′). Since v ∈ src(S̄), we must have u ∈ S. Note that u ̸⊥ v | S and v ̸⊥ w | S
and the second condition of the lemma is not met. We must have u ̸⊥ w | S ∪ {v}. By Lemma C.2, there must exist
a directed path Q from u to w that does not intersect src(S̄). Consider the path between u and w′ by joining Q and
the directed path from v′ to w. Since this path does not intersect with S ∪ src(S̄) and w is the only collider on it, we
know that this path is active given S ∪ {v} ∪ {w}. Thus u ̸⊥ v′ | S ∪ {v} ∪ {w}. Since the second condition of the
lemma is not met, we must have u ̸⊥ v′ | S ∪ {v}. By Lemma C.2, there must exist a directed path from u to v′ that
does not intersect src(S̄). Since u ̸∈ Pa(v′), this path has at least length two. Let k be the vertex on this path such
that k → v′. Note that v → v′ ← k. Therefore v ̸⊥ k | S ∪ {v′}. Since v′ ̸∈ DS , we must have v ̸⊥ k | S. By
Lemma C.3, we must have k ∈ Des[v]. Thus we can increase the length of the directed path P by replacing v → v′

with v → · · · → k → v′. This contradicts P being the longest directed path from v to w.

17



Causal Discovery with Fewer Conditional Independence Tests

• There is k → v′ such that k ̸∈ Pa(v). Note that v → v′ ← k. Therefore v ̸⊥ k | S ∪ {v′}. Since v′ ̸∈ DS , we must
have v ̸⊥ k | S. By Lemma C.3, we must have k ∈ Des[v]. Thus we can increase the length of the directed path P by
replacing v → v′ with v → · · · → k → v′. This contradicts P being the longest directed path from v to w.

This completes the proof.

C.3. Remarks

The above proofs suffice as intermediate results to show Theorem 3.3, which we proved in Section 5.

D. Missing Proofs of Interventions
D.1. Proof of Lemma 6.1

Lemma 6.1. Let S be a prefixed vertex set. Given an intervention on vertices I ⊆ V . For any u ̸∈ I , we have u ̸⊥I v for
some v ∈ I \ S if and only if u ∈ Des(I \ S) \ (I \ S).

Proof. For each v ∈ I , denote Des(v, I) as the set of u ∈ I such that u ̸⊥I v. We first show that Des(v, I) is equal to the
set of descendants of v such that there exists a directed path from v which is not cut by I .

Let u /∈ I such that u ⊥I v. If u ∈ Des(v, I), then there exists a directed path from v to u in the modified DAG GI , which
means it is active given ∅, a contradiction. Therefore the only if direction is proven.

For the if direction, let u /∈ I such that u ̸⊥I v. Then there is an active path P : u− · · · − v in the modified DAG GI . Since
P is active given ∅, there is no collider on P . Furthermore, since all incoming edges to any vertex in I are removed in the
modified DAG, this path must be P : u← · · · ← v and satisfies P ∩ I = {v}. Thus u ∈ Des(v, I).

Next we show that ∪v∈I\SDes(v, I) = Des(I \ S) \ (I \ S). This will prove the lemma.

Since Des(v, I) is equal to the set of descendants of v such that there exists a directed path from v which is not cut by
I , it is clear that ∪v∈I\SDes(v, I) ⊆ Des(I \ S) \ (I \ S). Now let u ∈ Des(I \ S) \ (I \ S). Then there is v ∈ I \ S
such that u ∈ Des(v). Consider the directed path from v to u and let v′ be the last vertex on this path that is in I . Then
u ∈ Des(v′, I). By the fact that S is prefix, we have from v ̸∈ S that v′ ̸∈ S. Thus u ∈ Des(v′, I) ⊂ ∪v∈I\SDes(v, I)
and ∪v∈I\SDes(v, I) ⊇ Des(I \ S) \ (I \ S). We therefore have ∪v∈I\SDes(v, I) = Des(I \ S) \ (I \ S).

D.2. Proof Lemma 6.2

Lemma 6.2. Let S be a prefix subset. Given an intervention I and v ∈ I \ S, denote HI
S(v) = {u ̸∈ S ∪ Des[I \ S] : u ̸⊥

v | V \ Des[I \ S]}.12 Then Pa(v) \ (S ∪ Des[I \ S]) ⊆ HI
S(v) ⊆ Anc(v) \ (S ∪ Des[I \ S]).

Proof. On one hand, let u ∈ Pa(v) \ (S ∪ Des[I \ S]). Clearly u ̸∈ S ∪ Des[I \ S] and u ̸⊥ v | V \ Des[I \ S]. Thus
u ∈ HI

S(v), which proves Pa(v) \ (S ∪ Des[I \ S]) ⊆ HI
S(v).

On the other hand, let u ∈ HI
S(v). Since u ̸⊥ v | V \Des[I \S], let P : u−· · ·− v be the active path given V \Des[I \S].

Then all non-colliders on P are in Des[I \ S], and all colliders on P are in Anc[V \ Des[I \ S]]

Note that Des[I \ S] ∩ Anc[V \ Des[I \ S]] = ∅. Otherwise let w ∈ Des[I \ S] ∩ Anc[V \ Des[I \ S]]. Since
w ∈ Anc[V \ Des[I \ S]], there is w′ ̸∈ Des[I \ S] such that w′ ∈ Des[w]. However w ∈ Des[I \ S], which means
w′ ∈ Des[I \ S]. A contradiction.

If P has a collider y → x ← z, then z is either a non-collider or v. Either case we have z ∈ Des[I \ S]. This means
x ∈ Des[I \ S]. However, x ∈ S ∪ Anc[V \ Des[I \ S]] and Des[I \ S] ∩ Anc[V \ Des[I \ S]] = ∅. A contradiction.
Thus there is no collider on P .

Denote the vertex next to u on P as t, i.e., P : u − t − · · · − v. Then t is either a non-collider or v. Either case
t ∈ Des[I \ S]. Therefore it must be u → t, otherwise u ∈ Des[I \ S]. Furthermore, as P has no colliders, it must be
P : u→ t · · · → v. Thus u ∈ Anc(v). Together with u ̸∈ S ∪ Des[I \ S], we have u ∈ Anc(v) \ (S ∪ Des[I \ S]). This

12Note that Des[I \ S] can be obtained via Lemma 6.1 and (Des(I \ S) \ (I \ S)) ∪ (I \ S).

18



Causal Discovery with Fewer Conditional Independence Tests

proves HI
S(v) ⊆ Anc(v) \ (S ∪ Des[I \ S]).

D.3. Proof of Lemma 6.4

Lemma 6.4. Let S be a prefix vertex set. Then ∀w ∈ JI
S , we have Des(w) ⊆ JI

S . Furthermore, JI
S ∩ src(S̄) = ∅.

Proof. Assume on the contrary that v ∈ JI
S but w ∈ Des(v) such w ̸∈ JI

S . Since v ∈ JI
S , there could be two cases:

• v ∈ Des(I \ S). Then clearly w ∈ Des(v) ⊆ Des(I \ S). A contradiction.

• v ∈ I \ S and there is u ∈ HI
S(v) ∩ S̄. Then w ∈ Des(v) ⊂ Des(I \ S). A contradiction.

Next we show that src(S̄) ∩ JI
S ̸= ∅. Note that by src(S̄) ∩ Des(S̄) = ∅ and Des(I \ S) ⊆ Des(S̄), we have

src(S̄) ∩ Des(I \ S) = ∅. In addition, for any v ∈ src(S̄) ∩ (I \ S), by Lemma 6.2, we have HI
S(v) ⊂ Anc(v) \ S = ∅.

Thus src(S̄) ∩ {v ∈ I \ S : HI
S(v) ∩ S̄ ̸= ∅} = ∅. We then have src(S̄) ∩ JI

S = ∅.

D.4. Remarks

The above proofs suffice as intermediate results for proving Theorem 6.5. Then together with Lemma 6.6 (proven in
Section 6.1), we can prove Theorem 3.4, which is given in Section 6.2.

E. Details of Numerical Experiments
Implementation Details. For FCI and RFCI, we used the implementations in Kalisch et al. (2024), which is written in R
with C++ accelerations. For PC and GSP, we used the implementation in Squires, which us written in python. Our method,
CCPG, is written in python. The acceleration of R (with C++) can be viewed by comparing two implementations of PC
(stable) in Figure 6.

Remark on causal sufficiency. Among the constraint-based methods, we marked the ones that do not assume causal
sufficiency in Figure 7. These methods run additional tests to check for unobserved causal variables, and therefore might
require more samples compared to, e.g., PC, since the underlying system we test on satisfies causal sufficiency.

19


