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ABSTRACT

Does Comprehending the main idea of a 2-hour movie and Counting the birds
appearing in a 15-second clip really warrant the same video processing pipeline?
Recent successes of Mixture-of-Experts (MoE) architectures in language modeling
have inspired explorations of MoE applications. However, existing MoE models
mainly focus on Large Language Models (LLMs) while neglecting Vision Tower
(VT) in multimodal models. MoE-LLMs are predominantly designed for capacity
scaling, whereas VT contains three fundamentally distinct modules, indicating that
directly copying MoE-LLM designs to VT is unlikely to be effective. Inspired
by the emerging Task-Aware idea, we argue that MoE-VT architectures should
embody the principle of Right Tool for the Right Job, providing suitable processing
to different tasks. To address this, we propose Task-Aware Mechanism (TAM),
a MoE-VT architecture that employs Hybrid Gating Strategy to endow VT with
intrinsic Task-Aware ability. To equip the framework with task-aware capabilities,
we further introduce a compact Inductor module with only 0.1B parameters, trained
on our new dataset TA-116k. With the Inductor, TAM could dynamically determine
the appropriate task category, the optimal resolution and number of frames to
sample, based on the user query and the length of video. Leveraging TAM, we
introduce the TallVA-8B-A7B model, which outperforms current SOTA methods
across various benchmarks on comparable LLMs, demonstrating that TAM enables
video understanding models to become more holistic on diverse tasks.

1 INTRODUCTION

The recent breakthroughs in large language models (LLMs) |OpenAll (2023)); |Group| (2025)) have
sparked the emergence of large vision-language models (LVLMs) Zhang et al.| (2024c); |Yang et al.
(2023)); Bai & Keqin Chen| (2025)); Hong et al.|(2024), which integrate visual and linguistic capabilities
for vision-centric multimodal understanding. Influenced by the Scaling Law of LLMKaplan et al.
(2020), traditional paradigms in LVLMs have focused on improving performance through scaling
up model with more parameters. However, larger single-model LVLMs often consume multiples
of computational resources compared to smaller counterparts, yielding marginal performance gains.
The success of Mixture-of-Experts (MoE) architectures has challenged the conventional preference
for monolithic models. More crucially, MoE has reignited interest in the concept of Task-Aware idea
Li et al.[(2024c); [Ranasinghe et al.[(2024); |Tan et al.| (2024); |Ataallah et al.| (2024)).

Task-Aware can be defined as "within a unified model architecture, the ability to perceive distinct
task characteristics, dynamically select optimal tools, experts or processing pipelines, and achieve
better performance with less or comparable activation parameters”. Interpretable MoE architectures,
frame-selection methodologies Ranasinghe et al.|(2024)); [Tan et al.| (2024) in video understanding
models, and token-selection strategies, they collectively embody Task-Aware idea.

Current LVLMs have widely adopted sparse MoE architecture for LLM (MoE-LLM)|Zhang et al.
(2024a)); [Lin et al.| (20244a), proven effective in scaling LLM capacity. However, research on the
Vision Tower (VT) remains under-explored and lacks systematic exploration. As the "eye of LVLMs",
the VT, typically composed of a Vision Encoder(VE), frame processing pipelines, and Projector,
critically determines the quality of visual information available to LLM. A few attempts|Zhang et al.
(2024a)); Riquelme et al.| (2021); L1 et al.| (2024b) have replicated MoE-LLM designs to scale VT
parameters, yielding only marginal gains, indicating that merely expanding capacity is insufficient.
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Figure 1: Comparison of common paradigms (a) and TAM (b). (a) Common paradigms, they usually have
single pipeline for all tasks, such as max_fps=2 and max_frame=60. (b) TAM utilizes Inductor to perceive video
length and user query, then assigns appropriate frame numbers and resolutions for different tasks.

The main issue lies in the rigid visual processing paradigm of conventional VTs: all videos are
uniformly converted into frame sequences with a fixed count and resolution, as shown in Fig.[T(a).
It neglects the decisive role of the User Query in defining task requirements. For the same video,
different queries may demand entirely different visual information—some requiring high-resolution
frames for fine-grained recognition, while others need high-frame-rate for temporal dynamics.

This analysis reveals that the key to advancing LVLMs lies in developing a task-aware VT. Such a
VT should adaptively decide video processing strategies based on the user query’s intent, providing
proper visual frames to LLM. The MoE paradigm, which advocates routing inputs to specialized
experts, aligns naturally with this task-aware insights. To design an efficient, suitably gated MoE
mechanism for different components in VT, there’re two critical challenges:

(1) Lack of Datasets. Open-source dataset categorizing visual task metadata (e.g. user queries,
video duration, resolution) doesn’t exist. Former efforts mainly focus on semantic classification
without considering task-specific visual requirements.

(2) Lack of Adaptive Gating Strategies. Since VT contains discrete stages, traditional Soft-Gating
MOoE strategy could not be uniformly applied across all components. For instance, recent work has
demonstrated success by employing Hard-Gated VE for diverse feature extraction tasks, suggesting
that Hard-Gating based on task-type may be available. Soft-Gating, as shown in Fig. [3[a), improves
the stability of VE, whereas Hard-Gating, as illustrated in Fig. [3(b), demonstrates superior capability
in detecting task types. Employing either strategy in isolation appears to be suboptimal.

To address these challenges, we propose Task-Aware Mechanism (TAM). There are three primary
components in TAM. Task classification framework, and TA-116K datasets based on user query. A
0.1B text-only Inductor module that determines task types and the number of frames and resolution,
according to user query and video length. And finally, the Hybrid Gated MoE-VT which provides
tailored pipelines for different tasks. We summarize our primary contributions as follows:

e We introduce TAM, a Hybrid Sparse Gated MoE-VT architecture(Fig.[T[b)). We discover that MoE-
ViT and Dynamic Frame Number & Resolution (DFR) exhibit strong synergy—neither component
alone explains the performance gains, but their combination yields substantial improvements.

e We categorize video understanding tasks according to their sensitivity for frame count and resolu-
tion. We’ll release TA-116K, 116K annotated queries from selected open-source datasets.

e Following TAM, we trained TallVA(Task Aware Large Language-Vision Assistant) with 8B
total params and 7B activate params. When using comparable LLMs (Qwen2-7B, LLaMA3-8B,
InternLM?2.5-7B, etc.), TallVA outperforms the former SOTA across scenarios, even surpassing
models based on much stronger LLMs in many benchmarks (Tab. [I), demonstrating the effectiveness
of TAM and provide a reference for future research. We also visualize the results as radar chart Fig. [6]

We provide detailed cases of TallVA in Fig.[8] We envision our work inspiring future research on
MOoE design, and promoting Task-Aware idea to be applied to build more holistic multimodal models.
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2 RELATED WORK

Single LVLMs. The evolution of LVLMs builds on vision-language alignment frameworks such
as Flamingo |Alayrac et al.| (2022) and BLIP-2 [Li et al.| (2023a)), with the LLaVA series |Liu et al.
(2023} 12024bjic); Zhang et al|(2024b); [Li et al.| (2024a) pioneering open-source models through
visual instruction tuning. Scaling efforts span stronger vision encoders Bai et al.| (2023));|Chen et al.
(2024b); ILin et al.[(2023); [Liu et al.|(2024a), connector optimization (Cha et al.| (2024); [Lin et al.
(2024b)), and larger multimodal corpora McKinzie et al.|(2024); |Li et al.|(2024d)). Video extensions
Li et al.[(2024c) tackle temporal modeling through token compression, but still face context window
limitations. Recent works further improve visual token efficiency via dynamic token merging Jin
et al.| (2024)), instruction-guided visual token pruning [Huang et al.|(2024), spectrum-preserving token
merging Tran et al.|(2024), and adaptive positional encoding Zeng et al.|(2024).

MoE-LVLMs. Mixture-of-Experts (MoE) architectures enhance LVLMs by conditional computation,
as seen in language models [Fedus et al.|(2022); Dai et al.[(2024). MoE-LLaVA [Lin et al.| (2024al)
demonstrates the efficacy of sparse computation for visual reasoning, while DeepSeek-VL2 Wu et al.
(2024b) achieves modality-specific expert specialization. CuMol|Li et al.| (2024b)) enables cross-modal
knowledge transfer via shared gating, and DynFocus |[Han et al.| (2024) optimizes spatiotemporal
routing. Key challenges include load balancing and cross-modal routing, addressed through variance
regularization Zoph et al.| (2022), contrastive learning Mustafa et al.|(2022)), and hierarchical routing
Gupta & Yip|(2024). Moreover, Chen et al.|(2023) explored the adaptive vision models.

LVLMs with Task-Aware Insights. Task-Aware has been gaining attention with the application
of MoE architecture, and the core idea is "Right Tool for the Right Job", aiming to find a proper
processing method for different tasks. Some video understanding models employ strategies to choose
suitable frames, and they meet Task-Awaring Insights well. Early methods used uniform sampling
Maaz et al.|(2023)) or relevance scoring |Yu et al.|(2023) in frames choosing, and modern approaches
include dynamic token compression [Li et al.|(2024c)), lightweight frame selection Ranasinghe et al.
(2024); [Tan et al.| (2024), hierarchical processing|Azad et al.|(2025)), and memory-augmented retrieval
Ataallah et al.|(2024). MoE variants like DynFocus Han et al.| (2024) and ChartMoE Xu et al.| (2024)
enhance efficiency via specialized experts. Since Vision Tower(VT) hasn’t received much attention,
improvements to VT will yield more performance gains at lower consistencies. In conclusion, as
a part that processes video directly, MoE-VT is more suitable to validate the Task-Aware idea. A
successful practice[Wu et al.| (2025)) uses multiple Vision Encoders with different specifications to
help models get more information such as depth and color, making the model more holistic.

3 METHODOLOGY

3.1 PRELIMINARY

MOoE architecture. The router assigns tokens to experts and calculates the weight matrix W &€
RN*M ‘\where N and M represent the number of tokens and experts, respectively. In the Dense MoE
method, each token is assigned to all experts, and the output O is computed as:

M
0i = Z W.,E;(I;), O &RN*Pou 0
j=1
Here, E; denotes the j-th expert, D denotes the dimension, and I € R *Pin is the input. To reduce

computational costs, the Sparse MoE method assigns each token to only the top- K experts with the
highest weights. The recalculated weight matrix is:

W' = Softmax(TopK(W)), W' e RN*M @

Here, TopK(WW) retains only the top-K elements in each row of W, setting all other elements to zero.

Weight Initialization and Gating Strategy. Former MoE models initialize their experts with unique
weights, while Co-upcycling [He et al.| (2024); [Komatsuzaki et al.|(2023) initializes all experts with
the same weights derived from a pre-trained checkpoint. Soft-gating employs a trainable network to
compute W, offering high performance but increasing training complexity; in contrast, hard-gating
uses algorithms to compute W, simplifying training and facilitating hypothesis validation (Fig. [3).
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Figure 2: Overview of our work. (a) Considering video infos and user queries, we organized about 10k pieces
of data and came up with 8 task classifications, according to their different sensitivities to resolution and frame
number. (b) In the training stage 1, we use classification strategies to organize 116k queries and label them with
Deepseek-R1 then train the Inductor. (c) Training stage 3. LLM has been adapted to Dynamic Frames after stage
2, then we initialize the VE and Projector in MoE-VT by Co-Upcycle Initialization and train.

3.2 TASK-AWARE MECHANISM

Classification strategy, Fig. 2{a). We collected 10k representative queries from various video
understanding datasets Zhang et al.| (2024c); |Chen et al.| (2024a); Farré et al.| (2024); Rawal et al.
(2024)); Share| (2024); Maaz et al.| (2024])). We classify the tasks into 8 categories according to their
intrinsic meaning and, most importantly, their sensitivity to resolution and frame number. These
categories are not mutually exclusive, as many tasks exhibit multiple attributes simultaneously. For
example, Temporal Sequence Positioning is much more sensitive to the number of frames than
resolution, while the task of Text Recognition (OCR) prefers higher resolution than frame number.
Further implementation details are provided in Appendix A.

Inductor and Dynamic Frames Choosing, Fig.[2(b). As outlined in the Introduction, to develop a
more robust router capable of considering both query and video length, we designed the Inductor.
Specifically, we chose a lightweight pre-trained text model, SmolLM2-135M-Instruct |Allal et al.
(2025)), as the base model for the Inductor. The last layer of the Inductor is not the typical Im-head
for text output, but a sequence classification layer capable of giving Softmax probabilities array.

In previous paradigms, all tasks shared the same frame processing pipeline. Videos are first subjected
to uniform frame sampling and fed into the VE, followed by spatial pooling of the patch outputs(e.g.,
from 27 x 27 to 14 x 14), and finally to the LLM through Projector. Since we have established
a task categorization strategy and systematically analyzed their sensitivity to resolution and frame
count, we leverage this to dynamically allocate different frame numbers and resolutions across tasks.
Specifically, given a fixed maximum context length, the upper bound for frame count is set to 120
following previous works, while each frame maintains a resolution of R x R.

Hybrid Sparse Gating Strategy, Fig.[2(c). We apply the Sparse Soft-Gating MoE Strategy for the
VE. Given that VE employs transformer architecture, the Soft-Gated design effectively enhances
stability when handling complex tasks. For the projector, we employ Hard-Gating Resolution-specific
Projectors, each designed exclusively for a particular resolution. This Hybrid Gating Strategy is also
shown in Fig. [T|(b). Through ablation studies in Sec.4.3|and Tab.[3] we demonstrate that our Hybrid
Gating Strategy maintains low activated parameters, taking the distinct characteristics of the VE and
Projector into account, enhancing overall performance.
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3.3 THREE-STAGE TRAINING RECIPES

Data Collecting and Inductor Training. In stage 1(Fig. [2[b)), we train the Inductor with our
TA-116K dataset. We select 116K queries from open-source datasets |Li et al.|(20244); |[Zhang et al.
(2024c), then annotate these queries with the classification strategy and Deepseek-R1 DeepSeek-Al
(2025)), the details of annotation can be found in Appendix A. Each element is a pair as (fext query,
classification label). Fig.[[a) shows the distribution of data, and the details of the Inductor training
sets can be found in Appendix E and Sec. [4.1]

Training LLM to Adapt Dynamic Frame Number/Resolution. In Stage 2, we surprisingly find
that the LLM should be trained prior to the Projector in TAM, contrary to the classical paradigm Li
et al.| (20244a); Liu et al.| (2023} 2024bjc) where Projector training is conducted first to align the vision
side with the LLM. After multiple unsuccessful attempts using standard methodologies, we achieved
improved results by prioritizing LLM training at this stage. This represents an interesting training
paradigm, which we will comprehensively investigate in Sec.[4.3]

MoE Initialization and Training. In stage 3(Fig.[2|(c)), we train all components of TallVA except
the Inductor (trained in stage2, Fig.[5). The MoE initialization is performed through Co-Upcycle
approach, namely, we duplicate each MLP layer in the VE in Stage 2 four times and append randomly
initialized gating networks. Meanwhile, the Projector is alse replicated 4 times and configured
to process four distinct input resolutions separately. This implementation results in a Soft-Gating
architecture for the VE and a Hard-Gating mechanism for the Projector. For the Soft-Gated VE,
we incorporate an auxiliary loss function to ensure a balanced workload distribution, with technical
details presented in Sec. The training data composition and proportions across Stages 2-3 are
illustrated in Fig. f[b) , where Stage 3 accounts for 68% of the total training data.

4 EXPERIMENT

We train TallVA with a mixture of open-source datasets, which is demonstrated in Fig. E], then we
conduct comprehensive evaluation to verify its performance with various benchmarks and ablation
studies. We also perform qualitative analysis, providing visualization charts and cases.

4.1 IMPLEMENTATION DETAILS

As illustrated in Fig. 4] we use essentially the same training data as the baseline, with minimal
additional data to prevent overfitting (details in Appendix B).
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Table 1: Comparisons between TallVA and other SOTA LVLMs on competitive benchmarks. Boldface
indicates the highest score, and underlined scores denote the second-highest. All scores are averaged over at
least 3 runs. Models marked with  employ more powerful LLMs(Qwen2.5-7B, Qwen2-72B |Qwen-Team| (2025;
2024)); we gray them out to ensure fair comparison. Scores with * outperform the models with stronger LLM.

General Video Understanding Temporal Reasoning Long Video Understanding
,QP‘ acy o W 10 ‘@S\ N asS ¢|\C\‘ A

N B et ot aon 1Q o 100 qU qu
Model-Params N a® w deow‘ o %OSCY\ v orct? et ,W\M’C \/‘“‘%\]‘L W W
NVILA-8B § 60.9 68.1 64.1 54.3 65.4 82.2 69.7 57.7 - 49.5
LLaVA-OneVision-72B 60.8 56.7 66.2 62.0 66.9 79.4 67.1 63.2 66.4 47.2
VideoLLama2.1-7B 53.0 57.3 54.9 53.1 54.9 75.6 56.8 - 57.4 32.7
Qwen2-VL-7B 57.4 66.0 63.2 66.7 62.3 81.2 65.8 55.6 69.4 -
InternVL2-8B 56.3 63.1 58.6 - 63.5 82.5 66.0 54.6 64.0 38.4
LLaVA-OneVision-7B 56.6 56.7 58.2 60.1 57.1 79.4 64.2 56.3 64.7 46.9
LLaVA-Video-7B 56.5 58.6 63.3 57.3 67.9 83.2 65.4 58.2 70.8 44.8
MiniCPM-V-2.5-8B 56.1 62.3 60.9 64.5 64.4 80.3 66.2 56.1 66.8 41.7
TallVA-8B-A7B(Ours) 61.3* 64.5 65.6 75.9% 69.1% 84.0* 68.8 59.6* 68.5 53.4%

Following the Baseline, We use Siglip-400M as VE, two-layer MLP as Projector, and Qwen2-7B as
LLM. Full settings and hyperparameters can be found in Appendix E. The learning rate follows:

LR = LRy -+/BS/BS, 3)

where we set 2.5e-5 for LLM and 5e-6 for VE. To achieve load balance in MoE-VE, we use auxiliary
losses Zoph et al.[(2022)), where L, is the next-token prediction loss, o = le-3, a, = Se-4:

L= £0ri + Oébﬁb + az['z 4)

4.2 MAIN RESULTS

Comparison with former SOTA LVLMs that Use Same LLM. In Tab. [T, we compare TallVA
with previous SOTA models, and we also present a radar chart(Fig. [6) to visualize the outstanding
performance of TallVA. We selected 10 challenging tasks|Fu et al.| (2024));|L1 et al. (2023b); Mangalam;
et al.|(2023); Xiao et al.| (202 1)); Patraucean et al.|(2023));|Yu et al.|(2019);[Zhou et al.| (2024)); Wu et al.
(2024a); [Liu et al.| (2024d) spanning 3 evaluation categories: General Video Understanding, Temporal
Reasoning, and Long Video Understanding. For benchmarks containing open-ended questions, we
use GPT-3.5-turbo-1106 to compute the average score of multiple evaluations, following the settings
of the baseline. All the other data presented in Tab. [T| are sourced from either the GitHub pages or the
leaderboards of corresponding benchmarks. Overall, TallVA achieves superior results on the majority
of benchmarks, surpassing all models that employ the same LLM.

Comparison with LVLMs that Use Stronger LLM. Notably, we also compare TallVA against
current open-source SOTA video understanding models presented in the gray-shaded section of
Tab.[I] These models employ much stronger LLMs compared to Qwen2-7B, with some even utilizing
extensive private datasets. The evaluation scores highlighted in green in Tab. [T|demonstrate that
TallVA surpasses at least two strong baseline models. This remarkable performance validates the
effectiveness of the Task-Aware design in constructing our MoE-VT framework.

Synergy of MoE and DFR. A natural question is whether improvements stem from MoE capacity or
query-aware routing. As shown in Tab. [3(e), MoE-ViT alone decreases performance (—2.7%), while
DFR alone yields modest gains (+2.8%). However, combining MoE with DFR produces substantial
improvements (+12.1%). This synergy suggests that MoE experts specialize effectively only when
receiving task-appropriate visual inputs via DFR. Additional MoE isolation experiments are provided
in Appendix I. This is an important phenomenon we observed in our experiments, which indicates
that the combination of DFR and MoE-VT allows the MoE-VT with more parameters to achieve
significant performance improvements on tasks with different frame rates and resolutions.
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Table 2: Discussion on Inductor performance and efficiency of TallVA.

Model LLaVA-Video-7B Qwen2-VL-7B TallVA-A7B

Model - Param Acc Time -
FLOPs 1.0844 * 10'7 1.1732 % 10'7 1.1976 * 107
SmolLM - 135M 86.5% 61.0s ; -
SmolLM2 - 135M 91.7% 550 (b) Study of models’ efficiency. The efficiency of TallVA
SmolLM2 - 360M 93.5% 7845 is comparable to other LVLMs based on Qwen2-7B.
Qwen2.5 - 0.5B 92.6% 101.2s
top-kin 4 k=1 k=2 k=4

(a) Performance of Different Models Used as FLOPs 1.1519 * 107 1.1976 * 107 1.2603 * 107

Base Model for Inductor. Acc tested on test

set, Time tested on 100 samples. (c) Study of efficiency on different experts numbers.

Table 3: Ablation studies for different training stages and components of TallVA.

MVBench Videomme MLVU-test MVBench Videomme MLVU-test
Baseline (no training) 58.6 62.3 44.8 TallVA after stage 1 59.5 63.5 46.1
+ Dynamic Frames Number & Resolution 593 63.2 452 + train LLM only 61.8 64.4 48.5
+ Time/Task Instruction in Prompt 59.2 63.5 44.9 + train Projector only 579 62.8 422
+ combination of the above two 59.5 63.5 46.1 + train VE and Projector 48.3 59.1 327
(a) Study for different methods in Stage 1(not trained). (b) Study of Training Priorities in Stage 2.
MVBench Videomme MLVU-test MVBench Videomme MLVU-test
TallVA after stage 2 (single Projector) 61.8 64.4 485 TallVA after stage 2 (single VE) 61.8 64.4 485
+ soft MoE-VE (top2 in 4) 63.9 65.1 50.7 + soft MoE-Projector (top2 in 4) 61.9 64.0 48.5
+ hard MoE-VE, based on task type 56.4 58.7 35.6 + soft MoE-Projector (top2 in 8) 61.6 63.8 482
+ soft MoE-VE (top2 in 8) 63.2 63.8 50.0 + hard MoE-Projector, based on resolution 62.6 64.7 49.3
(c) Routing Strategies for Vision Encoder. (d) Routing Strategies for Projector.

ActivityNet-QA MVBench MLVU-Test Avg Change

Baseline 56.5 58.6 44.8 +0%

+ soft MoE-VE (top2 in 4) 55.4 56.7 435 —2.7%
+ Dynamic Frames Number & Resolution (DFR) 58.6 59.5 46.1 +2.8%
+ MoE / DFR (TallVA) 61.3 64.5 534 +12.1%

(e) The synergy of MoE and DFR produces effects far greater than using them individually.

4.3 ABLATION STUDIES

Ablation Study in Stage 1. In Stage 1, we trained the Inductor model, which serves as the core
module of TAM for video duration-aware question classification. The Inductor receives both video
duration information and user queries to determine question categories. Starting from the base model,
we incrementally incorporated two key components: Dynamic Frames Number and Resolution
(hereafter referred to as DFR), along with Time/Task Instruction. Through systematic ablation
experiments as Tab. Eka), we demonstrated the effectiveness of these enhancements.

Ablation Study of Training Priorities in Stage 2. As mentioned in Sec.[3.3] we prioritize LLM
training in Stage 2(Fig.[3). Since the common paradigms [Li et al.| (2024a)); [Liu et al| (2023}, 2024bic)
either trained the Projector or trained the entire VT first, this finding surprised us. While training
the Projector in Stage 2 was expected to enhance performance, we observed significant performance
degradation instead. Through ablation experiments as Tab.[3(b), we argue that the LLM was most
profoundly impacted by Dynamic Frames, since it had previously only handled fixed frame numbers
and resolutions. The loss curve under different training methods can be found in Appendix H.

Study on Gating Strategies for VE and Projector. We demonstrate that in models like TAM, the
VE achieves better performance improvements when employing Soft-Gating. In contrast, imple-
menting Hard-Gating based on task-type negatively impacts model stability, leading to performance
degradation. Conversely, for the Projector module with only a limited number of layers, the benefits
of Soft-Gating are limited compared to resolution-based routing mechanisms. Experimental results
presented in Tab. [3[c) and Tab. [3[d) validate the effectiveness of our Hybrid Gating Strategy. Addi-
tionally, we provide expert-swap and routing-scramble experiments in Appendix I to demonstrate
that MoE experts are not interchangeable.
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Table 4: The robustness analysis of the Inductor module.

Confidence 0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 All

Inductor Acc 0.59 0.73 0.84 0.93 0.98 92.3%
TAM Acc 0.39 0.47 0.61 0.70 0.75 68.2%
Baseline Acc 0.36 0.45 0.56 0.63 0.67 63.1%
Sample Numbers 136 544 1679 5212 2429 10000
Percentage 1.4% 5.4% 16.8% 52.1% 24.3% 100%

(a) Calibration analysis on 10k held-out samples. TAM outperforms baseline across all confidence buckets.

Methods Original Data Paraphrase@DS Paraphrase@GPT

Acc@Inductor 91.4% 90.2% 90.5%

(b) Paraphrasing robustness. Minimal accuracy drop confirms generalization beyond specific phrasings.

ActivityNet-QA
Expertl

HEEE NN =N

LongVideoBench
9 613 MVBench

(val)

Task Type
w T o~

Expert2

Videomme . ... . .
56 (W/ 0 sub) .. ..-. 0.40

Task Type
w oz o~

‘ o H moEEE
| ) ‘ Expert3 g
69.1 gt || [ | [ | [ [ || e

PerceptionTest é Z .......L -‘ ‘... 0.25

N Expertd 0.20

wen2-VL-
— _— I nternvL2-88 gt [ [ B [
TempCompass ~as Egoschema LLaVA-Video-78 o | || || o
(test) MiniCPM-V2.5 g s B B BEE B
NeXTQA [ TallvA-8B-A7B (Ours) 0 1 2 3 4 5 6 7 8 1012 14 16 18 20 22 2

Layer Index

Figure 6: Radar diagram of evaluation scores. TallVA Figure 7: Visualization analysis for MoE-VE in
surpasses former open-sourced SOTA in most benchmarks. perspective of different layer and task.

4.4 ROBUSTNESS ANALYSIS

Inductor Selection and Calibration. We selected three text-only pre-trained mini models as Inductor
candidates (Tab. 2(a)). SmolLM2-135M demonstrated good efficiency while maintaining competitive
accuracy. To assess potential cascading errors from misclassification, we evaluated calibration on 10k
held-out samples. As shown in Tab. Eka), the Inductor achieves 92% overall accuracy, and even in
low-confidence regions (0-0.2), accuracy remains at 59%—well above nominal confidence.

Confusion Matrix and ECE. The confusion matrix can effectively show the training performance of
the Inductor. We provide a detailed 8 x8 confusion matrix across all task types in Tab.[6} showing an
average acc of 93%. We also compute the Expected Calibration Error (ECE):

ECE =) p; - |Acc; — Conf;| 5)
where p; is the proportion of samples in bucket ¢, and Conf; is the average confidence. The ECE
is 0.226, primarily driven by under-confidence, which is benign for routing. Importantly, TAM
consistently outperforms the baseline across all confidence buckets.

Fallback Strategies. Though Inductor already has high accuracy, we still set up a Fallback Policy:
there are minimum or max frame counts that scale with video length, and always provide explicit
video metadata to the LLM, allowing TAM to handle videos of extreme lengths regardless of task-type
predictions, ensuring the stability and generalization ability in edge cases. We provide many examples
in Appendix C, showing that TAM is not simply a combination of 8 frame number/resolution types.

Paraphrasing Experiments. We conducted experiments on the Inductor with 1k queries paraphrased
by DeepSeek-V3 and GPT-4o (Tab. [d[b)). The drop in accuracy is very small (about -1%), indicating
good robustness and generalization ability of the Inductor and TAM.
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Table 5: Scalability, data efficiency, and accuracy—efficiency analysis of our methods.

70

Method EgoSchema (before) EgoSchema (after) Growth Rate fﬁ“d'“““,',‘)
TallVA (8% EgolT-99K) 573 75.9 32.5% €5

Baseline + 8% EgolT-99K 57.3 71.4 24.6%

EgoGPT (15% EgolT-99K) 60.1 732 21.8% 60

(a) Data efficiency on EgoSchema. ”

50

Average Accuracy (%)

Model Videomme NextQA LongVideoBench 45
Baseline

LLaVA-Video-7B 63.3 83.2 58.2 a0 TallVA (Ours)
LLaVA-Video-7B + TAM 64.1 (+0.8) 83.5 (+0.3) 58.7 (+0.5) $:I\S\f:':efoaéilﬁtuk

35
LLaVA-Video-72B 70.5 85.4 61.9 s 2 mated o . m]j)" 3

stimate s (x

LLaVA-Video-72B + TAM 71.9 (+1.4) 85.5 (+0.1) 63.1 (+1.2)

(c) Acc-FLOPs tradeoff. TallVA achieves

(b) Scalability to 72B LLMs via LoRA fine-tuning. higher accuracy at comparable FLOPs.

Table 6: Confusion Matrix of Inductor across 8 Task Types. We evaluated 200 unseen samples per class.
Per-class accuracies range from 85.5% to 97%, with reasonable confusion between semantically similar tasks
(e.g., Task 1 “Static Attr.” and Task 3 “Fine-grained Attr.”). Task indices can be found in Appendix A.

Prediction\ GT 1 2 3 4 5 6 7 8

1 92.5% 3% 3.5% 0 1% 0 0 0

2 2.5% 87.5% 3% 3% 0.5% 0 2.5% 1%
3 1.5% 3% 86.5% 1.5% 2% 0 4.5% 1%
4 0 1.5% 2% 94% 0 2% 0.5% 0

5 0 0.5% 1% 0 91.5% 0 4% 3%
6 0 1% 0 0.5% 0.5% 97 % 0 1%
7 3% 3.5% 4% 1% 1% 1% 85.5% 1%
8 0.5% 0 0 0 3.5% 0 3% 93%
Total Acc. 92.5% 87.5% 86.5% 94% 91.5% 97% 85.5% 93%

4.5 GENERALIZATION ANALYSIS

Scalability to Larger Models. We applied TAM via LoRA to both LLaVA-Video-7B and 72B
(Tab. [5[b)). Both models benefit, with notably larger gains for the 72B model on long-video
benchmarks (+1.4% Videomme, +1.2% LongVideoBench). This indicates stronger LLMs may
benefit more from TAM. We also demonstrate low-cost extensibility: defining a “very-long-video”
task type with ~800 samples and LoRA fine-tuning yields clear gains (details in Appendix I).

Data Efficiency. TallVA demonstrates remarkable data efficiency on EgoSchema (Tab. [5(a)). Using
only 8% of EgoIT-99K data, TallVA achieves a 32.5% growth rate—significantly higher than the
baseline (24.6%) and EgoGPT (21.8% with 15% data). This suggests that TAM’s architecture is more
efficient at exploiting training data, and also indicates that TAM’s performance improvement mainly
comes from architectural enhancements.

4.6 LOAD BALANCE, EFFICIENCY AND CASE ANALYSIS

Experts Load Distribution. In Fig. [/} we recorded the average routing weights of each expert across
layers in MoE-VE. It illustrates that MoE-VE may have different expert allocation patterns for videos
of varying lengths. “L/M/S” denotes Long(more than 180s)/Medium/Short(less than 30s) videos, and
a higher weight indicates greater expert contribution at that layer. Simultaneously, in Appendix H,
we provide the MoE-VE layer-wise visualization with load balancing Fig.[T2b]

Efficiency Analysis. The increased number of parameters in TallVA primarily comes from the FFN
parameters of Siglip-400M, which are replicated during upcycling. The efficiency of TallVA is
comparable to other video understanding 7B LLMs. As shown in Tab. |Zkb,c), TallVA’s FLOPs are
comparable to dense models. Moreover, we visualized the accuracy—FLOPs tradeoff in Tab. [5]c):
TallVA achieves higher accuracy at similar compute, and reaches target accuracy with fewer FLOPs.
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Query: How many
birds can you see

in this clip?

LLaVA-Video-7B - Default resolution for short clips, fail to get some details. x

§ VT: Resolution = 14, Frame Number = 7 (max_fps = 1).

Response: There are total of 12 birds visible in the video, they are all white pigeons perched on rooftop. During the footage,
four of the pigeons suddenly take flight, leaving nine remaining stationary on the roof surface while observing their surroundings.

TallVA - Inductor and MoE-VT prepare frames with higher resolution for LLM.

Inductor: The video lasts for 7.4 seconds, and 15 frames are uniformly sampled from it. The task type is Static Attribution
Recognition, you'll see less frames with higher resolution.

MoE-VT: Set resolution = 27, choose Projector expert 1.

Response: There are total of 13 pigeons visible in the video. At the beginning of the video, four pigeons successively take
off in a counterclockwise formation. At the end of the video there's a pigeon flying from the bottom left of the frame,
probably resting on the roof. The sky seems blue and little gray.

Query: Summarize
the general idea of

the documentary in
100 words.

LLaVA-Video-7B - Cannot get enough frames in extremely long video. X

§ VT: Resolution = 14, Frame Number = 64.

Response: The documentary offers a breathtaking visual journey through Earth's diverse natural landscapes, employing
cinematic aerial cinematography and time-lapse techniques to capture the planet's geological majesty. It features sweeping
vistas of verdant agricultural terraces stretching across temperate valleys, dramatic alpine panoramas showcasing snow-
capped mountain ranges with glacial formations and avalanche-prone cliffs, pristine tropical coastlines with turquoise tidal
pools fringed by coconut palms and coral reefs, and awe-inspiring shots of volcanic mountain chains.

TallVA - Inductor and MoE-VT helps LLM to see more frames of long video.

Inductor: The video lasts for 3651.2 seconds, and 120 frames are uniformly sampled from it. The task type is Summary and
Generalization, you'll see more frames with lower resolution.
MoE-VT: Set resolution = 11, choose Projector expert 4.

Response: The documentary offers a breathtaking visual journey across the United States, sk ing diverse land:
from bustling metropolitan skylines to tranquil rural farmlands, beaches coasts, and vast oceanic vistas. Iconic urban
landmarks like the "HOLLYWOOD" Sign and Golden Gate Bridge are prominently featured. Based on the appearance of
"USA" at the end of the video, it may aim to highlight America's geographical diversity and cultural landmarks, welcoming
international travelers to explore the country's multifaceted beauty.

P

Figure 8: Dialogues between User and Model on Challenging Tasks. We highlight correct and incorrect
content. We also visualize the outputs of Inductor and MoE-VT. More cases can be found in Appendix C.

Case Study. In Fig.[T]and Fig.[8] we demonstrate TallVA’s flexibility across different tasks. More
cases and limitations are discussed in Appendix C and G. These complementary tasks show that TAM
could effectively make the model more holistic, handling various real-world applications.

5 CONCLUSION

In this paper, we introduce Task-Aware Mechanism (TAM), a hybrid-gated MoE Vision Tower
framework that dynamically adapts frame count and resolution based on user-queries. Our model
TallVA surpasses previous SOTA models on the same-scale LLM.

e A key finding is that MoE-ViT and DFR exhibit strong synergy: using them individually only
brings slight performance improvements, while their combination yields substantial gains (+12.1%),
suggesting that MoE experts specialize effectively only when receiving task-appropriate visual inputs.

e We demonstrate that our 0.1B Inductor is well-calibrated, robust, and extensible to new task types
in broad ablation studies from Tab. [2]to Tab.[§and Appendix I. We also found that TAM can scale up
for larger models, and achieves better accuracy-compute tradeoffs(Tab. [3).

TAM reveals a potential direction for the development of video understanding models. We hope this
can inspire more follow-up work to jointly explore low-cost task-aware approaches.
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ETHICS STATEMENT

This work presents Task-Aware Mechanism (TAM) to improve multimodal expert models, with
no immediately apparent ethical issues arising from the methodology itself. However, as with any
advancement in large vision-language models (LVLMs), the open-release of models may entail
broader societal implications. While a non-commercial license is applied to restrict misuse, the
potential for dual-use or unintended applications remains. We encourage ongoing ethical evaluation
to mitigate risks associated with the growing capabilities of multimodal AGI systems. Furthermore,
we discussed the potential border impact in Appendix D.

REPRODUCIBILITY STATEMENT

In this paper, we strive to enhance the reproducibility of our work. The overall workflow is depicted
in Fig. 2] and the detailed structure of the training dataset is illustrated in Fig. i} Additionally, we
provide comprehensive details of the experimental setup in Sec. along with key hyperparameters
listed in Appendix E. The supplementary materials include a code.zip file, which will be made
publicly available in the future. We also plan to release the model weights and the TA-116k dataset.
More details can be found in Appendix E and F.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Overall, our work utilizes LLMs to facilitate the creation of the TA-116K dataset, which is intended
for training Inductor. In Fig. [2(a), we illustrate schematically how LLMs are employed in our
approach; specifically, Sec. describes the use of LLMs for annotating existing data, while the
detailed prompts are provided in Appendix A. The above constitutes all aspects of our work that
involve the application of LLMs.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716-23736,
2022.

Loubna Ben Allal et al. Smollm2: When smol goes big — data-centric training of a small language
model, 2025. URL https://arxiv.org/abs/2502.02737.

Kirolos Ataallah, Xiaoqgian Shen, Eslam Abdelrahman, Essam Sleiman, Mingchen Zhuge, Jian
Ding, Deyao Zhu, Jiirgen Schmidhuber, and Mohamed Elhoseiny. Goldfish: Vision-language
understanding of arbitrarily long videos. In European Conference on Computer Vision, pp. 251-267.
Springer, 2024.

Shehreen Azad, Vibhav Vineet, and Yogesh Singh Rawat. Hierarq: Task-aware hierarchical q-former
for enhanced video understanding. arXiv preprint arXiv:2503.08585, 2025.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966l

Shuai Bai and et al. Keqin Chen. Qwen2.5-vl technical report, 2025. URL https://arxivl
org/abs/2502.13923l

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
projector for multimodal llm. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13817-13827, 2024.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and generation
with better captions. arXiv preprint arXiv:2406.04325, 2024a.

11


https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2502.13923

Under review as a conference paper at ICLR 2026

Tianlong Chen, Xuxi Chen, Xianzhi Du, Abdullah Rashwan, Fan Yang, Huizhong Chen, Zhangyang
Wang, and Yeqing Li. Adamv-moe: Adaptive multi-task vision mixture-of-experts. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 17346-17357, 2023.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 24185-24198, 2024b.

Damai Dai et al. Deepseekmoe: Towards ultimate expert specialization in mixture-of-experts language
models, 2024. URL https://arxiv.orqg/abs/2401.06066

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URLhttps://arxiv.org/abs/2501.12948.

Miquel Farré, Andi Marafioti, Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Finevideo.
https://huggingface.co/datasets/HuggingFaceFV/finevideo, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101,
03961.

Chaoyou Fu et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal
llms in video analysis, 2024. URL https://arxiv.org/abs/2405.21075,

DeepSeek-Al Group. Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/
2412.19437.

Nikhil Gupta and Jason Yip. Dbrx: Creating an llm from scratch using databricks. In Databricks
Data Intelligence Platform: Unlocking the GenAl Revolution, pp. 311-330. Springer, 2024.

Yudong Han, Qingpei Guo, Liyuan Pan, Liu Liu, Yu Guan, and Ming Yang. Dynfocus: Dynamic
cooperative network empowers 1lms with video understanding. arXiv preprint arXiv:2411.12355,
2024.

Ethan He, Abhinav Khattar, Ryan Prenger, Vijay Korthikanti, Zijie Yan, Tong Liu, Shiging Fan,
Ashwath Aithal, Mohammad Shoeybi, and Bryan Catanzaro. Upcycling large language models
into mixture of experts, 2024. URL https://arxiv.org/abs/2410.07524.

Wenyi Hong et al. Cogvlm2: Visual language models for image and video understanding, 2024. URL
https://arxiv.org/abs/2408.16500L.

Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. IVTP: Instruction-guided
visual token pruning for large vision-language models. In European Conference on Computer
Vision, pp. 214-230. Springer, 2024.

Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
visual representation empowers large language models with image and video understanding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13700-13710, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa, Joshua
Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training mixture-of-
experts from dense checkpoints, 2023. URL https://arxiv.org/abs/2212.05055.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan

Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

12


https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2501.12948
https://huggingface.co/datasets/HuggingFaceFV/finevideo
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2405.21075
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2410.07524
https://arxiv.org/abs/2408.16500
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2212.05055

Under review as a conference paper at ICLR 2026

Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi,
and Longyin Wen. Cumo: Scaling multimodal 1lm with co-upcycled mixture-of-experts. Advances
in Neural Information Processing Systems, 37:131224-131246, 2024b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023a.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. arXiv
preprint arXiv:2311.17005, 2023b.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. In European Conference on Computer Vision, pp. 323-340. Springer, 2024c.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv preprint arXiv:2403.18814, 2024d.

Bin Lin, Zhenyu Tang, Yang Ye, Jinfa Huang, Junwu Zhang, Yatian Pang, Peng Jin, Munan Ning,
Jiebo Luo, and Li Yuan. Moe-llava: Mixture of experts for large vision-language models, 2024a.
URLhttps://arxiv.org/abs/2401.15947.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
pre-training for visual language models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 26689-26699, 2024b.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
multi-modal large language models. arXiv preprint arXiv:2311.07575, 2023.

Dongyang Liu, Renrui Zhang, Longtian Qiu, Siyuan Huang, Weifeng Lin, Shitian Zhao, Shijie Geng,
Ziyi Lin, Peng Jin, Kaipeng Zhang, et al. Sphinx-x: Scaling data and parameters for a family of
multi-modal large language models. arXiv preprint arXiv:2402.05935, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892-34916, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 26296-26306, 2024b.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024c. URL https:
//1llava-vl.github.io/blog/2024-01-30-1lava—-next/.

Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun,
and Lu Hou. Tempcompass: Do video llms really understand videos?, 2024d. URL https:
//arxiv.orqg/abs/2403.00476.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Videogpt+: In-
tegrating image and video encoders for enhanced video understanding. arxiv, 2024. URL
https://arxiv.org/abs/2406.09418\

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic

benchmark for very long-form video language understanding. Advances in Neural Information
Processing Systems, 36:46212-46244, 2023.

13


https://arxiv.org/abs/2401.15947
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2403.00476
https://arxiv.org/abs/2403.00476
https://arxiv.org/abs/2406.09418

Under review as a conference paper at ICLR 2026

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Anton Belyi, et al. Mm1: methods, analysis and insights
from multimodal 1lm pre-training. In European Conference on Computer Vision, pp. 304-323.
Springer, 2024.

Basil Mustafa, Carlos Riquelme, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby. Multimodal
contrastive learning with limoe: the language-image mixture of experts. Advances in Neural
Information Processing Systems, 35:9564-9576, 2022.

Arsha Nagrani et al. Neptune: The long orbit to benchmarking long video understanding, 2025. URL
https://arxiv.org/abs/2412.09582.

OpenAl. Gpt-4 technical report, 2023.

Viorica Patrducean, Lucas Smaira, Ankush Gupta, Adria Recasens Continente, Larisa Markeeva,
Dylan Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Do-
ersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alex Frechette, Hanna Klimczak,
Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen,
Andrew Zisserman, and Jodo Carreira. Perception test: A diagnostic benchmark for multi-
modal video models. In Advances in Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=HYEGXFnPod.

Qwen-Team. Qwen?2 technical report, 2024. URL https://arxiv.org/abs/2407.10671,
Qwen-Team. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115,

Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and Michael S Ryoo. Understanding long
videos with multimodal language models. arXiv preprint arXiv:2403.16998, 2024.

Ruchit Rawal, Khalid Saifullah, Miquel Farré, Ronen Basri, David Jacobs, Gowthami Somepalli, and
Tom Goldstein. Cinepile: A long video question answering dataset and benchmark. arXiv preprint
arXiv:2405.08813, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583—-8595, 2021.

Share. Sharegemini: Scaling up video caption data for multimodal large language models, June 2024.
URL https://github.com/Shareld4d/ShareGeminil

Reuben Tan, Ximeng Sun, Ping Hu, Jui-hsien Wang, Hanieh Deilamsalehy, Bryan A Plummer, Bryan
Russell, and Kate Saenko. Koala: Key frame-conditioned long video-llm. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13581-13591, 2024.

Chau Tran, Duy MH Nguyen, Manh-Duy Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel
Sonntag, James Y Zou, Binh Nguyen, and Mathias Niepert. Accelerating transformers with
spectrum-preserving token merging. Advances in Neural Information Processing Systems, 37:
30772-30810, 2024.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding, 2024a. URL https://arxiv.org/abs/2407,
15754l

Yuanchen Wu, Junlong Du, Ke Yan, Shouhong Ding, and Xiaoqiang Li. Tove: Efficient vision-
language learning via knowledge transfer from vision experts, 2025. URL https://arxiv.
org/abs/2504.00691.

Zhiyu Wu et al. Deepseek-v12: Mixture-of-experts vision-language models for advanced multimodal
understanding, 2024b. URL https://arxiv.org/abs/2412.10302,

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of question-answering
to explaining temporal actions, 2021. URL https://arxiv.org/abs/2105.08276l

14


https://arxiv.org/abs/2412.09582
https://openreview.net/forum?id=HYEGXFnPoq
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2412.15115
https://github.com/Share14/ShareGemini
https://arxiv.org/abs/2407.15754
https://arxiv.org/abs/2407.15754
https://arxiv.org/abs/2504.00691
https://arxiv.org/abs/2504.00691
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2105.08276

Under review as a conference paper at ICLR 2026

Zhengzhuo Xu, Bowen Qu, Yiyan Qi, Sinan Du, Chengjin Xu, Chun Yuan, and Jian Guo. Chartmoe:
Mixture of expert connector for advanced chart understanding. arXiv preprint arXiv:2409.03277,
2024.

Jingkang Yang et al. Egolife: Towards egocentric life assistant, 2025. URL https://arxiv,
org/abs/2503.03803l

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of Imms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1):1, 2023.

Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for

video localization and question answering. Advances in Neural Information Processing Systems,
36:76749-76771, 2023.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-qa:
A dataset for understanding complex web videos via question answering. In AAAI pp. 9127-9134,
2019.

Xiangyu Zeng, Kunchang Li, Chenting Wang, Xinhao Li, Tianxiang Jiang, Ziang Yan, Songze
Li, Yansong Shi, Zhengrong Yue, Yi Wang, et al. Timesuite: Improving mllms for long video
understanding via grounded tuning. arXiv preprint arXiv:2410.19702, 2024.

Jihai Zhang, Xiaoye Qu, Tong Zhu, and Yu Cheng. Clip-moe: Towards building mixture of experts
for clip with diversified multiplet upcycling, 2024a. URL https://arxiv.org/abs/2409,
19291.

Kaichen Zhang et al. Lmms-eval: Reality check on the evaluation of large multimodal models. In
Findings of the Association for Computational Linguistics: NAACL 2025, pp. 881-916. Association
for Computational Linguistics, 2025. doi: 10.18653/v1/2025.findings-naacl.51. URL http:
//dx.doi.org/10.18653/v1/2025.findings—naacl.51.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
https://llava-vl.github.io/blog/2024-04-30-11lava—next—-video/.

Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
tion tuning with synthetic data, 2024c. URL https://arxiv.org/abs/2410.02713,

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
understanding. arXiv preprint arXiv:2406.04264, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
https://arxiv.orqg/abs/2202.08906.

15


https://arxiv.org/abs/2503.03803
https://arxiv.org/abs/2503.03803
https://arxiv.org/abs/2409.19291
https://arxiv.org/abs/2409.19291
http://dx.doi.org/10.18653/v1/2025.findings-naacl.51
http://dx.doi.org/10.18653/v1/2025.findings-naacl.51
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
https://arxiv.org/abs/2410.02713
https://arxiv.org/abs/2202.08906

Under review as a conference paper at ICLR 2026

A  MORE DETAILS ABOUT TRAINING DATA COLLECTING

A.1 TAGGING PROMPTS

To train the classification capability for different tasks of Inductor, we selected 116K high-quality,
non-redundant queries (excluding answers) from open-source datasets. Subsequently, we annotated
these data using the Deepseek-R1 model, ultimately forming the TA-116K dataset. For clarity, we
present the prompts in tabular form. The content of our prompts is as follows.

Generally, the video understanding tasks can be categorized into
the following eight types:

Table 7: The Prompts and Description in Tagging, Describing Our Classification Strategies to Deepseek-R1.

Category Description Example
Identifying perceptible static attributes
Static of people/objects (color, quantity, state, | - What color is the helicopter?
Attributes material, etc.), or existence queries. - How many riders are on the podium?
Recognition Includes object retrieval and counting | - How many people are there in the video?
problems.
Recognizing dynamic events/actions - What dges the person do after opening a
. . - . ] can of chickpeas?
Action and interaction relationships (exclud- .
o . . . - How does the skier move down the slope?
Recognition ing facial expressions). Includes meth-

ods of achieving actions.

- How did the man make his way to his
home?

Fine-grained

Identifying advanced attributes like
poses, emotions, and facial expres-

- Does the man feel sorry for the woman?

Attri . . .. : . - I
t bu?e.s sions, typically requiring subtitle/dia- s the woman happy or angry at the end
Recognition . of the video?
logue analysis.
- Arrange the events in chronological
Temporal Determining event sequences/timings order.
> | - What happened after the man left the
Sequence causal order, or occurrence counts
Positioning (limited to video content). house? . . .
- How many times did the brightness
change?
Spatial .. - . ) )
. . Recognizing positions/spatial rela- - Where is the yellow container located?
Orientation . . . . . ;
and tionships or navigation sequences in - Where is the kitchen, next to the bedroom
s environments. or next to the washroom?
Navigation

Summary and

Extracting narrative structures, themes,
or actionable insights through content

- Analyze the video’s narrative structure.
- What'’s the video mainly about?

Generalization L - According to the video, how can we solve
summarization.
the problem?
- Why did the toddler cry at the end?
. . L - What indicates that the food is being
Reasoning Inferring causes, motivations, purposes, cooked?
and or relationships between entities based ) 9
Logic on video content - What made the man angry
’ - Is their relationship more like friend or
enemy?
OCR and Cross-modal alignment between video | - What objects appear after the subtitle
Cross-modal content and text (e.g., subtitle match- mentions 'multiple reasons’?
Alignment ing), or identifying on-screen text. - Match the dialogue to the scene.
You can take answer options into account when available. Ignore
non-semantic content (e.g., "Answer using short words") when

analyzing questions.
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A.2 CLASSIFICATION STRATEGY

As shown in Tab. [/|in Appendix A.1, we divide video understanding tasks into eight types. Our main
classification criteria are the inherent meaning of the tasks and their different sensitivities to frame
count and resolution. When considering only the sensitivity to these two factors, the tasks can be
categorized into the following three groups:

1. Tasks more sensitive to resolution: tasks that depend on fine details, such as Static Attributes
Recognition, Spatial Orientation and Navigation, and retrieval counting, are sensitive to
resolution. MoE-VT will provide inputs with less frames but higher resolution.

2. Tasks more sensitive to frame count: tasks like Temporal sequence positioning, retrieval
counting, and Summary and Generalization become significantly more complex in long
videos. MoE-VT will provide inputs with more frames but lower resolution.

3. Balanced tasks: some tasks may span multiple categories. For example, a Reasoning
and Logic task might involve aspects of Action Recognition along with logical reasoning.
MOoE-VT will provide inputs with a balanced number of frames and resolution.

B DATASET COMPOSITION

In the main text of the paper, we have already presented the composition and proportion of the training
data used in Stage 2 and Stage 3. To maximize the extent to which our progress is not solely due
to the data, we used almost the same data as in the baseline for training. To prevent overfitting, we
also utilize partial samples from the EgoIT-99K Yang et al.| (2025) and NeptuneNagrani et al.[(2025)
datasets, which make up no more than a quarter of our training dataset.

In the attached code package, readers can also find the specific data proportions for these stages
stored in files such as "./scripts/TallVA/all_data_stagex.yaml". Please refer to the code if needed.

C ADDITIONAL REPRESENTATIVE CASE STUDIES

In the main text of the paper (Fig.[8), we demonstrated the performance of TallVA on two distinct
styles of tasks and compared it with a baseline model, showcasing the strong adaptability across
different tasks. To further highlight the comprehensive capabilities of TallVA, we provide additional
case studies here. For consistency with the main text, we highlight correct content and incorrect
content with different color. We also visualized the output of Inductor and MoE-VT. However,
it should be noted that the Inductor outputs only the task type, while the figure shows the Task
Instructions added to the LLM.

Q1: How many dancer can you see? What are they wearing?

Inductor: The video lasts for 13.46 seconds, and 27 frames are uniformly sampled from it. The time interval between each
frame is 0.50 second. The type of Query is Static Attributes Recognition, you'll see less frames with higher resolution.

MoE-VT: Set resolution = 27, choose Projector expert 1.

Response: There are totally 14 dancers on the stage. They are all wearing white tops and brown vests, black

pants and white shoes. They also all wore black baseball caps.

Figure 9: Case Study on Short Clips. For shorter videos, TallVA is able to utilize higher resolution frames to
help understand the detailed content of the video.
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Q1: What is the video mainly about? Describe the video.

Inductor: The video lasts for 1786.30 seconds, and 120 frames are uniformly sampled from it. The time interval between
each frame is 15.10 second. The type of Query is Summary & Generalization, you'll see more frames and lower resolution.

MoE-VT: Set resolution = 11, choose Projector expert 4.

Response: The video is about the wild animals. It opens with a serene scene of a herd of wildebeests grazing in a
grassy field, transitioning to various other animals such as rhinoceroses, lions, cheetahs, and elephants. The
narrative continues with close-ups of birds like toucans, macaws, and parrots, followed by scenes of flamingos, a
porcupine, and a sloth. The focus shifts to a giraffe, a bear, and a gorilla, highlighting their natural habitats. The
video then showcases a variety of birds, including ostriches, eagles, and penguins, followed by marine life like whales
and sharks. The narrative returns to terrestrial scenes with zebras, buffaloes, and antelopes, concluding with a
majestic view of a lion and a leopard. The final segment features a diverse array of animals, including camels, hippos,

and a large group of wildebeests, emphasizing the richness and diversity of wildlife across different environments.

Q2: Is the video about wild animals in Africa? Explain why in detail.

Inductor: The video lasts for 1786.30 seconds, and 120 frames are uniformly sampled from it. The time interval between
each frame is 15.10 second. The type of Query is Reasoning & Logic, you'll see balanced frames and resolution.

MoE-VT: Set resolution = 11, choose Projector expert 4.

Response: No, it is about wild animals from different continents. The video showcases a diverse range of wildlife
from various regions, including Africa, Asia, and the Americas. The video shows penguins, which are unlikely to be
found in Africa.

Q1: What happened in the video?

Inductor: The video lasts for 77.43 seconds, and 78 frames are uniformly sampled from it. The time interval between each
frame is 1.00 second. The type of Query is Summary & Generalization, you'll see more frames with lower resolution.

MoE-VT: Set resolution = 14, choose Projector expert 3.

Response: A panda character enters a grand, dimly lit hall adorned with green, vine-like columns and intricate golden
decorations. The panda, wearing a black and white outfit with a yellow belt, explores the hall, examining various
objects including a large, ornate sword and a golden vase with a dragon design. The panda's curiosity and excitement
are evident as it interacts with these items. Eventually, the panda accidentally drops the vase, causing it to shatter
into pieces. The panda looks distressed and is approached by another character dressed in brown with a white face

and blue eyes, who appears to be scolding the panda.

Q2: What was the master's reaction after seeing the panda?

Inductor: The video lasts for 77.43 seconds, and 51 frames are uniformly sampled from it. The time interval between each

frame is 1.51 second. The type of Fine-grained Recognition, you'll see less frames with higher resolution.

MoE-VT: Set resolution = 18, choose Projector expert 2.

Response: He looks very angry because the panda broke the porcelain, perhaps that porcelain has a high value.

Figure 10: More Case Studies of Different Styles Videos. We demonstrated realistic style ultra-long videos, as
well as 3D animations. TallVA shows better performance on different styles of videos.
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Q1: Who won the game at the end? Why do you think so?

Inductor: The video lasts for 157.70 seconds, and 64 frames are uniformly sampled from it. The time interval between each
frame is 2.50 second. The type of Query is Reasoning & Logic, you'll see balanced frames and resolution.

MOoE-VT: Set resolution = 18, choose Projector expert 2.

Response: The man in blue shirt won the game. At the end of the video, the man in blue shirt winning the match
point and celebrating his victory.

Q2: Try to commentate on the game with about 200 words.

Inductor: The video lasts for 157.70 seconds, and 64 frames are uniformly sampled from it. The time interval between each
frame is 2.50 second. The type of Summary & Generalization, you'll see more frames with lower resolution.

MoE-VT: Set resolution = 14, choose Projector expert 3.

Response: The video showcases an intense table tennis match between two players, one in a red shirt and the other in a
blue shirt, at the Paris 2024 Olympics. The match begins with the player in the red shirt serving, and both players
exhibit remarkable skill and agility, exchanging powerful serves and returns. The scoreboard updates multiple times,
reflecting the dynamic nature of the game. The player in the blue shirt takes the lead, winning points and games, while
the player in the red shirt struggles to keep up. The competitive atmosphere is palpable as the match progresses, with
the player in the blue shirt maintaining his lead. The final frames show the player in the blue shirt celebrating a victory,
with the scoreboard displaying 'MATCH POINT,' indicating a decisive win for the player in the blue shirt.
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Q1: What are they doing in the video?

Inductor: The video lasts for 151.38 seconds, and 54 frames are uniformly sampled from it. The time interval between each i
1

frame is 2.82 second. The type of Query is Action Recognition, you'll see balanced frames and resolution. i
|
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MoE-VT: Set resolution = 18, choose Projector expert 2.

Response: They are dancing while shaking their shoulders.

Q2: This video tells an interesting story. Try to explain why this video is funny.

Inductor: The video lasts for 151.38 seconds, and 76 frames are uniformly sampled from it. The time interval between each
frame is 2.00 second, The type of Query is Summary & Generalization, you'll see more frames with lower resolution.
MoE-VT: Set resolution = 14, choose Projector expert 3.

Response: The video is a visually stunning and culturally diverse narrative that follows the journey of a ‘Handsome
Dancer' through various settings and costumes. The story begins with a man standing under an overpass at night,
transitioning to a dimly lit room where he performs martial arts moves. The scene shifts to a graffiti-covered wall
where a man plays a guitar, followed by a dramatic moment on train tracks with a woman tied up. The narrative then
moves to a split-screen view of two men walking down different streets, each carrying a suitcase. The story continues
with a man in India performing traditional dance moves, followed by a man in Germany sitting by a river. The video
then transitions to a man in Amsterdam, performing martial arts moves in a dimly lit room. The narrative progresses to
a subway station where two men stand facing each other, one in a suit and the other in casual attire. The scene shifts
to a street in France, then to Poland, where a man in a suit dances energetically. The video then shows a man in a suit
dancing in a room with colorful lights, followed by a dramatic scene with a man in a suit performing martial arts moves.

The video concludes with a stick figure dancing on a white background, promoting the website 'handsomedancer.com'.

Figure 11: Case Studies for Deeper Understanding of Plot and Content. We found that TallVA may have
some hallucinations on problems with high difficulty. To solve this problem, we suggest using more complete
dataset with a more powerful LLM in the future.
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These cases are categorized into three groups. Short videos that focus on fine details in Fig.[9} videos
with completely different styles (including 3D animations that were not present in the training data)
in Fig. [T0} the deeper understanding of plots and content, involving more human-like activities such
as match commentary or watching a funny video in Fig. [IT}

D DiSCcUSSION: FUTURE DIRECTIONS AND DESIGN CONSIDERATIONS

In this section, we discuss three design questions that arose during the development of TAM: the
relationship between task-aware routing and difficulty estimation, the compatibility with token
compression methods, and the role of hard-coded routing in future LVLM design.

D.1 TAM AND DIFFICULTY-AWARE ROUTING

A natural question is whether TAM should incorporate sample-wise difficulty estimation to allocate
visual budgets more precisely. We carefully considered this direction and concluded that, while
intuitive, difficulty-based routing faces fundamental challenges for video understanding.

The core problem is that understanding “what makes a question hard” is closely related to answering
it. Existing difficulty estimation methods mainly fall into two categories, neither of which works
well for our setting. Model cascade approaches—running a weak model first and marking failures as
‘hard”—require multiple forward passes through large models, exactly what we want to avoid with a
lightweight Inductor. Heuristic approaches like modeling frame-to-frame entropy completely ignore
the user query; yet the same video can be trivial (“What color is the car?”) or extremely hard (“Count
all people in the background”) depending on what is asked.

Even if we had a reliable difficulty score, translating it into frame count and resolution decisions is
non-trivial. Consider that for a 2-hour movie, “What is the weather like?” is easy—a few frames
suffice—while for a 10-second clip, “How many plants are on the lawn?” might be very hard,
requiring high-resolution frames and careful counting. Moreover, a “hard” OCR question needs
higher resolution, whereas a “hard” temporal reasoning question needs more frames. A single
difficulty score cannot tell us where to spend the budget. This is fundamentally different from
text-only tasks, where we can often improve performance on hard questions by giving the model
more “thinking time.” For video understanding, if we missed the key frame, no amount of reasoning
will recover the lost information.

Given these challenges, TAM takes a pragmatic approach: rather than chasing sample-wise difficulty,
we classify queries into task types that reflect different patterns of frame-count and resolution
requirements. Within each type, the actual budget still varies with video length (see Figures 8-11 in
Appendix C). Our experiments demonstrate that this simple task-aware and length-aware scheme
already yields substantial gains.

That said, we do see a role for difficulty estimation in future work. The key insight is that difficulty
might be better used to allocate reasoning budgets rather than visual budgets. One could imagine
a system where TAM handles the visual side, and a separate module decides how much chain-of-
thought or iterative refinement to apply based on query difficulty. Reasoning-centric multimodal
models remain underexplored, and TAM may serve as a foundation that could later be combined with
difficulty-aware reasoning modules.

D.2 TAM AND TOKEN COMPRESSION METHODS

Several recent works have proposed token pruning or token merging to reduce the number of visual
tokens fed to the LLM. We clarify how TAM relates to these approaches and discuss their potential
combination.

First, we explain how TAM controls token count. Taking Sigl.IP-so400m-patch14 as an example,
each frame is divided into 27 x 27 patches, which are then pooled via bilinear interpolation. By
changing the pooling stride, we control how many patches each frame produces: stride 2 yields
14 x 14 = 196 patches (default), stride 1 yields 27 x 27 = 729 patches (highest resolution), and
stride 3 yields 9 x 9 = 81 patches (lower resolution). Each patch becomes one token after the ViT.
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Thus, TAM controls token count at the video level, before frames even enter the ViT, by deciding
how many frames to sample and at what resolution.

Token pruning and merging methods work differently. These approaches operate inside the ViT, using
attention scores or learned importance weights to drop or merge tokens from a fixed-resolution input.
They reduce redundancy within the selected frames but do not consider task-level requirements.

Structurally, the two approaches are complementary rather than competing. TAM asks: “Given this
query and video, how many frames do we need, and at what resolution?” Token pruning asks: “Given
these frames, which patches are actually important?” There is no conflict between these questions.
In fact, combining them could yield even better efficiency: TAM first decides the frame budget and
resolution based on the query and video length, and then token pruning further compresses within
those frames.

Due to resource constraints, we could not run full experiments on this combination during the current
work, but we believe it is a promising direction. Both approaches share the goal of improving LVLMs
from the vision side, rather than solely relying on LLM modifications.

D.3 THE ROLE OF HARD-CODED ROUTING

One might view TAM’s use of predefined routing rules as a limitation—should we not learn everything
end-to-end? We argue that hard-coded routing is actually a reasonable design choice for the current
stage of research, and we explain our reasoning below.

First, we emphasize that TAM is not purely hard-coded but employs a hybrid gating strategy. The
MOoE-ViT uses soft routing where experts are selected based on learned gates. The MoE-Projector
uses hard routing based on resolution. Frame count and resolution are determined by task type
and video length via predefined rules. Our ablations (Table 3 in the main paper) show that this
combination works better than using soft or hard routing uniformly—different components benefit
from different strategies.

Why not learn frame count and resolution end-to-end? We considered this carefully, but there are
practical obstacles. Current ViT architectures like SigL.IP and CLIP are not designed for variable-
resolution inputs in a differentiable way. We would need massive amounts of data annotating “the
right frame count and resolution for this query,” which does not exist. Furthermore, frame sampling
is inherently discrete—you cannot sample 16.5 frames—making gradient-based learning difficult.
Hard-coded rules allow us to validate the core idea that task-aware visual budgeting helps, without
needing to solve all these challenges simultaneously.

For practical deployment, hard-coded routing offers several advantages. The Inductor can be trained
independently and frozen during LVLM training. Routing rules can be quickly tested and adjusted
without retraining the whole model. Resource usage is predictable, which is important for edge
devices with limited memory. The system’s behavior is also interpretable: developers can understand
why a particular frame count was chosen for a given query.

We view this work as a stepping stone rather than the final answer. The research trajectory we envision
proceeds as follows: first, validate that task-aware budgeting helps using simple rules (this work);
then, explore learned routers that can optimize frame and resolution selection jointly; eventually,
develop fully differentiable pipelines that can adapt to new task types without manual intervention.
TAM establishes that the goal—adapting visual processing to the task—is worthwhile. The specific
mechanism (hard vs. soft routing) is a design choice that can evolve as the field matures.

D.4 BROADER IMPACTS

Our approach enhances the ability of LVLMs to understand video content by providing task-
appropriate visual inputs, contributing to more capable multimodal Al systems. Open-source weights
and code can accelerate community development, though they may also carry potential risks. We
have added appropriate licenses to guide responsible use of our model.
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E TRAINING SETS AND HYPERPARAMETERS

Tab. |8| shows our specific hyperparameter settings for Training Stages 2 and 3. We used the same
learning rate (LR) and LR scheduler for both stages. We employed the AdamW optimizer with a
batch size of 1, gradient accumulation of 2, and 16 GPUs using Zerol-offload and Zero2-offload. The
Vision Encoder and Projector were frozen while the LLM was trained. Additionally, we incorporated
MoE Blocks to enhance the model’s capacity. The maximum context length (including visual tokens
and text tokens) is set to 21000. Training takes about 1.5k A100 GPU hours in total for Stages
2-3. For further details, please refer to Tab.

Table 8: Hyperparameters for the second and third stages of training.

Hyperparameter Stage 2 Stage 3
Learning Rate 2.5e -5 2.5e =5
Vision Tower LR - 5e — 6
LR schedule Cosine Cosine
Batchsize per GPU 1 1
Gradient Acc. 2 2
GPU Number 16x A100 16x A100
Zero Zerol-offload Zero2-offload
Optimizer AdamW AdamW
Projector Freeze Train
Vision Encoder Freeze Train
LILM Train Train
MoE Blocks - v
Max Context Length 21000 21000
Max Output Token 2048 2048
Warm Up Ratio 0.03 0.03
Total Steps 1200 3200

F OPEN-SOURCE MODEL WEIGHTS AND CODE

To support reproducibility and further research, we provide the full implementation code in the
supplementary materials under the file code.zip. This package includes the core modules, training
scripts, and documentation necessary to replicate our experiments. Please note that this is a prelimi-
nary release intended for review purposes; the codebase will be further cleaned, documented, and
restructured prior to public release.

In addition, model weights and checkpoints will be made publicly available after the conclusion. We
are committed to open science and plan to release the weights alongside the finalized code repository,
ensuring full transparency and ease of use for the research community.

We use the Imms-eval suiteZhang et al.| (2025) for evaluation, but we have modified these scripts to
meet the requirements of TallVA. Specifically, the startup script can be found in "./script/".

G LIMITATIONS

Due to time and resource constraints, we only tested TAM on the 7B model and did not verify its
effectiveness on larger models with longer contexts. Secondly, as a video understanding model,
TallVA still exhibits hallucination issues, with additional successful and failed cases presented in
Appendix C. In future work, we will evaluate TAM on larger models and attempt to collect more data
to optimize the classification strategy. We believe that applying TAM to models with longer context
lengths(such as 128k tokens) will yield even better performance.
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H LoSS ANALYSIS IN TRAINING STAGE 2

In the main text, we mentioned that "our extensive experiments prove that the LLM should be trained
first in Stage 2." We believe that this is effective because the application of Dynamic Frames Number
and Resolution has the greatest impact on the LLM. Therefore, the LLM needs to learn how to
handle varying numbers and resolutions of frames first; otherwise, errors will accumulate in the LLM,
ultimately making it difficult to train the Vision Tower.

To validate our hypothesis, we present the loss curves in Fig.[T2a] of different training strategies in
Stage 2. We selected three typical scenarios: training the LLM first, training the Projector first, or
training the entire VT (Vision Encoder + Projector). As shown in Tab. 3] the loss curve of LMM-
Training decreases rapidly at the beginning of training, whereas the other two approaches exhibit an
upward trend in loss along with a significant drop in actual performance.

train/loss Expert 1 Expert 2 Expert 3 Expert 4
62 TrinProjector — Stage2_TrinLL
100%

75%

Percentage

50%

0%

0 123456 7 8 910111214 16182022 24
MoE layer idx

(a) (b)

Figure 12: Training and Visualization Analysis. (a) Loss analysis in Stage 2; (b) MoE VE layer-wise
visualization with load balancing.

I ADDITIONAL EXPERIMENTS AND ANALYSIS

This section provides supplementary experiments referenced in the main paper, including MoE
isolation studies, expert interchangeability tests, task extensibility, and accuracy—efficiency tradeoff
analysis.

1.1 MOE ISOLATION STUDY

As discussed in Section 4.3, we investigate whether performance gains stem from MoE capacity
or query-aware routing. Tab. [9] shows that simply replacing the vision encoder with an MoE-ViT
(without Dynamic Frames and Resolution) leads to performance degradation across all configurations.

Table 9: Impact of MoE-ViT Isolation (without DFR). We evaluated MoE-ViT configurations while keeping
the LLM and projector fixed. The results indicate that simply replacing the vision encoder with an MoE-ViT
(without query-aware routing) leads to performance degradation across benchmarks.

Model Baseline Top2in8 Top2in4 Toplin4
Videomme 63.3 61.5 62.8 63.0
MVBench 58.6 53.3 56.7 56.5
MLVU-Test 44.8 42.0 43.5 42.2
Relative Avg Change +0% —5.98% —221% —3.01%

This result aligns with prior work |Li et al.|(2024b)) showing that MoE-izing the vision encoder alone
does not automatically yield gains. The MoE experts require task-appropriate visual inputs (enabled
by DFR) to specialize effectively.
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1.2  EXPERT INTERCHANGEABILITY TESTS

To verify that MoE routing is causally important, we performed expert-swap and routing-scramble
experiments.

Table 10: Causal Analysis of MoE-ViT Routing. We compare standard routing against Random Top-2 and
Lowest-2 selection. The significant performance drop (up to 12.5%) confirms that the learned router identifies
necessary experts rather than selecting arbitrarily.

MOoE-ViT Configuration Videomme MVBench Relative Avg Change

Normal TAM 65.6 64.5 +0%
Random Top-2 60.3 58.2 —9.8%
Lowest 2 Experts 56.1 55.7 —12.5%

Table 11: Causal Analysis of MoE-Projector Routing. Since the Projector uses hard-gating based on resolution,
we test Random mapping and Expert Swap (swapping high-res and low-res experts). The drastic drop (—13.6%)
in Expert Swap confirms that experts are highly specialized for specific resolutions.

MoE-Projector Config Videomme MVBench Relative Avg Change

Normal TAM 65.6 64.5 +0%
+Random Experts 63.2 62.7 —3.2%
+Expert Swap 58.3 54.1 —13.6%

For MoE-ViT (Tab.[I0), Random Top-2 selection degrades performance by 9.8%, and selecting the
Lowest-2 experts causes 12.5% degradation. For MoE-Projector (Tab.[TT), swapping the highest-
resolution and lowest-resolution experts leads to 13.6% degradation. These results confirm that
both the learned routing in MoE-ViT and the resolution—expert mapping in MoE-Projector are
essential—experts are not interchangeable.

1.3 Low-CoST TASK EXTENSIBILITY

To demonstrate that TAM can flexibly adapt to new requirements, we defined a new “very-long-video”
task type using approximately 800 samples and fine-tuned only the 135M Inductor via LoRA (2
epochs), keeping the full LVLM frozen.

Table 12: Low-Cost Extensibility via Inductor Adaptation. We defined a new task type ("very-long-video")
using ~800 samples and fine-tuned only the 135M Inductor via LoRA. This minimal adaptation yielded clear
gains on long-video benchmarks (Videomme, LongVideoBench), demonstrating that TAM can flexibly adapt to
new requirements without retraining the full LVLM.

Inductor Configuration Videomme (Long) LongVideoBench (Long) NextQA (Short)
Original Inductor 65.6 59.6 84.0
Inductor after LoRA Finetune 66.2 60.8 82.7

As shown in Tab.[I2] this minimal adaptation yields clear gains on long-video benchmarks (Videomme
+0.6, LongVideoBench +1.2) with a slight trade-off on short videos. This confirms that new task
types can be added at very low cost without retraining the full model.

1.4 ACCURACY-EFFICIENCY TRADEOFF DETAILS

As shown in Tab. [5]c) in the main paper, we evaluated the Accuracy—FLOPs tradeoff by varying
frame counts and patch resolutions on samples from LongVideoBench and MLVU. The detailed
operating points are:
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Table 13: Accuracy—-FLOPs tradeoff of TallVA and Baseline. We selected representative points from a series
of data that demonstrate TAM has better efficiency.

Baseline FLOPs ~ 1.32x10"®  1.55x10"  1.84x10'°(Default) 2.54x10"® 3.39x10'

Baseline Acc 39.5% 50.3% 58.7% 62.5% 63.8%
TallVA FLOPs 1.38x10%  1.72x10'°  1.97x10*®(Default) 2.62x10*  3.55x10'°
TallVA Acc 50.5% 61.7% 63.6% 65.8% 66.7%

At default settings, TallVA uses 1.97x10'> FLOPs compared to the baseline’s 1.84 x 10> FLOPs
(+7%), while achieving significantly higher accuracy (63.3% vs 59.7%). Wall-clock latency follows
similar trends: 6.2s vs 5.7s per sample; peak memory is 61.2GB vs 57.5GB.
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