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Abstract

In-context learning (ICL) refers to the ability of Large Language Models (LLMs) to
perform new tasks by conditioning on input-output samples without any parameter
updates. Previous work has established that, in a controlled setting, transformers
can optimally perform ICL for tasks from a single task family, here a single function
class, when they are pretrained on example tasks from that family. Using this setting,
we probe the relationship between the pretraining data mixtures and downstream
ICL performance. In particular, we empirically explore the ability of pretrained
transformers to select a family of tasks (i.e. amongst distinct function classes) and
perform learning within that task family (i.e. learn a function within a function
class), all in-context. We show, for pretraining task mixtures balanced across task
families, the cost of unsupervised downstream ICL task-family selection is near-
zero. For task families rarely seen in pretraining, downstream ICL learning curves
exhibit complex, task-dependent non-monotonic behavior. We also characterize the
benefit of conditional pretraining in this simplified model, showing how task-family
instructions can reduce the overhead of in-context task-family selection.

1 Introduction

Large Language Models (LLMs) can perform in-context learning (ICL) – condition on a prompt
sequence consisting of "in-context" samples to perform new tasks without explicit model training
on those tasks [Brown et al., 2020]. A line of work seeks to better understand this ability through
a mixture of empirical and theoretical exploration [Xie et al., 2022, Min et al., 2022, Olsson et al.,
2022]. In this work, we characterize the interaction between the pretraining task composition and the
downstream sample complexity of ICL. We build on the work of Garg et al. [2022], which proposes
a controllable and tractable setting for probing the behavior ICL in transformer models. Garg et al.
[2022] pretrains decoder-only transformers on prompts of the form x1, f(x1),x2, f(x2), . . . for xi

sampled from a data distribution over Rd and f sampled from a real-valued function class (e.g. linear
models). Empirically, Garg et al. [2022] show transformers can perform ICL on unseen functions
(i.e. a task) from the same function class as seen in pretraining, with performance close to the
optimal standard machine learning estimator for that task. For example Garg et al. [2022] observes
transformers can match the performance of the least squares estimator when given data from linear
models, the Lasso when given data from sparse linear models, and ReLU networks when given data
from ReLU networks. Later work has investigated the mechanistic underpinnings of how transformers
may implement ICL [Akyürek et al., 2023, Dai et al., 2023] (i.e. via gradient descent) and their
generalization properties [Abernethy et al., 2023, Li et al., 2023, Bai et al., 2023].

In our work, we pretrain on mixtures of task families, each of which is a function class such as linear
models or ReLU networks. Our goal is low prediction error on a test point from a specific task f
selected from a task family. We ask: How many samples are required for a transformer to both select
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a task family and perform in-context learning on unseen tasks from that task family in-context?2

Can transformers pretrain for tasks from multiple task families without exhibiting task interference?.
Most prior work focuses on pretrained transformers learning single function classes, i.e. a single task
family. Understanding the performance on ICL each downstream task family embodies a form of
distribution shift: the model is shown multiple different task families in pretraining, but must predict
at test-time using ICL on a prompt sequence from each single task family. Some task families may
have seen rarely in pretraining. The model must both in-context identify the specific task family and
in-context learn an unseen task within that family. A more detailed description of related work is
provided in Appendix A.1. We make the following observations and contributions:

• We pretrain transformers on prompts on weighted task mixtures of different function classes. We
empirically gauge their downstream ICL learning curves (or sample complexity) on their individual
constituent task families. We observe that the cost of unsupervised task-family selection is almost
zero for evenly-weighted pre-training mixtures relative to the baseline optimal sample complexity of
models that have only seen that single task family in pretraining (Fig. 1a for example). That is, these
pretrained models do not suffer from task interference [Wang et al., 2019, Zhao et al., 2018].

• When pretrained on skewed task mixtures (with one function class rarely seen), the downstream ICL
sample complexity increases on the rarely-seen tasks. The phenomenology of the learning curves is
nuanced and task-dependent: we actually observe non-monotonic, sample-wise double descent-like
behavior [Nakkiran et al., 2021, Hastie et al., 2022] in some cases as the estimator error increases
then decreases with the number of ICL samples (Fig. 1a and Fig. 4a). In others, the task-family
selection cost remains a constant overhead even with many in-context samples (Fig. 3a).

• We investigate the benefits of conditional pretraining (i.e. providing in-context task keys as task-
family-identifying instructions in both pretraining and at test-time) to circumvent the overhead of
task-family selection. We observe task-conditioning often removes the cost of task-family selection
(Fig. 1b and Fig. 4b). Instructions also asymmetrically help some tasks more than others.

2 Preliminaries and Set-up

We consider a data-generating model where d-dimensional covariates are drawn xi ∼ DX and a
(random) function f ∼ DF is sampled. Like Garg et al. [2022], Akyürek et al. [2023], we frame
the ICL problem as providing a single prompt sequence x1, f(x1),x2, f(x2), . . .xn, f(xn),xn+1

to the model (i.e. a transformer) and generating a prediction for f(xn+1): f̃(xn+1). For example, for
a linear data-generating model, a single f can be generated by drawing β ∼ N (0, Id) and defining
f(x) = β>x. The performance of an in-context learner is judged by its predictive squared-loss
E[(f̃(xn+1)− f(xn+1))

2], with the expectation taken over the randomness in the prompt and query.

Following Garg et al. [2022]’s approach to construct a sequence of n (d-dimensional x, 1-dimensional
f(x)) values, we pad f(x) with 0s to make it d-dimensional and produce a sequence of 2n real-valued
vectors, or "tokens", alternating between xi and f(xi). We insert one (learnable) linear layer to
project each input "token" into the transformer’s model dimension, and we insert another to reverse
the embedding and produce a d-dimensional output representing the next x or f(x), as per sequence
position. The training-time loss uses the next-token prediction squared loss computed only over the
xi positions, which predict f̃(xn+1), and ignores the f(xi) positions, which nominally predict x̃i+1.
As in prior work, the model is pretrained tabula rasa on simulated data for different data-generating
setups. We do not fine-tune a pretrained language model and do not train on actual text.

We evaluate a GPT-2 scale decoder-only transformer trained on data sampled from mixtures of pairs
of function classes: {dense linear functions, sparse linear functions} and {dense linear functions,
two-layer ReLU neural networks}. Like Garg et al. [2022], Akyürek et al. [2023], we use a data
generator per function class to sample from f ∼ DFDENSE

, f ∼ DFSPARSE
, and f ∼ DFRELU

. Mixture
distributions then take the form: DF = w · DF1

+ (1−w) · DF2
for moderate and extreme values of

w. See Appendices A.2 and A.3 for architectures, training parameters, and data generation details.

Concretely, each training batch consists of k prompts. Each prompt is a sequence of xi, f(xi) pairs,
with the x’s sampled from DX (i.e. N (0, Id)) and a single f ∼ DF per prompt. We use a fixed w per

2This is the joint sample complexity of both model selection (i.e. selecting a task family in-context) and
generalization to (learning within the task family in-context).
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Figure 1: ICL learning curves for evaluations on prompts drawn DFDENSE
with (left) and without

instructions (right). Transformers were pretrained on mixtures of w · DFDENSE
+ (1 − w) · DFSPARSE

.
Different curves correspond to different w.
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(b) With Instructions

Figure 2: ICL learning curves for evaluations on prompts drawn from DFSPARSE
with (left) and without

instructions (right). Transformers were pretrained on mixtures of w · DFDENSE
+ (1 − w) · DFSPARSE

.
Different curves correspond to different w.
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(b) With Instructions

pretraining run. We run each task mixture experiment with and without an task-family-identifying
instruction encoded as a "special token" prepended to the prompt, as described in Appendix A.4.
This bears resemblance to the conditional pretraining [Keskar et al., 2019, Korbak et al., 2023] and
instruction tuning paradigms [Wei et al., 2022].

3 Results
To gauge the impact of the pretraining mixture on the downstream ICL performance, we evaluate
their ICL learning curves. We input prompts with varying lengths of in-context samples and evaluate
the averaged squared loss on their prediction for the next sample. Garg et al. [2022], Akyürek et al.
[2023] show that transformers pretrained on a single task family have ICL learning curves matching
the optimal sample complexity for the task’s standard ML estimator so we do not re-plot those. For
each evaluation, we sample batches for a single constituent function class at a time from the training
task mixture distribution, including instructions when pretraining also included instructions.

First we evaluate the performance of transformers pretrained on weighted mixtures of DFDENSE
and

DFSPARSE
. Fig. 1a shows their performance evaluated on in-context examples from DFDENSE

. For
pretraining mixtures with sufficient data from DFDENSE

(i.e. mixture weight w ≥ 0.5), the cost relative
to the baseline of being only pretrained on DFDENSE

data is negligible. For more extreme mixture
weights, where the DFDENSE

data examples are rarely seen in pretraining, the cost of task-family
selection is more evident as they do not match the baseline on training solely on data from DFDENSE

.
The ICL learning curves (colored gold, orange, red in Fig. 1a) display non-monotonic behavior where
the error increases initially with more in-context data before decreasing3. In most cases, the cost
of task-family selection in `2 error is a constant upfront cost for small numbers of data points that
quickly decreases to the baseline. In Fig. 1b we see for all w > 0, instructions almost entirely remove
the cost of task-family selection relative to the baseline of only being pretrained on data from DFDENSE

.

3This is reminiscent of sample-wise double descent behavior [Nakkiran et al., 2021, Hastie et al., 2022].
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Figure 3: ICL learning curves for evaluations on prompts drawn from DFDENSE
with (left) and without

instructions (right). Transformers were pretrained on mixtures of w · DFDENSE
+ (1 − w) · DFRELU

.
Different curves correspond to different w.
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(b) With Instructions

Figure 4: ICL learning curves for evaluations on prompts drawn from DFRELU
with (left) and without

instructions (right). Transformers were pretrained on mixtures of w · DFDENSE
+ (1 − w) · DFRELU

.
Different curves correspond to different w.
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We evaluate the same models on in-context data from DFSPARSE
in Fig. 2a left. For evenly weighted

pretraining mixtures with a sufficient fraction of DFSPARSE
data prompts in pretraining, the cost of

task-family selection relative to the baseline is small. For cases where DFSPARSE
data is rarely seen,

there appears to be a constant cost and performance looks akin to evaluation on DFDENSE
. In Fig. 2b,

the instructions generally help but only slightly reduce the cost of task-family selection in some
cases (i.e. the teal and blue curves). Adding task-family-identifying instructions when pretraining on
DFDENSE

data and evaluating DFSPARSE
data results in worse performance than not having instructions as

the model is provided a task instruction value for DFSPARSE
it never saw in pretraining.

Fig. 3 and Fig. 4 show similar evaluations with models pretrainined on DFDENSE
and DFRELU

. We
confirm for evenly weighted task mixtures, the pretrained transformer obtains near-optimal sample
complexity curves with respect to the individual constituent in-context task family, while extreme
task mixtures sacrifice sample complexity on the rarely seen task. In Fig. 3a left, the task-family
selection cost appears to be constant throughout the learning curve (i.e. the gold curve) as opposed to
a larger upfront cost that decays in Fig. 1a. We believe this may be because FDENSE and FRELU are not
included in each other. The learning curves for extreme mixture weights also exhibit a non-trivial
change in curvature away from the baseline w = 0 in Fig. 4a. We see the significant benefit of
in-context instructions in Fig. 3b and Fig. 4b, again with nuanced task-dependence. Aside from the
expected trouble with the w = 1 case, the instructions in Fig. 4b result in near perfect alignment with
pretraining only on data fromDFRELU

(w = 0) when pretrained with few ReLU-generated examples (w
close to 1). The learning curves at extreme mixture weights invert their curvature between Fig. 4a and
Fig. 4b. Instructions also help in Fig. 3b (the orange curve) but are not enough to achieve the optimal
baseline sample complexity. In Appendix A.5 we conduct experiments varying the transformer model
size and show instructions are only beneficial at sufficiently large model sizes.
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4 Conclusion

We empirically explored the interaction between the pretraining data composition and the downstream
ICL performance on different task families. Gaining more theoretical understanding of the ICL
task-family selection cost and non-trivial phenomenology in the learning curves is a direction for
further research. Another direction is extending these results to a controlled natural-language setting.
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A Appendix

A.1 Related Work

Raventós et al. [2023] investigates the role of pretraining function diversity for in-context learning in
the setting of pure linear regressions–arguing that a sufficiently diverse distribution over linear tasks
in pretraining is needed for ICL at test-time.

Closest to our work is that of Bai et al. [2023] which also explores transformers abilities to perform
task-family selection on theoretical and empirical grounds, in addition to providing rigorous theoreti-
cal guarantees for transformers generalization properties in pretraining, their expressive power and
their downstream in-context prediction performance. However the task-family selection guarantees
and empirics in this paper are restricted to explorations within the same model family – namely
studying task-family selection across evenly weighted task mixtures of linear regression with different
label noise strengths and linear/logistic regression; that is selecting between different linear families.
In contrast our work solely focuses on empirical investigations, but explores generalization across
varying tasks as a function of their pretraining data composition to uncover phenomenology in
downstream ICL curves.

A.2 Model Architecture

We trained a decoder-only Transformer [Vaswani et al., 2017] GPT2-sized model implemented
in the Jax-based machine learning framework, Pax4 with 12 layers, 8 attention heads, and a 256-
dimensional embedding space (9.5M parameters) as our base configuration [Garg et al., 2022]. We
too set the dimensions of x as 20 and used standard cosine positional embeddings in our model. We
trained 1 million steps with a training batch size of 1024, using the Adam optimizer with standard
hyperparameters set to β1 = 0.9, β2 = 0.999, ε = 10−9 and no weight-decay. We used a linear
ramp-up schedule followed by an inverse-square root learning rate decay. We empirically tuned to
find a learning rate of 1 with 5,000 warm-up steps to be effective. Our results are presented without
label noise in the data generation although find similar results adding label noise.

In evaluation, we used batch sizes of 8192.

A.3 Data Generation and Function Classes

Throughout our paper we always use DX = N (0, Id) for the covariate distribution and consider
models in dimension d = 20. For the function classes considered in the text we use:

• For DFDENSE
we generate a random β ∼ N (0, Id) and define DFDENSE

= {f(xi) : f(xi) =

β>xi/
√
d}.

• For DFSPARSE
we consider sparse linear models with the number of non-zero elements set to s = 2.

To generate the underlying parameter vector we randomly sample s coordinates uniformly without
replacement from the d = 20 dimensional support and in each non-zero coordinate generate a
random coefficient with distribution N (0, 1) to create β. We then define DFSPARSE

= {f(xi) :
f(xi) = β>xi/

√
s}.

• For DFRELU
we consider two-layer ReLU networks with randomly generated weights. In particular

we generate a first layer weight matrix W ∈ Rdh×d where dh = 100 is the hidden dimension
and Wij ∼ N (0, 2) and second layer coefficient β ∼ N (0, Idh

). We then define the function
class as DFRELU

= {f(xi) : f(xi) = β>σ(Wxi)/(
√
d · dh)}, where the activation function σ(·)

is taken as the standard ReLU unit.

Note that in each case we define the normalization of each function class such that Var(f(xi)) = 1
to ensure the norms of the outputs are comparable across different function classes.

A.4 Instruction Encoding

We encode instructions as a special sample point prepended to each prompt sequence. The "x" value
of the point is a one-hot encoding of the task index. The f(x) value is set to 0. With an instruction, a

4https://github.com/google/paxml
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Figure 5: ICL learning curves for evaluations on prompts drawn from DFDENSE
with (left) and without

instructions (right). Curves reflect transformers of varying sizes pretrained on mixtures heavily
favoring DFSPARSE

, with w = .001 in w · DFDENSE
+ (1− w) · DFSPARSE

.
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Figure 6: ICL learning curves for evaluations on prompts drawn from DFSPARSE
with (left) and without

instructions (right). Curves reflect transformers of varying sizes pretrained on mixtures heavily
favoring DFDENSE

, with w = .999 in w · DFDENSE
+ (1− w) · DFSPARSE

.
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prompt takes the form ONE_HOT(Fid),0,x1, f(x1), . . ., where F corresponds to the family from
which f is sampled for this prompt and the Fid is a fixed index value representing that function class.

Empirical evidence suggests that the model both learns to attend to this special point when determining
the function class (in so far as it does this explicitly internally) and learns to ignore it when solving
for the function class parameter values.

A.5 Model Sizes Plots

We explore the effects of different pretrained model sizes on downstream ICL performance in the case
where we have extreme mixture weights. Overall we see two generic phenomena. As Figs. 5a, 6a, 7a
and 8a show, the larger capacity models (with 1.2M and 9.5M parameters) generally perform better
then the small .2M parameter model. The performance of the 1.2M and 9.5M models is roughly
comparable. We also observe in Figs. 5b, 6b, 7b and 8b that Tiny model (.2M parameters) not only
struggles to benefit from the instruction token/conditional pretraining procedure but usually performs
worse. On the other hand, the higher capacity models (1.2M and 9.5M) have comparable performance
to each other and benefit significantly from instruction tokens.

We used the same model sizes and architectures as Garg et al. [2022]’s Section A.1 with models Tiny,
Small, and Standard.

A.6 Mixtures of Three Function Classes

The experiments thus far used data mixtures drawn from two function classes. Here, we train a model
drawing from three function classes and compare with the performance of the two-function-class case
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Figure 7: ICL learning curves for evaluations on prompts drawn from DFDENSE
with (left) and without

instructions (right). Curves reflect transformers of varying sizes pretrained on mixtures heavily
favoring DFRELU

, with w = .001 in w · DFDENSE
+ (1− w) · DFRELU

.
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Figure 8: ICL learning curves for evaluations on prompts drawn from DFRELU
with (left) and without

instructions (right). Curves reflect transformers of varying sizes pretrained on mixtures heavily
favoring DFDENSE

, with w = .999 in w · DFDENSE
+ (1− w) · DFRELU

.
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to see if the third class introduces greater task selection challenges. Each plot features the rarely-seen
function class at the same rate in both the two- and three-function-class cases. Most notably, Fig. 9a
shows that while the three-function-class curve avoids the initial larger bump in error, it’s otherwise
consistently worse by a constant amount until nearly 30 samples. We observed this constant error
in Fig. 3a as well. In the case of Fig. 11a, we find the three-function-class mixture outperforms
the two-function-class mixture. One hypothesis of why this occurs is that DFSPARSE

is is included in
DFDENSE

and hence may enable the model to learn the DFDENSE
task better as well.

In every scenario, Figs. 9b, 10b, 11b and 12b show that using instructions results in the same behavior
in between the two- and three-function-class cases.
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Figure 9: ICL learning curves for evaluations on prompts drawn from DFDENSE
with (left) and

without instructions (right). Curves reflect transformers pre-trained with varying number of function
classes/tasks. In each case, DFDENSE

is equally rare, occurring at rate .001 while the remaining samples
are split between the remaining classes.

0 5 10 15 20 25 30 35 40
In-Context Data Points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE Dense=0.001, Sparse=0.999

Dense=0.001, Sparse=0.4995, ReLU=0.4995

(a) Without Instructions

0 5 10 15 20 25 30 35 40
In-Context Data Points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE Dense=0.001, Sparse=0.999

Dense=0.001, Sparse=0.4995, ReLU=0.4995

(b) With Instructions

Figure 10: ICL learning curves for evaluations on prompts drawn from DFSPARSE
with (left) and

without instructions (right). Curves reflect transformers pre-trained with varying number of function
classes/tasks. In each case, DFSPARSE

is equally rare, occurring at rate .001 while the remaining samples
are split between the remaining classes.
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Figure 11: ICL learning curves for evaluations on prompts drawn from DFDENSE
with (left) and

without instructions (right). Curves reflect transformers pre-trained with varying number of function
classes/tasks. In each case, DFDENSE

is equally rare, occurring at rate .001 while the remaining samples
are split between the remaining classes.
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Figure 12: ICL learning curves for evaluations on prompts drawn from DFRELU
with (left) and

without instructions (right). Curves reflect transformers pre-trained with varying number of function
classes/tasks. In each case, DFRELU

is equally rare, occurring at rate .001 while the remaining samples
are split between the remaining classes.
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