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Abstract—This paper explores a thresholding-based algo-
rithm for Diffusion LMS (DLMS) under limited observability.
We analyze estimator convergence in mean and energy, deriv-
ing an optimal thresholding strategy. The method effectively
handles sparse observations in both time and transform do-
mains. Simulations validate our error analysis and highlight
the benefits of a cooperative approach, showing a 10–15 dB
improvement in Mean Square Deviation (MSD).

Index Terms—Distributed Estimation, DLMS, Sparse Mask,
Signal recovery over network, Error Analysis.

I. Introduction
Diffusion Least Mean Square (DLMS) enhances dis-

tributed estimation by enabling nodes to collabo-
rate through information exchange and iterative refine-
ment [1]–[5]. Extensions, such as Bayesian-learning-based
DLMS, improve adaptability in nonstationary and noisy
environments [6].

This paper examines scenarios where nodes have lim-
ited target visibility and must cooperatively estimate
signals. Inspired by [7], a thresholding-based approach
was proposed for support vector identification to enhance
estimation under incomplete information [8]. Prior work
has explored sparse estimation, partial diffusion strategies,
and robust weighting to mitigate communication overhead
and noise interference [9]–[12].

Further, compressive diffusion, frequency-domain meth-
ods, and adaptive censoring improve estimation efficiency
under missing data and censored measurements [13]–
[18]. Graph signal processing extends these techniques
to structured data, addressing partial observability via
smoothness and topology learning [19]–[21].

Our approach tackles error behavior of a network of
estimators with masked measurements, an unexplored
topic in the previous study [8]. We analyze estimator con-
vergence and demonstrate how estimation error variance
can be predicted based on the estimator’s parameters and
measurement noise variance. This provides an efficient
method for anticipating error behavior and adjusting the
threshold level to recover each node’s masks. Simulation
results validate our analysis, confirming the accuracy of
our approach in predicting the mean square deviation
(MSD) behavior of distributed estimators.

The structure of the article is as follows:
- Section II investigates the DLMS algorithm with partial
observations.
- Section III analyzes the convergence behavior in terms
of mean and energy for each estimator.
- Section IV discusses the requirements for thresholding
and mask retrieval.
- Section V presents an approach to determine the optimal
thresholding level by calculating the error probability of
mask estimation.
- Section VI provides a detailed evaluation of the proposed
approach and demonstrates its performance in two com-
bination scenarios with sparse observations in time and
transform domains.
- Finally, Section VII concludes the article.

II. The DLMS Algorith with Masked Measurements
The primary algorithm in this study is DLMS with

masked measurements [8]. At node i, local estimation
follows three steps:

g(ω⃗i(t),Θi(t)) =


1. si(t) = a⃗†i,tMiω⃗

opt + νi(t)

2. erri(t) = si(t)− a⃗†i,tω⃗i(t− 1)

3. ω⃗i(t) = ω⃗i(t− 1) + µ · erri(t)⃗ai,t
,

where Θi(t) includes the measurement vector a⃗i,t and
adaptation rate µ, and νi(t) is measurement noise. The
transpose operator is denoted by †.

In the combination step, DLMS typically assumes full
access to ω⃗opt, but real-world scenarios involve partial
observability, modeled using the mask operator Mi =
T †DiT , where diagonal elements of Di indicate observ-
ability in the transform domain (T ). Fig. 1 illustrates this
pattern.

For node i, the estimation is given by ω⃗i =Miω⃗
opt + e⃗i,

where e⃗i is the estimation error. The goal is to combine
estimates from neighboring nodes ℵi:

ψ⃗i =
∑
k∈ℵi

Gk,iω⃗k, (1)

to minimize the error, where Gk,i is the weighting matrix.
The estimation error is defined as:

J(i) ≜ E{∥ψ⃗i − ω⃗opt∥22}, (2)



Fig. 1: Masked data access and cooperative estimation in
a network (time-domain masking: T = I).

and the objective is to find optimal weights that minimize
it. For each neighboring node l ∈ ℵi, the Least Squares
Solution (LSS) converges to the unbiased solution [8]:

cLSS
l =

dlλ
2
l

1 +
∑m

k=1 d
2
kλ

2
k

≈ dl

σ2
l

∑N
k=1

d2
k

σ2
k

= cunbiased
l , (3)

where dl is the masking component, λl is the estimation
SNR, and σ2

l is the estimation error variance.
It should be noted that, in practice, observability

information is often unknown, requiring support identi-
fication. Assuming binary attenuation (Di(j) ∈ {0, 1}),
thresholding methods can retrieve the masks.

III. Error Behavior: Convergence Analysis
To justify the credibility of the thresholding-based ap-

proach, we analyze the convergence of each local estimator
and investigate its behavior in both transient and steady-
state modes.

We begin by studying the mean convergence of the
estimators’ algorithm. For simplicity, the node index is
omitted. The measured data are assumed to follow a
regressor model:

s(t) = a⃗†tMω⃗opt + ν(t). (4)

We define the estimation error as e⃗(t) ≜ ω⃗(t) −Mω⃗opt.
Accordingly, the estimation error can be calculated as:

ω⃗(t) = ω⃗(t− 1) + µ(s(t)− a⃗†t ω⃗(t− 1))⃗at
−Mω⃗opt
=====⇒ e⃗(t) = e⃗(t− 1)− µ[⃗a†t e⃗(t− 1)− ν(t)]⃗at. (5)

Taking the expectation of both sides, we define ϵ⃗(t) ≜
E{e⃗(t)} and let Ra = E{⃗ata⃗†t}. This leads to:

ϵ⃗(t) = E{e⃗(t− 1)} − µE{⃗at [⃗a†t e⃗(t− 1)− ν(t)]}
ϵ⃗(t) = ϵ⃗(t− 1)− µE{⃗ata⃗†t}E{e⃗(t− 1)} − E{⃗at}E{ν(t)}

= ϵ⃗(t− 1)− µRaϵ⃗(t− 1) = (I − µRa)
tϵ⃗(0). (6)

Typically, by finding the maximum eigenvalue of Ra,
denoted by max eig(Ra), the condition µ < 2

max eig(Ra)

ensures the convergence of (6) as t→ +∞.
It is worth mentioning that, as (6) guarantees con-

vergence in the mean for unmasked components, it also

confirms that the masked ones converge to zero, ensuring
they do not contribute randomness. By defining the
expected error in the transform domain ε⃗(t) ≜ T ϵ⃗(t), we
can verify the behavior by replacing the mask with its
transform domain counterpart M = T DT †:

ε⃗(t) = T ϵ⃗(t) = T E{ω⃗(t)− T DT †ω⃗opt} = E{Ω⃗(t)−DΩ⃗opt}.

To facilitate further analysis, we focus on normally
distributed regression vectors, with each component inde-
pendently and identically distributed (i.i.d.) from a zero-
mean normal distribution with variance σ2

a. Thus, we have
Ra = σ2

aI, which results in:

ϵ⃗(t) = (1− µσ2
a)

tϵ⃗(0)
T ×...
===⇒ ε⃗(t) = (1− µσ2

a)
tε⃗(0). (7)

The condition for convergence in the mean becomes:

|1− µσ2
a| < 1 ⇒ µ <

2

σ2
a

. (8)

On the other hand, we are also interested in the energy
of the estimation error. Hence, it might be beneficial to
find the expected energy of ϵ⃗(t) which also follows the
Parseval’s relation with its transform domain version:

ξ(t) ≜ E{∥ϵ⃗(t)∥2} = E{∥ε⃗(t)∥2}. (9)

Then, multiplying each side of (5) by itself and taking
the expectation results in:

ξ(t) = E{e⃗(t)†e⃗(t)}

= E{
(
e⃗(t− 1)− µ[⃗a†t e⃗(t− 1)− ν(t)]⃗at

)†(
e⃗(t− 1)− µ[⃗a†t e⃗(t− 1)− ν(t)]⃗at

)
}. (10)

Considering two terms, the measurement noise (ν(t))
and estimation error (e⃗(t)), we face three components
contributing to ξ(t):

1) Cross-Effect:

Cross term = E{µν(t)(e⃗(t− 1)− µa⃗†t e⃗(t− 1)⃗at)†a⃗t}
= µE{ν(t)}E{(e⃗(t− 1)− µa⃗†t e⃗(t− 1)⃗at)†a⃗t} = 0.

(11)

2) Measurement Noise Effect:

Measurement noise term = E{µ2ν(t)⃗a†tν(t)⃗at}
= µ2 E{ν(t)2}E{∥⃗at∥2} = µ2σ2

νLσ
2
a = Lµ2σ2

νσ
2
a. (12)

3) Estimation Error Effect:

Est. err. = E{∥e⃗(t− 1)− µa⃗ta⃗†t e⃗(t− 1)∥2}
= E{∥e⃗(t− 1)∥2}+ µ2 E{∥⃗ata⃗†t e⃗(t− 1)∥2}

− 2µE{e⃗(t− 1)†a⃗ta⃗†t e⃗(t− 1)}. (13)

By definition, ξ(t − 1) = E{∥e⃗(t − 1)∥2}. By applying
the trace operator, Tr(·), and using Tr(B.A) = Tr(A.B),
the remaining terms simplify as follows:

E{e⃗(t− 1)†a⃗ta⃗†t e⃗(t− 1)} = Tr(E{e⃗(t− 1)e⃗(t− 1)†}E{⃗ata⃗†t})
= σ2

a E{∥e⃗(t− 1)∥2} = σ2
aξ(t− 1).



Similarly, for E{∥⃗ata⃗†t a⃗ta⃗
†
t∥}:

E{∥⃗ata⃗†t e⃗(t− 1)∥2} = (2 + L)σ4
aξ(t− 1). (14)

Thus, (10) becomes:
ξ(t) = Lµ2σ2

νσ
2
a +

(
1− 2µσ2

a + (2 + L)µ2σ4
a

)
ξ(t− 1).

Defining κ1 ≜ Lµ2σ2
νσ

2
a and κ2 ≜ 1− 2µσ2

a +(2+L)µ2σ4
a,

we write:

ξ(t) = κ1 + κ2ξ(t− 1) = κ1

t−1∑
k=0

κk2 + κt2ξ(0)

= κ1
1− κt2
1− κ2

+ κt2ξ(0). (15)

If |κ2| < 1, convergence is guaranteed. Moreover, the
steady-state error level is determined as:

lim
t→+∞

ξ(t) =
κ1

1− κ2
=

Lµ2σ2
ν

2− (2 + L)µσ2
a

. (16)

IV. Thresholding Mask Retrieval
Having an estimate of σ2

ν , one can design a threshold
level to prioritize the signal component over noise elements
picked up. As (3) suggests, one requires complete knowl-
edge of the SNR level to attain optimal LSS weighting,
which is quite impractical, as discussed earlier.

To relax the optimality constraint, we propose ignoring
the target components that are relatively small compared
to the estimation noise level in (16).

Consider the auto-correlation matrix of ε⃗(t) as follows:
Re(t) = E{e⃗(t)e⃗(t)†}

= E
{(
e⃗(t− 1)− µ

[⃗
a†t e⃗(t− 1)− ν(t)

]⃗
at
)(

e⃗(t− 1)− µ
[⃗
a†t e⃗(t− 1)− ν(t)

]⃗
at
)†}

, (17)
which can be rewritten as a recursive relation as:

Re(t) = Re(t− 1)− 2µσ2
aRe(t− 1) + µ2

[
σ4
a . . .(

Tr(Re(t− 1))I+ 2Re(t− 1)
)
+ σ2

νσ
2
aI
]
. (18)

In order to solve this system of equations, we break it into
two parts.

1) Off-Diagonal Components: Considering the off-
diagonal components of Re(t), we can write:

Re(t) = (1− 2µσ2
a + 2µ2σ4

a)
tRe(0). (19)

Based on the convergence criteria 0 < κ2 < 1, and
0 < 1− 2µσ2

a, the condition 0 < 1− 2µσ2
a + 2µ2σ4

a < 1 is
guaranteed, and (19) will converge to zero for large t.

It is also worth mentioning that Re(0) is determined
by the initialization procedure and depends on the target
signal as follows:
Re(0) = E{e⃗(0)e⃗(0)†} = E{(ω⃗(0)− ω⃗opt)(ω⃗(0)− ω⃗opt)†}
= Rω(0) +Rωopt− E{ω⃗(0)}E{ω⃗opt}†− E{ω⃗opt}E{ω⃗(0)}†.

It is common to have a zero initialization or a zero-mean
i.i.d. random initialization, which results in:

Rω(0) = σ2
ω(0)I ⇒ Re(0) = σ2

ω(0)I+Rωopt . (20)

On the other hand, considering a target signal with un-
correlated components, Re(0) would be a diagonal matrix,
implying that for off-diagonal components, Re(t) = 0.

It should be noted that when the off-diagonal compo-
nents are zero, the independence assumption is valid.

2) Diagonal Components: For diagonal components,
we define r⃗e(t) ≜ diag(Re(t)). It should be noted that
Tr(Re(t)) = 1

†
Lr⃗e(t), which means:

r⃗e(t) =
[
(1− 2µσ2

a + 2µ2σ4
a)I+ µ2σ4

a1L×L

]t
r⃗e(0)

+σ2
νσ

2
a

t−1∑
k=0

[
(1− 2µσ2

a + 2µ2σ4
a)I+ µ2σ4

a1L×L

]k
1⃗L. (21)

In order to simplify (21), it can be shown:

(δ2I+ δ11L×L)
n =

(δ2 + Lδ1)
n − δn2

L
1L×L + δn2 I. (22)

By defining δ2 ≜ 1− 2µσ2
a+2µ2σ4

a and δ1 ≜ µ2σ4
a, we can

see δ2 + Lδ1 = κ2. Thus, we have

r⃗e(t) = (
(δ2 + Lδ1)

t − δt2
L

1L×L + δt2I)r⃗e(0)

+ σ2
νσ

2
a

t−1∑
k=0

(
(δ2 + Lδ1)

k − δk2
L

1L×L + δk2 I)1⃗L. (23)

It is straightforward to show that:

r⃗e(t) =
1

L

(
κt21L×Lr⃗e(0) + κ1

1− κt2
1− κ2

1⃗L

)
. (24)

By considering cases with t ≫ 1, we have δt2 → 0 and
δt1 → 0. Thus, the error floor can be achieved as follows:

lim
t→+∞

r⃗e(t) =
κ1

L(1− κ2)
1⃗L, (25)

which shows the expected error floor of each estimation
component.

By the matrix representation, for t≫ 1 we have:

Re(t) =
κ1

1− κ2
I. (26)

As a result, by noting ξ(t) = 1⃗
†
Lr⃗e(t) we have:

ξ(t) = κt2ξ(0) + κ1
1− κt2
1− κ2

, (27)

which is the same result as in (15).
V. Mask Estimation Error

Considering the estimation error e⃗(t), we have a multi-
variate Gaussian distribution with a mean vector ϵ⃗(t) from
(6) and a covariance matrix Re(t)− ϵ⃗(t)⃗ϵ(t)†, as given in
(26). Based on the description following (20), we can write:

Re(0) = σ2
ω(0)I + ω⃗opt(ω⃗opt)†, ϵ⃗(0) = ω⃗opt,

which results in:
mean = (I − µσ2

a)
tϵ⃗(0) = (I − µσ2

a)
tω⃗opt,

cov =
1

L

(
κt2

(
Lσ2

ω(0) + ∥ω⃗opt∥2
)
+ κ1

1− κt2
1− κ2

)
I + [δt2

− (I − µσ2
a)

2t]ω⃗opt(ω⃗opt)† − δt2 diag
[
ω⃗opt(ω⃗opt)†

]
.



For t≫ 1, we can write:

mean = 0, cov =
κ1

1− κ2
I. (28)

This implies that each component is i.i.d. zero-mean
normally distributed with a variance of κ1

1−κ2
.

Let x denote the l-th component of an arbitrary node i
and T be the thresholding level. We investigate two cases:
false positive (FP), which refers to mistakenly detecting a
masked x as an unmasked component, and false negative
(FN), which refers to ignoring an unmasked component
as a masked one:

FP = Prob(|x| > T), x ∼ N (0, σ2
est),

FN = Prob(|x| < T), x ∼ N (ωopt
l , σ2

est),

where σ2
est ≜ κ1

1−κ2
. These result in:

FP = 2Q

(
T
σest

)
, FN = Q

(
−
T+ ωopt

l

σest

)
−Q

(
T− ωopt

l

σest

)
.

(29)
If each component is masked with a probability of 1−ρ,

then the total error can be expressed as:

Total Error = ρ · FN + (1− ρ) · FP. (30)

To minimize the total error, one can take its derivative
with respect to T, set it to zero, and use numerical methods
to solve it for the specific scenario at hand.

VI. Simulation
Fig. 2 shows that error estimation from (15) aligns with

observations. Using the correction coefficient:
L∑

j Di(j)
· ∥Mi(ω⃗i − ω⃗opt)∥2

∥Miω⃗opt∥2
, (31)

the local error is evaluated as:
∥ω⃗i −Miω⃗

opt∥2

∥Miω⃗opt∥2
, (32)

Combining strategies improve consensus performance.
Three methods were tested:

1) ”avg”: Averaging over neighboring nodes.
2) ”opt”: Optimal LSS weighting from (3).
3) ”unbiased”: Optimal unbiased weighting from (3).

As predicted by (3), the LSS weighting converges to an
unbiased estimation in high SNR scenarios.

In Fig. 3, it is demonstrated that (29) and (30) (denoted
as ”theory” in the figure) effectively predict the probability
of incorrect estimation of mask components. At index t =
700, we attempted to estimate the unknown mask, and the
error probability as a function of the thresholding level T
is reported.

The results indicate that the theoretical and practical
probabilities of estimation error are closely aligned. It is
noteworthy that an optimal threshold value T exists at
the intersection of ρ ·FP and (1− ρ) ·FN , owing to their
monotonic behavior.
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Fig. 2: Error Bound: ρ = 0.5.

Additionally, it can be observed that for lower values
of T, the false positive (FP) rate plays a dominant role,
whereas for higher values of T, the false negative (FN)
rate becomes more significant.
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Fig. 3: Mask Estimation.

VII. Conclusion
We analyzed the error behavior of distributed estimators

with masked measurements and examined a thresholding-
based algorithm that improves information flow and en-
hances node estimation through shared data. Our analysis
demonstrated how this approach enables accurate estima-
tion without prior knowledge of the mask. Simulations
validated its effectiveness in predicting DLMS convergence
under sparse and partial information access.
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