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A Progressive Skip Reasoning Fusion Method for Multi-Modal
Classification
Anonymous Authors

ABSTRACT
In multi-modal classification tasks, a good fusion algorithm can
effectively integrate and process multi-modal data, thereby signifi-
cantly improving its performance. Researchers often focus on the
design of complex fusion operators and have proposed numerous
fusion operators, while paying less attention to the design of feature
fusion usage, specifically how features should be fused to better
facilitate multi-modal classification tasks. In this article, we pro-
pose a progressive skip reasoning fusion network (PSRFN) to make
some attempts to address this issue. Firstly, unlike most existing
multi-modal fusion methods that only use one fusion operator in a
single stage to fuse all view features, PSRFN utilizes the progressive
skip reasoning (PSR) block to fuse all views with a fusion operator
at each layer. Specifically, each PSR block utilizes all view features
and the fused features from the previous layer to jointly obtain
the fused features for the current layer. Secondly, each PSR block
utilizes a dual-weighted fusion strategy with learnable parameters
to adaptively allocate weights during the fusion process. The first
level of weighting assigns weights to each view feature, while the
second level assigns weights to the fused features from the previ-
ous layer and the fused features obtained from the first level of
weighting in the current layer. This strategy ensures that the PSR
block can dynamically adjust the weights based on the actual con-
tribution of features. Finally, to enable the model to fully utilize
feature information from different levels for feature fusion, the
skip connections are adopted between PSR blocks employing them.
Extensive experiment results on six real multi-modal datasets show
that a better usage for fusion operator is indeed able to improve
performance.

CCS CONCEPTS
• Multimedia Content Understanding→Multimodal Fusion.

KEYWORDS
Multi-modal fusion, Classification, Progressive fusion

1 INTRODUCTION
With rapid development of multimedia and representation learning
methods, data are generally represented with multiple group of
features from different views [12, 19, 28]. We refer to this type of
data as multi-view data, and each group of features is termed one
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view (it is noted that like other works [9, 22] the terms “view” and
“modality” are used interchangeably in this paper). For example, we
can extract color, shape and texture features from images, multiple
kinds of language features from texts, and acoustics and energy
features from audio. Multi-modal data have facilitated the devel-
opment of many tasks such as classification [16, 20, 34], clustering
[35, 36, 40], and feature selection [6, 14].

Among these multi-modal tasks, multi-modal classification tech-
nique attracts more and more attention of researchers from aca-
demics and industry with increasing demands for multimedia data
management. Many studies show an effective fusion operator is
very important for such task [3]. Hence the researchers in this
community pay enormous attention to the fusion operator design.
For example, Liang et al. [22] introduced the association informa-
tion between modality features into multi-modal data fusion and
proposed an association-based fusion strategy for multi-modal clas-
sification (MMC) in an interpretable manner. Hu et al. [11] proposed
a fuzzy fusion method and this method used a fuzzy operator to
fuse all kernel matrixes that are obtained by operating different
kernel functions on each view. Liu et al. [26] developed an efficient
low-rank multi-modal fusion method with modality-specific factors
to address the problem of tensor-based methods suffering from ex-
ponential increase in dimensions and in computational complexity.
Hou et al. [10] aimed to address the problem of existing tensor-
based methods ignoring the complex local intercorrelations and
proposed a polynomial tensor pooling method (PTP) for integrating
multi-view features by considering high-order moment. So far, a
huge number of fusion operators [2, 29, 37] have been proposed.
However, fusion operator usage is rarely studied.

Moreover, most existing fusion methods only conduct once fu-
sion for learned multi-view representation, and then the fused
features are passed to a classifier for decision-making. The fused
features obtained with the strategy may be sub-optimal due to in-
sufficient interaction among views. One may ask one question that
“Can the fused features be enhanced via multiple interactions with
multi-view representation"?

Many applications such as face recognition and speaker recogni-
tion benefit from the hierarchical features of deep learning. This
suggests that the original features could not be the best fit for the
current task and one or more feature transformations (namely repre-
sentation learning [4]) are needed for better performance. Similarly,
hierarchical features for multi-view features are also being learned
for performance gain. In this case, multi-view fusion faces one issue:
which hierarchical features should the fusion operator operate on ?
Moreover, in representation learning, to learn an effective feature
representation, we always transform features using a layer-by-layer
manner. Based on these observations, it is reasonable that fusion
should occur on each layer and the fusion representation should be
passed layer by layer.

Accordingly, the article studies the issue of the fusion operator
usage in hierarchical multi-view features. Specially, we propose a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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progressive skip reasoning fusion network (PSRFN). In PSRFN,
views are transformed once, fusion will occur once. This process
is performed by stacking multiple PSR blocks, and each PSR block
is able to be armed with existing fusion operators. The PSR block
takes view feature vectors at the current layer and the fused feature
vector at the previous layer as inputs, fuse them, and then output
the fused feature vector of the current layer.

Our main contributions are summarized as follows:

(1) A progressive fusion strategy is proposed, which incorpo-
rates the fused feature from the previous layer and the differ-
ent view features from the current layeras the input for the
current fusion layer, thus achieving progressive fusion. This
strategy fully utilizes the complementarity of information
from all views and gradually improves the discriminative
ability of features. With the strategy, a progressive skip rea-
soning (PSR) block is proposed, which is easy to be modified
and enhanced by replacing its fusion operation with existing
fusion operators according to different tasks or datasets.

(2) A dual-weighted fusion strategy with learnable parameters is
proposed, which can automatically adjust weights based on
the actual contribution of each view feature and fusion layer
feature. This strategy divides the weighted fusion process
into two steps to achieve precise control of weights and fully
utilize information from all views.

(3) A progressive skip reasoning fusion network (PSRFN) for
multi-modal classification is designed by stacking multiple
PSR Blocks. PSR is able to fuse different view features more
than times according to the number of PSR blocks given
by users. This way avoids the problem that users have to
determine where views should be fused. Moreover, the infor-
mation transmission between PSR blocks adopts skip con-
nections, enabling the model to fully capture both deep and
shallow features in multi-modal data, thereby enhancing the
model’s ability to understand the data. Additionally, skip
connections also help alleviate the problem of gradient van-
ishing, allowing the model to learn feature representations
more effectively during the training process.

(4) Extensive experiments conducted on six real multi-modal
datasets verify the effectiveness of PSRFN.

2 RELATEDWORK
2.1 Multi-Modal Classification
Multi-modal classification (MMC) aims to achieve a better and
robust classification performance by integrating multiple features.
Formally, letX = R𝑚1 ×R𝑚2 × · · · ×R𝑚𝑃 denote the instance space
(or feature space) of 𝑃 modality representation, where𝑚𝑝 (1 ≤ 𝑝 ≤
𝑃) is the feature dimension of 𝑝-th modality andY = {𝑙1, 𝑙2, · · · , 𝑙𝑞}
denote the label space with 𝑞 class labels. DenoteD as an unknown
distribution over X × Y. A training set 𝐷 = {(𝑥𝑥𝑥𝑝

𝑖
, 𝑦𝑖 ) |1 ≤ 𝑝 ≤

𝑃, 1 ≤ 𝑖 ≤ 𝑛} ∈ (X × Y)𝑛 is drawn identically and independently
according to D, where 𝑥𝑥𝑥𝑝

𝑖
= (𝑥𝑝

𝑖1, 𝑥
𝑝

𝑖2, · · · , 𝑥
𝑝

𝑖𝑚𝑝
) ∈ R𝑚𝑝 is the

𝑝-th modality feature vector with dimension𝑚𝑝 and 𝑦𝑖 ∈ Y is the
known label associated with 𝑥𝑥𝑥

𝑝

𝑖
. The task of MMC is to learn a

predictive function 𝑓 : X ↦→ Y from 𝐷 which can assign proper
label 𝑓 (𝑥𝑥𝑥) ∈ Y for unseen instance 𝑥𝑥𝑥 .

A multi-modal classification learner can be denoted as a two-
tuple 𝔏 = (ℎ, F ), where ℎ is a learned decision function also called
a classifier; F is a fusion function and it generally takes all view
features and outputs their fused vector as the input of ℎ.

2.2 View-Weighting Methods
The quality among multi-view features is different, lots of works
consider their contribution to the final tasks. Multi-modal clas-
sification methods can be roughly divided into the feature level
fusion-based (also namely early fusion) and decision level fusion-
based (also namely late fusion). Based on where the view contri-
bution are considered, these methods can be grouped into feature
level weighting-based method (FW) and decision level weighting-
based method (DW). FW learns the contribution weight of each
feature [5, 15, 38, 41]. For example, EmbraceNet assigns 1 to the
weight value of one view while 0 to others for each example ac-
cording to a multinomial distribution. Yang et al. [38] proposed an
adaptive-weighting discriminative regression approach (AWDR).
AWDR adopts the square root form of view weight to distinguish
features from different views. Zhang et al. [41] proposed discrim-
inative multi-view fusion via adaptive regression (DMVF), it si-
multaneously discriminates the contribution diversity of different
views and samples in an adaptive weighting manner, reducing the
influence of low-quality views and outliers for classification. DW
learns to assign weights at the decision level. For example, Han et
al. [8] proposed a trusted multi-view classification (TMC), which
models the confidence of each view at an evidence level using the
Dempster-Shafer theory. Liu et al. [25] noticed that the fusion with
Dempster’s rule will produce counter-intuitive results, and adopted
the opinion aggregation strategy to model the contribution degree
of each view decision results.

2.3 Fusion Methods
Fusion function F plays a very important role in our PSR block.
We will review related multi-modal classification methods from the
perspective of the adopted fusion ways, then select some of them
to design PSR block.

2.3.1 Basic Fusion methods. In the literatures of multi-modal learn-
ing, a common baseline for information fusion is to simply concate-
nate feature vectors across different modalities [32] such as images
and texts, which is surprisingly performant in various multi-modal
tasks. Other simple yet powerful methods include element-wise
addition, multiplication and max-pooling [21]. Nonetheless, these
element-wise operations are often limited in expressiveness as some
noisy modalities could clutter the entire feature vectors.
Concatenation: We combine the information from both modalities
using concatenation, i.e.,

𝑜 (𝑥𝑖 ) = [𝑈MLP(𝑥1𝑖 ),𝑉MLP(𝑥2𝑖 ))] (1)

where the function MLP is to map each view into a same size
dimension, [·, ·] is the concatenation operator. The drawback of
this fusion strategy is still considering the multi-view information
as separate as each of them affects the classification independently.
Addition: We combine the information from both modalities using
element-wise addition, i.e.,

𝑜 (𝑥𝑖 ) = 𝑈MLP(𝑥1𝑖 ) +𝑉MLP(𝑥2𝑖 ) (2)
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Multiplication: We combine the information from both modalities
using element-wise product, i.e.,

𝑜 (𝑥𝑖 ) = 𝑈MLP(𝑥1𝑖 ) ×𝑉MLP(𝑥2𝑖 ) (3)

Max-pooling: We combine the information from both modalities
using element-wise maximization, i.e.,

𝑜 (𝑥𝑖 ) = max(𝑈MLP(𝑥1𝑖 ),𝑉MLP(𝑥2𝑖 )) (4)

where (·, ·) denotes concatenate two vectors.
According to the work [21], the addition has more chance to

achieve a better performance and does not introduce extra learnable
parameters. Hence, it is selected the representative of the five basic
fusion operators to introduce to our PSR block.

2.3.2 Advanced Fusion methods. Recent bilinear models consider
all pairwise interactions among given view features, providing
richer expressive capacity than linear models. Recently, this tech-
nique has been successfully applied into egocentric hand action
recognition [29], fine-grained visual recognition [23] and visual
question answering (VQA) [17, 39]. In this section, we review two
respective effective and efficient implementations of bilinear pool-
ing.

Given two feature vectors 𝑣1 and 𝑣2 from two views, they can
be fused with bilinear pooling as follows:

𝑜𝑖 =

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝑤𝑖 𝑗𝑘𝑥 𝑗𝑦𝑘 + 𝑏𝑖 = 𝑥T1𝑊𝑖𝑥2 + 𝑏𝑖 (5)

where𝑊𝑖 ∈ R𝑚×𝑛 is a projection matrix, 𝑐𝑖 ∈ R is the output of
the bilinear model, and 𝑏𝑖 is a bias for the output 𝑐𝑖 .

In the pooling processing, the bilinear method will yield a very
high-dimensional fused vector and bring parameters of 𝐿 × (𝑁 ×
𝑀 + 1) including a bias vector 𝑏, where 𝐿 is the number of output
features. It is not friendly fusion way for various computational
resources. To overcome the problem of the curse of the parameters,
Kim et al. proposed [17] the multi-view low-rank bilinear pooling
(MLB) approach. First two input vectors (i.e., the image feature
𝑥 ∈ R𝑚 and the text feature 𝑦 ∈ R𝑛) are embedded into same
dimension space with two low-rank projection matrices using two
linear mappings without biases. Then, a joint representation is
learnt with Hadamard product (element-wise multiplication) in a
multiplicative way. Finally, a linear mapping with a bias is used to
project the joint representations into an output vector for a given
output dimension. To further increase model capacity, nonlinear
activation like tanh is added after 𝑐 . Since the MLB approach can
generate feature vectors with low dimensions and deep networks
with fewer model parameters, it has achieved very comparable
performance to MCB. The process can be formalized as

𝑐 = MLB(𝑣1, 𝑣2) = 𝑈 T (𝑈 T
1 𝑣1 ◦𝑈

T
2 𝑣2) + 𝑏 (6)

As pointed out by Yu et al. in [39], with the same dimensionality
for the output features, MLB may suffer from insufficient repre-
sentation due to approximating the outer product using a simple
way that the features are directly projected to the low-dimensional
output space and element-wise multiplication is performed. To over-
come this problem, Yu et al. [39] proposed multimodal factorized
bilinear pooling (MFB). First, the features from different modalities
are expanded to a high-dimensional space and then integrated with

𝑐𝑐𝑙𝑙−1

𝑣𝑣1𝑙𝑙−1

𝑣𝑣2𝑙𝑙−1

𝑣𝑣|𝑉𝑉|
𝑙𝑙−1

…

Feature fusion
V

iew
 feature transform

ation

𝒗𝒗𝟏𝟏𝒍𝒍𝑀𝑀1
𝑙𝑙

𝒗𝒗𝟐𝟐𝒍𝒍𝑀𝑀2
𝑙𝑙

𝒗𝒗|𝑽𝑽|
𝒍𝒍𝑀𝑀|𝑉𝑉|

𝑙𝑙

𝑴𝑴𝒎𝒎
𝒍𝒍 𝒄𝒄𝒍𝒍

… … …

…

𝑭𝑭𝒍𝒍

𝒗𝒗𝒍𝒍𝒇𝒇𝒗𝒗𝒍𝒍

𝑤𝑤1𝑙𝑙 𝑤𝑤2𝑙𝑙 𝑤𝑤|𝑉𝑉|
𝑙𝑙

𝒘𝒘𝒇𝒇𝒗𝒗
𝒍𝒍

𝒘𝒘𝒇𝒇𝒎𝒎
𝒍𝒍

𝑴𝑴𝒗𝒗
𝒍𝒍

𝑴𝑴𝒄𝒄
𝒍𝒍𝒄𝒄𝒎𝒎𝒍𝒍

Figure 1: One PSR block. It takes view features
𝑣𝑙−11 , 𝑣𝑙−12 , · · · , 𝑣𝑙−1|𝑉 | as inputs, then transforms them to

the transformed vectors 𝑣𝑙1, 𝑣
𝑙
2, · · · , 𝑣

𝑙
|𝑉 | . The transformed

vectors and the fused vector 𝑐𝑙−1 result in the fused vector 𝑐𝑙

through the dual-weight fusion strategy.

Hadamard product. After that, sum pooling followed by the nor-
malization layers are performed to squeeze the high-dimensional
feature into the compact output feature.

𝑐 = MFB(𝑣1, 𝑣2) = SumPool(𝑈 T
1 𝑣1 ◦𝑈

T
2 𝑣2, 𝑘) (7)

where the function SunPool(𝑥, 𝑘) means using a one-dimensional
non-overlapped window with the size 𝑘 to perform sum pooling
over 𝑥 .

It is clear from the formulas (5)-(7) that the key to advanced
fusion operators lies in the outer product. Hence, the outer product
is introduced to our PSR block.

3 PROGRESSIVE SKIP REASONING FUSION
NETWORK

In this section, we first introduce a progressive skip reasoning
(PSR) block, and then the progressive skip reasoning fusion net-
work (PSRFN) for multi-modal classification is desinged by stacking
multiple PSR blocks.

3.1 Progressive Skip Reasoning Block
As shown in Fig. 1, a PSR block consists of view feature transfor-
mation and feature fusion. It takes |𝑉 | view feature vectors and
the fusion vector from the previous layer, and then outputs the
|𝑉 | transformed view feature vectors and the fusion vector for the
current layer.

View feature transformation: It aims to learn more hierarchi-
cal and richer feature representation for each original view features.
It takes |𝑉 | view feature vectors from the previous layer and out-
puts the |𝑉 | transformed view feature vectors for the current layer.
Specifically, let 𝑣𝑙

𝑖
be the feature vector of 𝑖-th view at the 𝑙-th layer.
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The 𝑣𝑙
𝑖
only depends on 𝑣𝑙−1

𝑖
and can be obtained by the following

mapping
𝑣𝑙𝑖 = 𝑀𝑙

𝑖 𝑣
𝑙−1
𝑖 (8)

where 𝑀𝑙
𝑖
is a mapping function for extracting more high-level

feature representation 𝑣𝑙
𝑖
. This mapping function can be easily per-

formed using a fully-connected layer followed by ReLU activation
function.

Feature fusion: Fusion plays a very important role in multi-
modal classification task. The PSR block is armed with two fusion
operators. One is to fuse multiple view representation, and the
other is to fuse the current fused feature representation and that of
previous layer. It is well known that the quality of views usually
differs. Similarly, the contribution of both of the previous fusion
vector and current fusion vector may be different to final task.
Based on above analysis, feature fusion is performed by the dual-
weight fusion strategy, which takes |𝑉 | transformed view feature
vectors and the fusion vector from the previous layer, and outputs
the fusion vector for the current layer. Specifically, this process of
feature fusion can be divided into two steps for execution.

Firstly, it assigns weights to |𝑉 | transformed view feature vec-
tors based on their contribution to the classification task, and then
cascades and transforms the weighted features into the fused trans-
formed view feature. The cascading operation is able to not only
unify multiple views together but also preserve their characters.

In our experiment, the weighted cascading function 𝑓 𝑙𝑣 is de-
signed by weighted concat of |𝑉 | transformed view feature vectors
𝑣𝑙1, 𝑣

𝑙
2, · · · , 𝑣

𝑙
|𝑉 | at the 𝑙-th layer, and can be obtained by following

mapping
𝑓 𝑙𝑣 = 𝑤𝑙

1𝑣
𝑙
1 ⊕𝑤

𝑙
2𝑣

𝑙
2 · · ·𝑤

𝑙
|𝑉 |𝑣

𝑙
|𝑉 | (9)

where ⊕ is a cascading operator, 𝑤𝑙
𝑖
is the automatically tuned

weight parameter of 𝑖-th view at the 𝑙-th layer.
Next, the fused transformed view feature 𝑣𝑙 can be obtained by

following mapping
𝑣𝑙 = 𝑀𝑙

𝑣 𝑓
𝑙
𝑣 (10)

where 𝑀𝑙
𝑣 is a mapping function transforms feature to the same

dimension as the 𝑣𝑙
𝑖
, and it is performed using a fully-connected

layer followed by ReLU activation function.
Secondly, it further adjusts the weights to the fused transformed

view feature from the current layer and the fusion vector from the
previous layer based on their contribution to the classification task,
and then transforms the weighted features into the fused feature
for the current layer. Specifically, let 𝑐𝑙−1 be the fusion vector at
the (𝑙-1)-th layer, and the 𝑐𝑙𝑚 is transformed from 𝑐𝑙 and can be
obtained by following mapping.

𝑐𝑙𝑚 = 𝑀𝑙
𝑚𝑐𝑙−1 (11)

where 𝑀𝑙
𝑚 is a mapping function for extracting more high-level

feature representation 𝑐𝑙𝑚 , just like𝑀𝑙
𝑖
.

The fusion function 𝐹 𝑙 is used to weighted fuse 𝑣𝑙 and 𝑐𝑙𝑚 . In our
experiment, the fusion operator is designed as element-wise addition
or outer product, and it can be chosen one of them. The element-wise
addition fusion operator is able to enhance every feature used for
fusion, thereby strengthening the fused feature. The outer product
operator can expand the dimension of the input vector to a higher-
dimensional space, thus providing enhanced feature representation

capabilities. Afterwards, the output of fusion function 𝐹 𝑙 is mapped
through a mapping function to produce the final fused vector 𝑐𝑙 .
This step is implemented as follow:

𝑐𝑙 = 𝑀𝑙
𝑐 (𝑤𝑙

𝑓 𝑣
𝑣𝑙 ⊗𝑤𝑙

𝑓𝑚
𝑐𝑙𝑚) (12)

where𝑤𝑙
𝑓 𝑣

and𝑤𝑙
𝑓𝑚

are the two automatically tuned scale param-
eters, the ⊗ is the element-wise addition or outer product fusion
operator,𝑀𝑙

𝑐 is a mapping function just like𝑀𝑙
𝑖
too.

Since element-wise addition and outer product in Eq. 12 are in-
troduced, the magnitude of the output neurons 𝑐𝑙 may vary dra-
matically, and the model might converge to an unsatisfactory local
minimum. In this paper, we use normalization [13] to address this
problem. Specifically, we use the power normalization and ℓ2 nor-
malization [7, 39]. This process is implemented as follows:

𝑐𝑙 ← sign(𝑐𝑙 )
√︃
| 𝑐𝑙 | (13)

𝑐𝑙 ← 𝑐𝑙

∥ 𝑐𝑙 ∥
(14)

Compared to most existing fusion strategies that only fuse mul-
tiple view representation once via single fusion operator, the pro-
posed PSR block can deal with two types of information stream:
view representation and fused feature representation; Moreover,
PSR can be simultaneously armed with two fusion operators, so it
has greater flexibility for using exiting fusion operators. This reliefs
the sub-optimal issue due to insufficient interaction among views.

3.2 Progressive Skip Reasoning Fusion Network
for Multi-Modal Classification

We propose the progressive skip reasoning fusion network (PSRFN)
by stacking multiple PSR blocks shown in Figure 2.

The first PSR block of the PSRFN network takes |𝑉 | view features
𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | and 𝑐 as inputs. 𝑣1, 𝑣2, · · · , 𝑣 |𝑉 | are extracted using
different feature extractors such as SIFT and Hog. One simple native
way is set input 𝑐 to [0, 0, . . . , 0].

Skip: The skip connection approach is adopted among PSR
blocks, it is implemented by directly connecting the output of a
PSR block to the input of subsequent PSR blocks, enabling efficient
information flow between blocks. Specially, the output 𝑐1 of first
PSR block serves as the part of the input for the 2-th to the 𝐿-th
PSR blocks, the output 𝑐2 of sencond PSR block serves as the part
of the input for the 3-th to the 𝐿-th PSR blocks, and so on in this
manner.

Skip connections establish direct information channels between
different layers, enabling the fusion of features from different layers,
allowing the network to learn richer feature representations and
more effectively utilize the feature information from each block
during training. This contributes to improving the PSRFN’s perfor-
mance, convergence speed, and generalization ability in completing
multi-modal classification tasks.

Loss: Ensemble learning, as an effective technique to integrate
multiple models, tells us that the accuracy of each model is im-
portant to the final result [42]. Inspired this, different from most
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Figure 2: The whole framework of the progressive skip reasoning fusion network (PSRFN)

existing fusion frameworks which only optimize the fused infor-
mation, we enforce loss function on each view representation and
the final fused representation.

Given a set 𝐷 = (𝑥,𝑦) of 𝑛 examples where 𝑥 denotes any one
example in 𝐷 , its ground truth label is 𝑦. Its predicted probability
for each class is 𝑦 𝑗 based on the 𝑗-th view data and it is obtained by

𝑦 𝑗 = Softmax(𝑆 𝑗𝑣𝐿𝑗 ) (15)

where 𝑆 𝑗 is used to map 𝑣𝐿
𝑗
into a special space whose dimensional

is the same as the number of classes, and then the mapped vector
is transferred a probability vector 𝑦 𝑗 with the Softmax function.

The total losses are defined as

L = 𝜇L𝑆 + 𝜆L𝐹 (16)

where L𝑆 is to ensure the accuracy of model taking each view and
it is defined as

L𝑆 =
1
|𝑉 |

|𝑉 |∑︁
𝑗=1
L 𝑗

𝑆
= − 1

𝑛 |𝑉 |

|𝑉 |∑︁
𝑗=1

∑︁
(𝑥,𝑦) ∈𝐷

𝑦 log(𝑦 𝑗 )

L𝐹 is to ensure the accuracy of the fusion features and it is defined
as

L𝐹 = − 1
𝑛

∑︁
(𝑥,𝑦) ∈𝐷

𝑦 log(𝑦𝑐 )

𝜇 and 𝜆 are nonnegative tradeoff parameters controlling the relative
contributions of the corresponding loss terms.

The flowchart of the entire PSRFN is illustrated in Fig. 2.
It should be noted that (1) the fusion operator used in this article

can be replaced with other fusion operators such as bilinear pooling
and tensor-based fusion methods; (2) early fusion, intermediate
fusion and late fusion are three special cases of PSRFN.

4 EXPERIMENTAL STUDIES
In the experiments, we evaluate the effectiveness of the proposed
PSRFN algorithm on six multi-modal classification datasets. Our
computational environment is Ubuntu1 16.04.4, 512 GBDDR4 RDIMM,

2X 40-Core Intel(R) Xeon(R) CPU E5-2698 v4@ 2.20GH andNVIDIA
Tesla P100 with 16GB GPU memory.

4.1 Datasets
Our experiments are conducted on six challenging multi-modal
classification datasets which include image, text, audio, depth and
video datasets. (1) Animals with Attributes (AWA) [18] dataset,
which includes 30,475 images from 50 categories with seven view
features. These seven views consist of six low-level features and
one deep feature. (2) NUS-WIDE-128 (NUS) [30] dataset, which
includes 43,800 samples from 128 categories with seven view fea-
tures. These seven views consist of six image features and one text
feature. We select a subset of 10 categories from this dataset, with
a total of 23,438 images. (3) Reuters [1] dataset, which includes
111,740 samples from six categories with five multilingual view
features. To enable the model to process this dataset, PCA is used
to reduce the dimensions of all views to 1000. According to [8, 24],
Gaussian noise is added to either 5-view or 3-view datasets, result-
ing in two versions named Reuters5 and Reuters3, respectively. (4)
VoxCeleb [27] dataset, which includes 153,516 samples from 1,251
categories with five audio view features. These five views consist
of three traditional features and two deep features. To achieve the
research objective, Gaussian noise is added to the two deep features.
(5) YoutubeFace dataset, which includes 3,425 videos from 1,595
different people with five view features. According to [33], we use
a subset of 31 categories from this dataset, with a total of 101,499
frames.

4.2 Evaluation Metric
We employ five measures to evaluate the performance of each
method, which are accuracy, recall, precision, F1 score and kappa,
respectively. Accuracy, recall and precision are widely-used mea-
sures. F1 is an indicator in statistics that comprehensively assesses
the performance of the model by calculating the harmonic mean of



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

precision and recall. Wang et al. [31] pointed that the accuracy mea-
sure cannot recognize the random consistency and may cause an
unreliable evaluation. Hence, one more reasonable measure: kappa
is also used. These five evaluation metric definitions are as follows:

accuracy =
𝑇𝑃 +𝑇𝑁

𝑛
(17)

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (18)

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (19)

F1 =
2 × (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (20)

kappa =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

(21)

where 𝑛 denote the number of all samples; 𝑇𝑃 and 𝑇𝑁 denote
the number of true positive and true negatives, respectively; 𝐹𝑃
and 𝐹𝑁 denote the number of false positives and false negatives,
respectively. 𝑝𝑜 = 𝑇𝑃+𝑇𝑁

𝑛 is the empirical probability of agreement
on the label assigned to any sample (the observed agreement ratio),
and 𝑝𝑒 =

(𝑇𝑃+𝐹𝑁 )×(𝑇𝑃+𝐹𝑃 )
𝑛 + (𝐹𝑃+𝑇𝑁 )×(𝐹𝑁+𝑇𝑁 )𝑛 is the expected

agreement when both annotators assign labels randomly.
The larger values of the five metrics indicate a better classifi-

cation performance. For each compared algorithm, 5-fold cross-
validation is performed on each dataset, and the mean metric value
and the standard deviation are recorded for comparative studies.

4.3 Experimental Results with Other Methods
PSRFN is a weighting-based multi-modal classification method
(MMC). To validate the effectiveness of the proposed PSRFN, com-
prehensive comparison experiments are conduced with eight re-
lated weighting-based MMC methods. The compared methods can
be classified into the following two groups according to the level
of weighting:

(1) The first category is the feature level including EmbraceNet
[5], AWDR [38] and RAMC [15]. EmbraceNet assigns 1 to
the weight value of one view while 0 to others for each ex-
ample according to a multinomial distribution. AWDR is an
adaptive-weighting discriminative regression approach. Fol-
lowing [38], the parameter 𝜆 is chosen from the set {10−3, 10−2,
· · · , 103}, while𝑘 varieswithin the range {1, 3, · · · , 9}. RAMC
employs an𝐿2,1-norm loss function to acquire a joint weighted
projection space across all views. This method preserves
the correlation and diversity among views through a self-
supervised weighting strategy. Similarly, the parameter 𝜆
is chosen from {10−3, 10−2, · · · , 103}, and 𝑘 ranges from
{1, 3, · · · , 9}.

(2) The second category is the decision level including BV [21],
SSV [21], MR [21], TMC [8] and TMOA [25]. BV assigns 1
to the weight value of the view with the best performance
while 0 to others according to whole classification perfor-
mance of each view. MR assigns 1 to the weight value of the
view with the best performance while 0 to others for each
example according to the classification performance of each
view of each example. SSV assigns the same values to all
views. TMC and TMOA are two well-known trusted fusion

methods. Both of them model the confidence of each view
at an evidence level with the Dempster-Shafer theory and
opinion aggregation.

For the proposed PSRFN, in order to make the model more ele-
gant and lightweight, we set each module to contain only one fully
connected layer, and the number of neurons in the fully connected
layer is selected from [64, 128, 256]. In light of comparison to other
models, 𝜇 and 𝜆 are fixed 1. PSRFN (add.) and PSRFN (op.) represent
the use of element-wise addition fusion operator and outer product
fusion operator, respectively, within the fusion function 𝐹 𝑙 .

The results, displayed in Tables 1 and 2, are presented through
the mean metric value and the standard deviation obtained from
5-fold cross-validation. Avg. represents the average performance
value of each algorithm across the six datasets, while Rank indicates
the average ranking of each algorithm among all compared meth-
ods across the same datasets. From Tables 1 and 2, the following
observations can be made:

(1) Compared to the BV method that can be viewed as single
view method, PSRFN achieves the best classification perfor-
mance, while other multi-modal fusion methods perform
worse than BV on some datasets in terms of accuracy, re-
call, precision, F1 and kappa. For example, the accuracy of
EmbraceNet and TMC is lower 1.11% and 10.83% than BV,
respectively, while the proposed PSRFN is higher by 4.1%
than BV on YoutubeFace dataset. The reason may be that
PSRFN progressively enhances the fused features in a multi-
ple interaction manner through adaptive combination with
exiting fusion operators; while there is once interaction and
no interaction for the multi-view features in EmbraceNet
and TMC, respectively. This shows the advantage of our
progressive fusion strategy.

(2) Compared to the multi-modal fusion methods, PSRFN statis-
tically achieves the best results. Specifically, PSRFN wins 237
times out of 240 configurations (eight compared methods ×
six datasets × five metrics). It is noted that PSRFN achieves
the comparable performance two times out of three loses,
i.e., 87.73% vs 87.92% and 90.49% vs 90.64% (PSRFN vs other
methods); PSRFN performs worse than the SSV method in
terms of precision, but outperforms it in the other four eval-
uation metrics on YoutubeFace dataset. These results verify
the effectiveness of PSRFN.

(3) For the five average classification metrics and Rank, the
feature level weighting-based MMC methods statistically
perform better than the decision level weighting-basedMMC
methods. For example, RAMC, which performs best among
three feature level weighting-based MMC methods, achieves
the average accuracy of 83.87%, whereas TMOA, the top
performer among five decision level weighting-based MMC
methods, attains the average accuracy of 82.36%. The reason
for this may be that the former, which typically involves
multiple view features, allows for more interaction among
them than the latter. This further supports our viewpoint
that the fused features may be enhanced through interacting
with multi-view features more than once.
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Table 1: Comparison results (mean ± std) with SOTA algorithms on the accuracy, recall and precision, the best performance is
highlighted in boldface.

Accuracy
Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace Avg. Rank

Feature
EmbraceNet (IF19) 84.97±0.23 72.43±0.38 80.07±0.21 83.58±0.25 81.74±0.34 80.90±1.04 80.62 7.33
AWDR (PR19) 90.46±0.06 72.44±0.66 79.69±0.27 83.32±0.32 91.08±0.09 85.11±0.15 83.68 5.67
RAMC (INS22) 90.63±0.13 72.51±0.67 79.84±0.25 83.48±0.25 91.54±0.11 85.21±0.17 83.87 4.50

Decision

BV (TEVC21) 88.65±0.43 68.69±0.59 80.61±0.25 83.98±0.14 63.25±0.14 82.01±0.18 77.87 7.00
SSV (TEVC21) 82.37±1.26 63.70±0.64 79.51±0.41 84.71±0.22 85.10±0.23 84.43±0.31 79.97 7.00
MR (TEVC21) 87.10±0.64 64.39±0.85 78.24±0.45 84.17±0.19 79.92±0.29 84.78±0.21 79.77 7.67
TMOA (AAAA22) 89.17±0.31 72.60±0.48 79.11±0.43 84.19±0.27 84.72±0.21 84.35±0.25 82.36 6.00
TMC (TPAMI23) 88.59±0.25 72.73±0.30 79.60±0.56 84.23±0.35 73.13±0.15 71.18±2.27 78.24 6.67

Ours PSRFN (add.) 90.91±0.14 75.43±0.48 82.28±0.22 86.20±0.15 94.79±0.11 86.11±0.10 85.95 1.50
PSRFN (op.) 90.49±0.17 75.49±0.38 82.36±0.17 86.23±0.17 93.65±0.11 86.03±0.35 85.71 1.67

Recall
Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace Avg. Rank

Feature
EmbraceNet (IF19) 80.04±0.59 72.04±0.34 79.85±0.26 83.46±0.21 78.36±0.34 80.65±1.13 79.07 6.67
AWDR (PR19) 86.86±0.20 71.87±0.62 79.59±0.23 83.30±0.29 87.26±0.13 83.57±0.30 82.08 5.50
RAMC (INS22) 87.08±0.42 71.92±0.65 79.73±0.23 83.45±0.23 87.95±0.11 83.35±0.27 82.25 4.58

Decision

BV (TEVC21) 85.72±0.57 67.67±0.57 80.52±0.29 83.91±0.11 57.79±0.14 81.05±0.35 76.11 6.67
SSV (TEVC21) 77.28±1.45 60.52±0.63 79.08±0.40 84.48±0.25 81.07±0.26 80.80±0.53 77.21 7.50
MR (TEVC21) 83.55±0.77 63.10±0.91 78.11±0.45 84.12±0.26 75.36±0.32 83.87±0.31 78.02 7.33
TMOA (AAAA22) 83.62±0.91 71.81±0.49 78.85±0.30 84.25±0.30 81.54±0.26 82.63±0.39 80.45 6.17
TMC (TPAMI23) 84.47±0.54 71.70±0.43 79.60±0.56 84.19±0.29 64.06±0.12 68.50±2.77 75.42 7.17

Ours PSRFN (add.) 87.08±0.35 74.93±0.43 82.11±0.17 86.19±0.22 93.26±0.14 85.46±0.39 84.84 1.25
PSRFN (op.) 86.78±0.17 74.83±0.41 82.21±0.12 86.16±0.18 91.77±0.14 85.17±0.48 84.49 2.17

Precision
Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace Avg. Rank

Feature
EmbraceNet (IF19) 82.14±0.57 71.73±0.32 80.42±0.25 83.77±0.34 80.95±0.46 83.71±1.10 80.45 7.50
AWDR (PR19) 89.32±0.33 72.71±0.61 79.87±0.30 83.49±0.34 91.83±0.11 89.94±0.32 84.53 5.92
RAMC (INS22) 89.41±0.38 72.82±0.64 80.12±0.27 83.70±0.28 92.19±0.06 90.64±0.08 84.81 4.17

Decision

BV (TEVC21) 86.57±0.46 70.98±0.95 80.77±0.19 84.13±0.19 64.63±0.63 84.34±0.61 78.57 7.17
SSV (TEVC21) 82.76±1.10 67.23±0.58 80.19±0.49 85.16±0.20 84.44±0.18 94.13±0.37 82.32 5.33
MR (TEVC21) 85.44±0.64 64.90±0.81 78.21±0.48 84.25±0.13 78.85±0.29 86.56±0.58 79.70 8.17
TMOA (AAAA22) 88.15±0.62 72.73±0.53 79.89±0.72 84.40±0.23 84.38±0.30 87.59±0.28 82.86 5.50
TMC (TPAMI23) 87.76±0.40 72.71±0.22 79.86±0.46 84.43±0.49 73.26±0.34 82.53±2.01 80.09 7.25

Ours PSRFN (add.) 89.48±0.39 75.63±0.49 82.52±0.25 86.32±0.15 94.54±0.12 90.22±0.85 86.45 2.00
PSRFN (op.) 88.77±0.43 75.82±0.44 82.61±0.20 86.38±0.20 93.29±0.09 90.49±0.97 86.23 2.00

In summary, the excellent performance of PSRFN indicates that
it is highly competitive compared with other single fusion strategy-
based methods.

4.4 Ablation Experiments
The PSRFN includes four components:𝑊𝑣 ,𝑊𝑓 , skip and fusion op-
eration. This subsection aims to show the role of each component
of PSRFN through conducting ablation experiments on NUS and
Reuters5 datasets. The results are shown in Table 3. The𝑊𝑣 repre-
sents the component for weighting |𝑉 | transformed view feature
vectors 𝑣𝑙1, 𝑣

𝑙
2, · · · , 𝑣

𝑙
|𝑉 | in the 𝑙-th PSRFN block. The𝑊𝑓 represents

the component for weighting the fused vector 𝑣𝑙 and 𝑐𝑙𝑚 in the 𝑙-th
PSR block. The skip represents the use of skip connections between
consecutive PSR blocks. Fusion operation represents the fusion of

𝑣𝑙 and 𝑐𝑙𝑚 using a fusion operator in the 𝑙-th PSR block. In this
paper, the fusion operator can be either 𝑎𝑑𝑑. or 𝑜𝑝., where 𝑎𝑑𝑑.
represents element-wise addition, 𝑜𝑝. represents outer product. The
settings are divided four groups according to the number that𝑊𝑣 ,
𝑊𝑓 and skip are selected:

G1: None of the first three components is selected;
G2: One of the first three components is selected;
G3: Two of the first three components are selected;
G4: All of the first three components are selected.
From the Table 3, the following conclusions can be made.

(1) The best results are obtained by the PSRFN that is config-
ured with𝑊𝑣 ,𝑊𝑓 and skip, which shows that each of three
components plays an important role.
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Table 2: Comparison results (mean ± std) with SOTA algorithms on F1 and Kappa, the best performance is highlighted in
boldface.

F1
Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace Avg. Rank

Feature
EmbraceNet (IF19) 80.60±0.62 71.78±0.36 80.07±0.22 83.59±0.25 78.64±0.41 81.61±0.99 79.38 7.33
AWDR (PR19) 87.72±0.21 72.16±0.62 79.71±0.27 83.37±0.30 88.57±0.13 86.51±0.12 83.01 5.33
RAMC (INS22) 87.92±0.30 72.21±0.65 79.90±0.25 83.54±0.24 89.20±0.10 86.69±0.17 83.24 4.00

Decision

BV (TEVC21) 85.94±0.50 68.64±0.63 80.61±0.24 83.99±0.11 58.34±0.23 82.49±0.25 76.67 6.83
SSV (TEVC21) 78.82±1.42 62.13±0.69 79.49±0.42 84.75±0.21 81.75±0.23 86.55±0.27 78.92 6.83
MR (TEVC21) 84.14±0.73 62.96±0.93 78.11±0.46 84.16±0.19 75.88±0.30 85.03±0.29 78.38 7.67
TMOA (AAAA22) 83.65±0.86 72.02±0.49 79.14±0.49 84.24±0.24 82.02±0.33 84.85±0.25 80.99 6.33
TMC (TPAMI23) 85.28±0.54 71.84±0.31 79.52±0.57 84.22±0.38 65.22±0.09 71.92±2.06 76.33 7.17

Ours PSRFN (add.) 87.73±0.44 74.97±0.35 82.28±0.20 86.22±0.16 93.67±0.13 87.50±0.29 85.40 1.67
PSRFN (op.) 87.38±0.25 75.11±0.37 82.37±0.14 86.25±0.18 92.22±0.12 87.49±0.36 85.14 1.83

Kappa
Groups Methods AWA NUS Reuters5 Reuters3 VoxCeleb YoutubeFace Avg. Rank

Feature
EmbraceNet (IF19) 84.60±0.24 68.99±0.44 75.99±0.25 80.23±0.30 81.72±0.34 78.93±1.12 78.41 7.17
AWDR (PR19) 90.23±0.06 68.96±0.75 75.54±0.32 79.91±0.38 91.07±0.09 83.40±0.18 81.52 5.83
RAMC (INS22) 90.41±0.13 69.04±0.78 75.72±0.29 80.11±0.30 91.53±0.11 83.47±0.21 81.71 4.50

Decision

BV (TEVC21) 88.38±0.44 64.62±0.67 76.65±0.31 80.71±0.16 63.21±0.14 80.08±0.18 75.61 7.00
SSV (TEVC21) 81.93±1.28 58.69±0.74 75.30±0.49 81.58±0.27 85.09±0.23 82.37±0.38 77.49 7.17
MR (TEVC21) 86.78±0.65 59.69±0.98 73.79±0.54 80.93±0.24 79.89±0.29 83.16±0.22 77.37 7.67
TMOA (AAAA22) 88.91±0.31 69.12±0.53 74.82±0.50 80.97±0.33 84.55±0.42 82.60±0.29 80.16 5.83
TMC (TPAMI23) 88.31±0.26 69.22±0.35 75.44±0.68 81.01±0.42 73.10±0.15 67.68±2.46 75.79 6.67

Ours PSRFN (add.) 90.69±0.14 72.35±0.52 78.65±0.26 83.38±0.19 94.79±0.11 84.58±0.10 84.07 1.50
PSRFN (op.) 90.26±0.18 72.41±0.43 78.75±0.20 83.42±0.21 93.65±0.12 84.47±0.38 83.83 1.67

Table 3: Ablation experiments, where × denotes that the cor-
responding component is removed, ✓denotes that the corre-
sponding component is added.

Groups ID 𝑊𝑣 𝑊𝑓 Skip 𝑎𝑑𝑑. 𝑜𝑝. NUS Reuters5

G1 1 × × × ✓ × 75.08±0.44 81.89±0.20
2 × × × × ✓ 74.86±0.42 81.94±0.17

G2

3 ✓ × × ✓ × 75.16±0.43 82.13±0.20
4 ✓ × × × ✓ 74.89±0.37 82.19±0.18
5 × ✓ × ✓ × 75.18±0.30 81.98±0.19
6 × ✓ × × ✓ 74.91±0.38 82.06±0.15
7 × × ✓ ✓ × 75.12±0.46 81.90±0.23
8 × × ✓ × ✓ 75.08±0.39 81.96±0.15

G3

9 ✓ ✓ × ✓ × 75.25±0.50 82.16±0.18
10 ✓ ✓ × × ✓ 74.92±0.45 82.22±0.16
11 ✓ × ✓ ✓ × 75.18±0.47 82.24±0.14
12 ✓ × ✓ × ✓ 75.09±0.34 82.25±0.18
13 × ✓ ✓ ✓ × 75.32±0.43 82.10±0.16
14 × ✓ ✓ × ✓ 75.35±0.38 82.07±0.16

G4 15 ✓ ✓ ✓ ✓ × 75.43±0.48 82.28±0.22
16 ✓ ✓ ✓ × ✓ 75.49±0.38 82.36±0.17

(2) When the configurations of the PSRFN change from G1 to
G4 on two datasets, their accuracy values are 75.08%, 75.18%,
75.35%, 75.49% on NUS dataset, respectively; the accuracy
values are 81.94%, 82.19%, 82.25%, 82.36% on Reuters5 dataset,

respectively. The consistent increase tend further implies
that each component of PSRFN is very useful for the perfor-
mance improvement.

In summary, the above evidence shows the design rationality of
the PSRFN. Hence, it is worthwhile to pay more attention to the
fusion operator usage and fused feature enhancement.

5 CONCLUSION
In this paper, we have proposed a progressive skip reasoning fusion
network (PSRFN). Unlike most existingmulti-modal fusionmethods
that only use one fusion operator in a single stage to fuse all view
features, PSRFN utilizes a PSR block to fuse all views with the
fusion operator at each layer. The comprehensive experimental
results have verified the effectiveness of the proposed method,
suggesting that the multiple interaction between fused feature
and view features is beneficial. In the future, it is worthwhile to
propose better progressive fusion strategy. It has been observed
that PSRFN needs to be armed with different configurations. Hence,
it is interesting to apply neural architecture search technique to
automatically search for the proper configurations.
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