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Abstract

An important line of research in the field of explainability is to extract a small1

subset of crucial clues from the full input. The most widely used criterion for2

clue extraction is the maximum mutual information (MMI) criterion. However,3

in certain datasets, there are spurious features non-causally correlated with the4

label and also get high mutual information, complicating the loss landscape of5

MMI. Although some penalty-based methods have been developed to penalize the6

spurious features (e.g., invariance penalty, intervention penalty, etc) to help MMI7

work better, these are merely remedial measures. In the optimization objectives8

of these methods, spurious features are still distinguished from plain noise, which9

hinders the discovery of causal clues. This paper aims to develop a new criterion10

that treats spurious features as plain noise, allowing the model to work on datasets11

rich in spurious features as if it were working on clean datasets, thereby making12

clue extraction easier. We theoretically observe that removing either plain noise or13

spurious features from the input does not alter the conditional distribution of the14

remaining components relative to the task label. However, significant changes in15

the conditional distribution occur only when causal features are eliminated. Based16

on this discovery, the paper proposes a criterion for Maximizing the Remaining17

Discrepancy (MRD). Experiments on six widely used datasets show that our MRD18

criterion improves clue quality (measured by the overlap with human-annotated19

clues) by up to 10.4% as compared to several recent competitive MMI variants.20

The code is available at https://anonymous.4open.science/r/MRD-0427.21

1 Introduction22

With the success of deep learning, there are growing concerns over interpretability (Lipton, 2018).23

Ideally, the explanation should be both faithful (reflecting the model’s actual behavior) and plausible24

(aligning with human understanding) (Jacovi and Goldberg, 2020; Chan et al., 2022). Post-hoc25

explanations, which are trained separately from the prediction process, may not faithfully represent an26

agent’s decision, despite appearing plausible (Lipton, 2018). In contrast to post-hoc methods, ante-hoc27

(or self-explaining) techniques typically offer increased transparency (Lipton, 2018) and faithfulness28

(Yu et al., 2021), as the prediction is made based on the explanation itself. There is a stream of29

research that has exposed the unreliability of post-hoc explanations and called for self-explanatory30

methods (Rudin, 2019; Adebayo et al., 2018; Ghassemi et al., 2021; Ren et al., 2024).31

One important line of research to build self-explainable NLP models is first extracting the most32

informative clue (referred to as the rationale) in a text and then using the extracted clue to train33

a predictor. This line of research is known as rationalization. A model-agnostic rationalization34

framework, called Rationalizing Neural Predictions (RNP), was first proposed by Lei et al. (2016).35

RNP utilizes a cooperative game between an extractor and a predictor. This game is designed with a36

focus on "data-centric" importance of clues (i.e., it aims to explain the connection between a text37

and the model-agnostic task label, rather than explaining the output of a specific model). First, the38

extractor identifies the most informative part of the input, known as the rationale. Then, as depicted39
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in Figure 1, the rationale is transmitted to the predictor to facilitate predictions. The extractor and40

predictor are trained cooperatively to maximize prediction accuracy, with the theoretical support being41

the Maximum Mutual Information (MMI) criterion (Yu et al., 2021; Chang et al., 2020). RNP and its42

variants have become mainstream approaches for enhancing the interpretability of NLP models (Yue43

et al., 2023; Liu et al., 2023b; Storek et al., 2023; Zhang et al., 2023). Aside from interpretability,44

rationalization can also serve as a method for data cleaning, as the extracted (Z,Y ) samples can45

function as a new dataset. Recent studies have shown that a predictor trained with such a dataset can46

be more robust (Chen et al., 2022) and generalizable (Wu et al., 2022; Gui et al., 2023), due to the47

removal of task-irrelevant, harmful information.48
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Figure 1: The standard rationalization framework RNP. The task is
binary sentiment classification about the hotel’s location. X,Z, Ŷ , Y
represent the input, the extracted rationale candidate, the prediction and
the ground truth label, respectively. θE , θP represent the parameters of
the extractor and the predictor, respectively. Hc denotes cross-entropy.

Previous methods typically49

employ the Maximum Mu-50

tual Information (MMI) cri-51

terion to identify the ratio-52

nale, defined as the subset53

most indicative of the tar-54

get label. However, cer-55

tain datasets contain fea-56

tures that are statistically57

correlated with the task la-58

bel but do not causally af-59

fect it. These features are60

referred to as spurious features, and the associated correlations are known as spurious correlations.61

The spurious features are also indicative of the target label and can compete with the true rationale for62

extraction opportunities under the MMI criterion, distinguishing them from plain noise. Consider a63

scenario where the extractor is initially positioned on selecting plain noise. If a clean dataset contains64

no spurious features, the gradient will guide the extractor solely towards causal features. However,65

if the dataset is rich in spurious features, the extractor can move in various directions, arbitrarily66

towards either spurious or causal features. Given the potential diversity of spurious features in the67

data, the extractor may struggle in a complex loss landscape (Chang et al., 2020). A typical example68

of spurious correlation, as highlighted in LIME (Ribeiro et al., 2016), is the frequent co-occurrence of69

wolves and snow in images. Consequently, the presence of snow in the background can erroneously70

serve as a strong indicator for classifying an image as depicting a wolf, leading MMI to possibly71

select the background feature instead of the wolf’s face as the rationale. Figure 5(a) in Appendix72

A.10 illustrates another instance of spurious correlations.73

Some methods try to develop regularizers that can penalize the spurious features and fix the shortcom-74

ing of MMI. INVRAT (Chang et al., 2020) incorporates the concept of invariant risk minimization75

to design an invariance penalty. Inter_RAT (Yue et al., 2023) utilizes an intervention penalty. CR76

(Zhang et al., 2023) implements a sufficiency and necessity penalty by separately assessing the77

sufficiency and necessity of each token. In addition to the specific shortcomings of each type of78

method (discussed in §2), they share a common limitation: most still adhere to the MMI criterion and79

merely use supplementary objectives to penalize spurious features. If the penalty term’s weight is80

too small, spurious features will still be favored over uninformative noise due to their higher mutual81

information. Consequently, when the extractor initially selects noise, the gradient descent algorithm82

might shift towards either spurious features or the true rationale. On the other hand, if the penalty83

term’s weight is too high, it can dominate the loss function and impair the MMI’s ability to distinguish84

between noise and causal features (see §4.1). The difference between spurious features and noise85

can complicate the loss landscape of rationale extraction, which may lead to the emergence of local86

optima. Note that the problem of local optima in rationalization is very serious (Yu et al., 2021).87

A recent research MCD (Liu et al., 2023a) revises the MMI criterion to the minimum conditional88

dependence criterion and does not introduce extra penalty terms. However, MCD also can not promise89

to treat the spurious features as plain noise. We provide a detailed comparison of MCD and our90

approach in Appendix A.1 help readers better understand the unique advantages of our approach.91

In this paper, we diverge from previous research that focuses on the selected rationale candidate92

Z as the primary subject. Instead, we adopt a reversed perspective, considering the remaining93

part X−Z by excluding the rationale candidate Z from the full input X , as the main subject of94

study. We find that, although selecting spurious features rather than noise as Z will be more95

indicative of Y (i.e., P (Y ∣S) ≠ P (Y ∣N), with S,N denoting Spurious features and Noise), neither96
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selecting the plain noise nor the spurious features as Z will cause a change in P (Y ∣X−Z) (i.e.,97

P (Y ∣X−S) = P (Y ∣X−N) = P (Y ∣X)). Based on this observation, we replace the criterion of98

maximizing the mutual information I(Y ;Z) with maximizing the remaining discrepancy (MRD)99

DKL(PY ∣X ∣∣PY ∣X−Z ). Under this new criterion, spurious correlations are treated as equivalent to100

uninformative noise without extra supplement regularizers on the rationale candidate, allowing the101

extractor to work on datasets rich in spurious features as if it were working on clean datasets.102

In summary, our contributions are as follows: (1) We introduce a new criterion that treats spurious103

features as equivalent to plain noise, simplifying the loss landscape for rationale extraction. (2) We104

propose a simple and practical method to implement this new criterion. (3) Experiments on six105

widely used datasets show that our MRD improves the rationale quality (measured by the overlap106

with human-annotated rationales) by up to 10.4% as compared to several competitive MMI variants.107

2 Related work108

Data-centric rationale extraction. Data-centric rationale extraction (also known as rationalization)109

is a general framework first proposed by Lei et al. (2016). By extracting rationales before making110

predictions, this framework has been one of the mainstreams to facilitate the interpretability of NLP111

models (Chang et al., 2020; Sha et al., 2021; Yu et al., 2021; Shen et al., 2022; Chan et al., 2022;112

Storek et al., 2023; Zhang et al., 2023). Recently, there has also been some work attempting to extend113

it to the field of graph learning (Luo et al., 2020) and computer vision (Yuan et al., 2022). Apart114

from improving interpretability, recent work has also discovered that it can serve as a method of data115

cleaning, as training a predictor with the extracted rationales has been found to increase robustness116

(Chen et al., 2022) and generalization (Wu et al., 2022; Gui et al., 2023). We also briefly discuss the117

potential impact of rationalization in the era of LLMs in Appendix A.11.118

Mitigating spurious correlations. One important obstacle of rationalization is the spurious features119

in datasets, as the spurious features also have high correlations with the task label and can compete120

with the causal features for extraction opportunities under the most widely used MMI criterion. Some121

methods have been developed to mitigate the impact of spurious correlations. INVRAT (Chang et al.,122

2020) attempts to tackle feature correlation using invariant risk minimization (IRM) (Arjovsky et al.,123

2019). The main idea is to penalize spurious (non-causal) variations by splitting the dataset into124

distinct environments. However, IRM-based methods have several limitations. For instance, they125

require strong prior knowledge about the relationships between non-causal and causal features (e.g.,126

the extra labels of non-causal features) in order to divide the dataset (Lin et al., 2022b). Moreover,127

IRM-based methods are limited to addressing only a finite set of predetermined non-causal features,128

neglecting the potential existence of numerous unknown non-causal features. In fact, a recent study129

(Lin et al., 2022b) in the field of IRM has theoretically demonstrated that it is nearly impossible130

to partition a dataset into different environments to eliminate all non-causal features using IRM.131

Other challenges, such as the tendency to overfit, difficulty in applying to larger models (Zhou et al.,132

2022; Lin et al., 2022a), and the marginal shift risk of the input (Rosenfeld et al., 2021), have also133

been identified within the realm of IRM. Inter_RAT (Yue et al., 2023) attempts to eliminate feature134

correlation through backdoor adjustment, intervening directly with the confounders. However, it is135

extremely hard to measure the confounders since they are usually not observable in the dataset. CR136

(Zhang et al., 2023) calculates the sufficiency and necessity of each token separately, which leads to a137

high computational complexity, making it feasible only for very short texts. Aside from the above138

shortcomings, penalty-based methods share a common limitation. They need to coordinate the MMI139

and the penalty objectives to make the gradient descent algorithm treat the spurious features and plain140

noise equally and guide the extractor to move towards only the causal features. A recent research141

MCD (Liu et al., 2023a) revises MMI to the minimum conditional dependence criterion. Although142

MCD does not involve penalty regularizers, it also cannot treat spurious features and plain noise143

equally. And the spurious features can still compete with the causal ones.144

3 Preliminaries145

3.1 The rationale extraction task146

We consider the text classification task, where the input is a text sequence X=[x1, x2,⋯, xl] with147

xi being the i-th token and l being the number of tokens. Y represents the classes in a dataset D.148
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The standard rationalization framework RNP (Lei et al., 2016) consists of an extractor fE(⋅) and149

a predictor fP (⋅), with θe and θp representing the parameters of the extractor and predictor. For150

(X,Y ) ∼ D, the extractor first outputs a sequence of binary mask M = fE(X) = [m1,⋯,ml] ∈151

{0,1}l (in practice, the extractor first outputs a Bernoulli distribution for each token and the mask for152

each token is independently sampled using gumbel-softmax). Then, it forms the rationale candidate153

Z by the element-wise product of X and M :154

Z =M ⊙X = [m1x1,⋯,mlxl]. (1)

To simplify the notation, we denote fE(X) as Z in the following sections, i.e., fE(X) = Z. With the155

extractor’s selection, we get a set of (Z,Y ) samples, which are generally considered to represent the156

distribution P (Y ∣Z). The rationale Z is searched by maximizing the mutual information I(Y ;Z):157

Z∗ = argmax
Z

I(Y ;Z) = argmax
Z

(H(Y ) −H(Y ∣Z)) = argmin
Z

H(Y ∣Z), s.t., Z = fE(X). (2)

In practice, the entropy H(Y ∣Z) is commonly approximated by the minimum cross-entropy158

minθp Hc(Y, Ŷ ∣Z), with Ŷ = fP (Z) representing the output of the predictor. It is essential to159

note that the minimum cross-entropy is equal to the entropy (please refer to Appendix A.7). Replac-160

ing Z with fE(X), the extractor and the predictor are trained cooperatively:161

min
θe,θp

Hc(Y, fP (fE(X))∣fE(X)), s.t., (X,Y ) ∼ D. (3)

To make the selected rationale human-intelligible, rationalization methods usually constrain the162

rationales by compact and coherent regularization terms. In this paper, we use the most widely used163

constraints proposed by Chang et al. (2020):164

Ω(M) = λ1∣
∣∣M ∣∣1

l
− s∣ + λ2

l

∑
t=2
∣mt −mt−1∣. (4)

The first term encourages that the percentage of the tokens being selected as rationales is close to a165

pre-defined level s. The second term encourages the rationales to be coherent.166

3.2 Causality167

We note that the contribution of this part does not belong to this paper. To help readers unfamiliar168

with causality better understand the spurious correlations, we borrow it from a previous paper MCD169

(Liu et al., 2023a) and make some minor revisions to make this paper self-contained. We provide a170

detailed comparison with MCD in Appendix A.1.171
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Figure 2: The data-generating process of (a) a gen-
eral classification dataset and (b) a specific dataset
Beer-Appearance.

We consider that X consists of a set of variables172

{N,S,C}, where C denotes the real causal ra-173

tionale for the corresponding task label Y . And174

N,S represent the plain Noise and Spurious fea-175

tures, respectively. The extractor selects one of176

{N,S,C} to be the rationale candidate Z. Note177

that Z is not a separate variable, but a proxy for178

any variable within X . Initially, the extractor179

may randomly select either N,S or C to be Z.180

Consider a classification dataset, we posit a prob-181

abilistic graphical model to illustrate the corre-182

sponding data-generating process in Figure 2(a). The annotators assign the task label Y by viewing183

the causal features in X (C Ð→ Y ). There are also some spurious features non-causally associated184

with Y through some unobservable confounders U (S ←Ð U Ð→ C Ð→ Y ).185

To facilitate understanding, let’s take a widely used dataset, Beer-Appearance, as an example for a186

detailed analysis in Figure 2(b). The task is binary sentiment classification for beer’s appearance.187

The input X comprises comments on two aspects (we omit other aspects for brevity): XT for Taste188

and XA for Appearance, each of which can be considered as a subset variables of X . Additionally,189

N signifies something that does not discuss the sentiment tendency of X . The annotators assign190
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Figure 3: Penalizing spurious features for more efficiently searching causal rationales.

the appearance label Y by viewing the comments on appearance (XA Ð→ Y ). Therefore, only XA191

serves as the direct cause for Y . However, XA is correlated with XT due to a set of unobserved192

variables U (called confounders). For example, U may include a variable indicating whether the beer193

originates from a reputable brand, and a pleasant taste may imply that the beer comes from a good194

brand (U Ð→XT ). Moreover, a beer from a reputable brand is likely to have a pleasant appearance195

(U Ð→ XA). Consequently, XT is associated with Y via a backdoor path, as depicted by the red196

dotted line in Figure 2(b). In this situation, XT is somewhat indicative of Y (please refer to Appendix197

A.2 for a quantitative example), but it signifies a statistical correlation rather than causality. With the198

objective of MMI (Equation 3), XT can compete with XA for the opportunity to be selected as the199

rationale candidate, complicating the rationale extractor’s search landscape.200

4 Treating spurious features as equivalent to plain noise201

4.1 The shortcomings of penalty-based MMI202

Since spurious features also have a high correlation with the task label, some methods tend to penalize203

spurious features with some supplementary regularizers (discussed in §2). Generally, their loss204

functions can be written in a form like205

L(Z) = LMMI(Z) + λLpenalty(Z), (5)

where Z is the rationale candidate, which is a proxy of the variables within X (e.g., C,S or N ).206

We now present some qualitative analysis to demonstrate why using penalties to amend the MMI207

criterion can only partially mitigate the issue of spurious correlations. Generally, for the MMI loss,208

we have LMMI(C) ≤ LMMI(S) < LMMI(N) in real-world datasets (please refer to Appendix209

A.3 for detailed discussion). For the penalty loss, we usually have Lpenalty(C) < Lpenalty(S) and210

Lpenalty(N) < Lpenalty(S). We denote d(⋅, ⋅) as the distance of the extractor’s parameters moving211

from one state to another. For example, d(N,C) denotes the distance between the extractor’s two212

states selecting N and C respectively. We denote g(N Ð→ C) = L(N)−L(C)
d(N,C) as the (qualitative)213

tendency of the extractor’s moving from N towards C.214

If λ = 0 (vanilla MMI), although we have g(N Ð→ C) > 0, we also g(N Ð→ S) > 0. Thus the extractor215

may move towards either C or S with gradient descent, not necessarily C (like the situation shown in216

Figure 3(b)). This could lead to longer optimization paths, and the additional paths might introduce217

extra local optima. Note that Yu et al. (2021) have shown that local optima are serious in unsupervised218

(with no human-annotated rationales for supervision) rationalization.219

MMI allows the extractor to move towards either spurious features or causal features when starting220

from plain noise (Figure 3(b)). Conversely, penalties enable the extractor to move towards either plain221

noise or causal features when starting from spurious features (Figure 3(d)). If these two objectives are222

well-coordinated such that L(S) = L(N) > L(C), the loss landscape will be much simpler and the223

extractor can ultimately move towards causal features (Figure 3(c)). However, such a coordination224

is not each to achieve. If λ is too small, the situation will be under-penalty (Figure 3(a)) and the225

spurious features can still compete with the causal features for extraction opportunities. If λ is226

too high, the situation can become one of over-penalization (Figure 3(d)), where the influence of227

MMI in distinguishing between noise and causal features may be decreased by the domination of228

λLpenalty(Z). As a result, noise can compete with causal features for the chance of being selected.229

In conclusion, a good objective should make that g(N Ð→ C) > 0, g(S Ð→ C) > 0,L(S) = L(N).230
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Since none of the existing MMI variants can treat spurious features as equivalent to plain noise. It231

then leads to a question: is MMI really necessary for rationale extraction? Can we no more use232

auxiliary regularizers to fix it, but just remove it completely and replace it with other criteria?233

4.2 Spurious features are equivalent to plain noise in a counterfactual view234

We aim to develop a new criterion that can treat spurious features as equal to plain noise, so that235

regardless of whether the extractor currently selects S or N , the gradient descent algorithm can guide236

the extractor to move only towards C. In this paper, we adopt a perspective that reverses common237

methods. We no longer focus on the selected rationale candidate as previous methods do. Instead, we238

look into the properties of the remaining part after excluding the rationale candidate.239

We denote the non-causal subset of X as A = {S,N}. From the probabilistic graphical model shown240

in Figure 2(a), we know that A and Y are d-separated by the causal features C (Liu et al., 2023a)241

(please refer to Appendix A.6 for a detailed illustration). It means that all variables within A are242

independent with Y when conditioned on C.243

With the d-separation property, we have P (Y ∣C,S) = P (Y ∣C) = P (Y ∣C,N) = P (Y ∣C,N,S).244

This inspires us to view the problem from a perspective opposite to previous studies; that is, we no245

longer focus on the extracted rationale candidate Z as the subject of study, but rather on the remaining246

part of X after Z has been removed, denoted as X−Z . Regardless of whether the extractor selects S247

or N to be the rationale candidate Z, we have248

P (Y ∣X−Z) = P (Y ∣X), s.t., Z ∈ {N,S}, (6)

The high level intuition behind Equation 6 is that neither removing the plain noise nor the spurious249

features will cause a change in the task label. So, we have that250

0 =DKL(P (Y ∣X−N)∣∣P (Y ∣X)) =DKL(P (Y ∣X−S)∣∣P (Y ∣X)) <DKL(P (Y ∣X−C)∣∣P (Y ∣X))
(7)

If we define the loss function as251

L(Z) = −DKL(P (Y ∣X−Z)∣∣P (Y ∣X)), (8)

we will have that L(C) < L(N) = L(S), which means that252

g(N Ð→ C) =
L(N) − L(C)

d(N,C)
> 0, g(S Ð→ C) =

L(S) − L(C)

d(S,C)
> 0,

g(N Ð→ S) =
L(N) − L(S)

d(N,S)
= 0, g(S Ð→ N) =

L(S) − L(N)

d(S,N)
= 0,

(9)

where g(N Ð→ C) is mentioned in the above qualitative analysis following Equation 5, denoting the253

approximate tendency of the extractor to move from N to C. We call this objective as maximum254

remaining discrepancy (MRD) criterion. The unique advantage of MRD is that it can treat spurious255

features as equivalent to plain noise. Thus, extracting rationales from datasets containing spurious256

features becomes equivalent to extracting from clean datasets without such features. As a result,257

the extractor only needs to distinguish between noise and causal features, significantly reducing the258

difficulty of rationale extraction.259

5 The practical method260

If we use Equation 8 to replace MMI, as long as C is not selected as the rationale candidate Z, the261

objective will not distinguish between N and S. That is to say, no matter the extractor currently262

selects N or S as the rationale candidate Z, the gradient descent algorithm can only guide it to move263

towards C. It should be noted that the compactness of Z is facilitated through the sparsity constraint264

expressed in Equation 4.265

The followed problem is how to apply MRD in practice. The real distributions of P (Y ∣X−Z) and266

P (Y ∣X) are not directly accessible. So we need further efforts to approximate them. Similar to267

the vanilla RNP’s approximating entropy with cross-entropy and inspired by the MCD’s (Liu et al.,268

2023a) success in approximating real distributions with a predictor’s output, we try to approximate269

real distributions by making use of the predictor. We first approximate P (Y ∣X) with P (ŶX ∣X)270
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Figure 4: The architecture of our proposed MRD. The approximators for the two distributions are
shared to reduce the model complexity.

by minimizing Hc(Y, ŶX ∣X) (please refer to Appendix A.7 for detailed analysis on the feasibility271

of this approximation), and we also approximate P (Y ∣X−Z) with P (Ŷ−Z ∣X−Z) by minimizing the272

cross-entropy Hc(Y, Ŷ−Z ∣X−Z), where Ŷ−Z , ŶX are the predictor’s outputs with the inputs being273

X−Z and X , respectively.274

Finally, the training process for our MRD is depicted in Figure 4: the extractor first selects a rationale275

candidate Z from the input X . Subsequently, X−Z and X are fed into the predictor to obtain two276

distributions, P (Ŷ−Z ∣X−Z) and P (ŶX ∣X). The overall objective of our model becomes (The pytorch277

implementation is in Appendix A.8):278

min
θp
[Hc(Y, ŶX ∣X) +Hc(Y, Ŷ−Z ∣X−Z)]

+min
θe
[−DKL(P (ŶX ∣X)∣∣P (Ŷ−Z ∣X−Z)) +Ω(M)],

s.t., (X,Y ) ∼ D, P (ŶX ∣X) = fP (X), X−Z =X − fE(X), P (Ŷ−Z ∣X−Z) = fP (X−Z),

(10)

where Ω(M) is mentioned in Equation 4. The first term is used to help the predictor approximate the279

distributions, and the second term helps the extractor find a good rationale.280

6 Experiments281

6.1 Datasets and metrics282

Datasets. To validate the method’s ability to extract causal clues in the input, there are certain283

requirements for the datasets. First, the datasets should contain spurious correlations, making284

causality a primary challenge within these datasets. Second, the test set should contain manually285

annotated causal clues to facilitate quantitative comparisons between different methods.286

We employ six datasets collected from two widely used benchmarks. BeerAdvocate1 (McAuley et al.,287

2012) is a benchmark that contains three widely used text classification datasets: Beer-Appearance,288

Beer-Aroma, Beer-Palate. In these datasets, each piece of text is a comment consisting of the beer’s289

three aspects: appearance, aroma, palate. And the comments of different aspects are highly correlated.290

For the Beer-Appearance dataset, the classification label is the quality (bad/good, [0,1]) of the beer’s291

appearance. Other two datasets are similar. These three datasets are most important and used by nearly292

all of previous research in the field of rationalization. HotelReview (Wang et al., 2010) is a benchmark293

that contains three widely used datasets: Hotel-Location, Hotel-Service, Hotel-Cleanliness. In these294

datasets, each piece of text is a review about a hotel. For the Hotel-Location dataset, the classification295

label is the quality (bad/good, [0,1]) of the hotel’s location. For Hotel-Service and Hotel-Cleanliness,296

the classification label is about the service and cleanliness, respectively.297

Metrics. Considering that the annotators assign the label of the target aspect by observing the causal298

features, the overlap between the tokens selected by the model and those annotated by humans299

provides a robust metric for rationale causality. The terms P,R,F1 denote precision, recall, and300

F1 score respectively. These metrics are the most frequently used in rationalization. The term S301

represents the average sparsity of the selected rationales, that is, the average percentage of selected302

tokens in relation to the full text.303

1There is another widely used version of BeerAdvocate where the data containing spurious correlations has
been manually removed by Lei et al. (2016). The cleaned version is used to study other problems rather than
causality. Since we are studying spurious correlations, we use the original version used by Inter_RAT and MCD.
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Table 1: Results on Beer-Appearance and Beer-Aroma. Values in “()" are the standard deviations.

Methods
Datasets Beer-Appearance Beer-Aroma

S P R F1 S P R F1

S ≈ 10%

RNP 10.0 (n/a) 32.4 (0.5) 18.6 (0.3) 23.6 (0.4) 10.0 (n/a) 44.8 (0.4) 32.4 (0.7) 37.6 (0.5)
INVRAT 10.0 (n/a) 42.6 (0.7) 31.5 (0.6) 36.2 (0.6) 10.0 (n/a) 41.2 (0.3) 39.1 (2.8) 40.1 (1.6)

Inter_RAT 11.7 (0.6) 66.0 (0.4) 46.5 (0.8) 54.6 (0.7) 11.7 (0.6) 55.4 (0.9) 47.5 (0.6) 51.1 (0.8)
NIR 11.0 (0.8) 79.8 (6.5) 47.1 (0.5) 59.2 (1.8) 10.3 (1.2) 72.1 (2.3) 47.6 (5.7) 57.2 (4.4)

MCD 9.5 (0.4) 94.2 (1.6) 48.4 (1.6) 63.9 (1.2) 9.9 (0.2) 84.6 (1.3) 53.9 (0.8) 65.8 (0.8)
MRD (ours) 10.0 (0.3) 93.6 (1.3) 50.7 (1.3) 65.7 (1.1) 10.1 (0.4) 86.6 (4.2) 56.2 (1.2) 68.1 (1.9)

S ≈ 20%

RNP 20.0 (n/a) 39.4 (0.4) 44.9 (0.1) 42.0 (0.2) 20.0 (n/a) 37.5 (0.1) 51.9 (0.7) 43.5 (0.3)
INVRAT 20.0 (n/a) 58.9 (0.4) 67.2 (2.3) 62.8 (1.1) 20.0 (n/a) 29.3 (1.0) 52.1 (0.6) 37.5 (0.6)

Inter_RAT 21.7 (0.3) 62.0 (0.5) 76.7 (1.7) 68.6 (0.4) 20.4 (0.6) 44.2 (0.1) 65.4 (0.2) 52.8 (0.1)
NIR 20.2 (0.7) 74.6 (4.4) 81.0 (2.0) 77.6 (3.2) 19.0 (0.2) 64.1 (1.6) 78.0 (1.2) 70.4 (1.4)

MCD 20.0 (0.3) 79.3 (0.6) 85.5 (1.1) 82.3 (0.5) 19.3 (0.2) 65.8 (0.7) 81.4 (1.3) 72.8 (0.9)
MRD (ours) 20.4 (0.5) 80.2 (2.3) 88.5 (1.0) 84.1 (1.5) 19.2 (0.4) 66.7 (1.3) 81.7 (1.8) 73.6 (1.3)

S ≈ 30%

RNP 30.0 (n/a) 24.2 (0.4) 41.2 (0.8) 30.5 (0.5) 30.0 (n/a) 27.1 (0.3) 55.7 (0.8) 36.4 (0.4)
INVRAT 30.0 (n/a) 41.5 (0.4) 74.8 (0.3) 53.4 (0.3) 30.0 (n/a) 22.8 (1.6) 65.1 (1.7) 33.8 (1.8)

Inter_RAT 30.5 (1.0) 48.1 (0.7) 82.7 (0.4) 60.8 (0.4) 29.4 (0.6) 37.9 (0.7) 72.0 (0.1) 49.6 (0.7)
NIR 29.6 (0.2) 59.6 (0.6) 95.3 (0.4) 73.3 (0.5) 29.6 (0.6) 43.3 (2.3) 82.4 (4.3) 56.8 (3.0)

MCD 29.7 (0.4) 59.6 (0.5) 95.6 (0.8) 73.4 (0.4) 29.6 (0.4) 46.1 (0.2) 87.5 (1.3) 60.4 (0.4)
MRD (ours) 28.6 (0.3) 60.6 (0.7) 93.3 (0.4) 73.5 (0.5) 29.3 (0.2) 46.8 (0.6) 88.3 (1.4) 61.2 (0.8)

Table 2: Results on Beer-Palate and Hotel-Location datasets.

Methods
Datasets Beer-Palate Hotel-Location

S P R F1 S P R F1

S ≈ 10%

RNP 10.0 (n/a) 24.6 (0.5) 23.5 (0.5) 24.0 (0.5) 9.9 (0.2) 47.9 (1.2) 55.6 (1.2) 51.4 (1.0)
INVRAT 10.0 (n/a) 34.9 (1.5) 45.6 (0.2) 39.5 (1.0) - - - -

Inter_RAT 12.6 (0.8) 34.6 (0.8) 48.2 (0.4) 40.2 (0.5) 11.8 (1.5) 31.6 (2.4) 43.2 (3.5) 36.4 (1.4)
NIR 8.3 (3.3) 29.6 (20.0) 19.8 (17.7) 23.1 (18.6) 9.8 (0.6) 47.4 (1.6) 54.9 (1.9) 50.8 (1.0)

MCD 9.4 (0.8) 60.9 (2.1) 47.1 (3.0) 53.1 (1.9) 9.8 (0.3) 49.3 (2.1) 57.0 (3.0) 52.7 (2.4)
MRD (ours) 10.1 (0.3) 70.7 (2.0) 57.6 (2.1) 63.5 (1.9) 9.7 (0.2) 51.0 (1.6) 58.2 (1.6) 54.4 (1.6)

S ≈ 20%

RNP 20.0 (n/a) 21.6 (0.4) 38.9 (0.5) 27.8 (0.4) 20.3 (0.4) 33.3 (1.0) 79.7 (2.5) 47.0 (1.4)
INVRAT 20.0 (n/a) 24.0 (1.3) 55.2 (2.3) 33.5 (1.6) - - - -

Inter_RAT 20.8 (0.6) 26.3 (0.6) 59.1 (0.8) 36.4 (0.7) 19.6 (1.4) 23.6 (0.7) 54.1 (2.6) 32.9 (0.4)
NIR 19.5 (1.0) 32.9 (9.0) 51.8 (14.8) 42.0 (11.1) 20.0 (0.3) 33.0 (0.9) 77.6 (1.7) 46.3 (1.2)

MCD 19.6 (0.5) 41.2 (1.4) 65.0 (2.8) 50.5 (1.8) 19.7 (0.4) 33.8 (1.3) 78.5 (2.1) 47.3 (1.6)
MRD (ours) 19.6 (0.7) 44.2 (1.9) 69.6 (1.0) 54.1 (1.7) 19.4 (0.1) 35.0 (0.4) 79.5 (1.0) 48.6 (0.6)

S ≈ 30%

RNP 30.0 (n/a) 15.4 (0.4) 42.2 (0.9) 22.6 (0.5) 29.5 (1.7) 18.1 (8.7) 64.2 (31.7) 28.2 (13.7)
INVRAT 20.0 (n/a) 20.9 (1.1) 71.6 (0.4) 32.3 (1.3) - - - -

Inter_RAT 30.4 (0.4) 21.8 (0.1) 66.1 (0.8) 32.8 (0.1) 29.8 (1.2) 18.1 (0.5) 63.1 (1.6) 28.1 (0.7)
NIR 30.0 (3.7) 17.2 (8.6) 42.6 (22.4) 24.5 (12.4) 29.4 (0.9) 12.3 (10.6) 43.6 (37.6) 19.2 (16.6)

MCD 29.4 (1.7) 30.5 (1.0) 72.4 (5.6) 42.9 (1.8) 30.2 (0.3) 22.3 (1.8) 79.4(7.1) 34.8 (2.9)
MRD (ours) 28.2 (0.9) 30.9 (2.7) 70.3 (6.3) 43.0 (3.7) 29.4 (1.1) 25.4 (0.7) 88.0 (1.6) 39.5 (0.8)

6.2 Baselines and implementation details304

We compare with various recent methods to show the competitiveness of our method. These methods305

include INVRAT (Chang et al., 2020), Inter_RAT (Yue et al., 2023), CR (Zhang et al., 2023), MCD306

(Liu et al., 2023a), NIR (Storek et al., 2023). Both the extractor and the predictor are composed of an307

encoder (e.g., RNN/Transformer) and a linear layer. We use two types of encoders: GRUs (following308

INVRAT, Inter_RAT, and MCD, Table 1, 2, and 3) and bert-base-uncased (following CR, Table 4).309

We adopt three levels of rationale sparsity: 10%,20%,30% (achieved by adjusting s in Equation 4).310

We report the results of five random seeds. More details are in Appendix A.9.311

6.3 Results312

The main results2 are shown in Table 1, 2, and 3. Across various datasets and levels of rationale313

sparsity, our proposed MRD achieves considerable improvements compared to existing baseline314

2For the three beer-related datasets, the results of RNP, INVRAT and Inter_RAT are obtained from Table 1 of
the paper Inter_RAT. Since INVRAT requires specific techniques to partition datasets into environments, and it
no longer represents the latest literature, we have not replicated it on hotel-related datasets.
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Table 3: Results on Hotel-Service and Hotel-Cleanliness datasets.

Methods
Datasets Hotel-Service Hotel-Cleanliness

S P R F1 S P R F1

S ≈ 10%

RNP 10.1 (0.4) 46.1 (1.6) 40.4 (0.5) 43.1 (0.5) 9.8 (0.2) 33.8 (0.5) 37.6 (0.7) 35.6 (0.4)
Inter_RAT 11.2 (0.6) 32.6 (0.9) 32.3 (1.4) 32.4 (0.8) 9.4 (0.6) 32.5 (1.4) 34.5 (1.1) 33.4 (0.7)

NIR 10.7 (0.3) 44.8 (1.4) 41.9 (1.7) 43.3 (1.4) 10.2 (0.3) 35.1 (0.7) 40.5 (0.9) 37.6 (0.6)
MCD 10.2 (0.4) 47.5 (1.2) 42.3 (1.8) 44.7 (1.3) 9.8 (0.3) 34.3 (0.4) 37.8 (0.6) 35.9 (0.4)

MRD (ours) 10.5 (0.3) 48.5 (1.9) 44.3 (1.3) 46.3 (1.5) 9.9 (0.4) 34.6 (0.5) 38.8 (1.3) 36.6 (0.5)

S ≈ 20%

RNP 20.0 (0.3) 31.8 (1.3) 55.4 (2.2) 40.4 (1.6) 20.7 (0.5) 21.5 (0.9) 50.3 (2.5) 30.1 (1.3)
Inter_RAT 20.6 (0.3) 24.5 (0.4) 44.7 (1.1) 31.7 (0.5) 19.5 (1.1) 22.7 (0.7) 50.1 (1.7) 31.3 (0.5)

NIR 20.0 (0.5) 33.4 (0.7) 58.3 (0.5) 42.5 (0.5) 20.6 (0.5) 21.7 (0.5) 50.5 (1.0) 30.3 (0.6)
MCD 20.2 (0.3) 32.5 (0.5) 57.2 (1.4) 41.4 (0.7) 20.1 (0.5) 22.2 (0.5) 50.5 (1.4) 30.8 (0.7)

MRD (ours) 20.0 (0.6) 34.6 (1.4) 60.3 (1.1) 44.0 (1.4) 20.2 (1.4) 22.8 (0.6) 52.0 (2.2) 31.7 (0.3)

S ≈ 30%

RNP 30.6 (0.7) 14.6 (8.2) 38.4 (21.5) 21.1 (11.9) 30.1 (0.5) 15.0 (1.6) 51.0 (5.3) 23.2 (2.4)
Inter_RAT 30.8 (1.0) 19.6 (0.3) 53.5 (1.9) 28.7 (0.5) 29.6 (1.2) 17.1 (0.5) 57.5 (1.0) 26.4 (0.6)

NIR 30.1 (0.6) 19.3 (10.8) 50.3 (28.1) 27.9 (15.6) 30.8 (0.8) 16.4 (0.4) 57.0 (2.8) 25.4 (0.8)
MCD 30.1 (0.5) 22.5 (1.6) 59.0 (4.6) 32.5 (2.4) 30.2 (0.4) 16.5 (0.3) 56.3 (1.7) 25.5 (0.6)

MRD (ours) 30.1 (0.3) 24.7 (0.7) 64.9 (2.0) 35.8 (1.0) 29.2 (0.6) 18.8 (0.1) 62.1 (1.6) 28.9 (0.3)

Table 4: Results with BERT. We follow CR to set S ≈ 10%. ∗: results obtained from Table 11 of CR.

Methods
Datasets Beer-Appearance Beer-Aroma

S P R F1 S P R F1

S ≈ 10%

RNP∗ 10.0 (n/a) 40.0 (1.4) 20.3 (1.9) 25.2 (1.7) 10.0 (n/a) 49.1 (3.2) 28.7 (2.2) 32.0 (2.5)
VIB∗ 10.0 (n/a) 52.6 (2.0) 26.0 (2.3) 32.9 (2.1) 10.0 (n/a) 54.2 (2.9) 31.6 (1.9) 37.7 (2.8)
A2R∗ 10.0 (n/a) 55.0 (0.8) 25.8 (1.6) 34.3 (1.4) 10.0 (n/a) 61.3 (2.8) 34.8 (3.1) 41.2 (3.3)

INVRAT∗ 10.0 (n/a) 56.4 (2.5) 27.3 (1.2) 36.7 (2.1) 10.0 (n/a) 49.6 (3.1) 27.5 (1.9) 33.2 (2.6)
CR∗ 10.0 (n/a) 59.7 (1.9) 31.6 (1.6) 39.0 (1.5) 10.0 (n/a) 68.0 (2.9) 42.0 (3.0) 49.1 (2.8)

MRD (ours) 10.6 (1.1) 75.0 (15.2) 43.0 (6.3) 54.6 (8.8) 9.9 (0.5) 71.7 (4.6) 44.8 (4.3) 55.1 (4.5)

methods. Compared to the most competitive baseline MCD, our MRD improves the F1 score by up315

to 10.4% (=63.5%−53.1%, in Beer-Palate dataset with S ≈ 10%). In addition, compared to the latest316

penalty-based method Inter_RAT, we improve the F1 score by more than 10% in 14 out of 18 settings,317

and by more than 20% in 2 out of 18 settings, verifying the limitation of penalty-based methods. We318

provide a visualized example of the extracted rationales by different methods in Appendix A.10.319

We also follow a recent method CR (Zhang et al., 2023) to conduct experiments with the BERT320

encoder as a supplement, whose results are shown in Table 4. We follow CR to set the sparsity level321

as 10%, and the datasets are the most widely used Beer-Appearance and Beer-Aroma. Since some322

methods become highly sensitive to hyperparameters after switching to an over-parameterized BERT323

model (also supported by Remark 6.1 in (Zhang et al., 2023)), and our computational resources324

are insufficient for extensive hyperparameter tuning for these methods, we primarily compare our325

approach with methods that have already been implemented using BERT. Our MRD still outperforms326

all the baselines. Specifically, we improve the F1 score by 15.6% on the Beer-Appearance dataset,327

and 6.0% on the Beer-Aroma dataset.328

7 Conclusion, limitations, and future work329

This paper investigates the susceptibility of the widely adopted MMI criterion in XAI to spurious330

correlations. We design a new criterion that can treat spurious features as plain noise, making rationale331

extraction from datasets rich in spurious features as straightforward as extracting from clean datasets,332

thus simplifying rationale extraction. Given the versatility of the self-explaining rationalization333

framework, exploring how our method can be applied to broader fields such as computer vision and334

graph learning is a worthwhile future direction.335

One limitation is that, although some researchers have found that rationalization can benefit large336

language models (LLMs) by providing high quality data (please refer to Appendix A.11), this paper337

does not involve LLMs. Given the recent remarkable success of LLMs, exploring how our MRD can338

aid in training trustworthy LLMs is another avenue worth pursuing.339
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A Appendix474

A.1 The comparison between MCD and MRD475

This paper is inspired by a previous paper MCD (Liu et al., 2023a). This part aims to clarify the476

distinct contributions of our MRD.477

We first note that the preliminaries of causality (§3.2) is provided by the paper of MCD. And the478

contribution of the causality analysis does not belong to us.479

Apart from this, the practical network architecture (Figure 4) may also look like that of MCD.480

However, the core of this paper focuses on studying different optimization objectives. In fact, in481

the field of rationalization, the network structures of many different methods are similar; the key482

difference lies in the optimization objectives. This phenomenon is akin to research in the GAN483

(Generative Adversarial Nets) field, where diverse approaches often share similar architectures but484

differ primarily in their optimization strategies.485

Our primary contribution is that the proposed MRD criterion allows the objective to treat the spurious486

features equally as noise. To the best of our knowledge, this is the first research that can treat spurious487

features as noise. And we do not need to coordinate the penalty term.488

In MCD, the objective for rationale selection is489

min
θe

DKL(P (Y ∣X)∣∣P (Y ∣Z)). (11)

While in our MRD, it is490

min
θe
−DKL(P (Y ∣X)∣∣P (Y ∣X−Z)), (12)

where X−Z is the remaining part after removing the selected rationale candidate Z from the full input491

X .492

The research motivations behind MCD and MRD are quite distinct, approaching the problem from493

opposite perspectives. MCD focuses on the properties that the selected rationale candidate Z should494

satisfy. On the other hand, MRD examines the properties that X should exhibit after discarding Z,495

emphasizing what remains in the input after the rationale is removed. This contrast highlights a496

fundamental shift in how the problem of extracting meaningful information is addressed.497

Aside from the motivations, the novelty of the practical method in this paper is also considerable.498

Most existing research primarily focuses on the selected rationale as the main subject of study,499

whereas this paper shifts attention to the unselected remaining parts. While some methods in the field500

of explainable AI have also considered the unselected portions, their primary purpose has been to501

achieve comprehensiveness, treating the unselected parts as supplements to the main content and still502

requiring the balancing of multiple objectives (Yu et al., 2019). Moreover, these methods consider503

the unselected parts not for achieving causality but for other aspects of interpretability. This paper is504

novel in suggesting that focusing solely (i.e., completely through out the selected rationale candidate)505

on the unselected remaining parts can effectively achieve causality, marking a distinctive approach in506

the study of explainable AI.507

A.2 A toy example of the backdoor path508

This example is provided by (Liu et al., 2023a). To make the readers that are not familiar with causality509

better understand the spurious correlations, we borrow it to provide a more intuitive understanding of510

the correlation in Figure 2(b). We assume U , XA, XT , and Y are all Bernoulli variables, with their511

respective probability distributions as:512

p(U = 1) = p(U = 0) = 0.5,

p(XT = 1∣U = 1) = p(XT = 0∣U = 0) = 0.9,

p(XA = 1∣U = 1) = p(XA = 0∣U = 0) = 0.9,

p(Y = 1∣XA = 1) = p(Y = 0∣XA = 0) = 0.9.

(13)

With some simple derivations, we can easily obtain (detailed derivation is in Appendix A.4):513

p(XA = 1) = p(XT = 1) = p(Y = 1) = 0.5. (14)
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Then, we can further get (see Appendix A.5 for the detailed derivation of Equation 16 and 17):514

p(U = 1∣XT = 1) =
p(U = 1,XT = 1)

p(XT = 1)
=
p(XT = 1∣U = 1)p(U = 1)

p(XT = 1)
= 0.9. (15)

515

p(XA = 1∣XT = 1) = ∑
U∈{0,1}

p(XA = 1∣U)p(U ∣XT = 1) = 0.9 ∗ 0.9 + 0.1 ∗ 0.1 = 0.82. (16)

516

p(Y = 1∣XT = 1) = ∑
XA∈{0,1}

p(Y = 1∣XA)p(XA∣XT = 1) = 0.82 ∗ 0.9 + 0.18 ∗ 0.1 = 0.756. (17)

A.3 The association between different variables and Y517

Though it is not the core claim of this paper, we will have a brief discussion about why LMMI(C) ≤518

LMMI(S) < N .519

The MMI loss is used to measure the indicative degree of Z towards the task label Y. First, we think520

the noise N is independent of Y , thus it has the lowest mutual information with Y and the highest521

MMI loss.522

And for LMMI(C) ≤ LMMI(S), the reason is that C always co-occur with the target label in all523

data samples. While in some data samples, there is not S but only C. So, C usually has higher524

correlation with Y . This can also be understood from the probabilistic graphical model in Figure 2(a).525

C is the direct cause of Y . The association between S and Y needs to flow through a path that passes526

through C.527

A.4 Derivation of Equation 14528

We use XA as an example, and the others are nothing different.529

p(XA = 1) = ∑
U∈{0,1}

p(XA = 1, U) = ∑
U∈{0,1}

p(XA = 1∣U)p(U) = 0.9 ∗ 0.5 + 0.1 ∗ 0.5 = 0.5. (18)

A.5 Derivation of Equation 16 and 17530

In Figure 2(b), we have XT áXA∣U and XT á Y ∣XA. That is to say,531

P (XA∣U,XT ) = P (XA∣U), P (Y ∣XA,XT ) = P (Y ∣XA). (19)

Then we can easily get Equation 16:532

p(XA = 1∣XT = 1) = ∑
U∈{0,1}

p(XA = 1, U ∣XT = 1)

= ∑
U∈{0,1}

p(XA = 1∣U,XT = 1)p(U ∣XT = 1)

= ∑
U∈{0,1}

p(XA = 1∣U)p(U ∣XT = 1).

(20)

And Equation 17 is similar.533

A.6 D-separation534

D-separation is an important concept in probabilistic graphical models.535

D-Separation (Bishop, 2006): A, B, and C denote arbitrary, non-intersecting sets of nodes (and536

their union might not cover all nodes of the graph) in a given probabilistic graph. Our objective is to537

determine whether a specific conditional independence statement A á B∣C is implied by this graph.538

To do so, we examine all possible paths from any node in A to any node in B. A path is said to be539

blocked if it includes a node o such that either540

• (a) The arrows on the path meet at node o, forming either a chain (i.e., Ð→ o Ð→) or a fork541

(i.e., ←Ð oÐ→), with the node o being part of set C, or542
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• (b) The arrows on the path meet at node o to form a collider (i.e., Ð→ o←Ð), and neither the543

node o itself nor any of its descendants are included in set C.544

If all paths are blocked, then A is considered to be d-separated from B by C, meaning that A á B∣C.545

Liu et al. (2023a) have theoretically shown that Y and the non-causal features are d-separated by the546

causal features.547

A.7 Minimizing the cross-entropy is equal to minimizing the KL-divergence548

The cross-entropy consists of two parts:549

Hc(Y, ŶX ∣X) =H(Y ∣X) +DKL(P (Y ∣X)∣∣P (ŶX ∣X)). (21)

H(Y ∣X) is determined by the dataset itself and is irrelevant to the predictor. So, when we train a550

predictor to minimize Hc(Y, ŶX ∣X), we are in fact minimizing DKL(P (Y ∣X)∣∣P (ŶX ∣X)). We551

know that if and only if P (Y ∣X) = P (ŶX ∣X), we get the lowest KL-divergence (equal to 0).552

So, we can finally use P (ŶX ∣X) to approximate P (Y ∣X) by training a predictor and minimizing553

Hc(Y, ŶX ∣X).554

A.8 The implementation with Pytorch555

For a batch of (X,Y ), we first send X to the extractor to get Z and X−Z :556

Z = fe(X), X−Z =X −Z. (22)

Then we get a copy of X−Z with the pytorch function “torch.detach()”:557

X ′−Z = torch.detach(X−Z). (23)

Then, we get ŶX and Ŷ ′−Z :558

ŶX = fp(X),

Ŷ ′−Z = fp(X
′
−Z).

(24)

Then we update the predictor with559

min
θp
[torch.nn.functional.cross_entropy(Ŷ ′−Z , Y ) + torch.nn.functional.cross_entropy(ŶX , Y )],

(25)
which is the first part of Equation 10. At the same time, we update the extractor with Equation 4.560

Now, we deal with the second part of Equation 10. We first freeze the predictor’s parameters and get561

X−Z again:562

Z = fe(X), X−Z =X −Z. (26)

We now do not copy X−Z . Instead, we directly get ŶX and Ŷ−Z :563

ŶX = fp(X),

Ŷ−Z = fp(X−Z).
(27)

Then we update the extractor with564

min
θe
−F.kl_div(F.softmax(Ŷ−Z).log(),F.softmax(ŶX)), (28)

where “F” denotes “nn.functional”. In practice, we have added Equation 4 to 28.565

Now, an update round for Equation 10 is completed, and we repeat the above steps again.566
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Table 5: Statistics of datasets used in this paper.

Datasets Train Dev Annotation
Pos Neg Pos Neg Pos Neg Sparsity

Beer
Appearance 202385 12897 28488 1318 923 13 18.5
Aroma 172299 30564 24494 3396 848 29 15.6
Palate 176038 27639 24837 3203 785 20 12.4

Hotel
Location 7236 7236 906 906 104 96 8.5
Service 50742 50742 6344 6344 101 99 11.5
Cleanliness 75049 75049 9382 9382 99 101 8.9

A.9 More details567

To the best of our knowledge, all datasets are sufficiently anonymized to make identification of568

individuals impossible without significant effort. For beer-related datasets, users need to consult the569

original authors (McAuley et al., 2012) for permission first.570

All datasets are in English. We process the datasets in the same way as MCD (Liu et al., 2023a). The571

maximum text length is set to 256. More statistics of the datasets are in Table 5. The datasets of572

BeerAdvocate is unbalanced. For the training data, we sample from the positive data to get same573

number of positive and negative texts.574

In practice, the approximators for the two distributions are shared to reduce model complexity. But575

this trick is not necessary, if two separate nets are used to approximate the two distributions, the576

performance can sometimes be even better.577

Some previous methods needs very careful hyper-parameter tuning. To make fair comparisons, most578

results of the baselines are copied from previous papers.579

We follow MCD to use a learning rate of 0.0001 and a batchsize of 128 for the beer-related datasets.580

For the hotel-related datasets, we also follow MCD to use a learning rate of 0.0001 and a batchsize of581

256.582

We report the average results of five different random seeds.583

The experiments are run on a RTX4090 GPU, with 24GB memory.584

A.10 Examples of the extracted rationales585

We provide a visualized example of the rationales extracted by different methods in Figure 5. The586

dataset is Beer-Appearance, and the rationale sparsity is set to about 10%. The causal rationale should587

be the comments describing the beer’s appearance (the underlined texts). The vanilla RNP extracts588

the taste as the rationale. Inter_RAT selects both aroma (“aroma is fruity”) and taste (“smooth and589

very effervescent”). That is to say, both RNP and Inter_RAT select the spurious features as the590

rationale. MCD selects both causal features (“yellow color ... notes”) and spurious features (“aroma591

is fruity...”). While our MRD selects only the causal rationales.592

A.11 The potential impact of rationalization in the era of LLMs593

In comparison to traditional “model-centric" XAI methods which solely focus on the model’s learned594

information, “data-centric" approaches primarily aim to extract model-agnostic patterns inherent in595

the data. So, apart from improving interpretability, rationalization can serve as a method of data596

cleaning (Seiler, 2023).597

Domain-specific large models often require supervised fine-tuning using domain-specific data. Un-598

cleaned data may contain harmful information such as biases and stereotypes (Sun et al., 2024).599

Recent research suggests that training predictors with extracted rationales can remove irrelevant600

harmful information, enhancing robustness (Chen et al., 2022) and generalization (Wu et al., 2022;601

Gui et al., 2023).602
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Label (Beer-Appearance): Positive. 

Prediction: Positive.

Input: this one was sent graciously to me by [unknown] , an 

awesome trader . cheers buddy yellow color beer with some 

orange notes . head is white and disappear quickly . hazed and 

very opaque . aroma is fruity ( cloves and bananas ) . typical of a 

hefeweizen taste shows notes of orange and the typical 

hefeweizen taste ( cloves and bananas ) . smooth and very 

effervescent . almost no bitterness too . very drinkable and 

refreshing . a nice hefeweizen 

(a) RNP (b) Inter_RAT

Label (Beer-Appearance): Positive. 

Prediction: Positive.

Input: this one was sent graciously to me by [unknown] , an 

awesome trader . cheers buddy yellow color beer with some 

orange notes . head is white and disappear quickly . hazed and 

very opaque . aroma is fruity ( cloves and bananas ) . typical of a 

hefeweizen taste shows notes of orange and the typical 

hefeweizen taste ( cloves and bananas ) . smooth and very 

effervescent . almost no bitterness too . very drinkable and 

refreshing . a nice hefeweizen 

Label (Beer-Appearance): Positive. 

Prediction: Positive.

Input: this one was sent graciously to me by [unknown] , an 

awesome trader . cheers buddy yellow color beer with some 

orange notes . head is white and disappear quickly . hazed and 

very opaque . aroma is fruity ( cloves and bananas ) . typical of a 

hefeweizen taste shows notes of orange and the typical 

hefeweizen taste ( cloves and bananas ) . smooth and very 

effervescent . almost no bitterness too . very drinkable and 

refreshing . a nice hefeweizen 

(c) MCD (d) MRD (ours)

Label (Beer-Appearance): Positive. 

Prediction: Positive.

Input: this one was sent graciously to me by [unknown] , an 

awesome trader . cheers buddy yellow color beer with some 

orange notes . head is white and disappear quickly . hazed and 

very opaque . aroma is fruity ( cloves and bananas ) . typical of a 

hefeweizen taste shows notes of orange and the typical 

hefeweizen taste ( cloves and bananas ) . smooth and very 

effervescent . almost no bitterness too . very drinkable and 

refreshing . a nice hefeweizen 

Figure 5: A visualized example of the rationales extracted by different methods.

Since LLMs are usually pretrained on various datasets, they tend to be less controllable than small603

models (Zhao et al., 2023). Considering that for simple tasks (such as text classification), small604

models are also capable and can achieve satisfactory results, we can train a separate rationalization605

model for a single domain-specific dataset. Small models trained on a single dataset are often more606

controllable and save computational resources (such as searching for hyperparameters and adding607

regularization terms) (Guo et al., 2023). Then using the extracted rationales for supervised fine-608

tuning might prevent large models from learning harmful information from new data. Additionally,609

shortening input texts can also reduce the memory required for fine-tuning.610

A recent study has also found that training a small model for data selection (although not the same as611

rationale selection) and producing a small subset is useful for fine-tuning LLMs (Xia et al., 2024).612
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Justification: They are included in Appendix A.9.660

9. Code Of Ethics661

Question: Does the research conducted in the paper conform, in every respect, with the662

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?663

Answer: [Yes]664

Justification: There are no issues affecting the code of ethics in the study of this paper.665

10. Broader Impacts666

Question: Does the paper discuss both potential positive societal impacts and negative667

societal impacts of the work performed?668

Answer: [Yes]669

Justification: This paper may inspire research in areas such as fairness and security. This670

paper is unlikely to have a negative social impact.671

11. Safeguards672

Question: Does the paper describe safeguards that have been put in place for responsible673

release of data or models that have a high risk for misuse (e.g., pretrained language models,674

image generators, or scraped datasets)?675

Answer: [NA]676

Justification: [NA]677

12. Licenses for existing assets678

Question: Are the creators or original owners of assets (e.g., code, data, models), used in679

the paper, properly credited and are the license and terms of use explicitly mentioned and680

properly respected?681

Answer: [Yes]682

Justification: Appendix A.9.683

13. New Assets684

Question: Are new assets introduced in the paper well documented and is the documentation685

provided alongside the assets?686

Answer: [NA]687

Justification: [NA]688

14. Crowdsourcing and Research with Human Subjects689

Question: For crowdsourcing experiments and research with human subjects, does the paper690

include the full text of instructions given to participants and screenshots, if applicable, as691

well as details about compensation (if any)?692

Answer: [NA] [NA]693

Justification: [NA]694

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human695

Subjects696

Question: Does the paper describe potential risks incurred by study participants, whether697

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)698

approvals (or an equivalent approval/review based on the requirements of your country or699

institution) were obtained?700

Answer: [NA]701

Justification: [NA]702
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