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Abstract

Large language models (LLMs) often produce lengthy reasoning traces with sub-
stantial token redundancy. While reasoning processes are generally considered
necessary, it has been underexplored whether LLMs truly require the complete
trajectory. To investigate, we conduct (1) attention map analysis and (2) targeted
lesion studies that remove token groups, both of which show that intermediate to-
kens contribute minimally to reasoning quality. Our analyses suggest that the most
redundant segments typically appear in the middle of reasoning chains, whereas
the earlier and later segments are crucial for accurate final outcomes. We argue that
this approach avoids redundant intermediate information and exploits the LLM’s
capability to infer concise and coherent intermediate steps by using the known start
and end points. Based on these observations, we propose MidCut, a method that
removes redundant middle steps during both training and inference. We evaluate
MidCut in two scenarios for LLM reasoning: (1) supervised fine-tuning (SFT) for
reasoning and (2) decoding strategy for a test-time application.

1 Introduction

Recent advancements in large language models (LLMs) have significantly improved performance
across a wide range of language-related tasks [1-6]. Despite these improvements, several tasks such
as mathematical problem solving and logical reasoning require complex problem-solving processes,
making it challenging for LLMs to achieve high accuracy. Large reasoning models (LRMs) have been
introduced both by GPT-40 and various open-source initiatives [2, 4, 7] to handle the tasks. LRMs
commonly incorporate chain-of-thought (CoT) [8] reasoning capabilities, in which intermediate
reasoning steps are produced as a thinking trajectory during the generation process. Recent LRMs
separate the internal thinking trajectory from the final answer that users face, enabling models to
perform extensive reasoning while presenting only the concise conclusion to users.

Several studies have noted that the thinking trajectories produced by LRMs are typically lengthy
and complex [7, 9-11]. Prior work further suggests that LLMs often already know the answer
before generating a fully explicit reasoning chain [12]. The NoThinking [9] demonstrates that
problems can sometimes be solved without any explicit reasoning process, although with substantially
lower performance. These observations indicate that reasoning trajectories are important for solving
complex problems, yet the fully explicit trajectory may not always be necessary. This raises a
fundamental question: do LLMs require the complete reasoning trajectory, and if not, which parts
are non-essential?

In this paper, we investigate redundancy in thinking trajectories through two systematic analyses:
attention weight patterns and knockouts motivated by prior works [13—16]. We find that answer
tokens place little attention on middle steps, and that removing these steps preserves answer quality, in
contrast to removing the beginning or end. Motivated by these findings, we propose MidCut, a simple
approach that trims intermediate steps of thinking trajectories. MidCut-SFT leverages trimmed

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.



Thinking trajectory tokens Thinking part Answer part

n a g )
generate Similarity

. Original step Removed step

Answer part tokens

@ Answer tokens attend less to  Similar final answer is generated
the middle steps of thinking trajectories when middle thinking steps are removed

Figure 1: Illustrative analysis of redundancy in thinking trajectories. We illustrate our forth-
coming analyses in Section 2: (left) attention weights across thinking trajectories show low focus
on intermediate tokens; (right) removing them yields similar outputs. Both observations suggest
redundancy.

trajectories for more efficient supervised fine-tuning (SFT), while MidCut-Decoding skips redundant
steps at inference to accelerate reasoning generation. Experiments demonstrate that both strategies
improve efficiency while consistently maintaining strong performance across diverse reasoning tasks.

2 Analysis of Thinking Trajectories

This section studies whether certain tokens within thinking trajectories' are redundant in real. We

analyze thinking trajectories through two complementary approaches: an attention-based analysis
of how models process reasoning steps and a knockout-based analysis of how thinking trajectories
influence the quality of answer generation. An overview of these analyses is illustrated in Figure 1.

Attention weights analysis. Following prior works [13—
16] that interpreted models using attention-based metrics,
we analyze attention weights to investigate how different

parts of thinking trajectories contribute to answer gen-
eration. We expect these patterns to reveal how models

prioritize tokens during generation, offering insights into

information flow within transformer architectures.

Mean Attention Value

We employ S1.1-32B [17] using 30 questions from
GPQA-D [18], excluding cases where the model fails
to solve the problem or the response exceeds 16K to-
kens. For each sample, we extract attention weights from
answer tokens to thinking tokens across all layers and
heads, and then average over layers, heads, and answer
tokens to obtain a single distribution over thinking trajectory positions. Since lengths of thinking
trajectories vary across samples, we normalize token indices to relative positions before averaging
across problems. Figure 2 shows that answer tokens attend strongly to the beginning and ending parts
of the trajectory, whereas intermediate steps are weakly attended. This suggests that intermediate
steps generally contribute less to answer generation, indicating that these tokens may be redundant
within the overall thinking trajectory.

Figure 2: Averaged 1D attention
weights across thinking trajectories. In-
termediate tokens show low scores.

Attention knockout analysis. Based upon the observational insights from attention analysis, we
further apply the attention knockout technique [16], which masks attention links and evaluates model
performance to probe the importance of specific connections or tokens. We delete specific trajectory
segments and generate answers under these conditions to verify again whether thinking trajectories
contain redundancy with respect to answer generation. By observing how answer quality changes
under such interventions, we can assess whether particular segments play a causal role in generating
answers. Our analysis is conducted on 30 problems from the GPQA-D dataset using the S1.1-32B
model. For each problem, a full thinking trajectory is first generated.

' Among two distinct components comprising reasoning outputs - the thinking trajectory (reasoning steps)
and the answer part (final solution) - our analysis focuses on the former.



Then, we remove three different segments: the beginning
segment (0-20%), an intermediate segment centered in
the middle (40-60%), and the ending segment (80—-100%).
The model is subsequently prompted to generate answers
from these truncated trajectories as well as from the full tra-
jectory. Finally, textual similarity between answers from
truncated and full trajectories is measured using Jaccard
similarity [19] and ROUGE-L [20].

Table 1 shows the average results across multiple cases.
In the results, removing the intermediate part consistently
yields the highest similarity to answers generated with

Table 1: Accuracy and text similarity
after various knockouts of thinking tra-
jectories. We systematically remove dif-
ferent parts and evaluate their impact on
answer quality. “Jac. Sim.” refers to
Jaccard similarity.

Knockout | Jac. Sim. ROUGE-L
Beginning (0-20%) 0.5174 0.5133
Intermediate (40-60%)| 0.5555 0.5528
Ending (80-100%) 0.4906 0.4844

the full trajectory. In contrast, removing the beginning

and ending parts results in lower similarity, suggesting

that these segments contain critical information for formulating correct answers. This provides
quantitative evidence for our hypothesis that intermediate steps are often redundant and do not
substantially contribute to final answer quality.

3 Trimming Reasoning Chains to Enhance Training and Decoding

Based on the knowledge in Section 2, which reveals redundancy in the middle parts of thinking trajec-
tories, we introduce MidCut, a method for removing intermediate steps from reasoning trajectories.
We present two applications of our MidCut methodology: MidCut-SFT is a preprocessing method
for thinking trajectories of LRMs on SFT datasets. This approach removes intermediate parts of
the trajectory while preserving the beginning and ending segments, which are believed to contain
the essential setup of the problem and formulation of the conclusion. MidCut-Decoding applies the
same principle during the inference phase, truncating intermediate reasoning steps after the thinking
phase to reduce computational overhead and generation latency without compromising the quality of
final answers. In both applications, our method targets the redundant middle parts identified in our
analysis while preserving the critical reasoning components at the trajectory boundaries.

3.1 MidCut-SFT: MidCut for Supervised Fine-tuning

Method. MidCut-SFT follows a simple yet effec-
tive approach: given a thinking trajectory from a
large reasoning model, we remove the middle section.
Specifically, we preserve the first and last segments
of the trajectory based on predefined thresholds, ei-
ther by step count or token count. Steps are defined
by splitting trajectories at double newline characters
(\n\n), represented by natural reasoning breakpoints.

»>Question
Compute $S\sum_{k=1}*{1007}\left(\cos \left(\frac{\pi k} ... ]

—

»Thinking trajectory

Okay, so | have this problem here: Compute the sum from ...
So the sum is 2_{k=1}{1007} ... Alright. My goal is ...
First off, exponents with cosine can sometimes be dealt ...

: \
But not sure. However, wait, reflecting upon the sum =
But in our case, when for j=0,j=1007, and j=2014, the ...

Wait a minute. If we consider that the original sum ...

We explore several variants of this filtering approach:
(1) Step-level filtering: Remove middle steps while
preserving the first and last n steps of the trajec-
tory. (2) Token-level filtering: Remove middle tokens
while preserving the first and last k tokens, regardless
of step boundaries. (3) Similarity-based filtering: We
compute Jaccard similarity between each step and
the preceding 5 steps of the trajectory. Steps exceed-
ing a predefined similarity threshold are filtered out
to reduce redundancy, targeting repetitive reasoning
patterns. In this paper, we set n = 100 for step-level filtering and £ = 8, 000 for token-level filtering.

But per original formula, so prefer factored version as ...
Yes, going with \boxed{\dfrac{1007 \left( 2 + \dbinom ...
**Final Answer**\n\boxed{\dfrac{1007 \left( 2 + ...

» Answer part

To compute the sum \(\sum_{k=1}*{1007}\left(\cos ...
1. **Using Euler's Formula and Binomial Expansion**: ...

Thus, the final answer is: \[ \boxed{\dfrac{1007 \left( 2 + ...

Figure 3: Example of MidCut-SFT applied to
slk-1.1 dataset.

Comparison methods. To evaluate the effectiveness of our approach, we compare it against several
alternative trajectory reduction strategies: (1) LLM-based Compression: we use external LLMs
(Claude Sonnet” [21]) to compress thinking trajectories while preserving essential reasoning content.
(2) Single-end Preservation: instead of preserving both beginning and end parts, we retain only the

2We utilize claude-sonnet-4-20250514 version of Claude Sonnet 4.



Table 2: Performance of MidCut-SFT on three benchmarks (AIME24, GPQA-D, MATH) with
training token usage reduction. Bold indicates the best performance in each benchmark, and
underline indicates performance better than baseline. “Token usage” denotes the proportion of
training tokens used relative to the baseline (100%).

Method | AIME24 GPQA-D MATH | Average | Token usage
Base 0.6444 0.6195 0.9413 0.7351 100%
LLM-based 0.3333 0.5791 0.8900 0.6008 45.66%
Single (first) 0.6222 0.6380 0.9500 0.7367 21.93%
Single (last) 0.6000 0.6128 0.9420 0.7183 29.66%
Random 0.5667 0.6162 0.9447 0.7092 43.85%
Ours

Step-level 0.6889 0.6229 0.9440 0.7519 23.42%

Token-level 0.6111 0.6195 0.9487 0.7264 25.51%

Sim-based 0.6444 0.6279 0.9453 0.7392 9.06%

first 2 n steps or only the last 2 xn steps, maintaining the same total preserved length as MidCut-SFT.
(3) Random Step Selection: we randomly sample 2 * n steps from the original trajectory, preserving
the same amount of content but without structural consideration.

Experimental results. We fine-tune Qwen2.5-32B-Instruct on the slk-1.1 dataset for 5 epochs
and evaluate different trajectory reduction strategies on AIME24 [22], GPQA-D [18], and MATH500
(MATH) [23] datasets. Table 2 shows that our MidCut-SFT variants maintain competitive perfor-
mance while the number of total tokens used for SFT is reduced. Step-level filtering achieves the
highest average performance (0.7519), even outperforming full trajectories (0.7351), while using only
23.42% of the training tokens. Compared to alternatives, our dual-end preservation approach shows
clear advantages over LLM-based compression (0.6008), single-end methods (0.7367 or 0.7183), and
random selection (0.7092). While our variants like similarity-based filtering (0.7392) and token-level
filtering (0.7264) also perform well, the simple step-level cutting proves to be most effective.

3.2 MidCut-Decoding: MidCut for Effective Decoding

Method. MidCut-Decoding applies the middle-cutting principle during inference to reduce com-
putational overhead. After the model completes its thinking trajectory, we cut the middle part of
the trajectory before producing the final answer. We implement two cutting ratios: removing 33%
and 50% of the middle part while preserving the initial problem understanding and final reasoning
conclusions.

Experimental results. Table 3 reports MidCut-Decoding re- Table 3: Performance of MidCut-
sults on the SFT-trained model with the step-level MidCut-SFT Decoding. “Accuracy” denotes the
introduced in Section 3.1. Compared to using the full reasoning averaged accuracy across AIME24,
trajectory, trimming 33-50% of the intermediate steps yields GPQA-D, and MATH.

almost identical average performance (0.6917 vs. 0.6933). In

particular, the 33% cut shows small but consistent gains on Method | Accuracy
GPQA-D and MATH. These findings indicate that MidCut- Full trajectory 0.7519
Decoding can substantially reduce inference costs for long MidCut 33% 0.7543

reasoning traces while maintaining comparable task accuracy. MidCut 50% 0.7519

4 Conclusion

We have studied the necessity of complete thinking trajectories and proposed MidCut for trajectory
reduction. Through our analyses, we have shown that intermediate reasoning chains are often
redundant. MidCut-SFT achieved the improved reasoning results further with efficiency, and MidCut-
Decoding reduced inference costs without compromising quality. We believe that our simple yet
effective method, which showcases how to handle lengthy reasoning trajectories without relying on
any challenging restrictions, provides a promising research direction and paves the way for developing
more efficient reasoning models in the near future.
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