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Abstract

The development of Large Language Models (LLMs) is advancing at a fast pace,
and choosing the right benchmarks has become central to understanding and charac-
terizing real progress. The community now faces an abundance of benchmarks. We
often lack a systematic way to tell which benchmark requires more advanced skills,
which provides cleaner separations between models, and which offers sufficient
topical and linguistic coverage for a developer’s use case. This paper proposes
a principled and quantitative answer. We introduce three metrics for benchmark
quality, hardness, separability, and diversity, each with explicit mathematical defi-
nitions suitable for automated evaluation pipelines. We instantiate the framework
across math, coding, knowledge, instruction following and argentic evaluation
suites. We will also release the raw evaluation data to facility further studies.
Together, these metrics and data enable systematic comparison and selection of the
right benchmarks for model developers.

1 Introduction

As LLMs rapidly advancing, the research community faces a critical question: which evaluation
metrics actually distinguish between increasingly capable models? The ecosystem of benchmarks
has exploded across capabilities, spanning knowledge (MMLU [Hendrycks et al.,|2020], MMLU-
Pro [Wang et all [2024]], GPQA [Rein et al, [2024], SimpleQA [Wei et al., [2024], HLE [Phan
et al.,[2025]], Gaokao 2023 [Zhang et al.| 2023]]), math (AIME 2024/2025 [AIME, [2025]], HMMT
Feb25 [Balunovic et al., [2025]], Math 500 [Hendrycks et al. [2021]], MathOdyssey [Fang et al.,
2025]], OlympiadBench [He et al., [ 2024a])), instruction-following (ComplexBench [Wen et al., [2024],
FollowBench [Jiang et al., [2023]], IF-Bench [Pyatkin et al., [2025]], IF-Eval [[Zhou et al., [2023]],
InfoBench [Qin et al.,[2024], MultiChallenge [Sirdeshmukh et al.| [2025], Multi-IF [He et al., 2024b]),
agent tasks (ACEBench [Chen et al., [2025], BFCL [Patil et al.], ComplexFuncBench [Zhong et al.,
2025]], DrafterBench [Li et al.,[2025], MultiChallenge [Sirdeshmukh et al.,[2025], NexusBench [team),
2024, 7-Bench [Yao et al.|[2024], 72-Bench [Barres et al., 2025], ToolSandbox [Lu et al., 2024])), and
code (LiveCodeBench v5/v6 [Jain et al.| [2024], OJBench [Wang et al., 2025, Terminal-Bench [Team)|
2025]l, SWE-bench [Jimenez et al., [2023]]).

Earlier broad suites such as BIG-bench [Srivastava et al.l [2023]], MATH [Hendrycks et al., 2021]]
and HumanEval [Chen et al.,2021] etc. established the foundation, while they are highly saturated
to serve as ideal evaluation protocols [Dong et al., [2024]]. Besides, the growth of new benchmarks
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in the recent years makes it difficult to determine which benchmarks are genuinely hard, which
provide clean separability among models, and which ensure sufficient diversity. Furthermore, recent
work has revealed significant shortcomings in measurement quality across existing benchmarks,
e.g. inconsistent leaderboard rankings [Zhou et al., [2025]] and poor model separability among top
performers [Ni et al.,2024]]. Our work introduces a set of quantitative criteria—hardness, separability,
and diversity—for systematic comparison across LLM benchmarks:

* Hardness—evaluating each prompt’s difficulty for differentiating models, quantified using estab-
lished psychometric modeling through Item Response Theory (IRT) [[Verhelst and Glas| [1995} |Cai
et al.,[2016]).

* Separability—capturing how well a benchmark spreads model scores (between-model variance)
relative to sampling noise (within-model variance), evaluated by adjacent ranking stability.

* Diversity—ensuring broad semantic coverage among prompts, leveraging embedding-based dis-
persion measures [Zhang et al.,[2019].

We conducted experiments on 34 benchmarks and 12 recent LLMs, including GPT-40-MINI [Hurst]
et al.,2024], GPT-40 [Hurst et al.l 2024], GPT-4.1 [Hurst et al.l 2024], 03-HIGH [OpenAl, 2025],
04-MINI-HIGH [OpenAll 2025],DEEPSEEK-V3 [Liu et al.| [2024], DEEPSEEK-R1 [Guo et al., [2025]],
CLAUDE 4 SONNET [[Anthropic}, [2025]], CLAUDE 4 SONNET (think) [Anthropic} 2025[], KiM1-K2-
INSTRUCT [Team et al., 2025]], QWEN3-235B-THINKING [Yang et al.,[2025], and QWEN3-235B-
INSTRUCT [Yang et al.|[2025]]. We calculated the hardness, separability and diversity score for each
benchmark. We will also release the raw evaluation data to facilitate LLM evaluation researches. In
the future, we plan to develop a new method which incorporates difficulty for model ranking and
produced a new LLM leaderboard based on difficulty-aware ranking method. We also plan to work
on selecting a core set from massive benchmarks for faster evaluation and model iteration.

2 Related Work

Metrics for Benchmarks Evaluation. Recent work has developed various metrics to assess
benchmark quality across multiple dimensions. For hardness and difficulty measurement, [Zhou
et al. 2025] applied PSN-IRT to analyze 11 LLM benchmarks, while [Hempstead et al., 2004]]
used Item Response Theory to select efficient benchmark subsets. Separability metrics have been
formalized through signal-to-noise frameworks [Heineman et al.| 2025]] and confidence interval
analysis in Arena-Hard-Auto [Li et al., [2024]. Diversity measures have been explored through
comprehensive embedding evaluation frameworks [Zhang et al., [2019) [Muennighoff et al., 2022]
and text diversity measurement tools [Shaib et al., [2024]]. Some optimization approaches have
shown promise for quality-diversity balancing in various domains [Liu et al.}|2025| |Shypula et al.,
2025|], though their application to benchmark curation remains underexplored. However, most
existing approaches address individual quality dimensions in isolation rather than providing unified
optimization frameworks.

Benchmarking Benchmarks. Systematic analyses have revealed significant limitations in current
LLM benchmarks. [Mclntosh et al., 2025]] comprehensively evaluated 23 state-of-the-art benchmarks,
uncovering biases, measurement inconsistencies, and cultural oversight. Data contamination has
emerged as a critical concern, with [Sainz et al., 2023| |[Balloccu et al.l 2024]] demonstrating that
benchmark leakage leads to unreliable performance estimation. Benchmark reconstruction approaches
like MixEval [Ni et al.| 2024]] achieved high correlation with human preferences through strategic
benchmark mixing, while Arena-Hard [Li et al., 2024 introduced automated curation from crowd-
sourced data. Dynamic evaluation methods have been proposed to address benchmark saturation
[Kiela et al.} 2021} |White et al.| [2024], with studies showing that traditional benchmarks like MMLU
suffer from rapid ceiling effects [Hendrycks et al., 2020]. Despite these advances, previous work
lacks proactive design principles, and limited theoretical foundations that fail to jointly optimize
multiple benchmark quality criteria.



3 Methodology

3.1 Preliminaries

Let B={1,..., N} be the prompts and M = {1,..., M} the reference models (humans may be
included). Denote by a,,; € [0, 1] the accuracy of model m on prompt i and by s, = & >, @, its
mean score. Unless otherwise stated, expectations are taken over the uniform distribution on prompts.

3.2 Hardness Metric

We derive hardness for each prompt from Item Response Theory (IRT). The one—parameter logistic
(1PL) model is a principled way to place prompts and models on a common latent scale. For model
™ on prompt %:

1
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* 0,, — ability of model m.

Bi — difficulty of prompt 7 (what we want).

Higher 3; implies a lower success probability for a fixed 6,,,. Given the binary response matrix

A = [am,;] we can fit Equation (T)) directly to get a numeric hardness score §3; for every prompt. We
average the hardness score in the same benchmark to derive the hardness score for each benchmark. It
also gives a scalar 6,,, for each model m as its capability metric. We fit Equation (T)) on each category
to derive per-category LLM ranking.

3.3 Separability Metric

Intuitively, a good benchmark spreads model scores widely while keeping each model’s sampling
noise small. We define adjacent ranking stability specifically as a measure of separability.

Assume the M models are sorted by their scores such that s; > so > --- > s;,. For each pair
(m,n), the probability of a rank reversal under binomial uncertainty is
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where @ is the standard normal CDF and a%,v,m is the binomial noise

2 Sm (1 - Sm)
= 3
UW,m N ( )
Increasing N drives a%,vm — 0 but at higher annotation cost. We define the Adjacent Ranking

Stability (R.q) as:
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.
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where Piif’m .1 is the probability of a rank reversal between the model at rank m and the model at
rank m + 1.

3.4 Diversity Metric

Diversity ensures that solving the benchmark demands breadth rather than narrow skill, and that it is
not a simple permutation of existing prompts so that the dependency is strong between prompts. Let
f () be a sentence or code encoder and e; = f(i). We define the semantic dispersion as

Coem = ﬁ Z[l — cos(e;, e;)] € [0,1]. “4)

1<j

Values near 1 indicate a wide semantic spread and good coverage around diverse topics.



Capability Benchmark Hardness 1 Separability T Diversity T

MMLU [Hendrycks et al., [2020] -0.590 0.778 0.837
MMLU-Pro [Wang et al.;[2024] -0.203 0.799 0.830
Knowledge GPQA [Rein et al.,[2024] 0.370 0.712 0.750
SimpleQA [Wei et al.;[2024] 1.977 0.908 0.840
HLE [Phan et al.| [2025]] 2.808 0.830 0.809
Gaokao 2023 [Zhang et al.,|2023] -0.248 0.728 0.702
AIME 2024 [AIME, 2025] 0.894 0.661 0.630
AIME 2025 [AIME] 2025]] 1.298 0.653 0.600
Math HMMT Feb25 [Balunovic et al., 2025]] 1.876 0.642 0.633
Math 500 Hendrycks et al.|[2021] -0.842 0.733 0.661
MathOdyssey [Fang et al.|[2025] 1.231 0.757 0.672
OlympiadBench [He et al.,|2024al] 0.523 0.758 0.637
ComplexBench Wen et al.|[2024]] 0.322 0.680 0.835
FollowBench [Jiang et al.| [2023] 1.326 0.697 0.834
Instruction IF-Bench [Pyatkin et al., [2025]] 2.378 0.748 0.820
Following IF-Eval [Zhou et al.| [2023|] -0.028 0.720 0.808
InfoBench [Qin et al.| [2024]] -0.320 0.608 0.857
MultiChallenge [Sirdeshmukh et al., 2025]] 2.847 0.725 0.846
Multi-IF [He et al.|[2024Db]] 0.033 0.794 0.800
ACEBench [Chen et al.,[2025]] -0.608 0.655 0.828
BFCL [Patil et al.] -0.230 0.738 0.780
ComplexFuncBench [Zhong et al.| [2025]] 0.520 0.822 0.625
DrafterBench [Li et al., [2025]] -0.826 0.707 0.474
Agent MultiChallenge [Sirdeshmukh et al.| [2025]] 0.839 0.750 0.844
NexusBench [team), |[2024] 1.412 0.707 0.799
7-Bench [Yao et al.| [2024| 0.504 0.637 0.237
72-Bench [Barres et al.|[2025] 0.769 0.724 0.366
ToolSandbox [Lu et al., 2024 0.856 0.836 0.352
LiveCodeBench v5 [Jain et al., 2024] -0.519 0.891 0.623
LiveCodeBench v6 [Jain et al., [2024]] -0.251 0.854 0.631
Code OJBench [Wang et al.,[2025] 1.211 0.799 0.595
Terminal-Bench [Team) 2025] 1.327 0.695 0.593
SWE-bench-verlﬁed [Jimenez et al., [2023]] 0.567 0.831 0414
(mini-swe-agent)
SWE-bench-verified [Jimenez et al., 2023 0512 0.839 0528

(swe-agent)

Table 1: Hardness, separability and diversity scores for each dataset. Best scores for each capability
are in bold. Hardness scores are calculated relative to other benchmarks within the same capability
area. Knowledge datasets show the largest hardness gap, instruction following benchmarks show
highest diversity and dataset with more samples show higher separability.

4 Experiments

We present the evaluation results in Table |1} For further detailed discussion and the difficulty-aware
leaderboard, please refer to Appendix [A]

Hardness. Hardness Analysis. Among the five core capabilities we evaluate, knowledge and
instruction following exhibit the largest performance gaps between the hardest and easiest datasets,
with gaps of 3.401 and 3.129 respectively. In contrast, agent and code capabilities show relatively
consistent difficulty levels across datasets. Notably, many widely-used benchmarks such as IF-Eval,
Math 500, and MMLU appear to be too easy for current state-of-the-art LLMs. Consequently,
evaluation results on these benchmarks may fail to adequately expose model limitations, potentially
hindering pushing forward the frontier. More detailed hardness analysis is in Appendix [A]



Seperability. Benchmarks like SimpleQA, LiveCodeBench, and ToolSandbox provides high sepa-
rability due to both high number of prompts and wide spread of scores. Benchmarks like AIME 2024
and 2025 are weaker in separability due to small amount of prompts covered, making it harder to
separate models confidently.

Diversity. For diversity, we use QWEN3-EMBEDDING-8B [Zhang et al.,2025] as a text encoder to
embed each benchmark prompt and compute benchmark-level semantic dispersion @). Benchmarks
in Instruction-Following and Knowledge generally exhibit the highest diversity, while most Math and
Coding benchmarks show relatively lower diversity, reflecting more specialized domain knowledge
and templated problem formats. Agent benchmarks are bimodal, with some high and others clearly
low. The low-diversity group usually pairs long system prompts with short user prompts, which
reduces diversity.
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A Analysis

A.1 Hardness Distribution

We present the results of hardness distribution from Figure [I]to Figure[5} The hardness distributions
exhibit markedly different characteristics across the five capabilities. Instruction following datasets
predominantly cluster at low difficulty levels, though MultiChallenge shows a more balanced dis-
tribution. Math datasets display the most varied patterns: while commonly-used benchmarks like
Math-500 and OlympiadBench show a long-tailed distribution, specialized competitions (AIME2S5,
HMMT) extend into higher difficulty ranges, showing near uniformal or normal distribution. Knowl-
edge datasets either concentrate at very low difficulty or shows a distinctive peak at high difficulty
levels. Code datasets generally exhibit bimodal distributions with peaks at both the lowest and highest
difficulty levels, revealing substantial intra-dataset difficulty variance. Agent capabilities display
the most consistent uniform distributions across datasets. This analysis reveals that benchmark
difficulty varies dramatically not only between datasets but also within each dataset, highlighting the
inadequacy of relying on popular but easy benchmarks for comprehensive model evaluation.

A.2 Model Capabilities

We present the model capabilities calculated by the IRT models in Table 2] This analysis reveals
that model evaluation should move beyond simple average accuracy metrics but should consider
performance across varying prompt hardness levels such as capabilities learned form IRT models.

B Future Work: Core-Set Selection via Submodular Optimization

As part of the future work, we plan to develope core-set selection algorithm for the entire benchmark
prompt dataset with submodular optimization. Let g(.5) measure the quality of subset S (e.g. a
combination of difficulty and separability) and d(S) its diversity (e.g. Csem). We choose

f(8) = 9(S) + ad(5), 0<a<l )

We would like to choose both g and d as monotone submodular surrogates. Under a cardinality
constraint |.S| < k the greedy algorithm obtains a (1 — 1/¢) approximation to

f(S). ©)

max
SCB, [S|<k

Empirically, £k = 100 balances evaluation cost with fidelity to the full benchmark (rank—correlation
> 0.95).

Model Knowledge Math I{?lstruc?lon Agent Code Overall
ollowing

GPT-40-MINI 0.663 0.061 3.092 0.249 -2.170 1.311
GPT-40 1.560 0.157 3.189 1.251 -1.696  0.537
GPT-4.1 1.905 1.240 4.725 1.421 -0.884 1.588
03-HIGH 2.420 2.821 6.232 1.404 1.139 2.220
04-MINI-HIGH 1.709 3.062 5.431 0.943 0.980 1.596
DEEPSEEK-V3 1.735 1.737 4.047 0.629 -0.889 1.324
DEEPSEEK-R1 1.981 4.163 3.569 0.622 0.228 1.578
CLAUDE 4 SONNET 1.671 1.695 4.629 0.829 -0.155 1.511
CLAUDE 4 SONNET (think) 1.839 2.993 4.908 1.096 -0.767 1.561
KIMI-K2-INSTRUCT 1.850 2.742 4.956 0.965 -0.359 1.649
QWEN3-235B 1.691 4.247 0.621 0.395 -0.186 1.079

QWEN3-235B-INSTRUCT 2.085 3.428 4.509 0.498 -0.459  1.600

Table 2: Model capabilities ¢,,, computed by IRT models. 6,,, gives a more hardness-aware ranking
than accuray.
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Figure 1: Hardness distribution on instruction following datasets.
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Figure 5: Hardness distribution on agent datasets.
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