
The Measure of All Measures: Quantifying LLM
Benchmark Quality

Anonymous Author(s)
Affiliation
Address
email

Abstract

The development of Large Language Models (LLMs) is advancing at a fast pace,1

and choosing the right benchmarks has become central to understanding and char-2

acterizing real progress. The community now faces an abundance of benchmarks.3

We often lack a systematic way to tell which benchmark is harder, which pro-4

vides cleaner separations between models, or which offers sufficient topical and5

linguistic coverage for a developer’s use case. This paper proposes a principled and6

quantitative answer. We introduce three metrics for benchmark quality, hardness,7

separability, and diversity, each with explicit mathematical definitions suitable for8

automated evaluation pipelines. We further derive a difficulty–aware leaderboard9

index that rewards solving genuinely hard items. We instantiate the framework10

across math, coding, knowledge, instruction following and agentic evaluation suites.11

Together, these metrics enable systematic comparison and selection of the right12

benchmarks for model developers.13

1 Introduction14

LLM development is extraordinarily fast, and picking the right benchmarks to track is now core to un-15

derstanding, comparing, and steering progress of LLMs. The ecosystem of benchmarks has exploded16

across capabilities, spanning knowledge (MMLU [Hendrycks et al., 2020], MMLU-Pro [Wang et al.,17

2024], GPQA [Rein et al., 2024], SimpleQA [Wei et al., 2024], HLE [Phan et al., 2025], Gaokao18

2023 [Zhang et al., 2023]), math (AIME 2024/2025 [AIME, 2025], HMMT Feb25 [Balunović et al.,19

2025], Math 500 [Hendrycks et al., 2021], MathOdyssey [Fang et al., 2025], OlympiadBench [He20

et al., 2024a]), instruction-following (ComplexBench [Wen et al., 2024], FollowBench [Jiang et al.,21

2023], IF-Bench [Pyatkin et al., 2025], IF-Eval [Zhou et al., 2023], InfoBench [Qin et al., 2024], Mul-22

tiChallenge [Sirdeshmukh et al., 2025], Multi-IF [He et al., 2024b]), agent tasks (ACEBench [Chen23

et al., 2025], BFCL [Patil et al.], ComplexFuncBench [Zhong et al., 2025], DrafterBench [Li24

et al., 2025], MultiChallenge [Sirdeshmukh et al., 2025], NexusBench [team, 2024], τ -Bench [Yao25

et al., 2024], τ2-Bench [Barres et al., 2025], ToolSandbox [Lu et al., 2024]), and code (Live-26

CodeBench v5/v6 [Jain et al., 2024], OJBench [Wang et al., 2025], Terminal-Bench [Team, 2025],27

SWE-bench [Jimenez et al., 2023]).28

Earlier broad suites such as BIG-bench [Srivastava et al., 2023], GSM8K [Cobbe et al., 2021],29

MATH [Hendrycks et al., 2021] and HumanEval [Chen et al., 2021] etc. established the foundation.30

The growth of new benchmarks in the recent years makes it difficult to determine which benchmarks31

are genuinely hard, which provide clean separability among models, and which ensure sufficient32

diversity. Furthermore, recent work has revealed significant shortcomings in measurement quality33

across existing benchmarks, e.g. inconsistent leaderboard rankings [Zhou et al., 2025] and poor34

model separability among top performers [Ni et al., 2024]. Our work introduces a set of quantitative35
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criteria—hardness, separability, and diversity—for systematic comparison across this expanding36

ecosystem.37

• Hardness—evaluating each prompt’s difficulty for differentiating models, quantified using estab-38

lished psychometric modeling through Item Response Theory (IRT) [Verhelst and Glas, 1995, Cai39

et al., 2016].40

• Separability—capturing how well a benchmark spreads model scores (between-model variance)41

relative to sampling noise (within-model variance), evaluated by adjacent ranking stability.42

• Diversity—ensuring broad semantic coverage among prompts, leveraging embedding-based dis-43

persion measures [Zhang et al., 2019].44

We conducted experiments on 34 benchmarks and 12 recent LLMs, including GPT-4O-MINI, GPT-45

4O, GPT-4.1, O3-HIGH, O4-MINI-HIGH, DEEPSEEK-V3, DEEPSEEK-R1, CLAUDE 4 SONNET,46

CLAUDE 4 SONNET (think), KIMI-K2-INSTRUCT, QWEN3-235B-THINKING, and QWEN3-235B-47

INSTRUCT. We calculated the hardness, separability and diversity score for each benchmark. We also48

proposed a new method which incorporates difficulty for model ranking and produced a new LLM49

leaderboard based on difficulty-aware ranking method.50

2 Related Work51

Metrics for Benchmarks Evaluation. Recent work has developed various metrics to assess52

benchmark quality across multiple dimensions. For hardness and difficulty measurement, [Zhou53

et al., 2025] applied PSN-IRT to analyze 11 LLM benchmarks, while [Hempstead et al., 2004]54

used Item Response Theory to select efficient benchmark subsets. Separability metrics have been55

formalized through signal-to-noise frameworks [Heineman et al., 2025] and confidence interval56

analysis in Arena-Hard-Auto [Li et al., 2024]. Diversity measures have been explored through57

comprehensive embedding evaluation frameworks [Zhang et al., 2019, Muennighoff et al., 2022]58

and text diversity measurement tools [Shaib et al., 2024]. Some optimization approaches have59

shown promise for quality-diversity balancing in various domains [Liu et al., 2025, Shypula et al.,60

2025], though their application to benchmark curation remains underexplored. However, most61

existing approaches address individual quality dimensions in isolation rather than providing unified62

optimization frameworks.63

Benchmarking Benchmarks. Systematic analyses have revealed significant limitations in current64

LLM benchmarks. [McIntosh et al., 2025] comprehensively evaluated 23 state-of-the-art benchmarks,65

uncovering biases, measurement inconsistencies, and cultural oversight. Data contamination has66

emerged as a critical concern, with [Sainz et al., 2023, Balloccu et al., 2024] demonstrating that67

benchmark leakage leads to unreliable performance estimation. Benchmark reconstruction approaches68

like MixEval [Ni et al., 2024] achieved high correlation with human preferences through strategic69

benchmark mixing, while Arena-Hard [Li et al., 2024] introduced automated curation from crowd-70

sourced data. Dynamic evaluation methods have been proposed to address benchmark saturation71

[Kiela et al., 2021, White et al., 2024], with studies showing that traditional benchmarks like MMLU72

suffer from rapid ceiling effects [Hendrycks et al., 2020]. Despite these advances, previous work73

lacks proactive design principles, and limited theoretical foundations that fail to jointly optimize74

multiple benchmark quality criteria.75

3 Methodology76

3.1 Preliminaries77

Let B = {1, . . . , N} be the prompts and M = {1, . . . ,M} the reference models (humans may be78

included). Denote by ami ∈ [0, 1] the accuracy of model m on prompt i and by sm = 1
N

∑
i ami its79

mean score. Unless otherwise stated, expectations are taken over the uniform distribution on prompts.80

3.2 Hardness Metric81

We derive hardness for each prompt from Item Response Theory (IRT). The one–parameter logistic82

(1PL) model is a principled way to place prompts and models on a common latent scale. For model83
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m on prompt i:84

P (ami = 1) = σ(θm − βi), σ(x) =
1

1 + e−x
. (1)

• θm — ability of model m.85

• βi — difficulty of prompt i (what we want).86

Higher βi implies a lower success probability for a fixed θm. Given the binary response matrix87

A = [ami] we can fit Equation (1) directly to get a numeric hardness score β̂i for every prompt. We88

average the hardness score in the same benchmark to derive the hardness score for each benchmark. It89

also gives a scalar θm for each model m as its capability metric. We fit Equation (1) on each category90

to derive per-category LLM ranking.91

3.3 Separability Metric92

Intuitively, a good benchmark spreads model scores widely while keeping each model’s sampling93

noise small. We define adjacent ranking stability specifically as a measure of separability.94

Assume the M models are sorted by their scores such that s1 ≥ s2 ≥ · · · ≥ sM . For each pair95

(m,n), the probability of a rank reversal under binomial uncertainty is96

P flip
mn = Φ

(
− |sm − sn|√

σ2
W,m + σ2

W,n

)
, (2)

where Φ is the standard normal CDF and σ2
W,m is the binomial noise97

σ2
W,m =

sm (1− sm)

N
. (3)

Increasing N drives σ2
W,m → 0 but at higher annotation cost. We define the Adjacent Ranking

Stability (Radj) as:

Radj = 1− 1

M − 1

M−1∑
m=1

P flip
m,m+1

where P flip
m,m+1 is the probability of a rank reversal between the model at rank m and the model at98

rank m+ 1.99

3.4 Diversity Metric100

Diversity ensures that solving the benchmark demands breadth rather than narrow skill, and that it is101

not a simple permutation of existing prompts so that the dependency is strong between prompts. Let102

f(·) be a sentence or code encoder and ei = f(i). We define the semantic dispersion as103

Csem =
2

N(N − 1)

∑
i<j

[
1− cos(ei, ej)

]
∈ [0, 1]. (4)

Values near 1 indicate a wide semantic spread and good coverage around diverse topics.104

4 Experiments105

We present the evaluation results in Table 1. For further detailed discussion and the difficulty-aware106

leaderboard, please refer to Appendix A.107

Hardness. Hardness Analysis. Among the five core capabilities we evaluate, knowledge and108

instruction following exhibit the largest performance gaps between the hardest and easiest datasets,109

with gaps of 3.401 and 3.129 respectively. In contrast, agent and code capabilities show relatively110

consistent difficulty levels across datasets. Notably, many widely-used benchmarks such as IF-Eval,111

Math 500, and MMLU appear to be too easy for current state-of-the-art LLMs. Consequently,112

evaluation results on these benchmarks may fail to adequately expose model limitations, potentially113

hindering pushing forward the frontier. More detailed hardness analysis is in Appendix A.114
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Capability Benchmark Hardness ↑ Separability ↑ Diversity ↑

Knowledge

MMLU [Hendrycks et al., 2020] -0.590 0.778 0.837
MMLU-Pro [Wang et al., 2024] -0.203 0.799 0.830
GPQA [Rein et al., 2024] 0.370 0.712 0.750
SimpleQA [Wei et al., 2024] 1.977 0.908 0.840
HLE [Phan et al., 2025] 2.808 0.830 0.809
Gaokao 2023 [Zhang et al., 2023] -0.248 0.728 0.702

Math

AIME 2024 [AIME, 2025] 0.894 0.661 0.630
AIME 2025 [AIME, 2025] 1.298 0.653 0.600
HMMT Feb25 [Balunović et al., 2025] 1.876 0.642 0.633
Math 500 Hendrycks et al. [2021] -0.842 0.733 0.661
MathOdyssey [Fang et al., 2025] 1.231 0.757 0.672
OlympiadBench [He et al., 2024a] 0.523 0.758 0.637

Instruction
Following

ComplexBench Wen et al. [2024] 0.322 0.680 0.835
FollowBench [Jiang et al., 2023] 1.326 0.697 0.834
IF-Bench [Pyatkin et al., 2025] 2.378 0.748 0.820
IF-Eval [Zhou et al., 2023] -0.028 0.720 0.808
InfoBench [Qin et al., 2024] -0.320 0.608 0.857
MultiChallenge [Sirdeshmukh et al., 2025] 2.847 0.725 0.846
Multi-IF [He et al., 2024b] 0.033 0.794 0.800

Agent

ACEBench [Chen et al., 2025] -0.608 0.655 0.828
BFCL [Patil et al.] -0.230 0.738 0.780
ComplexFuncBench [Zhong et al., 2025] 0.520 0.822 0.625
DrafterBench [Li et al., 2025] -0.826 0.707 0.474
MultiChallenge [Sirdeshmukh et al., 2025] 0.839 0.750 0.844
NexusBench [team, 2024] 1.412 0.707 0.799
τ -Bench [Yao et al., 2024] 0.504 0.637 0.237
τ2-Bench [Barres et al., 2025] 0.769 0.724 0.366
ToolSandbox [Lu et al., 2024] 0.856 0.836 0.352

Code

LiveCodeBench v5 [Jain et al., 2024] -0.519 0.891 0.623
LiveCodeBench v6 [Jain et al., 2024] -0.251 0.854 0.631
OJBench [Wang et al., 2025] 1.211 0.799 0.595
Terminal-Bench [Team, 2025] 1.327 0.695 0.593
SWE-bench-verified [Jimenez et al., 2023]
(mini-swe-agent) 0.567 0.831 0.414

SWE-bench-verified [Jimenez et al., 2023]
(swe-agent) 0.512 0.839 0.528

Table 1: Hardness, separability and diversity scores for each dataset. Best scores for each capability
are in bold. Hardness scores are calculated relative to other benchmarks within the same capability
area. Knowledge datasets show the largest hardness gap, instruction following benchmarks show
highest diversity and dataset with more samples show higher separability.

Seperability. Benchmarks like SimpleQA, LiveCodeBench, and ToolSandbox provides high sepa-115

rability due to both high number of prompts and wide spread of scores. Benchmarks like AIME 2024116

and 2025 are weaker in separability due to small amount of prompts covered, making it harder to117

separate models confidently.118

Diversity. For diversity, we use QWEN3-EMBEDDING-8B [Zhang et al., 2025] as a text encoder to119

embed each benchmark prompt and compute benchmark-level semantic dispersion (4). Benchmarks120

in Instruction-Following and Knowledge generally exhibit the highest diversity, while most Math and121

Coding benchmarks show relatively lower diversity, reflecting more specialized domain knowledge122

and templated problem formats. Agent benchmarks are bimodal, with some high and others clearly123

low. The low-diversity group usually pairs long system prompts with short user prompts, which124

reduces diversity.125
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A Analysis276

A.1 Hardness Distribution277

We present the results of hardness distribution from Figure 1 to Figure 5. The hardness distributions278

exhibit markedly different characteristics across the five capabilities. Instruction following datasets279

predominantly cluster at low difficulty levels, though MultiChallenge shows a more balanced dis-280

tribution. Math datasets display the most varied patterns: while commonly-used benchmarks like281

Math-500 and OlympiadBench show a long-tailed distribution, specialized competitions (AIME25,282

HMMT) extend into higher difficulty ranges, showing near uniformal or normal distribution. Knowl-283

edge datasets either concentrate at very low difficulty or shows a distinctive peak at high difficulty284

levels. Code datasets generally exhibit bimodal distributions with peaks at both the lowest and highest285

difficulty levels, revealing substantial intra-dataset difficulty variance. Agent capabilities display286

the most consistent uniform distributions across datasets. This analysis reveals that benchmark287

difficulty varies dramatically not only between datasets but also within each dataset, highlighting the288

inadequacy of relying on popular but easy benchmarks for comprehensive model evaluation.289

A.2 Model Capabilities290

We present the model capabilities calculated by the IRT models in Table 2. This analysis reveals291

that model evaluation should move beyond simple average accuracy metrics but should consider292

performance across varying prompt hardness levels such as model capabilities learned form IRT293

models.294

B Future Work: Core–Set Selection via Submodular Optimization295

As part of the future work, we plan to develope core-set selection algorithm for the entire benchmark296

prompt dataset with submodular optimization. Let g(S) measure the quality of subset S (e.g. a297

combination of difficulty and separability) and d(S) its diversity (e.g. Csem). We choose298

f(S) = g(S) + αd(S), 0 ≤ α ≤ 1. (5)

We would like to choose both g and d as monotone submodular surrogates. Under a cardinality299

constraint |S| ≤ k the greedy algorithm obtains a (1− 1/e) approximation to300

max
S⊆B, |S|≤k

f(S). (6)

Empirically, k = 100 balances evaluation cost with fidelity to the full benchmark (rank–correlation301

> 0.95).302

Model Knowledge Math Instruction
Following Agent Code Overall

GPT-4O-MINI 0.663 0.061 3.092 0.249 -2.170 1.311
GPT-4O 1.560 0.157 3.189 1.251 -1.696 0.537
GPT-4.1 1.905 1.240 4.725 1.421 -0.884 1.588
O3-HIGH 2.420 2.821 6.232 1.404 1.139 2.220
O4-MINI-HIGH 1.709 3.062 5.431 0.943 0.980 1.596
DEEPSEEK-V3 1.735 1.737 4.047 0.629 -0.889 1.324
DEEPSEEK-R1 1.981 4.163 3.569 0.622 0.228 1.578
CLAUDE 4 SONNET 1.671 1.695 4.629 0.829 -0.155 1.511
CLAUDE 4 SONNET (think) 1.839 2.993 4.908 1.096 -0.767 1.561
KIMI-K2-INSTRUCT 1.850 2.742 4.956 0.965 -0.359 1.649
QWEN3-235B 1.691 4.247 0.621 0.395 -0.186 1.079
QWEN3-235B-INSTRUCT 2.085 3.428 4.509 0.498 -0.459 1.600

Table 2: Model capabilities θm computed by IRT models. θm gives a more hardness-aware ranking
than accuray.
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Figure 1: Hardness distribution on instruction following datasets.

Figure 2: Hardness distribution on math datasets.

Figure 3: Hardness distribution on knowledge datasets.
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Figure 4: Hardness distribution on code datasets.

Figure 5: Hardness distribution on agent datasets.
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14. Crowdsourcing and research with human subjects361
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