

000 001 002 003 004 005 MITS: ENHANCED TREE SEARCH REASONING 006 FOR LLMS VIA POINTWISE MUTUAL INFORMATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Tree search has become as a representative framework for test-time reasoning with
029 large language models (LLMs), exemplified by methods such as Tree-of-Thought
030 and Monte Carlo Tree Search that explore multiple reasoning paths. However,
031 it remains difficult to provide instant and reliable quantitative assessments of
032 intermediate reasoning step quality, and extensive path exploration is computa-
033 tionally costly. To address this, we propose Mutual Information Tree Search
034 (MITS), a novel framework that guides reasoning with information-theoretic prin-
035 ciples. MITS introduces an effective scoring function based on pointwise mutual
036 information (PMI), which enables step-wise evaluation of reasoning paths and
037 search tree expansion via beam search without expensive look-ahead simulations,
038 achieving superior reasoning performances while maintaining computational effi-
039 ciency. The framework is complemented by an entropy-based dynamic sampling
040 strategy that adaptively allocates computational resources to uncertain reasoning
041 steps where exploration is most beneficial. For final prediction, MITS employs
042 a weighted voting scheme that combines PMI scores with prediction consensus.
043 Through comprehensive experiments on diverse reasoning benchmarks, MITS
044 consistently surpasses baseline methods, establishing a principled and efficient
045 framework for LLM reasoning.
046

1 INTRODUCTION

047 Complex multi-step reasoning remains a fundamental challenge for Large Language Models
048 (LLMs), particularly in tasks that require logical deduction, mathematical computation, or system-
049 atic problem-solving (Yang et al., 2025; Zhu et al., 2024; Yi et al., 2024). While Chain-of-Thought
050 (CoT) prompting (Wei et al., 2022; Kojima et al., 2022) has emerged as a powerful technique to
051 enhance reasoning by decomposing problems into intermediate steps, it typically generates a single
052 reasoning path, which may lead to incorrect solutions due to error accumulation or the selection of
053 suboptimal reasoning strategies. This limitation becomes particularly pronounced in complex rea-
054 soning tasks where multiple valid approaches exist, but only specific paths lead to correct answers.

055 Recent work on *inference-time scaling laws* (Snell et al., 2024; Parashar et al., 2025) reveals a
056 promising direction: generating multiple reasoning paths can substantially improve accuracy. The
057 key insight is that solution coverage, *i.e.*, the probability of finding at least one correct answer, scales
058 predictably with the number of attempts. This observation has proven especially valuable in domains
059 with verifiable answers, such as code generation and theorem proving. However, exhaustively enum-
060 erating reasoning paths is infeasible, as the search space grows exponentially with problem com-
061 plexity. This leads to the central research problem: *How can we efficiently search through the vast
062 space of possible reasoning paths to identify those most likely to yield correct solutions?*

063 To tackle this problem, existing approaches face several limitations. Methods based on exhaustive
064 rollouts (Wang et al., 2023) or Monte Carlo Tree Search (MCTS; Hao et al., 2023; Qi et al., 2025;
065 Ding et al., 2024) require extensive forward simulation, which is computationally prohibitive at
066 scale. Self-evaluation methods struggle to provide quantitative assessments of reasoning quality,
067 often relying on pairwise comparisons or binary judgments that fail to capture nuanced differences
068 between paths (Xie et al., 2023; Gu et al., 2024). Most critically, existing scoring mechanisms
069 usually favor **plausible but generic reasoning paths that could apply to many problems, rather**
070 **than those specifically tailored to the given question.** These limitations highlight the need for a

principled framework that can (i) evaluate reasoning quality efficiently without costly simulations, and (ii) distinguish between generic reasoning and question-specific reasoning.

In this work, we propose Mutual Information Tree Search (MITS), a principled framework that addresses these challenges through information-theoretic guidance. Our key insight is that effective reasoning paths should exhibit high mutual information with the question, which means they should contain information that is both relevant and uniquely tied to solving the given problem. We leverage Pointwise Mutual Information (PMI) as a scoring mechanism that quantifies how much a reasoning path’s plausibility increases *because of the specific question*, effectively filtering out generic or spurious reasoning patterns. Moreover, by computing scores dynamically as the reasoning process unfolds, MITS evaluates reasoning quality efficiently without expensive look-ahead simulations.

Overall, our framework introduces three technical innovations. First, we propose a **principled scoring approach** for intermediate reasoning steps using Pointwise Mutual Information (PMI), which reduces computational burden and establishes reliable criteria for trajectory selection. Second, we propose an **entropy-based dynamic sampling strategy** that adaptively allocates computational resources according to the uncertainty at each reasoning step, concentrating exploration on uncertain decision points where diverse reasoning approaches yield the greatest potential benefit. Third, we introduce a **weighted voting scheme** that combines PMI scores with prediction consensus, reducing the risk of selecting high-scoring but spurious reasoning paths by utilizing agreement across multiple reasoning trajectories. Through extensive experiments across diverse reasoning benchmarks, we show that MITS achieves substantial improvements over several strong baseline methods.

The remainder of this paper is organized as follows: Section 2 reviews background on tree search methods for LLM reasoning and current challenges, Section 3 presents our MITS framework in detail, Section 4 evaluates our approach on multiple reasoning benchmarks, Section 5 summarizes related work, and Section 6 gives conclusion, discusses broader implications and future directions.

2 PRELIMINARY

Tree-Search Based Reasoning. To address reasoning tasks with large language models (LLMs), the problem is often framed as a multi-step generation process with chain-of-thought (CoT) prompting (Wei et al., 2022; Kojima et al., 2022), where the model decomposes and solves the problem step by step. However, CoT is restricted to a single reasoning trajectory, which limits exploration of the solution space. To overcome the limitation, more and more works adopt tree-based frameworks (Yao et al., 2023; Hao et al., 2023; Qi et al., 2025) that enable systematic exploration of multiple reasoning paths. Specifically, given a reasoning problem q , we construct a search tree \mathcal{T} by producing and sampling the nodes step by step, where the root node corresponds to the question q and each child node is an intermediate reasoning step s . A path from the root node q to a node $s_n (n \geq 1)$ constitutes a candidate solution path $S = q \oplus s_1 \oplus s_2 \oplus \dots \oplus s_n$, where the operator \oplus denotes the sequential concatenation. Within the search tree \mathcal{T} , a set of solution paths $\mathbb{S} = \{S^1, S^2, \dots, S^c\} (c \geq 1)$ is extracted, from which we aim to find the most plausible path as the final answer.

Challenges in Tree Search. Recently, within the tree-search paradigm (Yao et al., 2023) for LLM reasoning, Monte-Carlo Tree Search (MCTS) emerges as one of the most powerful and widely-used algorithms (Hao et al., 2023; Qi et al., 2025; Ding et al., 2024). However, evaluating the quality of intermediate reasoning steps in MCTS typically relies on repeated look-ahead rollouts to simulate future trajectories and back-propagate for value estimation, incurring substantial computational cost. In addition, prior work highlights the difficulty of defining a reliable metric for selecting the correct trajectory (Qi et al., 2025). To this end, we ask whether we can design a principled scoring function that can assess the quality of reasoning traces without simulated rollouts, thereby addressing both the computational efficiency and trajectory selection challenges simultaneously.

3 METHODOLOGY

This section introduces the proposed Mutual Information Tree Search (MITS) method, which constructs a search tree and evaluates reasoning path quality through an effective mutual information based criterion, without relying on looking-ahead simulations. As illustrated in Figure 1, there are three major components as follows.

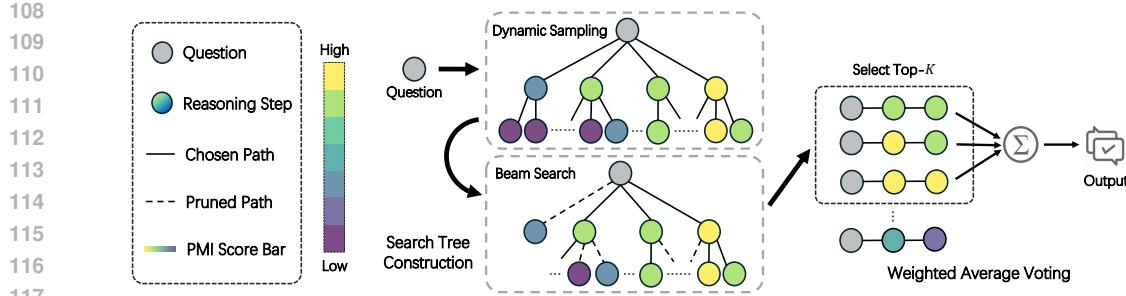


Figure 1: Overview for the MITS approach. The search tree is incrementally constructed by generating reasoning steps conditioned on prior context. Dynamic sampling controls the number of candidates (i.e., nodes) generated at each step. Beam search is applied to prune less promising paths. Weighted average voting is used to aggregate candidates and select the final output.

1. Pointwise Mutual Information (PMI) Scoring. Given a question and its reasoning path, our objective is to evaluate the path’s quality. We employ Pointwise Mutual Information (PMI) as a principled and effective scoring metric for intermediate reasoning steps (section 3.1), which then serves as the criterion for guiding search tree expansion.

2. Search Tree Construction. Using PMI as guidance, we build the search tree with the beam search technique as demonstrated in section 3.2. Furthermore, we develop a dynamic sampling strategy, which allocates computation resources dynamically according to the uncertainty of the current step.

3. Weighted Average Voting for Output Selection. The search tree yields a set of candidate reasoning chains, from which we make the final prediction decision as in section 3.3. Unlike standard majority voting (Wang et al., 2023), which treats all predictions equally and overlooks their relative strengths, we propose a weighted average voting scheme that assigns weights to predictions according to their PMI scores, leading to more reliable answer selection.

3.1 POINTWISE MUTUAL INFORMATION (PMI) SCORING

An effective scoring function for reasoning tasks should not only favor solutions that appear plausible, but also quantify how much *specific* information a solution contributes to answering the question (Shi et al., 2024; Cui et al., 2025; Agarwal et al., 2025). In particular, the function should: (i) assign higher scores to solutions that are tightly coupled with the question, and (ii) penalize generic or spurious solutions that could apply broadly to unrelated queries. Mutual Information (MI) naturally satisfies these requirements, as it measures the reduction in uncertainty about solutions S once questions q are observed. Formally, the mutual information between questions and solutions is:

$$I(S; q) = \mathbb{E}_{p(S, q)} \left[\log \frac{p(S, q)}{p(S) p(q)} \right], \quad (1)$$

where $p(S, q)$ is the joint probability of q and S ; $p(q)$ and $p(S)$ are the marginal probability of the question and reasoning path, respectively. While MI captures the average dependence between questions and reasoning paths, the quantity inside the expectation, $\log \frac{p(S, q)}{p(S) p(q)}$, evaluates the contribution of a particular question-reasoning pair. This term is known as the *pointwise mutual information (PMI)*. Since $\frac{p(S, q)}{p(q)} = p(S | q)$, the PMI score simplifies to

$$\text{PMI}(q; S) = \log \frac{p(S | q)}{p(S)}. \quad (2)$$

Here, $\text{PMI}(q; S)$ satisfies the aforementioned requirements for an effective scoring function, because (i) the probability $p(S | q)$ measures the degree of match for the reasoning process S given the question q , and (ii) the denominator $p(S)$ penalizes generic paths that remain likely even without observing q .

Probability Estimation. To compute the PMI score, we need to estimate the probabilities $p(S | q)$ and $p(S)$ in Equation 2. Suppose a reasoning path S is currently expanded up to the n -th step

($n > 1$), comprising a sequence of reasoning steps (s_1, s_2, \dots, s_n) . The conditional probability $p(S | q)$ is decomposed as $p(S | q) = \prod_{i=1}^n p(s_i | q, s_1, \dots, s_{i-1})$ and the marginal probability is $p(S) = \prod_{i=1}^n p(s_i | s_1, \dots, s_{i-1})$. To estimate the conditional probabilities $p(s_i | q, s_1, \dots, s_{i-1})$ and $p(s_i | s_1, \dots, s_{i-1})$, we leverage the next-token prediction abilities of auto-regressive LLMs. Specifically, both probabilities are computed by multiplying token distributions within step s_i , with $p(s_i | q, s_1, \dots, s_{i-1})$ conditioned on the full context including question q , and $p(s_i | s_1, \dots, s_{i-1})$ conditioned only on previous reasoning steps. When $n = 1$, $p(S | q) = p(s_1 | q)$, and $p(S) = p(s_1)$. In implementation, to approximate $p(s_1)$, we prepend the special Begin-of-Sequence (<bos>) token to the language model.

PMI Scoring with Incremental Update. We are now able to calculate the PMI score given a complete question and reasoning chain. However, to extend the reasoning process step-by-step in a search tree, it is preferable to use an incremental update formula rather than re-computing PMI from the beginning at each step. Let $S_n = (s_1, s_2, \dots, s_n)$ denote the reasoning path at step n , and PMI_n be the PMI score up to the n -th step. We can have

$$\text{PMI}_n := \text{PMI}(q; S_n) = \sum_{i=1}^n [\log p(s_i | q, s_1, \dots, s_{i-1}) - \log p(s_i | s_1, \dots, s_{i-1})]. \quad (3)$$

The detailed derivation can be found in Appendix B.1. We transform it into an additive form using log probabilities for ease of computation. Then, the incremental update for extending the reasoning path from step n to step $n + 1$ is given by:

$$\text{PMI}_{n+1} = \text{PMI}_n + [\log p(s_{n+1} | q, s_1, \dots, s_n) - \log p(s_{n+1} | s_1, \dots, s_n)], \quad (4)$$

with the initial condition $\text{PMI}_0 = 0$, i.e., the PMI score is zero before any reasoning step is generated. In this way, each update captures the incremental information gain contributed by the new step s_{n+1} toward answering the question q , beyond what has already been accounted for by the preceding steps. This not only enables efficient computation during reasoning, but also provides an interpretable view of how individual steps contribute to problem-solving.

3.2 SEARCH TREE CONSTRUCTION

In this subsection, we introduce how to build the reasoning search tree \mathcal{T} using the PMI criterion. We use a generator model G to produce each step and an evaluator model E to compute PMI scores. We first introduce how to generate each reasoning step, then the construction of the reasoning tree \mathcal{T} , which couples two mechanisms: (1) dynamic sampling that decides how many next-step candidates to propose; (2) PMI-guided beam search that evaluates and prunes candidates to retain only the most promising paths for further expansion. In short, dynamic sampling produces candidates, and beam search selects which of them advance to the next level of the tree.

Reasoning Step Generation. To construct the tree, a fundamental operation is to generate intermediate reasoning steps. At step $n + 1$, the generator model G produces *multiple candidate steps* conditioned on the question q and the partial reasoning path (s_1, \dots, s_n) . As shown in Figure 2, we format generation with a CoT-style instruction (e.g., "Let's think step by step") and delimit each step using a special marker (e.g., "Step"), so that G produces one step at a time before returning control for evaluation by evaluator model E . The first set of candidates is conditioned solely on q , while later candidates are conditioned on both q and the preceding reasoning context.



Figure 2: Prompt examples for step-by-step reasoning generation, showing the iterative generation from initial step to subsequent steps, similar to (Lai et al., 2024).

216 **Dynamic Sampling via Entropy Quantification.** Through reasoning step generation, we can produce
 217 multiple candidate steps conditioned on the previous one. However, how many candidate steps
 218 to sample requires careful consideration to optimize test-time compute (Singhi et al., 2025; Snell
 219 et al., 2024). In particular, more computational resources should be allocated to reasoning branches
 220 with higher *uncertainty*, since they offer greater potential for generating and exploring diverse paths.

221 To this end, we use entropy to quantify uncertainty and sample next-step candidates dynamically.
 222 For a reasoning step s_i , its entropy is computed over the token distribution as:

$$224 \quad H_i = -\sum_{v \in \mathcal{V}} p_i(v) \log p_i(v), \quad (5)$$

226 where \mathcal{V} is the vocabulary and $p_i(v)$ denotes the probability of the token v at step i . To adjust
 227 sampling adaptively, we divide the entropy into three intervals: high, moderate, and low. However,
 228 it is hard to use fixed thresholds to divide them, because entropy values can fluctuate given different
 229 tasks or different questions due to varying difficulty. To address this, we maintain a history of
 230 entropies for all generated steps $H_{1:m} = \{H_1, H_2, \dots, H_m\}$, where m is the total number of nodes
 231 in the current search tree, and use empirical *quantiles* to compute adaptive thresholds. Specifically,
 232 we set $H_{\text{low}} = \text{percentile}(H_{1:m}, 33\%)$ and $H_{\text{high}} = \text{percentile}(H_{1:m}, 67\%)$, which automatically
 233 partition entropy values into three regions: low ($H_i < H_{\text{low}}$), moderate ($H_{\text{low}} \leq H_i \leq H_{\text{high}}$),
 234 and high ($H_i > H_{\text{high}}$). Unlike fixed cutoffs, these quantile-based thresholds adapt to the varying
 235 difficulty across tasks and questions. Finally, the number of samples for step $i + 1$ is adjusted based
 236 on the entropy region. The final sampling number is set to $N_{\text{base}} + \Delta N_i$, where N_{base} is the default
 237 sample size and ΔN_i is determined by the entropy level. The complete formulation for computing
 238 ΔN_i is given in Appendix B.2.

239 **Beam Search with PMI.** Once candidate steps are generated, the evaluator model E computes
 240 their incremental PMI contributions, and updates the cumulative score to PMI_{n+1} according to
 241 Equation 4. Since generating and evaluating all possible paths quickly becomes computationally
 242 expensive, we employ *beam search pruning* to ensure efficiency. Candidates are ranked by their
 243 cumulative PMI scores, and only the top- B paths are retained for the next step, where B denotes the
 244 beam width. This pruning keeps the tree computationally tractable while focusing exploration on
 245 the most informative reasoning directions. By tightly coupling candidate generation with PMI-based
 246 pruning, the method balances diversity and quality throughout the tree search.

248 3.3 WEIGHTED AVERAGE VOTING FOR OUTPUT SELECTION

250 After building the search tree \mathcal{T} , we need to select the final output from the collected reasoning
 251 chains $\mathbb{S} = \{S^1, S^2, \dots, S^c\}$, where c is the total number of candidate chains. A straightforward
 252 approach is to choose the chain with the highest PMI score. However, this can be brittle: the
 253 top-scoring chain may arise from spurious correlations between the query and particular reasoning
 254 steps (Zhao et al., 2024; Shao et al., 2025; Xie et al., 2025), or from overfitting to specific linguistic
 255 patterns (Wu et al., 2025; Li et al., 2025), leading to overconfident yet incorrect predictions. To
 256 mitigate this risk, we propose Weighted Average Voting, a simple but effective post-hoc operation
 257 by incorporating *prediction frequency* as a weight on PMI scores, as consensus among multiple
 258 reasoning paths often indicates more reliable conclusions.

259 Formally, given the reasoning chains, we first sort them according to PMI scores from high to low,
 260 and then select the top K chains: $\mathbb{S}_{\text{top-}K} = \{S^1, S^2, \dots, S^K\}$. For each chain $S \in \mathbb{S}_{\text{top-}K}$, we
 261 extract its final prediction $\text{Pred}(S)$. The frequency of each unique prediction is then computed as:
 262 $\text{Freq}(p) = |\{S \in \mathbb{S}_{\text{top-}K} : \text{Pred}(S) = p\}|$. After that, we can compute the frequency-weighted PMI
 263 score (PMI^*) for each reasoning chain:

$$265 \quad \text{PMI}^*(q; S) = \text{PMI}(q; S) \cdot \frac{\text{Freq}(\text{Pred}(S))}{K}. \quad (6)$$

268 We re-rank the top K chains according to $\text{PMI}^*(q; S)$ and select the chain with the highest one as
 269 our final prediction: $S^* = \arg \max_{S \in \mathbb{S}_{\text{top-}K}} \text{PMI}^*(q; S)$. This reweighting mechanism provides a
 regularization effect and achieves a balance between confidence and consensus.

270 Table 1: Accuracies of MITS compared with several baselines on different datasets. Columns are
 271 grouped by LLM backbones. Best results are in **bold**, and second best results are underlined.
 272

273 Method	274 QWEN2.5-3B	274 QWEN2.5-7B	274 PHI-3.5-MINI	274 PHI-4-MINI
<i>StrategyQA</i>				
275 CoT	276 47.34	276 <u>65.47</u>	276 54.47	276 51.25
277 CoT-SC	278 56.12	278 <u>68.74</u>	278 56.71	278 55.47
279 ToT	280 49.86	280 <u>66.54</u>	280 54.12	280 57.41
281 RAP	282 60.56	282 <u>68.14</u>	282 57.36	282 59.45
283 rStar	284 65.32	284 <u>70.41</u>	284 62.57	284 64.89
<i>ARC-Challenge</i>				
285 CoT	286 69.11	286 <u>71.50</u>	286 67.52	286 72.25
287 CoT-SC	288 81.16	288 <u>81.02</u>	288 77.95	288 82.48
289 ToT	290 85.45	290 <u>85.86</u>	290 77.86	290 83.56
291 RAP	292 83.96	292 <u>83.45</u>	292 83.56	292 85.48
293 rStar	294 86.74	294 <u>87.24</u>	294 86.84	294 87.74
295 MITS-F	296 <u>87.45</u>	296 93.45	296 <u>90.54</u>	296 91.56
297 MITS	298 90.68	298 <u>92.55</u>	298 90.85	298 <u>90.35</u>
<i>CommonsenseQA</i>				
299 CoT	300 66.67	300 <u>66.50</u>	300 55.86	300 65.71
301 CoT-SC	302 74.72	302 <u>76.52</u>	302 67.93	302 69.82
303 ToT	304 75.56	304 <u>79.32</u>	304 66.49	304 72.56
305 RAP	306 73.24	306 <u>82.23</u>	306 73.23	306 75.84
307 rStar	308 <u>79.34</u>	308 <u>85.73</u>	308 77.65	308 79.41
309 MITS-F	310 79.68	310 86.25	310 79.56	310 81.49
311 MITS	312 78.83	312 84.80	312 <u>78.14</u>	312 80.28

300 4 EXPERIMENTS

301 4.1 SETUP

304 **Backbone models and datasets.** MITS is a general algorithm and applicable to various LLMs
 305 and different reasoning tasks. We conduct main experiments on the LLMs QWEN2.5-3B-
 306 INSTRUCT, QWEN2.5-7B-INSTRUCT (Team, 2024), PHI-3.5-MINI-INSTRUCT and PHI-4-MINI-
 307 INSTRUCT (Abdin et al., 2024). All used models are instruction-tuned, and we omit the
 308 -Instruct suffix for brevity in the following sections and tables. We perform experiments on
 309 three datasets, StrategyQA (Geva et al., 2021) of questions that require implicit multi-hop strategies
 310 to answer, ARC-Challenge (Clark et al., 2018), which represents a scientific knowledge-intensive
 311 reasoning task, and CommonsenseQA (Talmor et al., 2019) of commonsense questions that require
 312 prior world knowledge to answer.

314 **Implementation details.** When calculating the PMI score (3), we observe that a single-step PMI
 315 value tends to be positive, *i.e.*, $p(s_{n+1} | q, s_1, \dots, s_n) > p(s_{n+1} | s_1, \dots, s_n)$, which induces a
 316 length bias whereby longer reasoning chains tend to yield larger PMI scores. To mitigate this effect,
 317 we normalize PMI through multiplying PMI_n by factor $\frac{1}{n}$. In the stage of search tree construction,
 318 the maximum depth of the tree is set to 10, and the default sampling number $N_{base} = 3$. The
 319 evaluator model E is set as same with the generator model G by default. We set the beam width
 320 B at 32 for the beam search process of MITS. We also run MITS-F, the variant algorithm of MITS
 321 by fully expanding the search tree without beam search, which allows us to analyze the trade-off
 322 between computational efficiency and reasoning performance. We set $K = 32$ for weighted majority
 323 voting for both of MITS and MITS-F. To guarantee reproducible inference process, we searched a
 set of hyperparameters, which is detailed in Appendix C.1.

324 4.2 MAIN RESULTS
325

326 **Baselines.** We compare MITS with three types of baselines: single CoT prompting, multiple CoT
327 sampling and tree-search methods. Since MITS only leverages inference phase of language models,
328 we focus on training-free baselines for fair comparison. **(1)** For single CoT prompting, we use
329 CoT prompting (Wei et al., 2022; Kojima et al., 2022). **(2)** For multiple CoT sampling, we choose
330 the widely adopted CoT with self-consistency method (CoT-SC; Wang et al., 2023), and employ
331 majority voting to select the final prediction. We report the performances of sampling 32 times.
332 **(3)** For tree-search methods, we include three strong baseline methods, Tree-of-thought (ToT; Yao
333 et al., 2023), RAP (Hao et al., 2023) and rStar (Qi et al., 2025). We run ToT with Breath-First Search
334 (BFS) to expand the tree. RAP and rStar utilize Monte-Carlo Tree Search algorithm (MCTS; Kocsis
335 & Szepesvári, 2006) for tree search process, with 32 rollouts performed for each method.
336

337 **Performances on diverse reasoning datasets.** Here we present the performances of MITS against
338 several baselines on diverse reasoning datasets in Table 1. We start by evaluating the effectiveness of
339 MITS on general reasoning benchmarks. We highlight three observations. **(1)** MITS demonstrates
340 substantial improvements over previous approaches across diverse tasks. For example, on StrategyQA
341 dataset with QWEN2.5-3B, MITS achieves 68.45% accuracy compared to CoT’s 47.34%,
342 representing a remarkable +21.11% improvement. Similarly, on ARC-Challenge with QWEN2.5-
343 7B, MITS reaches 92.55% accuracy, significantly outperforming the strongest baseline rStar by
344 +5.31%. This substantial gain indicates that PMI-based scoring provides more effective guidance
345 for reasoning path selection. **(2)** MITS consistently outperforms existing methods across different
346 model scales and reasoning domains. Unlike baseline methods that exhibit varying effectiveness
347 across different tasks, MITS maintains strong results across logical reasoning (StrategyQA), scientific
348 reasoning (ARC-Challenge), and commonsense reasoning (CommonsenseQA). For instance,
349 while RAP achieves competitive results on some tasks, it falls significantly behind MITS on StrategyQA
350 (60.56% vs 68.45% on QWEN2.5-3B). **(3)** The comparison between MITS and MITS-F
351 reveals the value of beam search in reasoning. While MITS-F shows improvements on CommonsenseQA,
352 it generally underperforms MITS on StrategyQA (e.g., 74.73% vs 75.76% on QWEN2.5-
353 7B). This indicates that PMI-based beam search can enhance performance by filtering out inferior
354 reasoning paths early, preventing exploration from being derailed by low-quality branches.
355

356 **Computational efficiency comparison.** To validate the computational efficiency of MITS, we
357 conduct experiments on the StrategyQA dataset using QWEN2.5-3B, comparing against CoT-SC,
358 RAP, and rStar under identical inference settings. We measure wall-clock time from inference start
359 to reasoning completion and report the average time that each method needs to solve a problem.
360

361 Table 2 presents the results, revealing significant efficiency advantages for MITS. While CoT-SC achieves
362 the fastest time (2.75s), it delivers the lowest accuracy (56.12%). MCTS-based methods RAP and rStar
363 require substantially more computation time (203.42s and 815.67s respectively, which are 3.2 \times and 12.7 \times
364 slower than MITS) with limited accuracy improvements (60.56% and 65.32%). In contrast, MITS
365 achieves the highest accuracy (68.45%) with moderate computational cost (64.41s), demonstrating the optimal accuracy-per-time trade-off among all methods.
366 These results validate our claim that PMI-based scoring achieves superior reasoning performance
367 with significantly reduced computational overhead compared to previous methods.
368

370 4.3 ABLATION STUDY
371

372 **Effectiveness under different number of rollouts.** MCTS-based baseline methods such as RAP
373 and rStar construct the search tree through a rollout policy of MCTS algorithm. Increasing the
374 number of rollouts expands the set of candidate solution trajectories and can lead to performance
375 improvements, but it also incurs higher inference costs. Here we compare the accuracies of CoT-
376 SC, RAP, rStar and MITS under different number of rollouts on the ARC-Challenge dataset as
377 shown in Figure 3. For CoT-SC and MITS, we define number of rollouts same as the number of
378 reasoning chains finally collected. We highlight two key findings: **(1)** With as few as two rollouts,
379

Table 2: Compute efficiency comparison.

Method	Time (s)	Acc. (%)
CoT-SC	2.75	56.12
RAP	203.42	60.56
rStar	815.67	65.32
MITS	64.41	68.45

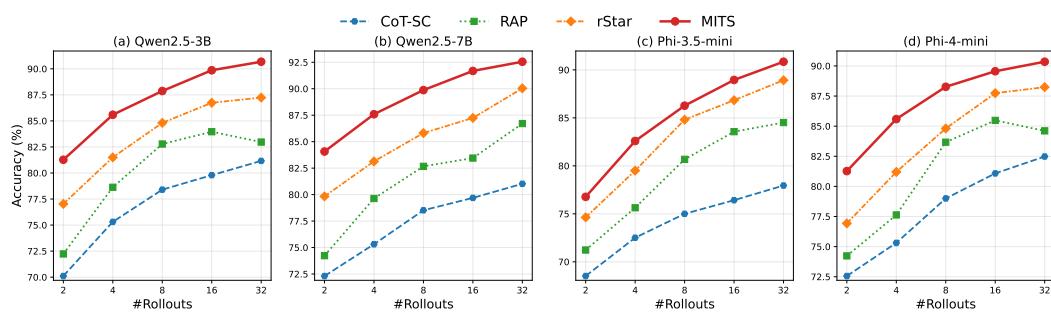


Figure 3: Performance comparison across different rollouts on the ARC-Challenge dataset. MITS not only demonstrates superior performance in early stages with fewer rollouts, but also continues to improve with increased computational budget.

Table 3: Results on ARC-Challenge with different pairs of generator and evaluator models.

Generator		
Evaluator	QWEN2.5-3B	QWEN2.5-7B
QWEN2.5-1.5B	86.78	87.20
QWEN2.5-3B	89.86	88.24
QWEN2.5-7B	90.61	91.68

Table 4: Results on the StrategyQA dataset with model QWEN2.5-3B and PHI-3.5-MINI using different aggregations for PMI scoring.

Models		
Aggregation	QWEN2.5-3B	PHI-3.5-MINI
Sum	65.89	63.26
Average	68.45	66.68

MITS achieves notable improvements in reasoning accuracy, underscoring the effectiveness of PMI-based scoring; (2) While rStar and CoT-SC exhibit continued performance gains with additional rollouts, RAP occasionally shows performance degradation as the number of rollouts increases. We hypothesize that this degradation stems from RAP’s limited action space, which constrains the potential of its MCTS framework.

Effectiveness of different evaluators. As we coordinate two models generator G and evaluator E for MITS, how different evaluators E impact the PMI score calculation process are under explored. Therefore, we conduct experiments on the ARC-Challenge dataset using Qwen series models as evaluators, with sizes ranging from 1.5B to 7B, as shown in Table 3. From the table we can observe that more powerful evaluator models usually yield better results. For example, take QWEN2.5-3B as the generator model, QWEN2.5-1.5B as evaluator can only has accuracy of 86.78%, while QWEN2.5-7B can have performance of 90.61%. This is likely because stronger evaluators provide more accurate probability estimates, leading to more reliable PMI values.

Effectiveness of Weighted Average Voting. We conduct the ablation study on the Weighted Average Voting technique introduced in Section 3.3, evaluating the impact of selecting different numbers of top-scoring reasoning paths K for final answer selection. Using model QWEN2.5-3B, we run MITS with beam width of 32 across all three datasets and vary K from 1 to 32. The corresponding performance results are reported in Table 5. The results show consistent performance improvements as K increases, with the steepest gains observed at small K values (e.g., ARC-Challenge improves from 84.31% to 89.12% as K increases from 1 to 8). Optimal K values are dataset-dependent: StrategyQA peaks at $K = 16$ while ARC-Challenge and CommonsenseQA achieve best results at $K = 32$. Performance stabilizes as K value becomes larger, indicating diminishing returns from incorporating additional reasoning paths.

Ablation on different PMI variants. In section 4.1, we mention to normalize PMI by averaging its accumulative value over the total steps to mitigate the length bias. Therefore, we conduct an ablation study comparing these two PMI aggregation approaches: (1) Sum aggregation, which accumulates PMI values across all reasoning steps, and (2) Average aggregation, which divides the cumulative PMI score by the number of steps. Table 4 presents results on the StrategyQA dataset with models QWEN2.5-3B and PHI-3.5-MINI. The results show that The average-aggregated (length-

432 Table 5: Performance across different values of top- K for weighted majority voting with QWEN2.5-
 433 3B. Best results for each dataset are in **bold**.

Dataset	Top- K					
	1	2	4	8	16	32
StrategyQA	63.34	65.41	67.44	68.04	68.86	68.23
ARC-Challenge	84.31	85.94	87.24	89.12	89.86	90.68
CommonsenseQA	74.78	75.16	76.64	77.02	78.49	78.83

441
 442 normalized) PMI consistently outperforms the sum-based approach, with improvements of +2.56%
 443 on QWEN2.5-3B and +3.42% on PHI-3.5-MINI. This demonstrates that normalizing by path length
 444 prevents certain reasoning paths from being unfairly penalized, enabling fair comparison across
 445 paths of different lengths, which promotes the performance simultaneously.

447 5 RELATED WORK

450 **Prompting for LLM Reasoning.** Since the introduction of Chain-of-Thought prompting (Kojima
 451 et al., 2022; Wei et al., 2022), the field has witnessed a rapid development of prompting methods
 452 which focus on designing instructions and pipelines to elicit the potential reasoning capabilities
 453 within LLMs. Recent work make progress through several ways, such as decomposing a ques-
 454 tion into sub-questions to guide the reasoning process (Zhou et al., 2022; Khot et al., 2023; Yang
 455 et al., 2023) and demonstration selection (Zhang et al., 2023; Shum et al., 2023; Diao et al., 2024),
 456 which aims to select high-quality exemplars for better prompting performances. Higher-order think-
 457 ing approaches, exemplified by abstract and analogical reasoning (Zheng et al., 2024; Hu et al.,
 458 2024a; Webb et al., 2023; Yasunaga et al., 2024; Yu et al., 2024), demonstrate effectiveness as well,
 459 compared to concrete demonstrations appended in prompts. Other approaches also include code-
 460 integrated prompting (Gao et al., 2023; Chen et al., 2023; Surís et al., 2023; Li et al., 2024; Zhou
 461 et al., 2024), which makes LLMs reason by coding, leading to a more structured way to express
 462 logical thinking processes. These methods aim to improve single-round inference performance and
 463 are orthogonal to ours.

464 **Tree Search for LLM Reasoning.** Recent advancements have shown that sampling diverse rea-
 465 soning paths can significantly enhance performances compared to one-time greedy decoding in both
 466 theoretical and empirical ways (Brown et al., 2024; Snell et al., 2024), featured by Chain-of-Thought
 467 with Self-Consistency (CoT-SC) (Wang et al., 2023). Taking one step further, more work guide the
 468 reasoning process into tree structures (Yao et al., 2023; Xie et al., 2023), among which the most
 469 pioneering work is Tree-of-Thought (Yao et al., 2023). There are also works such as building search
 470 tree with beam search (Xie et al., 2023). Recently, Monte-Carlo Tree Search (MCTS) is regarded
 471 a powerful algorithm for advancing LLM reasoning, especially from the perspective of inference-
 472 time scaling (Hao et al., 2023; Qi et al., 2025; Ding et al., 2024). Moreover, tree structures are also
 473 deployed to help LLMs in planning tasks (Hu et al., 2024b; Gui et al., 2025).

475 6 CONCLUSION

477 In this work, we proposed Mutual Information Tree Search (MITS), a principled framework that
 478 leverages pointwise mutual information (PMI) to guide LLM reasoning without expensive look-
 479 ahead simulations. MITS introduces three key innovations: PMI-based scoring for reasoning path
 480 evaluation, entropy-based dynamic sampling for adaptive compute allocation, and weighted average
 481 voting for robust answer selection. Through comprehensive experiments across diverse reasoning
 482 datasets, MITS substantially outperforms several strong baseline methods by a large margin. These
 483 results demonstrate that information-theoretic principles can effectively steer LLM reasoning pro-
 484 cesses, achieving superior performances across diverse reasoning tasks while providing a computa-
 485 tionally efficient algorithm to traditional tree search methods. Furthermore, we conduct extensive
 ablation studies, providing analysis and insights for more advanced LLM reasoning techniques.

486 7 ETHICS STATEMENT
487488 All experiments use publicly released models, each operated strictly under its respective license and
489 exclusively for research purposes. As detailed in Section 4.1, we assess model families with a focus
490 on the Qwen (Yang et al., 2024; Team, 2024) and Phi (Abdin et al., 2024) series. Model perfor-
491 mances are evaluated on widely adopted public datasets, including StrategyQA (Geva et al., 2021),
492 ARC-Challenge (Clark et al., 2018), and CommonsenseQA (Talmor et al., 2019). We complied with
493 all dataset and model usage terms; no personal data were collected or processed, no human-subjects
494 research was conducted, and no personally identifiable information appears in the paper.
495496 8 REPRODUCIBILITY STATEMENT
497498 For reproducibility, we document the implementation and evaluation workflow in full. Section 3
499 outlines the end-to-end pipeline, with formal derivations and algorithmic details deferred to Ap-
500 pendix B.1 and Appendix B.2. Inference settings and key hyperparameters are compiled in Ap-
501 pendix C.1. Section 4.1 lists datasets, backbone models, and parameter scales. Upon acceptance,
502 we will release a public repository containing code, configuration files, and scripts for running the
503 full pipeline, together with instructions for data acquisition and environment setup.
504505 REFERENCES
506507 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
508 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
509 highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
510 Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effec-
511 tiveness of entropy minimization in llm reasoning. *arXiv preprint arXiv:2505.15134*, 2025.
512 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
513 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
514 *arXiv preprint arXiv:2407.21787*, 2024.
515 Wenhui Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompt-
516 ing: Disentangling computation from reasoning for numerical reasoning tasks. *Transactions on
517 Machine Learning Research*, 2023. ISSN 2835-8856. URL [https://openreview.net/
518 forum?id=YfZ4ZPt8zd](https://openreview.net/forum?id=YfZ4ZPt8zd).
519 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
520 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
521 *arXiv preprint arXiv:1803.05457*, 2018. URL <https://arxiv.org/abs/1803.05457>.
522 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
523 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
524 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.
525 Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
526 with chain-of-thought for large language models. In *Proceedings of the 62nd Annual Meeting of
527 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1330–1350, 2024.
528 Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan
529 Rajmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of pen-
530 rose triangle for thought generation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
531 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 1638–1662, Bangkok,
532 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
533 findings-acl.95. URL <https://aclanthology.org/2024.findings-acl.95/>.
534 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
535 and Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma
536 Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
537

540 *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL
 541 <https://proceedings.mlr.press/v202/gao23f.html>.

542

543 Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
 544 use a laptop? a question answering benchmark with implicit reasoning strategies. *Transactions*
 545 *of the Association for Computational Linguistics*, 9:346–361, 2021. doi: 10.1162/tacl_a_00370.
 546 URL <https://aclanthology.org/2021.tacl-1.21/>.

547

548 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 549 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint*
 550 *arXiv:2411.15594*, 2024.

551

552 Runquan Gui, Zhihai Wang, Jie Wang, Chi Ma, Huiling Zhen, Mingxuan Yuan, Jianye HAO, Defu
 553 Lian, Enhong Chen, and Feng Wu. Hypertree planning: Enhancing LLM reasoning via hierar-
 554 chical thinking. In *Forty-second International Conference on Machine Learning*, 2025. URL
 555 <https://openreview.net/forum?id=45he3Ri6JP>.

556

557 Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
 558 with language model is planning with world model. In Houda Bouamor, Juan Pino, and Ka-
 559 lika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language*
 560 *Processing*, pp. 8154–8173, Singapore, December 2023. Association for Computational Linguis-
 561 tics. doi: 10.18653/v1/2023.emnlp-main.507. URL [https://aclanthology.org/2023.emnlp-main.507/](https://aclanthology.org/2023.emnlp-main.507).

562

563 Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, Wai Lam, and Yue Zhang. Chain-of-
 564 symbol prompting for spatial reasoning in large language models. In *First Conference on Lan-
 565 guage Modeling*, 2024a. URL <https://openreview.net/forum?id=Hvq9RtSoHG>.

566

567 Mengkang Hu, Yao Mu, Xinmiao Chelsey Yu, Mingyu Ding, Shiguang Wu, Wenqi Shao, Qiguang
 568 Chen, Bin Wang, Yu Qiao, and Ping Luo. Tree-planner: Efficient close-loop task planning with
 569 large language models. In *The Twelfth International Conference on Learning Representations*,
 570 2024b. URL <https://openreview.net/forum?id=Glcso6z0e>.

571

572 Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
 573 Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
 574 In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=_nGgzQjzaRy.

575

576 Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. volume 2006, pp. 282–
 577 293, 09 2006. ISBN 978-3-540-45375-8. doi: 10.1007/11871842_29.

578

579 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 580 language models are zero-shot reasoners. *Advances in neural information processing systems*,
 35:22199–22213, 2022.

581

582 Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
 583 wise preference optimization for long-chain reasoning of llms. *arXiv preprint arXiv:2406.18629*,
 2024.

584

585 Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
 586 Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
 587 augmented code emulator. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller,
 588 Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st Interna-
 589 tional Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Re-
 590 search*, pp. 28259–28277. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/li24ar.html>.

591

592 Jiaxi Li, Yiwei Wang, Kai Zhang, Yujun Cai, Bryan Hooi, Nanyun Peng, Kai-Wei Chang, and Jin
 593 Lu. Fact or guesswork? evaluating large language model’s medical knowledge with structured
 one-hop judgment. *arXiv preprint arXiv:2502.14275*, 2025.

594 Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and
 595 Shuiwang Ji. Inference-time computations for llm reasoning and planning: A benchmark and
 596 insights. *arXiv preprint arXiv:2502.12521*, 2025.

597

598 Zhenting Qi, Mingyuan MA, Jiahang Xu, Li Lyra Zhang, Fan Yang, and Mao Yang. Mutual rea-
 599 soning makes smaller LLMs stronger problem-solver. In *The Thirteenth International Confer-
 600 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=6aHUmotXaw>.

601

602 Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
 603 Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
 604 signals in rlrv. *arXiv preprint arXiv:2506.10947*, 2025.

605

606 Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
 607 Retrieval-enhanced knowledge editing in language models for multi-hop question answering. In
 608 *Proceedings of the 33rd ACM International Conference on Information and Knowledge Manage-
 609 ment*, pp. 2056–2066, 2024.

610

611 Kashun Shum, Shizhe Diao, and Tong Zhang. Automatic prompt augmentation and selection with
 612 chain-of-thought from labeled data. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Find-
 613 ings of the Association for Computational Linguistics: EMNLP 2023*, pp. 12113–12139, Sin-
 614 gapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 615 *findings-emnlp.811*. URL <https://aclanthology.org/2023.findings-emnlp.811/>.

616

617 Nishad Singhi, Hritik Bansal, Arian Hosseini, Aditya Grover, Kai-Wei Chang, Marcus Rohrbach,
 618 and Anna Rohrbach. When to solve, when to verify: Compute-optimal problem solving and
 619 generative verification for llm reasoning. *arXiv preprint arXiv:2504.01005*, 2025.

620

621 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 622 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

623

624 Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergrpt: Visual inference via python execution
 625 for reasoning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 (ICCV)*, pp. 11888–11898, October 2023.

626

627 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
 628 tion answering challenge targeting commonsense knowledge. In *Proceedings of the 2019 Con-
 629 ference of the North American Chapter of the Association for Computational Linguistics: Human
 630 Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4149–4158, Minneapolis, Min-
 631 nnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1421. URL
 632 <https://aclanthology.org/N19-1421/>.

633

634 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

635

636 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 637 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 638 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 639 <https://openreview.net/forum?id=1PL1NIMMrw>.

640

641 Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
 642 models. *Nature Human Behaviour*, 7(9):1526–1541, 2023.

643

644 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 645 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 646 neural information processing systems*, 35:24824–24837, 2022.

647

Xuansheng Wu, Wenhao Yu, Xiaoming Zhai, and Ninghao Liu. Self-regularization with latent space
 explanations for controllable llm-based classification. *arXiv preprint arXiv:2502.14133*, 2025.

648 Hongyan Xie, Yitong Yao, Yikun Ban, Zixuan Huang, Deqing Wang, Zhenhe Wu, Haoxiang Su,
 649 Chao Wang, Shuangyong Song, and Xuelong Li. Mitigating spurious correlations between
 650 question and answer via chain-of-thought correctness perception distillation. *arXiv preprint*
 651 *arXiv:2509.05602*, 2025.

652 Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
 653 Xie. Self-evaluation guided beam search for reasoning. *Advances in Neural Information Processing*
 654 *Systems*, 36:41618–41650, 2023.

655 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 656 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 657 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 658 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 659 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 660 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 661 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 662 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 663 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

664 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 665 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 666 *arXiv:2505.09388*, 2025.

667 Chenguang Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
 668 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning*
 669 *Representations*, 2023.

670 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 671 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 672 *vances in neural information processing systems*, 36:11809–11822, 2023.

673 Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec, Percy Liang, Ed H.
 674 Chi, and Denny Zhou. Large language models as analogical reasoners. In *The Twelfth Interna-*
 675 *tional Conference on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=AgDICX1h50)
 676 [forum?id=AgDICX1h50](https://openreview.net/forum?id=AgDICX1h50).

677 Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
 678 advances in llm-based multi-turn dialogue systems. *arXiv preprint arXiv:2402.18013*, 2024.

679 Junchi Yu, Ran He, and Zhitao Ying. THOUGHT PROPAGATION: AN ANALOGICAL AP-
 680 PROACH TO COMPLEX REASONING WITH LARGE LANGUAGE MODELS. In *The*
 681 *Twelfth International Conference on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=SBoRhRCzM3)
 682 [forum?id=SBoRhRCzM3](https://openreview.net/forum?id=SBoRhRCzM3).

683 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
 684 large language models. In *The Eleventh International Conference on Learning Representations*,
 685 2023. URL [https://openreview.net/](https://openreview.net/forum?id=5NTt8GFjUHkr)
 686 [forum?id=5NTt8GFjUHkr](https://openreview.net/forum?id=5NTt8GFjUHkr).

687 Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,
 688 Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. *ACM Trans-*
 689 *actions on Intelligent Systems and Technology*, 15(2):1–38, 2024.

690 Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
 691 and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
 692 In *The Twelfth International Conference on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=3bq3jsvcQ1)
 693 [forum?id=3bq3jsvcQ1](https://openreview.net/forum?id=3bq3jsvcQ1).

694 Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
 695 Linqi Song, Mingjie Zhan, and Hongsheng Li. Solving challenging math word problems using
 696 GPT-4 code interpreter with code-based self-verification. In *The Twelfth International Confer-*
 697 *ence on Learning Representations*, 2024. URL [https://openreview.net/](https://openreview.net/forum?id=c8McWs4Av0)
 698 [forum?id=c8McWs4Av0](https://openreview.net/forum?id=c8McWs4Av0).

702 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
703 mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
704 reasoning in large language models. In *The Eleventh International Conference on Learning Rep-*
705 *resentations*, 2022.

706 Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
707 and Lei Li. Multilingual machine translation with large language models: Empirical results and
708 analysis. In *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 2765–
709 2781, 2024.

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
757

758 Large language models (LLMs), including Claude and ChatGPT, were employed only in a limited
759 editorial role. Their use was restricted to grammar and syntax adjustments, improvements in clarity,
760 stylistic harmonization, and occasional light rewording. They had no part in shaping research ideas,
761 designing experiments, analyzing data, or producing technical material. All research contributions
762 are the authors' own. The LLMs acted solely as language refinement aids, and every change was
763 carefully checked and confirmed by the authors.

764
765 B ALGORITHM DETAILS IN MITS
766767 B.1 DETAILED DERIVATION FOR PMI SCORING
768

769 In section 3.1, we obtain the recurrent form for the calculation of PMI scores. Here in this appendix
770 subsection, we derive and provide the calculation process for PMI score in recurrence relation,
771 starting from Equation 2.

$$\begin{aligned}
 773 \quad \text{PMI}(q; S) &= \log \frac{p(S | q)}{p(S)} \\
 774 &= \log \prod_{i=1}^n \frac{p(s_i | q, s_1, \dots, s_{i-1})}{p(s_i | s_1, \dots, s_{i-1})} \\
 775 &= \sum_{i=1}^n \log \frac{p(s_i | q, s_1, \dots, s_{i-1})}{p(s_i | s_1, \dots, s_{i-1})} \\
 776 &= \sum_{i=1}^n [\log p(s_i | q, s_1, \dots, s_{i-1}) - \log p(s_i | s_1, \dots, s_{i-1})].
 \end{aligned}$$

784 Therefore, we have the recurrence relation for PMI score calculation presented in Equation 3.
785

786 B.2 FORMULA FOR DYNAMIC SAMPLING
787

788 In section 3.2, building upon the entropy-based partitioning described in the main text, we present the
789 detailed mathematical formulation for computing the sampling adjustment ΔN_i . The proportional
790 control scheme adjusts sampling intensity based on how far the current entropy deviates from the
791 moderate range:

$$\Delta N_i = \begin{cases} \min \left(2, \left\lfloor 2 \cdot V_p \cdot \frac{H_i - H_{\text{high}}}{H_{\text{high}} - H_{\text{low}}} \right\rfloor \right), & H_i > H_{\text{high}}, \\ 0, & H_{\text{low}} \leq H_i \leq H_{\text{high}}, \\ \max \left(-2, -\left\lfloor 2 \cdot V_p \cdot \frac{H_{\text{low}} - H_i}{H_{\text{high}} - H_{\text{low}}} \right\rfloor \right), & H_i < H_{\text{low}}. \end{cases} \quad (7)$$

792 Here V_p is the proportional gain parameter. The normalization factor $(H_{\text{high}} - H_{\text{low}})$ ensures that
793 the adjustment magnitude is scaled relative to the entropy range, making the controller robust to
794 different entropy scales. The final number of samples is computed with boundary constraints $N_i =$
795 $N_{\text{base}} + \Delta N_i$, where $N_{\text{base}} = 3$ represents the base sample count. In practice, we enable dynamic
796 sampling only when $m \geq 10$, ensuring that a sufficiently large number of samples has already been
797 accumulated.

803
804 C IMPLEMENTATION DETAILS
805806 C.1 HYPERPARAMETERS
807

808 We conduct a comprehensive hyperparameter search to ensure stable and high-quality performances
809 of the MITS algorithm. Here we provide the key parameters during the inference of LLMs. Specifically,
810 we mainly record two groups of hyper-parameters, parameters for basic model inference and

parameters for search tree construction. As displayed in Table 6, for critical parameters of basic model inference, we search a set of parameters of temperature, top-k, and top-p for model decoding. For search tree construction, the sample number is set to 3, which means by default we sample 3 candidate next-steps given previous steps. The maximum depth of the search tree is 10. For generation of each step, we set the limit of 512 tokens. For beam width during the MITS process, we set it to 32.

Table 6: Hyperparameter Configuration for MITS.

Parameter	Value
Parameters for Basic Inference	
temperature	0.9
top-k	100
top-p	0.96
Parameters for Search Tree Construction	
sample numbers	3
max depth	10
max new tokens	512
beam width	32