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Abstract

Large contrastive learning models, e.g.,
Sentence-T5, tend to be proposed to learn
more powerful sentence embeddings recently.
Though effective, such large models are hard to
serve online due to computational resources
or time cost limits. Knowledge distillation
can compress a large “teacher” model into a
small “student” model, but it generally suf-
fers from performance decrease. To tackle
that, we propose an effective knowledge distil-
lation framework for contrastive sentence em-
beddings, termed DistilCSE. It first utilizes
knowledge distillation to transfer the capability
of a large contrastive learning model to a small
student model on a large amount of unlabeled
data, and then finetunes the student model with
contrastive learning on limited labeled data. We
further propose Contrastive Knowledge Distil-
lation (CKD) to enhance the training objective
consistencies among teacher model training,
knowledge distillation, and student model fine-
tuning, which can improve performance like
prompt learning. Extensive experiments on
seven semantic textual similarity benchmarks
show that student models trained with the pro-
posed DistilCSE and CKD suffer from little or
even no performance decrease and consistently
outperform the corresponding counterparts of
the same parameter size. Amazingly, our 110M
student model can even outperform the latest
state-of-the-art model, i.e., Sentence-T5(11B),
with only 1% parameters.

1 Introduction

Sentence embeddings provide dense vector repre-
sentations widely applied in many real-world ap-
plications (like text retrieval, text deduplication,
etc.). State-of-the-art (SOTA) methods (Gao et al.,
2021; Wang et al., 2021; Yan et al., 2021) that
achieve remarkable performance are all based on
Pretrained Language Models (PLMs)(Devlin et al.,
2018; Liu et al., 2019; Raffel et al., 2019). More-
over, sentence embedding methods tend to use

larger model sizes and training data scales for better
performance. For instance, the latest SOTA model,
i.e., Sentence-T5 (Ni et al., 2021), is built with 11
billion parameters and trained on 2 billion question-
answer pairs. Though effective, such large models
are hard to be applied in real-world applications
with limited computational resources or time cost
for model inference.

Model compression is a feasible way to tackle
the problem mentioned above and Knowledge Dis-
tillation (KD) (Romero et al., 2014; Kim and Rush,
2016; Hu et al., 2018; Sanh et al., 2019; Sun et al.,
2020b; Wang et al., 2020; Jiao et al., 2019) is
commonly used. KD is to transfer the knowledge
learned in a large “teacher” model to a small “stu-
dent” model, and thus expects to reduce the compu-
tational overhead and model storage while retain-
ing the performances. Generally, KD is conducted
on the same training data that the teacher model
is built on (Sun et al., 2020b). However, KD usu-
ally suffers from performance decrease, especially
on sentence embedding models trained with con-
trastive learning. Referring to the experiments in
Appendix A, it is challenging to adequately trans-
fer the capability of a large contrastive sentence
embedding model to a small student model using
only a single KD process, especially on the limited
labeled data used for training the teacher model.

To alleviate the performance decrease, in this
paper we propose DistilCSE, a simple by effective
knowledge distillation framework for contrastive
sentence embedding. As shown in Figure 1, the pro-
posed DistilCSE framework consists of two stages.
In the first stage, we conduct KD to transfer the
capability of a well-trained large contrastive sen-
tence embedding model to a small student model,
using a large set of unlabeled data for adequate
knowledge transfer. Then in the second stage, the
student model is further finetuned with supervised
contrastive learning on the labeled data used for
training the teacher model. It alleviates the domain



Figure 1: The proposed DistilCSE framwork consists of two stages: knowledge distillation (stage 1) and further
finetuning with contrastive learning (stage 2). In stage 1, Knowledge Distillation uses the MSE objective function,
while Contrastive Knowledge Distillation uses the InfoNCE objective function.

bias brought by the unlabeled data and enables the
student model to better fit the semantic textual sim-
ilarity measurement.

Inspired by the performance improvement
brought by the consistency of training objectives
between prompt learning and autoregressive PLMs
(e.g., GPT-3), we further propose a novel KD
method termed Contrastive Knowledge Distilla-
tion (CKD). As illustrated in the (b) subfigure of
Figure 1, the proposed CKD shares an identical
knowledge transfer process as KD methods, but
uses an identical loss function of contrastive learn-
ing, i.e., the InfoNCE loss (Hjelm et al., 2018),
for knowledge transfer, rather than MSE loss in
KD methods. For KD methods, given a sentence,
they would force the sentence embedding derived
by the student model to be close to that learned
by the teacher. Differently, for the proposed CKD,
given a sentence, the InfoNCE loss not only en-
courages the sentence embedding derived by the
student model to be close to that learned by the
teacher, but also encourages the former to be far
away from sentence embeddings of other sentences
learned by the teacher model. Moreover, the pro-
posed CKD can bring two consistencies. (1) The
objective functions of the distillation process and
the teacher model’s training process are consistent.
(2) The objective functions of the two stages in
the proposed DistilCSE framework are consistent.
The consistencies can bring further performance
improvement like prompt learning.

In our experiments, we use the well-trained sen-

tence embedding model SimCSE-RoBERTa-large
(330M) as the teacher1, and small Transformer-
based models as the students, using different sizes
of parameters (110M/52M/14M). Evaluations on
7 STS benchmark datasets show that, the student
models trained through the proposed DistilCSE
framework can well compress the large sentence
embedding model with little or even no perfor-
mance decrease, and significantly outperforms the
corresponding counterparts trained through a sin-
gle KD process. In that way, the student mod-
els are more parameter efficient than those trained
directly through contrastive learning on the Nat-
ural Language Inference (NLI) (Bowman et al.,
2015) dataset. For instance, our 110M student
model can even slightly outperform the latest SOTA
model, i.e., Sentence-T5(11B), with only 1% pa-
rameter. Moreover, DistilCSE with the newly pro-
posed CKD method also consistently outperforms
that with KD method, well demonstrating the ef-
fectiveness and reasonableness of CKD.

We summarize our contributions as follows:

1. We propose a simple but effective framework
termed DistilCSE, which utilizes KD together
with an extra contrastive learning process to
better compress large sentence embedding
models.

2. We propose a novel KD method termed

1We don’t use Sentence-T5 as it isn’t publicly available,
and we don’t have enough computing resources to reproduce
it.



Contrastive Knowledge Distillation (CKD),
for the KD process in the DistilCSE frame-
work. CKD brings better consistencies among
teacher model training, KD and student model
finetuning.

3. We conduct extensive experiments on 7 STS
benchmarks and well demonstrate the ef-
fectiveness of the proposed DistilCSE and
CKD for model compression. Student mod-
els trained with DistilCSE and CKD can even
slightly outperform the latest SOTA model
with only 1% parameters.

2 Related Work

Knowledge Distillation Knowledge Distillation
(Hinton et al., 2015) is a commonly used model
compression technique and the knowledge distil-
lation methods for pre-trained models have been
extensively studied. (Sanh et al., 2019) proposes to
distill the predicted logits related to the task from
the teacher model into a student model. (Sanh et al.,
2019) proposes to distill a teacher model to a stu-
dent model with 6 Transformer blocks with the
corresponding predicted logits. (Sun et al., 2019)
proposes to distill both the predicted logits and
the [CLS] representation in the intermediate layers.
(Jiao et al., 2019) proposes effective frameworks
to distill both the intermediate layers and the pre-
diction layers for the Transformer-based teacher
and student models. (Aguilar et al., 2020) formu-
lates two ways to distill the internal knowledge
to improve the student model’s generalization ca-
pabilities. (Sun et al., 2020b) trains a specially
designed teacher model, and transfers to a task-
agnostic student model. The most related work to
our work is (Sun et al., 2020a), which proposes to
distill knowledge through intermediate layers of
the teacher model via a contrastive objective func-
tion. However, it is designed for only classification
tasks and excludes the STS tasks. Different from
(Sun et al., 2020a), here we focus on STS tasks
by combing knowledge distillation with contrastive
learning. Instead of exploring the influence of the
intermediate layer of the teacher model, we pro-
pose an enhanced KD framework and a novel KD
method based on contrastive learning by replacing
the objective function.

Contrastive Learning Contrastive learning has
been explored in learning sentence embeddings and
has become a promising trend. (Fang et al., 2020)

pre-trains language representation models using
contrastive self-supervised learning at the sentence
level. (Giorgi et al., 2020) designs a self-supervised
contrastive learning objective function for learning
universal sentence embeddings, which does not
require labeled training data. (Wu et al., 2020) pro-
poses contrastive learning for sentence embeddings
by employing multiple sentence-level augmenta-
tion strategies to learn a noise-invariant sentence
embeddings. (Yan et al., 2021) fine-tunes BERT
(Devlin et al., 2019) through contrastive learning
to solve the collapse issue of BERT-derived sen-
tence embeddings. One of the most related works is
(Gao et al., 2021), which incorporates labeled NLI
sentence pairs in contrastive learning and achieves
remarkable performance in learning sentence em-
beddings. Different from (Gao et al., 2021) which
improves sentence embeddings by modifying the
model structure, we propose to achieve improve-
ment by distilling knowledge from a larger power-
ful teacher model. The other most related one is
(Ni et al., 2021), which introduces a multi-stage
contrastive learning recipe involving fine-tuning
firstly on 2 Billion question-answers pairs from
community QA websites and then on the con-
trastive version of the NLI dataset. (Ni et al., 2021)
achieves state-of-the-art performance in STS tasks
with as high as 11B model parameters. Although
our proposed DistilCSE is also a multi-stage train-
ing framework and uses the NLI data set in the
second stage, different from (Ni et al., 2021), we
focus on compressing large sentence embedding
models with little or even no performance decrease
to enable them to be served online.

3 DistilCSE Framwork

As illustrated in Figure 1, the proposed DistilCSE
framework consists of two stages: knowledge dis-
tillation (KD) on a large amount of unlabeled data
and student model finetuning with contrastive learn-
ing on limited labeled data.

3.1 Knowledge Distillation on Unlabeled Data

In the proposed DistilCSE framework, the knowl-
edge distillation stage follows the well-known
teacher-student structure. It aims to transfer the
capability of the large teacher model to the small
student model. The teacher model is a parameter-
fixed encoder with T layers of transformer blocks
trained with contrastive learning on labeled train-
ing data, e.g., NLI. The student model is a to-be-



learned encoder with S (< T ) layers transformer
blocks, whose parameters can be initialized with
pre-trained models like BERT. Note that knowl-
edge distillation is conducted on a large amount
of unlabeled data, rather than the limited labeled
training data used to train the teacher model, to
make the knowledge transfer more adequate. The
student model is trained to imitate the behavior
of the teacher model. Specifically, given a mini-
batch with N sentences X = {x1, x2, ..., xN}, for
each sentence xi ∈ X , the teacher model and the
student model would encode it into hTi and hSi ,
respectively, as follows.

hTi = Teacher(xi)∗
hSi = Student(xi)

(1)

where ∗ means the parameters of the teacher model
is fixed.

In this paper, we adopt two knowledge distil-
lation methods. One is the commonly used KD
method that enforces hSi to be close to hTi for each
sentence xi, using MSE loss in general. The other
is our newly proposed contrastive knowledge dis-
tillation (CKD) method, which uses InfoNCE loss
to enforce hSi to be close to hTi and meanwhile
enforce hSi to be away from hTj corresponding to
any other sentence xj .

Knowledge Distillation MSE loss is a com-
monly used loss function in knowledge distillation
(Jiao et al., 2019), which measures the difference
between hSi and hTi with L2-norm for each xi in a
mini-batch with N sentences as follows.

LKD =

N∑
i=1

MSE
(
hSi , h

T
i

)
(2)

In the case that the dimension of hTi is different
from that of hSi , a learnable linear projection matrix
M is needed to adjust the dimension of hSi to be
the same as hTi . Then the loss function above can
be redefined as follows.

LKD =

N∑
i=1

MSE
(
MhSi , h

T
i

)
(3)

Contrastive Knowledge Distillation For the pro-
posed CKD, given a sentence xi in a mini-batch,
hSi and hTi form a positive pair, and meanwhile hSi
and hTj form a negative pair, where hTj is the sen-
tence embedding of any other sentence xj within
the mini-batch. Then we leverage the widely-used

contrastive learning loss, i.e., the InfoNCE loss,
to encourage hSi to be close to hTi and meanwhile
away from hTj :

LCKD = − log
ef(h

S
i ,h

T
i )/τ

N∑
j=1

(
ef(h

S
i ,h

T
j )/τ

) (4)

where f (u, v) is the cosine similarity between u
and v, τ is a temperature hyperparameter.

The memory bank mechanism is widely
adopted in contrastive learning(He et al., 2020;
Chen et al., 2020). It allows reusing the encoded
sentence embeddings from the immediate preced-
ing mini-batches by maintaining a fixed size queue,
which can enlarge the size of negative pairs for
contrastive learning and thus bring performance
improvement. Here, we also incorporate the mem-
ory bank mechanism in the proposed CKD to al-
low the output embeddings of the student model to
be compared with more output embeddings of the
teacher model, without increasing the batch size.
Specifically, we construct a memory bank queue for
the output embeddings of the teacher model from
consequent mini-batches. And the embeddings in
the memory bank queue will be progressively re-
placed. Namely, when the sentence embeddings of
the teacher model for the current mini-batch are en-
queued, the “oldest” ones in the queue are removed
if the queue is full. With the memory bank queue,
the InfoNCE loss is further modified as follows.

LCKD =

− log
ef(h

S
i ,h

T
i )/τ

N∑
j=1

(
ef(h

S
i ,h

T
j )/τ

)
+

Q∑
q=1

(
ef(h

S
i ,h

T
q )/τ

)
(5)

where hTq denotes a sentence embedding of the
teacher model in the memory bank queue with a
size of Q. Similarly, in the case that the dimension
of hTi is different from that of hSi , Equation 5 is
redefined as follows.

LCKD =

− log
ef(MhS

i ,h
T
i )/τ

N∑
j=1

(
ef(MhS

i ,h
T
j )/τ

)
+

Q∑
q=1

(
ef(MhS

i ,h
T
q )/τ

)
(6)



3.2 Student Model Finetuning with
Contrastive Learning on Labeled Data

To alleviate the potential domain bias brought by a
large amount of unlabeled data, we further conduct
student model finetuning with contrastive learning
on labeled data. The labeled data is the same data
used to train the teacher model. The finetuning
process enables the student model to fit the textual
similarity measurement better.

Suppose that the original training data consists
of tuples

(
xi, x

+
i , x

−
i

)
, where xi is a sentence, x+i

is a similar sentence to xi, and x−i is a dissimilar
one. We conduct contrastive learning to finetune
the student model on the training data, using the
InfoNCE loss as follows,

LCL = − log
ef(h

S
i ,h

S+
i )/τ

N∑
j=1

(
ef(h

S
i ,h

S+
j )/τ + ef(h

S
i ,h

S−
j )/τ

)
(7)

where N is the size of a mini-batch of sentences,
hSi and hS+i denote the sentence embeddings of xi
and x+i output by the student model, respectively.

After being finetuned with contrastive learning,
the small student model can then be applied to
real-world applications with generally much lower
computational costs and little or even no perfor-
mance decrease, as demonstrated by experiments
below.

4 Experiment

4.1 Experiment Setup
Datasets We construct an unlabeled dataset with
5M high-quality english sentences from open-
source news 2, termed News-5m, for the KD stage
of the proposed DistilCSE framework. The prepro-
cessed data can be downloaded from the link3. And
for the student model finetuning stage, we directly
leverage the labeled NLI dataset, which is also the
dataset for training the large teacher model. Specif-
ically, the NLI dataset consists of 275K sentence
pairs, each being either an entailment hypothesis
or a contradiction hypothesis for a premise (i.e.,
sentence). Following (Gao et al., 2021), we use
the entailment pairs as positives and contradiction
pairs as negatives to build the needed tuples for Eq.
7.

2http://data.statmt.org/
news-commentary/v16/
http://data.statmt.org/wikititles/v3/
wikititles-v3.zh-en.tsv

3We will make the data public later.

Model #layers embed size #params
Teacher 24 1024 330M

*-BERT-base 12 768 110M
*-Tiny-L6 6 768 52M
*-Tiny-L4 4 312 14M

Table 1: Model sizes of the teacher model and different
student models. * represents KD, CKD, DistilCSE-KD
or DistilCSE-CKD.

Baselines We compare with the latest SOTA mod-
els, i.e., 110M/330M/3B/11B Sentence-T5 (Ni
et al., 2021), and 330M/110M/52M/14M SimCSE
(Gao et al., 2021). Note that for each size of pa-
rameters, Sentence-T5 explores a variety of experi-
mental settings, and here we choose the best results
for comparison. The results of baseline models are
reported from the corresponding papers, except for
52M and 14M SimCSE, which have no reported
results or published models, and thus we train and
evaluate them by ourselves.

Evaluation We evaluate all methods on 7 widely
used STS benchmarks, i.e., STS 2012–2016
(Agirre et al., 2012, 2013, 2014, 2015, 2016) and
STS-B (Cer et al., 2017). to measure the seman-
tic similarity of any two sentences with the cosine
similarity between the corresponding sentence em-
beddings. After deriving the semantic similarities
of all sentence pairs in the test set, we follow (Gao
et al., 2021) to use Spearman correlation4 to mea-
sure the correlation between the ranks of predicted
similarities and that of the ground-truth similarities.
Specially, we utilize the public SentEval toolkit5

to evaluate the models on the dev set of STS-B to
search for better settings of the hyper-parameters.
Then the best-performing checkpoint is evaluated
on the STS test sets.

4.2 Training Details

Model Settings For the teacher model, we
choose the 330M pre-trained checkpoint of
SimCSE-RoBERTa-large 6, which composes of
24 layers of transformer block. An MLP layer
is added on top of the [CLS] representation to get
the sentence embedding, and the dimension of sen-
tence embeddings is 1024. During training, the

4https://en.wikipedia.org/wiki/
Spearman%27s_rank_correlation_
coefficient

5https://github.com/facebookresearch/
SentEval

6https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large

http://data.statmt.org/news-commentary/v16/
http://data.statmt.org/news-commentary/v16/
http://data.statmt.org/wikititles/v3/wikititles-v3.zh-en.tsv
http://data.statmt.org/wikititles/v3/wikititles-v3.zh-en.tsv
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval
https://huggingface.co/princeton-nlp/sup-simcse-roberta-large
https://huggingface.co/princeton-nlp/sup-simcse-roberta-large


#Params Model STS12 STS13 STS14 SICK15 STS16 STS-B SICK-R Avg.

11B Sentence-T5♣ 80.11 88.78 84.33 88.36 85.55 86.82 80.60 84.94

3B Sentence-T5♣ 79.02 88.80 84.33 88.89 85.31 86.25 79.51 84.59

330M Sentence-T5♣ 79.10 87.32 83.17 88.27 84.36 86.73 79.84 84.11
SimCSE-RoBERTa-Large♣ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

110M
Sentence-T5♣ 78.05 85.84 82.19 87.46 84.03 86.04 79.75 83.34
SimCSE-RoBERTa-base♣ 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
SimCSE-BERT-base♣ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57

KD-BERT-base 75.6 86.75 81.31 86.51 83.63 86.01 81.56 83.05
CKD-BERT-base 76.48 86.94 82.42 87.37 83.65 86.27 81.03 83.45
DistilCSE-KD-BERT-base 78.57 88.32 83.52 87.85 84.56 87.6 81.55 84.57
DistilCSE-CKD-BERT-base 79.51 88.85 84.10 88.47 85.06 87.97 81.34 85.04

52M

SimCSE-Tiny-L6♠ 75.66 83.49 79.82 85.14 80.41 83.08 80.00 81.09

KD-Tiny-L6 75.19 86.26 80.64 86.60 82.52 84.81 80.04 82.29
CKD-Tiny-L6 75.83 86.88 82.12 87.61 83.51 85.97 80.26 83.17
DistilCSE-KD-Tiny-L6 77.97 87.32 82.89 87.56 83.85 86.46 80.89 83.85
DistilCSE-CKD-Tiny-L6 78.20 88.21 83.75 88.50 84.61 87.53 81.29 84.58

14M

SimCSE-Tiny-L4♠ 74.90 78.07 73.56 81.51 77.24 77.78 77.30 77.19

KD-Tiny-L4 74.41 83.84 78.89 84.71 80.45 82.78 77.93 80.43
CKD-Tiny-L4 74.27 84.71 80.19 85.41 81.94 83.63 77.94 81.16
DistilCSE-KD-Tiny-L4 76.58 85.40 81.76 86.72 82.71 84.87 79.89 82.56
DistilCSE-CKD-Tiny-L4 77.24 85.50 81.94 87.10 82.97 85.16 80.00 82.84

Table 2: Sentence embedding performance on 7 semantic textual similarity (STS) test sets, in terms of Spearman’s
correlation. ♣ : results from (Reimers and Gurevych, 2019; Gao et al., 2021). ♠: Small SimCSE models trained by
ourselves with the code and data from (Gao et al., 2021).

parameters of the teacher model are fixed and will
not be updated. For the student model, we have
three different settings of the parameter size, i.e.,
110M/52M/14M. They are in similar network struc-
tures to the teacher model, except that the number
of layers and the dimensions of sentence embed-
dings are smaller. The 110M models are initialized
from the pre-trained BERT-base7, and the 52M and
42M models are initialized from the pre-trained
TinyBERT8. We list the model information of the
teacher model and the different student models in
Table 1. Note that the dimension of sentence em-
beddings output by each student model is different
from that of the teacher model, and thus for the
knowledge distillation state in the proposed Dis-
tilCSE framework, we need to add a layer of linear
projection upon the embeddings output by the stu-
dent model to map them to 1024-dimensional ones,
as denoted by Eq. 3 and Eq. 6.

7https://huggingface.co/
bert-base-uncased

8https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/
TinyBERT

Optimization Settings In the knowledge distilla-
tion stage on large unlabeled data, we train our
student models for 20 epochs, using the Adam
(Kingma and Ba, 2014) optimizer with a batch
size of 512. Learning rate is set as 2e−4 for 110M
model, and 3e−4 for 52M and 14M models. Partic-
ularly for the proposed CKD, we follow (Li et al.,
2021) to use a memory bank queue with the size
being 65536. Following (Gao et al., 2021), we
evaluate the performance of each student model
every 125 training steps on the dev set of STS-B.
The training process uses the early-stop strategy
with the patience being 3. Namely, the KD or CKD
process will stop if the performance of a student
model on the dev set is not updated for 3 consecu-
tive epochs.

In the student model finetuning stage, we load
each student model from the best performing check-
point in the knowledge distillation stage and train
it for 5 epochs using the Adam optimizer, with a
batch size of 128. Learning rate is set as 1e−5 for
52M model, and 5e−5 for 110M and 14M mod-
els. Each student model is still evaluated every 125
training steps on the dev set of STS-B, and the best
checkpoint is used for the final evaluation on test

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT


sets.

4.3 Experiment Results

In Table 2, we report the performance of the stu-
dent models under three settings of parameter sizes,
i.e., DistilCSE-*-BERT-base (110M), DistilCSE-*-
Tiny-L6 (52M), and DistilCSE-*-Tiny-L4 (14M),
with * being KD or CKD. We also report the perfor-
mance of student models derived via just a single
KD process for comparison, i.e., KD/CKD-BERT-
base (110M), KD/CKD-Tiny-L6 (52M), KD/CKD-
Tiny-L4 (14M), which are also trained on the same
unlabeled data.

It can be seen that, in all settings of parame-
ter sizes, student models trained through the pro-
posed DistilCSE framework outperform their corre-
sponding counterparts trained through just a single
KD process. Moreover, using the proposed CKD
instead of KD brings consistent further improve-
ments. That also verifies the consistencies brought
by CKD among teacher model training, KD, and
student model finetuning are beneficial to improv-
ing the performance of the student model. In that
way, the 52M DistilCSE-CKD-Tiny-L6 can even
achieve comparable results to the 110M DistilCSE-
KD-BERT-base.

110M Student Models: Both DistilCSE-KD-
BERT-base and DistilCSE-CKD-BERT-base
achieve better performance than the teacher model,
i.e., SimCSE-RoBERTa-Large. And amazingly,
DistilCSE-CKD-BERT-base can slightly outper-
form the latest SOTA 11B Sentence-T5, with only
1% parameters. Meanwhile, DistilCSE-KD-BERT-
base can achieve comparable performance to the
3B Sentence-T5.

52M Student Models: Both DistilCSE-KD-
Tiny-L6 and DistilCSE-CKD-Tiny-L6 can still
outperform the teacher model, i.e., SimCSE-
RoBERTa-Large. And DistilCSE-CKD-Tiny-
L6 achieves comparable performance to the 3B
Sentence-T5, with only 1/60 parameters.

14M Student Models: Both DistilCSE-KD-
Tiny-L4 and DistilCSE-CKD-Tiny-L4 suffer from
some performance decrease, but the loss is much
less than that brought by their corresponding coun-
terpart with just a single KD process, i.e., KD-Tiny-
L4 and CKD-Tiny-L4. That also demonstrates the
superiority of our proposed DistilCSE framework.
Moreover, both of them can still outperform the

Figure 2: ℓalign − ℓuniform plot for student models. All
models are trained through the DistilCSE framework.
For ease of presentation, we use abbreviations in the
figure.

SimCSE-BERT-base model, with only 1/8 parame-
ters.

The analyses above show that the small student
models derived from the proposed DistilCSE frame-
work can even outperform the large teacher model.
We argue that it can be attributed to both following
potential reasons. Firstly, the KD stage on large
unlabeled data can not only adequately transfer the
model capability of the teacher model to the student
model, but also make the student model see more
data, which is somehow like a semi-supervised set-
ting. Secondly, after the KD stage, the student
model is initialized as a local optimum near to the
one corresponding to the teacher model, and the
further finetuning process with contrastive learning
can probably enable it to reach another better local
optimum and thus gain performance improvements.

5 Further Analyses

In this section, we conduct some analyses on the
DistilCSE framework. Following (Gao et al., 2021),
all results are evaluated on the development set of
STS-B unless otherwise specified.

5.1 Uniformity and Alignment
We investigate the alignment and uniformity of
models of different parameter sizes and knowledge
distillation methods in the DistilCSE framework.
Following (Wang and Isola, 2020), we compute the
alignment loss and uniformity loss to measure the
quality of the learned sentence embeddings, which
are defined as follows.

Lalign = − E
v,v+∼ppos

∥∥f(v)− f
(
v+

)∥∥
Luniform = log E

v,w
i,i,d∼ pdata

e−2∥f(v)−f(w)∥ (8)



Figure 3: Effects of different scales of the unlabeled
data in the KD stage on DistilCSE-CKD-BERT-base,
evaluated on STS-B development set, in terms of Spear-
man’s correlation.

where ppos denotes all positive pairs of similar sen-
tences, and pdata is the data distribution. Lalign is
the expected distance between the embeddings of
the two sentences in a positive pair, and Luniform

denotes the uniformity of the embedding distribu-
tion. For both Lalign and Luniform, a lower value
indicates better performance.

As shown in Figure 2, DistilCSE-CKD models
can achieve better alignment, while DistilCSE-KD
models can have better uniformity. Meanwhile,
among student models with different parameter
sizes, the 6-layer ones can achieve better unifor-
mity, the 4-layer ones can achieve better alignment,
and the 12-layer ones can reach a balance in good
uniformity and alignment.

5.2 Effects of the Scales of Unlabeled Data for
KD

We investigate the effects of different scales of the
unlabeled data in the KD stage on DistilCSE-CKD-
BERT-base model. We increase the dataset scale
from 1M to 20M gradually and plot the best results
on STS-B development set in Figure 3. As the scale
of unlabeled data for the CKD stage increases, the
performance of DistilCSE-CKD-BERT-base will
firstly increase then tend to converge. Specifically,
when the amount of unlabeled data increases from
1M to 5M, Spearman’s correlation on the STS-B
development set keeps increasing, which indicates
that the amount of unlabeled data is still critical
to the proposed DistilCSE framework. Yet when
the amount of unlabeled data is larger than 5M, the
Spearman’s correlation on the STS-B development
set tends to converge and varies between 88.9 and
89.0. Compared with the 2 billion question-answer

#Params Initialization dev stsb

110M BERT-base 88.96
SimCSE 89.03

52M TinyBERT 88.74
SimCSE 88.70

14M TinyBERT 87.10
SimCSE 87.21

Table 3: Evaluation results of student models initialized
from the well-trained SimCSE or general pre-trained
models (i.e., BERT-base and TinyBERT) in different
settings of parameter sizes.

pairs used in Sentence-T5 (11B), the proposed Dis-
tilCSE framework is kind of data-efficient during
the KD stage and thus very large unlabeled data is
not needed.

5.3 Initialize Student Model with SimCSE
We further explore whether initializing the student
models with the parameters of a well-trained Sim-
CSE models can bring further improvement, as
SimCSE can yield significantly superior perfor-
mance than BERT for STS.

In table 3, we report the evaluation results of stu-
dent models initialized from either the well-trained
SimCSE or the general pre-trained models (i.e.,
BERT-base, and TinyBERT) in different settings
of parameter sizes, i.e., 110M/52M/14M. It can
be seen that initialization with SimCSE achieves
comparable performance to that of initialization
with general pre-trained models, which reflects the
robustness of the proposed DistilCSE framework
in some sense.

6 Conclusion

In this paper, we propose a two-stages framework
termed DistilCSE, to compress large sentence em-
bedding models with little or even no performance
decrease. We further propose a novel contrastive
learning based KD method termed Contrastive
Knowledge Distillation (CKD), which can bring
performance improvement with better consisten-
cies in the proposed DistilCSE framework. Experi-
mental results on 7 STS benchmarks show that, the
proposed DistilCSE and CKD are effective, and the
learned student model can even slightly outperform
the latest SOTA model Sentence-T5 (11B) with
only 1% parameters.
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A Knowledge Distillation Experiment on
the NLI Dataset

We explore the effectiveness of KD on sentence em-
bedding models trained with contrastive learning.
Specifically, we distill the well-trained SimCSE-
RoBERTa-Large (Gao et al., 2021) with 330 mil-
lion parameters to a small student model with 110
million parameters. As the teacher model is trained
on the NLI dataset, we minimize the difference be-
tween the embedding learned by the teacher model
and that of the student model for each sentence
from the NLI samples.

We apply the KD process on the NLI data set un-
der different parameter scales. Each student model
is still evaluated every 125 training steps on the
development set of STS-B, and the best checkpoint
is used for the final evaluation on test sets (Gao
et al., 2021). The performances of student models
on 7 semantic textual similarity (STS) test sets are
shown in Table 4. The performance of the student
model is substantially lower than the teacher model
in the STS task evaluation. Thus, it is challenging
to use only a single KD process to transfer the ca-
pability of the large teacher model adequately to
the small student model, especially on the limited
NLI training data.

B Performance on Transfer Tasks

Following (Gao et al., 2021), we further evalu-
ate the performance of the proposed DistilCSE
framework on transfer tasks, to see the transfer-
ability of the sentence embeddings output by the
student models learned through DistilCSE. The
transfer tasks include: MR (movie review) (Pang
and Lee, 2005), CR (product review) (Hu and Liu,
2004), SUBJ (subjectivity status) (Pang and Lee,
2004) , MPQA (opinion-polarity) (Wiebe et al.,
2005), SST-2 (binary sentiment analysis) (Socher
et al., 2013), TREC (question-type classification)
(Voorhees and Tice, 2000) and MRPC (paraphrase
detection) (Dolan and Brockett, 2005). For more
details, one can refer to SentEval9.

Following (Gao et al., 2021), we train a logis-
tic regression classifier on the frozen sentence em-
beddings generated by different methods, and use
the default configuration of SentEval for evalua-
tion. The evaluation results on the transfer tasks
are reported in Table 5. It can be seen that, though
the small student models underperform the large

9https://github.com/facebookresearch/
SentEval

teacher model (i.e., SimCSE-RoBERTa-Large) on
transfer tasks, they still consistently outperform the
corresponding counterparts of the same parameter
size. That also validates the effectiveness of the
proposed DistilCSE framework. However, as (Gao
et al., 2021) argues, transfer tasks are not the major
goal for sentence embeddings, and thus we take the
STS results for main comparison.

https://github.com/facebookresearch/SentEval
https://github.com/facebookresearch/SentEval


#Params Model STS12 STS13 STS14 SICK15 STS16 STS-B SICK-R Avg.

330M SimCSE-RoBERTa-Large♣ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76

110M KD-BERT-base 74.92 85.50 80.04 85.10 82.5 84.92 80.70 81.95 (-1.81%)

52M KD-Tiny-L6 74.86 84.97 79.81 85.56 81.79 84.56 80.70 81.75 (-2.01%)

14M KD-Tiny-L4 72.07 81.26 76.81 83.95 79.37 81.64 79.30 79.20 (-4.56%)

Table 4: The KD probe experiment results on the NLI Dataset. ♣ : results from (Gao et al., 2021).

#Params Model MR CR SUBJ MPQA SST TREC MRPC Avg.

330M SimCSE-RoBERTa-Large♣ 88.12 92.37 95.11 90.49 92.75 91.80 76.64 89.61

110M Sentence-T5♣ 86.56 91.31 96.01 90.57 90.77 94.60 72.93 88.96
SimCSE-RoBRTEa-base♣ 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
SimCSE-BRTE-base♣ 82.68 88.88 94.52 89.82 88.41 87.60 76.12 86.86
DistilCSE-KD-BERT-base 86.51 91.55 95.15 91.02 91.10 93.20 76.64 89.31
DistilCSE-CKD-BERT-base 86.50 91.34 95.16 91.21 91.76 90.60 76.93 89.07

52M
SimCSE-Tiny-L6 81.96 88.93 94.30 89.84 86.66 88.20 75.25 86.45
DistilCSE-KD-Tiny-L6 84.48 90.44 94.75 91.19 89.73 91.60 76.52 88.39
DistilCSE-CKD-Tiny-L6 85.61 90.97 94.78 91.43 90.99 90.60 76.70 88.73

14M
SimCSE-Tiny-L4 78.00 86.28 92.11 89.12 83.86 84.80 74.09 84.04
DistilCSE-KD-Tiny-L4 81.46 89.88 92.01 90.48 87.64 86.20 74.67 86.05
DistilCSE-CKD-Tiny-L4 81.60 90.25 92.52 90.36 87.20 86.00 75.07 86.14

Table 5: Results on transfer tasks of different sentence embedding models, in terms of accuracy. ♣ : results from
(Reimers and Gurevych, 2019; Gao et al., 2021; Ni et al., 2021).
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