
Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

PANDR: FAST ADAPTATION TO NEW ENVIRONMENTS
FROM OFFLINE EXPERIENCES VIA DECOUPLING POL-
ICY AND ENVIRONMENT REPRESENTATIONS

Tong Sang1, Hongyao Tang1, Yi Ma1, Jianye Hao1∗, Yan Zheng1∗, Zhaopeng Meng1,
Boyan Li1, Zhen Wang2∗
1College of Intelligence and Computing, Tianjin University
2School of Artificial Intelligence, Optics and Electronics (iOPEN) and School of
Cybersecurity, Northwestern Polytechnical University

ABSTRACT

Deep Reinforcement Learning (DRL) has been a promising solution to many com-
plex decision-making problems. Nevertheless, the notorious weakness in gener-
alization among environments prevent widespread application of DRL agents in
real-world scenarios. Although advances have been made recently, most prior
works assume sufficient online interaction on training environments, which can
be costly in practical cases. To this end, we focus on an offline-training-online-
adaptation setting, in which the agent first learns from offline experiences col-
lected in environments with different dynamics and then performs online policy
adaptation in environments with new dynamics. In this paper, we propose Policy
Adaptation with Decoupled Representations (PAnDR) for fast policy adaptation.
In offline training phase, the environment representation and policy representa-
tion are learned through contrastive learning and policy recovery, respectively.
The representations are further refined by mutual information optimization to
make them more decoupled and complete. With learned representations, a Policy-
Dynamics Value Function (PDVF) (Raileanu et al., 2020) network is trained to
approximate the values for different combinations of policies and environments.
In online adaptation phase, with the environment context inferred from few expe-
riences collected in new environments, the policy is optimized by gradient ascent
with respect to the PDVF. Our experiments show that PAnDR outperforms exist-
ing algorithms in several representative policy adaptation problems.

1 INTRODUCTION

Reinforcement learning (RL) has achieved great successes in many fields, e.g., Game Playing (Sil-
ver et al., 2016), Robotics (Andrychowicz et al., 2020), Supply Chain (Ni et al., 2021), Medicine
Discovery (Schreck et al., 2019) and so on. Despite of the successes, conventional RL is well known
to be lack of generalization ability (Packer et al., 2018). To be specific, a policy well optimized in a
specific environment can be catastrophically poor even in similar environments. The poor general-
ization among environments and policys severely prevents more practical applications of RL.

In the literature on RL generalization (Kirk et al., 2021), many approaches like data augmenta-
tion (Yarats et al., 2021) and domain randomization (Peng et al., 2018) are proposed to increase
the similarity between training environments and the testing environments (i.e., the ones to gener-
alize or adapt to). These methods often require knowing the variations of environment and having
the access to environment generation. In contrast, some other works aim to achieve fast adaptation
in testing environments without the need for such access and knowledge. Gradient-based Meta RL,
e.g., MAML (Finn et al., 2017), aims to learn a meta policy which can adapt to a testing environment
within few policy gradient steps. Also in this branch, context-based Meta RL, e.g., PEARL (Rakelly
et al., 2019), leverages a context-conditioned policy which allows to achieve adaptation by the gen-
eralization among contexts. Useful context representation is learned in training environments to

∗Corresponding authors: Jianye Hao (jianye.hao@tju.edu.cn), Yan Zheng (yanzheng@tju.edu.cn) and Zhen
Wang(w-zhen@nwpu.edu.cn).

1

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

capture the variations; then the context of a testing environment can be inferred from few probed
interaction experiences (Fu et al., 2021).

Most prior works consider an online training setting where the agent is allowed to interact with
training environments arbitrarily within the interaction budget. However, in real-world problems,
online interaction is usually expensive while offline experiences are often available and relatively
sufficient. For example, in E-commerce, adapting the advertising strategies obtained from massive
offline ads-users interaction data to a new user can effectively save the budgets of advertisers. On
this point, a recent work (Raileanu et al., 2020) studies fast adaptation under an offline-training-
online-adaptation setting, where only offline experiences collected on training environments are
available before online policy adaptation in new environments. This is a more practical and gen-
eral setting which is meanwhile more challenging, since the policy learning and variation capture
need to be conducted in an offline manner. To solve this problem, Raileanu et al. (Raileanu et al.,
2020) propose an extended value function, called Policy-Dynamic Value Network (PDVF). By def-
inition, a PDVF additionally takes an environment representation and an policy representation as
inputs, and evaluates the corresponding values. In principle, the explicit representation allows the
generalization of value estimation among environments and policies, which can be utilized to realize
policy adaptation. To be specific, given the offline experiences generated from different combina-
tions of training policies and training environments, the representations of environment and policy
are learned from transitions and state-action sequences by dynamics prediction and policy recovery
respectively. Thereafter, a quadratic form of PDVF is approximated, according to which the policy
is optimized during online adaptation with the environment representation inferred from few inter-
actions in the testing environment. The first drawback is that the representations of environment and
policy can have redundant and entangled information since they are from the same interaction expe-
riences of the corresponding combination. It negatively affects the generalization conveyed by the
representations which is vital to fast adaptation. Another limitation is that the quadratic approxima-
tion of PDVF inevitably makes a sacrifice in expressivity for convenient closed-form optimization,
in turn this cripples the optimality of policy obtained during adaptation.

Figure 1: A conceptual illustration of PAnDR for fast adap-
tation with offline experiences (best view in numbers). With
offline experiences collected by training policies and environ-
ments (①), the representations for environment (ze) and policy
(zπ) are learned, which are further improved by mutual informa-
tion optimization with extra joint representation zb (②). Condi-
tioning on learned representations, a PDVF is trained. For adap-
tation, the representation of testing environment is inferred with
few-shot online context (③), based on which the policy (repre-
sentation) is adapted according to PDVF (④).

In this paper, we focus on the offline-
training-online-adaptation setting and
follow the paradigm of (Raileanu et al.,
2020). We propose Policy Adaptation
with Decoupled Representations
(PAnDR) for more effective fast adapta-
tion of RL. The conceptual illustration
of PAnDR is shown in Fig. 1. Com-
pared to transition-level dynamics
prediction adopted by (Raileanu et al.,
2020), we adopt trajectory-level context
contrast for environment representation
learning. By this means, the variation
is captured in an integral manner and
the inter-environment difference is
emphasized, thus offering more useful
information and better robustness. One
can link our comparison here to that
between reconstruction and contrastive
learning, where the superiority of the
latter has been widely demonstrated (He
et al., 2020; Laskin et al., 2020; Fu
et al., 2021). Moreover, we propose
a information-theoretic representation
learning method to refine environment
and policy representations for information decoupleness and completeness. This is achieved by
mutual information minimization and maximization among environment and policy representations
and their joint. In addition, distinct to the quadratic form in (Raileanu et al., 2020), PAnDR
leverages a typical multi-layer nonlinear neural network for the approximation of the PDVF. Then
during online adaptation, the policy is optimized by gradient ascent. In this sense, PAnDR gets
rid of such constraints to improve value approximation and policy adaptation. In experiments, we

2

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

evaluate PAnDR in a series of fast adaptation tasks and analyze the contribution of each part of
proposed methods.

We summarize our main contributions as follows: 1) We leverage trajectory-level contrastive learn-
ing and propose a novel mutual information based approach for better environment and policy repre-
sentations. 2) We get rid of the constraint of prior quadratic approximation of PDVF and demonstrate
the effectiveness of nonlinear approximation in improving online policy adaptation. 3) We show that
PAnDR consistently outperforms representative existing algorithms in our experiments, sometimes
with a large margin.

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

Consider a Markov Decision Process (MDP) defined as M = ⟨S,A, P,R, γ⟩, with the state space
S, the action space A, the transition probability P : S × A × S → [0, 1], the reward function R :
S ×A→ R and the discount factor γ ∈ [0, 1). An agent interacts with the MDP M by performing
its policy π : S × A → [0, 1], generating the trajectories as at ∼ π(·|st), st+1 ∼ P (· | st, at) and
rt = R (st, at). The value function of policy π is defined as V π(s) = Eπ [

∑∞
t=0 γ

trt | s0 = s]. The
objective of an RL agent is to optimize its policy to maximize the expected discounted cumulative
rewards J(π) = Es0∼ρ0(·)[V π(s0)], where ρ0 is the initial state distribution.

2.2 MUTUAL INFORMATION OPTIMIZATION

Mutual Information (MI) is a widely used metric that estimates the relationship between pairs of
variables in machine learning. Given two random variables X and Y , MI is a measure of depen-
dency among them, defined as I(X;Y) = Ep(x,y)

[
p(x,y)
p(x)p(y)

]
, with the joint probability distribution

p(x, y) and the marginal distributions p(x), p(y). MI estimation and optimization are fundamental
techniques in representation learning, e.g., in Information Bottleneck (Alemi et al., 2017).

In most problems, it is intractable to compute MI directly since the exact distributions of interested
variables are not known. Thus, approximate estimation of MI is usually resorted to, which is non-
trivial especially in high-dimensional space. For the general purpose of MI optimization, lower-
bound and upper-bound approximations of MI are often used as surrogate objectives (Poole et al.,
2019). Among the options, variational approximation is a common way to compute MI lower bound:

I(X;Y) ≥ −Ep(x)[log p(x)] + Ep(x,y)[log q(x | y)].

The lower bound holds since the KL divergence is non-negative. For the upper bound, a recent work
called Contrastive Log-ratio Upper Bound (CLUB) (Cheng et al., 2020) provides the following form:

I(X;Y) ≤ Ep(x,y)[log q(x | y)]− Ep(x)p(y)[log q(x | y)],

where q(x | y) is approximated, e.g., by maximum likelihood estimation (MLE), of actual condi-
tional distribution p(x | y) when p is not known.

We provide a detailed discussion on related work in Appendix E.

3 METHODOLOGY

In this section, we propose our framework for fast adaptation, named Policy Adaptation with Decou-
pled Representation (PAnDR). We follow the paradigm of (Raileanu et al., 2020) and consider the
offline-training-online-adaptation setting with a set of training environments Ωtrain = {Mi}Mi=1 and
a set of testing environments Ωtest = {Mj}Nj=1. Given a set of training policies Πtrain = {πk}Ok=1,
an offline experience buffer is established as D =

⋃M,O
i=1,k=1Di,k, where Di,k contains the s, a, r-

trajectories generated by πk in Mi. M,N,O denote the sizes of corresponding set. In this paper,
we call a set of (s, a, r) generated in an environment as the context of it, and a set of (s, a) collected
by a policy as its behavior, denoted by c and b respectively.

With offline experience buffer D, PAnDR learns the representations of environment and policy
through context contrast and policy recovery, respectively (Sec. 3.1). To eliminate the redundant

3

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Context ContrastPolicy Recovery

𝓓 = {(𝒔, 𝒂, 𝒔′)} 𝑷(𝒙| 𝜫,𝜴)

𝑫𝒊,𝒌 𝒊,𝒌=𝟏,𝟏
𝑴,𝑶

𝑫𝒊,∙ 𝒊=𝟏
𝑴𝑫∙,𝒌 𝒌=𝟏

𝑶

𝒛𝒃

𝜱𝒃

𝒛𝒆

𝜱𝒆

𝒛𝝅

𝜱𝝅

Maximize 𝑰(𝒛𝒃 ; 𝒛𝒆, 𝒛𝝅)

~

Minimize 𝑰(𝒛𝒆; 𝒛𝝅)

{𝝅𝒊, 𝒆𝒋}

Figure 2: Illustration of learning environment representation ze and policy representation zπ from the offline
experiences D collected by training environments Ω and policies Π. With different views of D, i.e., D·,k, Di,·
and Di,k, the representations for environment, policy and their joint (zb) are obtained by encoders ϕe, ϕπ, ϕb

respectively, which are learned by policy recovery (left) and context contrast (right). Thereafter, the representa-
tions of environment and policy are refined through mutual information based optimization, i.e., min I(ze; zπ)
for representation decoupleness and max I(zb; ze, zπ) for representation completeness. Gradient traces of
model parameters are plotted in red.

information entangled in the two representations while retaining necessary information, we further
introduce a novel approach by mutual information minimization and maximization to refine the
representations (Sec. 3.2). Thereafter, we train a nonlinear neural network to approximate PDVF
conditioning on both environment and policy representations and introduce the online adaptation
with gradient-based policy optimization (Sec. 3.3).

3.1 SELF-SUPERVISED REPRESENTATION LEARNING

The first part of PAnDR is to learn effective representations for environment and policy from offline
experiences, replying on which the environment generalization and policy adaptation are carried out.
We learn these representations in a self-supervised manner via context contrast and policy recovery,
to capture the pivotal information of environment variation and policy behavior.

Learning Environment Representation via Context Contrast By following the general idea
of self-supervised Contrastive Learning (He et al., 2020), we make use of the contrast of contexts
collected in different training environments to extract context embedding as environment represen-
tation. For a training environment Mi, we use the contexts sampled from Di,· =

⋃O
k=1Di,k as

anchor sample ci and positive sample c+i ; in turn, the context sampled from the offline experiences
generated in other environments, i.e., Di′,· for any i′ ̸= i, is taken as negative sample c−i .

With the contrastive context samples described above, we train a context encoder ϕe that maps
context to embedding ze by ensuring the representation of similar sample pairs (anchors and their
positives) stay close to each other while dissimilar ones (anchors and their negatives) are far apart.
Formally, the context encoder is optimized with InfoNCE loss similar to (He et al., 2020; Laskin
et al., 2020):

LCC(ϕe,W) = −Ec,c+,{c−}∼D

[
log

exp(z⊤e Wz+e)

exp(z⊤e Wz+e) +
∑

{c−} exp(z
⊤
e Wz−e)

]
, (1)

where W denotes the parameter matrix updated along with ϕe. Note that ze is differentiable with
respect to ϕe; while z+e , z

−
e are the embeddings for positive and negative context samples calculated

by a momentum averaged version of ϕe.

Compared to learning environment representation by transition-level dynamics prediction as adopted
in (Raileanu et al., 2020), PAnDR captures environment variations in an integral manner and em-
phasizes inter-environment differences by context-based contrastive learning. Thus, the environment
representation can be more effective and robust, as similarly demonstrated in (Fu et al., 2021).

Learning Policy Representation via Policy Recovery For a training policy πk, we learn the
embedding of the behavior data sampled fromD·,k =

⋃M
i=1Di,k as policy representation. As shown

4

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

in the left of Fig. 2, a behavior b is fed in the behavior encoder ϕπ , producing the embedding zπ .
With the purpose of making zπ contain the essential policy information, we utilize a zπ-conditioned
policy decoder ϕdec

π which takes as input a state s and the embedding zπ , then deterministically
outputs a prediction of the actual action made by π. We call this policy recovery (or Behavioral
Cloning (Grover et al., 2018)). With the offline experiences, ϕπ, ϕdec

π are updated by minimizing the
l2 prediction loss:

LPR(ϕπ, ϕ
dec
π) = Es,a,b∼D

[
∥a− ϕdec

π (s, ϕπ(b))∥22
]
. (2)

3.2 MI-BASED REPRESENTATION REFINEMENT

A consequent concern on the representations obtained above is the redundant and entangled infor-
mation in them. This is because the representations for both environment and policy are learned
from the offline experiences. The entangled information exists in both representations will nega-
tively affect the generalization among environments and policies, thus hinders value approximation
and policy adaptation in turn.

To address this problem, we propose a novel information-theoretic approach to refine the learned
representations. The key idea is 1) to eliminate the redundant information contained in environment
and policy representations for the decoupleness, while 2) to ensure the essential information in their
joint representation are completely retained in the two representations. This is achieved by two ways
of mutual information (MI) optimization, as illustrated in the middle part of Fig. 2.

MI Minimization for Decoupleness Firstly, for the decoupleness, we are interested in reducing
the entangled information in the representations of environment and policy. To be specific, we
minimize the MI between the embeddings ze and zπ that are obtained from context and behavior
data sampled from the offline experiences, i.e., min I(ze; zπ). We then convert the MI minimization
into minimizing the CLUB upper bound of MI, as introduced in Sec. 2.2. With the approximation
conditional distribution qψ1

parameterized by ψ1, our loss function for representation decoupleness
(RD) is formulated as:

LRD(ϕe, ϕπ) = Ep(ze,zπ)
[
log qψ1(ze | zπ)

]
− Ep(ze)p(zπ)

[
log qψ1(ze | zπ)

]
. (3)

Concretely, as to any Di,k, we use the embedding pairs of ci, bk ∼ Di,k for the samples from
joint distribution p(ze, zπ); and use those of ci ∼ Di,·, bk ∼ D·,k for the marginal distributions
p(ze), p(zπ). Note that ψ1 is not updated by LRD, while the approximate conditional distribution
qψ1

is trained through MLE by minimizing the following loss:

LMLE(ψ1) =− Ep(ze,zπ)
[
log qψ1(ze | zπ)

]
, (4)

where the joint distribution is sampled in the same way as in Eq. 3. The updates defined in Eq. 3
and Eq. 4 are performed iteratively: qψ1 approximates the conditional distribution with respect to
the embeddings given by ϕe, ϕπ; and in turn qψ1

is used in the estimation of CLUB. We refer the
readers to the original paper of CLUB (Cheng et al., 2020) for better understanding.

MI Maximization for Completeness Secondly, we expect the information contained in the joint
representation of environment and policy can be completely retained in both environment and pol-
icy representations. This is also necessary especially when the decoupleness described above is
required, in case that the vital information of environment variation or policy behavior is overly re-
duced during MI minimization. This is achieved by maximizing the MI between the concatenation of
the embeddings ze, zπ and a target environment-policy joint representation zb which contains com-
plete information, i.e., max I(ze, zπ; zb). We resort to extracting the target representation zb also
from the offline experiences. Similar but distinct to the environment representation, zb is learned
by context-behavior joint contrast, i.e., only the context-behavior data sampled from the same Di,k

are regarded as mutually positive samples. We omit the similar formulations here and an illustra-
tion is shown in the right part of Fig. 2. Thereafter, we maximize the variational lower bound of
I(ze, zπ; zb), i.e., minimize the loss function for representation completeness (RC) below:

LRC(ϕe, ϕπ, ψ2) = −Ep(ze,zπ,zb)
[
log qψ2(zb|ze, zπ)

]
, (5)

where qψ2 is the variational distribution parameterized by ψ2, and the joint distribution are sampled
by ci, bk ∼ Di,k. Note that the negative entropy term −H(zb) = Ep(zb)[log p(zb)] irrelevant to the
optimization of ze, zπ is neglected in Eq. 5.

5

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Therefore, combining the self-supervised learning losses and the MI-based refinement losses, the
total loss function for the representations of environment and policy is:

LTotal(ϕe, ϕ
dec
e , ϕπ) = LCC + LPR + αLRD + βLRC, (6)

where α, β are the balancing weights. The pseudocode of overall representation training is in Alg. 1
in Appendix.

3.3 VALUE APPROXIMATION AND POLICY ADAPTATION

So far, we have introduced the training process of environment and policy representations on the
offline experiences. With the trained representations, we are ready to introduce the approximation
of PDVF (Raileanu et al., 2020) and the policy optimization during online adaptation.

Value Function Network Approximation As described in Section 1, to evaluate the values of
different environment-policy configurations, PDVF additionally conditions on the representations
of environment and policy. Distinct from the quadratic approximation adopted in (Raileanu et al.,
2020), PAnDR leverages a typical multi-layer nonlinear neural network, denoted by Vθ(s, ze, zπ)
with parameter θ. This setting frees the function expressivity constrained by quadratic form. We sug-
gest that this is important because the value approximation for multiple environments and policies is
much more difficult than the conventional situation (e.g., V π). Achieving better value approximation
is crucial to the following policy adaptation.

For any offline experience Di,k, we can obtain the corresponding representations ze, zπ , condition-
ing on which Vθ is trained by Monte Carlo method (Sutton & Barto, 1998):

LV (θ) = Es,G(s),c,b∼D
[(
G(s)− Vθ(s, ze, zπ)

)2]
, (7)

where G(s) =
∑T
t=0 γ

trt letting s0 = s. The pseudocode is provided in Alg. 2 in Appendix.

Policy Adaptation via Representation Gradient Ascent After training Vθ network well, in prin-
ciple we can evaluate the values for any environment-policy configuration to a certain degree. For
online adaptation, we first sample a training policy from Πtrain and use it to interact with the testing
environment for a few steps. Then the embedding of testing environment zon

e can be inferred with
the collected context. Next, starting from an arbitrary policy representation z0π (randomly initialized
by default), by gradient ascent (GA), we can optimize the policy representation along the direction
of increasing values of Vθ with learning rate η:

zt+1
π = ztπ + η∇ztπ

Vθ(s, zon
e , z

t
π). (8)

After a certain number of GA, the obtained policy representation can be used to interact with the
testing environment with the help of the zπ-conditioned policy decoder ϕdec

π (described in Sec. 3.1),
which is trained offline to predict policy’s action. We adopt the best-performing policy representa-
tion as z∗π encountered during the GA process for our adapted policy in our experiments.

It is worth noting that, given s and zon
e , the GA optimization itself is zero-shot, i.e., without the

overhead of interacting with the testing environment. The pseudocode is in Alg. 3 in Appendix.

4 EXPERIMENT

In our experiments, we aim at investigating the following questions: (Q1) Whether PAnDR outper-
forms existing algorithms for fast adaptation? (Q2) How do contrastive environment representation
and MI-based refinement contribute to the performance of PAnDR? (Q3) Whether nonlinear neural
approximation of PDVF and gradient-based policy adaptation improve the quadratic counterpart?

4.1 SETUP

We conduct experiments in four continuous control domains. All the experimental details can be
found in Appendix C.

Domains and Variations. The fast adaptation domains used in our experiments is shown in Table
2 in Appendix A, where the Spaceship-Charge, Ant-Wind and Swimmer-Fluid are from (Raileanu
et al., 2020) and the HalfCheetah-Mass is from (Lee et al., 2020).

6

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0

0.25

0.5

0.75

1

1 2 3 4 5Environment

Average Return

(a) Spaceship-Charge

0

300

600

900

1 2 3 4 5Environment

PPO
MAML
PDVF
PAnDR

Average Return

(b) Ant-Wind

0

50

100

150

200

1 2 3 4 5Environment

Average Return

(c) Swimmer-Fluid

0

300

600

900

1200

1 2 3 4 5Environment

Average Return

(d) HalfCheetah-Mass

Figure 3: Adaptation performance of different algorithms in four domains. Experimental results of algorithm
generalization in new environment. Our results are even better than PPO in some environments, which proves
that our method has a better generalization ability by learning in the training environment. For the PDVF
algorithm, we use the source code provided by the authors.

Offline Experiences and Adaptation Budget. We follow the same data setting as (Raileanu et al.,
2020). For offline experiences, a policy is optimized by PPO (Schulman et al., 2017) in each train-
ing environments. The obtained policies are training policies that serve as collectors. In general,
such collector policies can be obtained from other ways. For each domain, 50-episode interaction
trajectories are collected by each combination of training environment and policy, e.g., 15 ∗ 15 ∗ 50
episodes of experience for Ant-Wind. For online adaptation, 50 steps of interaction are collected
in the testing environment by one of the training policies. For PAnDR, 100 steps of GA is used by
default.

Evaluation Criteria. The main evaluation criterion is adaptation performance, calculated as the
undiscounted cumulative rewards of the policy obtained after online adaptation. Moreover, for
PAnDR, we analyze the evolvement of adaptation performance against the number of GA adap-
tation steps (in Sec. 4.3). The results reported in our experiments are means and error bars of a
standard deviation calculated with 7 independent trials.

4.2 PERFORMANCE COMPARISON

In this section, we compare the adaptation performance between PAnDR and representative existing
algorithms to answer Q1 within the domains introduced above.

Baselines. We consider the following three baselines. 1) PPO: We use the PPO policy which is
trained online with 3e6 steps in testing environments as a powerful baseline. 2) MAML (Finn et al.,
2017): We use MAML as a representative of gradient-based Meta RL. Note MAML (as well as most
Meta RL algorithms) performs online meta training. This means in principle it is not applicable to
the offline training experiences. 3) PDVF (Raileanu et al., 2020): Since we propose PAnDR based
on the same paradigm of PDVF, we use PDVF as a closely related baseline. Moreover, to our knowl-
edge, PDVF is the state-of-the-art fast adaptation algorithm in offline-training-online-adaptation set-
ting. Note that in this section, we use PDVF to denote the method name of (Raileanu et al., 2020)
rather than the extended value function. For all above baselines, we use the official source codes
provided by PDVF paper (Raileanu et al., 2020). For PAnDR, we implement on these source codes
with almost the same configuration of hyperparameters and structures for a valid comparison.

(A1) Results. As shown in Fig. 3, for the simple Spaceship domain, the overall performance of
PAnDR is significantly better than PDVF and slightly outperfroms MAML. Further in the three
more difficult MuJoCo domains, the leading edge of PAnDR is much more evident and consistent
compared with the two baseline methods, while MAML loses its competitiveness. We consider that
this is because the preferable representations obtained via self-supervised learning and the MI-based
refinement are more effective and robust than those of PDVF. Moreover, with less-constrained ap-
proximation, the more accurate value estimation achieved improves the optimality of policy obtained
during adaptation.

It is worth noting that, perhaps somewhat surprisingly, PAnDR shows competitive and even better
performance when comparing with the powerful PPO baseline trained in the testing environments.
Instead of requiring millions of interactions to optimize a policy, PAnDR only needs limited inter-
acting experiences for fast adaptation. This further reveals the superiority and potential of PAnDR.

7

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0

300

600

900

1 2 3 4 5

PAnDR without MI
PAnDR without MIN MI
PAnDR without MAX MI
PAnDR

Environment

Average Return

(a) Ant-Wind

0

0.25

0.5

0.75

1

1 2 3 4 5
Environment

Average Return

(b) Spaceship-Charge

0

300

600

900

1 2 3 4 5

PDVF PDVF with CER
PDVF with NA-GA PAnDR without MI
PAnDR with QA PAnDR

Average Return

Environment

(c) Ant-Wind

0

0.25

0.5

0.75

1

1 2 3 4 5

Average Return

Environment

(d) Spaceship-Charge

Figure 4: The two figures on the left are the ablations for MI-based representation refinement. The right two
figures are efficacy analysis for contrast environment representation (CER) and neural approximation of PDVF
with GA adaptation (NA-GA) in contrast to quadratic approximation (QA).

4.3 ABLATION STUDY AND ANALYSIS

In this section, we give the answers to Q2 and Q3. We provide main results below, and the complete
results along with detailed analysis are given in Appendix B.

Table 1: Comparison of the variants with respect to three algo-
rithmic factors (Fig. 4). Abbreviations are used, i.e., Dynamics
Prediction (DP), Contrastive Learning (CL).

Alg. / Variant Env. Repre. Vθ Approx. & Policy Opt. If Use MI

PDVF DP Quadratic & Close-form ✗
PDVF with CER CL Quadratic & Close-form ✗

PDVF with NA-GA DP NN Nonlinear & GA ✗
PAnDR without MI CL NN Nonlinear & GA ✗

PAnDR with QA CL Quadratic & Close-form ✓
PAnDR CL NN Nonlinear & GA ✓

(A2-I) MI-based Representation
Refinement. To verify the contri-
bution of the MI minimizing and
maximizing in representation refine-
ment of PAnDR, we compare PAnDR
with its several variants including:
1) PAnDR without MAX MI: re-
moves MI maximizing refinement;
2) PAnDR without MIN MI: re-
moves MI minimizing refinement; 3)
PAnDR without MI: removes both
MI maximizing and minimizing refinements. As shown in Fig.4, both MI minimizing and maxi-
mizing positively contribute to the improvement of PAnDR’s overall performance. It demonstrates
that both MI-based refinement components are indispensable in PAnDR.

(A2-II) Context Contrast for Environment Representation. In Fig.4, we present the efficacy
of context contrast in comparison with dynamics prediction upon both types of Vθ in PDVF and
PAnDR (variants shown in Table 1). As in Fig.4, PDVF with CER has superior performance than
original PDVF while PAnDR without MI outperforms PAnDR with NA-GA. We then conclude that
context contrast is more favorable in both cases of Vθ compared with dynamics prediction.

(A3-I) Vθ Approximation & GA Adaptation. Also with the variants in Table 1, we establish the
comparsions: PAnDR v.s. PAnDR with QA, and PDVF v.s. PDVF with NA-GA. The results shown
in Fig.4 verify that there is a clear advantage of using NN nonlinear approximation of Vθ along with
GA optimization over the quadratic counterpart.

(A3-II) Adaptation Performance against GA Steps. Since there is no longer a closed-form so-
lution to optimization available for Vθ with NN nonlinear approximation, we investigate how con-
secutive steps of GA affect the adpatation performance of PAnDR. The results for various choices of
GA step number are provided in Table 3-8 in Appendix B.3. Moreover, we provide detailed analysis
for useful insights.

5 CONCLUSION AND DISCUSSION

In this paper, we focus on fast adaptation problem with only offline experiences on training envi-
ronments available. Following the paradigm of (Raileanu et al., 2020), we propose a new algorithm
called PAnDR that consists of effective environment and policy representations and better policy
optimization during online adaptation.

In essence, policy adaptation in PAnDR (and PDVF) is a process of policy representation opti-
mization and decoding. Both the two parts are not well studied at present. Optimization in policy
representation space is non-trivial since there is a lack of knowledge on the landscape of the space;
while the decoding of such latent representation can be invalid without carefully handling the un-
certainty (Notin et al., 2021). We consider that they are significant and there is much room for
improvement. In addition, advances in environment and policy representation learning are expected
to further improve the performance of PAnDR.

8

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

ACKNOWLEDGMENTS

The work is supported by the National Science Fund for Distinguished Young Scholars (Grant No.:
62025602), the National Natural Science Foundation of China (Grant Nos.: 11931015, 62106172),
the XPLORER PRIZE, the New Generation of Artificial Intelligence Science and Technology Major
Project of Tianjin (Grant No.: 19ZXZNGX00010), and the Science and Technology on Information
Systems Engineering Laboratory (Grant No. WDZC20205250407).

REFERENCES

A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy. Deep variational information bottleneck. In
ICLR, 2017.

M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba. Learning dexterous in-hand manipulation. IJRR, 39(1):3–20, 2020.

P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin. Club: A contrastive log-ratio upper bound
of mutual information. In ICML, pp. 1779–1788, 2020.

Y. Duan, J. Schulman, X. Chen, P. Bartlett, I. Sutskever, and P. Abbeel. Rl$ˆ2$: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

F. Faccio, L. Kirsch, and J. Schmidhuber. Parameter-based value functions. In ICLR, 2021.

R. Fakoor, P. Chaudhari, S. Soatto, and A. J. Smola. Meta-q-learning. In ICLR, 2020.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In ICML, 2017.

H. Fu, H. Tang, J. Hao, C. Chen, X. Feng, D. Li, and W. Liu. Towards effective context for meta-
reinforcement learning: an approach based on contrastive learning. In AAAI, pp. 7457–7465,
2021.

A. Grover, M. Al-Shedivat, J. K. Gupta, Y. Burda, and H. Edwards. Learning policy representations
in multiagent systems. In ICML, volume 80, pp. 1797–1806, 2018.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multi-
task reinforcement learning. In ICML, pp. 3875–3886, 2020.

J. Harb, T. Schauland D. Precup, and P. Bacon. Policy evaluation networks. arXiv preprint
arXiv:2002.11833, 2020.

K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, pp. 9726–9735, 2020.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel. A survey of generalisation in deep rein-
forcement learning. arXiv preprint arXiv:2111.09794, 2021.

M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for reinforce-
ment learning. In ICML, pp. 5639–5650, 2020.

K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin. Context-aware dynamics model for generalization in
model-based reinforcement learning. In ICML, pp. 5757–5766, 2020.

F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He. A multi-graph attributed
reinforcement learning based optimization algorithm for large-scale hybrid flow shop scheduling
problem. In KDD, pp. 3441–3451, 2021.

P. Notin, J. M. Hernández-Lobato, and Y. Gal. Improving black-box optimization in VAE latent
space using decoder uncertainty. arXiv preprint arXiv:2107.00096, 2021.

C. Packer, K. Gao, J. Kos, P. Krähenbühl, V. Koltun, and D. Song. Assessing generalization in deep
reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

9

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

X. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic control with
dynamics randomization. In ICRA, pp. 1–8, 2018.

B. Poole, S. Ozair, A. Oord, A. Alemi, and G. Tucker. On variational bounds of mutual information.
In ICML, volume 97, pp. 5171–5180, 2019.

R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation to new environments via
policy-dynamics value functions. In ICML, volume 119, pp. 7920–7931, 2020.

K. Rakelly, A. Zhou, C.Finn, S. Levine, and D. Quillen. Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In ICML, volume 97, pp. 5331–5340, 2019.

J. S Schreck, C. W Coley, and K. JM Bishop. Learning retrosynthetic planning through simulated
experience. ACS central science, 5(6):970–981, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive computation and
machine learning. MIT Press, 1998.

H. Tang, Z. Meng, J. Hao, C. Chen, D. Graves, D. Li, C. Yu, H. Mao, W. Liu, Y. Yang, and L. Wang.
What about inputting policy in value function: Policy representation and policy-extended value
function approximator. arXiv preprint arXiv:2010.09536, 2020.

D. Yarats, I. Kostrikov, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In ICLR, 2021.

10

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

APPENDIX

A ENVIRONMENTS SETTING DETAILS

In each domain, we have a variety of environments controlled by corresponding variations. These
variations determine the dynamics and reward functions of environment. Therefore, fast adaptation
is expected to be achieved against these changes. The number of training and testing environments
are provided in Table 2.

Table 2: Domains in our experiments for fast adaptation.

Domain Train/Test Env. No. Variation

Spaceship-Charge 15 / 5 The strength of electric field
Ant-Wind 15 / 5 Direction of wind

Swimmer-Fluid 15 / 5 Direction of the fluid
HalfCheetah-Mass 8 / 5 Joint damping coefficient

B COMPLETE EXPERIMENTAL RESULTS

B.1 PERFORMANCE ON TRAINING ENVIRONMENTS

Although the aim of meta-RL is the fast adaptation to new testing environments, we also present the
results by testing the trained agents on the original training environments, as shown in Fig.5. Obvi-
ously, PPO achieves the best performance in most of the environments thanks to re-learning in each
environment. Although our method is worse than PPO in most training environments, its overall per-
formance is clearly better than MAML and PDVF. In a few environments, PAnDR even surprisingly
outperforms PPO algorithm, which further reveals the superiority and potential of PAnDR.

We find that PAnDR performs poorly in environments 8, 9, 10, 11 and 12. This is because the learn-
ing of our algorithm is based on the offline dataset collected by PPO. Due to the poor performance of
PPO, the collected offline experience is of low quality, and we cannot extract abundant and effective
environment and policy information from it, thus limiting the performance ceiling of our algorithm

The reason for the poor performance of PDVF in the testing environment of HalfCheetah-Mass
showed in Fig.3 can also be summarized from Fig.5. PDVF can’t get satisfactory performances
even in the training environments, so it can’t be expected to generalize in the testing environments
and perform well.

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training Environment

PPO
MAML
PDVF
PAnDR

Average Return

(a) Ant-Wind

-500

0

500

1000

1500

2000

1 2 3 4 5 6 7 8

Training Environment

Average Return

(b) HalfCheetah-Mass

Figure 5: Experimental results of algorithm generalization in training environment.

B.2 IN-DEPTH ANALYSIS OF MI-BASED REFINEMENT

Here we give the results on Swimmer and HalfCheetah in Fig.6. As mentioned in Section 4.3,
both MI minimizing and maximizing positively contribute to the improvement of PAnDR’s overall
performance in all environment, which proves that both MI-based refinement components are indis-
pensable in PAnDR. We also observe a phenomenon from the experiments that the results of using

11

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0

50

100

150

200

1 2 3 4 5

PAnDR without MI
PAnDR without MIN MI
PAnDR without MAX MI
PAnDR

Average Return

Environment

(a) Swimmer-Fluid

0

300

600

900

1200

1 2 3 4 5

Average Return

Environment

(b) HalfCheetah-Mass

Figure 6: Ablations for MI-based representation refinement in remain environments.

0

50

100

150

200

1 2 3 4 5

PDVF PDVF with CER
PDVF with NA-GA PAnDR without MI
PAnDR with QA PAnDR

Average Return

Environment

(a) Swimmer-Fluid

0

300

600

900

1200

1 2 3 4 5

Average Return

Environment

(b) HalfCheetah-Mass

Figure 7: Efficacy analysis for contrast environment representation (CER) and neural approximation of PDVF
with GA adaptation (NA-GA) in contrast to quadratic approximation (QA) in remain environments.

only MI-maximization refinement are slightly worse than those of using only MI-minimization re-
finement in most of the environments. This may mainly due to following two factors. On the one
hand, additional environment-policy joint representations are introduced into the refinement process
compared with that of MI-minimization. An inferior joint representation may result in limited or
sometimes even negative improvements to the policy and environment representations during the
refinement. On the other hand, in contrast to MI-minimization, the current policy representation
space is not further compressed in MI-minimization refinement. As a result, the policy representa-
tion may still contains residual redundant information, which can negatively affect the subsequent
value estimation and online adaptation.

B.3 ADAPTATION PERFORMANCE AGAINST GA STEPS.

During the online adaptation phase, we use the gradient ascent (GA) to optimize the policy repre-
sentation. For this purpose, we conduct experiments of different numbers of steps of gradient ascent,
the results are shown in Table 3 to Table 6. It can be seen that as the number of steps increases, the
performance of the optimized policy also rises gradually.

In Fig.8, we give the distribution of policy performance at each step when the number of steps =
200 in the SpaceShip environment, each policy is randomly sampled as described in Alg.3. It can
be concluded from the figures that different initial policies have different performance trends as
the number of GA steps increases. For example, as showed in Fig.8 Policy 3 Env.1, when the
selected initial policy is inferior, a better result can potentially be obtained by gradient ascent. To
the opposite, when the selected initial policy is an approximated optimal one, GA with multiple steps
may mislead the optimization towards the wrong direction so that the policy’s performance is even
worse as showed in Fig.8 Policy 3 Env.4. However, the more the number of gradients ascending, the
more computation required, and Finally, considering the balance between the additional computation
cost of more GA steps and the optimization of policy, we choose to stop the gradient ascend when
the step reaches to 100 during the adaptation.

However, evaluating the updated policy at each step and then adopting the best-performing one will
lead to heavy computational overhead. To alleviate this problem, we evaluate the updated policy
every K steps. We give the results of different K as shown in Table 7 to Table 10. We can see that
the results of evaluating policy at different GA frequency are relatively acceptable when K ≤ 5,
which can reduce computational cost by more than 50%.

12

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 3: Policy performance against GA steps on Ant

Test Env. / Steps 10 20 50 100 200

1 371.0± 43 388.1± 45 404.9± 43 416.5± 45 428.3± 71
2 472.3± 54 494.9± 58 513.5± 58 528.2± 59 540.6± 67
3 555.5± 67 589.4± 69 612.7± 72 622.3± 76 648.0± 89
4 639.1± 70 665.3± 79 694.8± 86 715.3± 88 730.7± 94
5 668.9± 82 694.5± 92 727.2± 104 752.1± 109 797.2± 97

Table 4: Policy performance against GA steps on Spaceship

Test Env. / Steps 10 20 50 100 200

1 0.556± 0.17 0.630± 0.17 0.661± 0.15 0.698± 0.14 0.793± 0.09
2 0.718± 0.12 0.762± 0.10 0.819± 0.09 0.848± 0.08 0.858± 0.08
3 0.797± 0.08 0.829± 0.006 0.861± 0.06 0.868± 0.06 0.872± 0.06
4 0.753± 0.09 0.801± 0.06 0.837± 0.06 0.853± 0.06 0.869± 0.06
5 0.681± 0.11 0.732± 0.11 0.755± 0.10 0.794± 0.10 0.808± 0.11

B.4 REMAINING ABLATION ANALYSIS

The remaining results of Q2 and Q3 are showed in Fig.6 and Fig.7. The conclusions are consistent
with the ones in Section 4.3: (1) Context contrast is more favorable in designing Vθ both in (Raileanu
et al., 2020) and PAnDR compared with dynamics prediction; (2) NN nonlinear approximation of
Vθ along with GA optimization has clear advantage over the quadratic counterpart.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 OTHER ALGORITHMS EXPERIMENTAL SETTINGS

For PDVF, we use the official source codes from here1. We follow the parameters settings used in
the original paper. After running three seeds on per environment, we found that except for the Ant-
Wind, PDVF cannot achieve the performance neither on Swimmer-Fluid nor Spaceship as reported
in the original paper. Moreover, the source codes take a lot of time in collecting new data during the
second stage for data augmentation. On the same device, the training time of PDVF is about three
times that of PAnDR. Therefore, in our experiments, we abandon the second stage of PDVF and use
the results of the first stage training of 7 seeds.

For MAML, we use the codes from here2. In MAML, in the meta training phase, the update number
is set to 500 and during each update we sample 20 trajectories from each task; in the meta adaptation
phase, the update number is set to 10 and during each update we sample 20 trajectories from each
task.

C.2 EQUIPMENT AND SOFTWARE

All experiments are performed on a Linux server with Ubuntu 18.04 containing 256G of RAM,
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz CPU processor with 56 logical cores, the server
contains 4 Nvidia-2080Ti GPUs. Our codes are implemented with Python 3.7, Torch 1.7.1, gym
0.15.7, and MuJoCo 2.0.2.

C.3 HYPERPARAMETERS SETTING

Before training the encoder networks, we need first to train the PPO agents on the training environ-
ments, and then use these agents to collect data. The hyperparameters setting of the PPO algorithm
is shown in Table 11.

Table 12 shows the training parameters of the encoder networks. The large difference between
the weights of maximizing mutual information and minimizing mutual information is due to the

1https://github.com/rraileanu/policy-dynamics-value-functions
2https://github.com/tristandeleu/pytorch-maml-rl

13

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 5: Policy performance against GA steps on Swimmer

Test Env. / Steps 10 20 50 100 200

1 52.2± 13 54.0± 13 62.6± 14 71.7± 14 80.0± 8
2 83.1± 12 85.1± 12 93.1± 13 103.4± 14 105.7± 14
3 109.4± 12 112.6± 12 121.2± 13 127.8± 14 132.8± 15
4 132.3± 11 135.0± 11 141.9± 12 149.1± 13 154.3± 14
5 144.4± 10 146.8± 10 154.1± 11 161.5± 13 167.4± 14

Table 6: Policy performance against GA steps on HalfCheetah

Test Env. / Steps 10 20 50 100 200

1 385.3± 46 423.3± 48 478.2± 45 508.7± 46 529.4± 62
2 503.0± 58 503.8± 47 632.9± 42 638.6± 37 656.8± 60
3 404.4± 72 591.9± 55 694.5± 53 813.9± 46 816.19± 105
4 536.4± 106 631.0± 104 711.4± 109 724.5± 106 807.3± 138
5 461.3± 107 577.5± 89 657.7± 99 731.4± 108 803.9± 147

different ways of calculating the upper and lower bounds of MI. So we give a larger weight to the
MI minimizing weight to make the smaller loss work as well.

Table 13 gives the main parameters of the value approximation and policy adaptation stage.

D ALGORITHM PSEUDOCODE

Algorithm 1 describes the training process of encoders. First, we trained the environment represen-
tation and policy representation by context contrast and policy recovery, respectively. Then the MI
loss is introduced to further refine the encoder networks.

Algorithm 1: PAnDR: Representation Learning and Refinement

input : Environment encoder ϕe, policy encoder ϕπ , policy decoder ϕdec
π ,

policy-environment encoder ϕb, training set D and hyper-parameters α, β.

1 if use maximum mutual information then
2 Divide D according to the environment and policy to get Di,k;
3 Sample anchor, positive and negative from Di,k;
4 Training ϕb with contrastive loss.
5 for each training step do
6 Sample anchor and positive from Di,·, sample negative from Dj,·, j ̸= i ;
7 Calculate environment encoder contrastive loss LCC with equation 1;
8 Sample data from D·,k =

⋃M
i=1Di,k;

9 Calculate policy recovery loss LPR with equation 2;
10 if use minimize mutual information then
11 Sample data from D ;
12 Using encoder ϕe to get environment embedding ze;
13 Using encoder ϕπ to get policy embedding zπ;
14 Calculate minimize mutual information loss LRD using equation 3;
15 if use maximum mutual information then
16 Sample data from D ;
17 Using encoder ϕe to get environment embedding ze;
18 Using encoder ϕπ to get policy embedding zπ;
19 Using encoder ϕb to get policy-environment joint embedding zb;
20 Calculate maximize mutual information loss LRC using equation 5;

21 Update environment encoder ϕe, policy encoder ϕπ and decoder ϕdec
π with equation 6;

Algorithm 2 and 3 correspond to the training process of the value function and the online adaptation
process of the policy representation, respectively. In Algorithm 2, we formulate the training of value
function as a prediction problem using Monte Carlo return as the label. In Algorithm 3, we describe

14

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 7: Policy evaluation at different GA frequency on Ant

Test Env. / Freq (step) 1 2 5 10 20 Last

1 428.3± 71 407.4± 41 386.4± 37 369.5± 34 351.4± 34 265.8± 36
2 540.6± 67 519.1± 50 485.0± 52 466.2± 54 452.7± 55 335.7± 52
3 648.0± 89 626.0± 61 604.5± 57 587.7± 62 565.5± 64 402.6± 73
4 730.7± 94 707.7± 66 679.2± 71 663.8± 75 649.1± 76 463.6± 89
5 797.2± 97 773.3± 65 739.7± 69 716.9± 73 680.1± 78 504.8± 99

Table 8: Policy evaluation at different GA frequency on Spaceship

Test Env. / Freq (step) 1 2 5 10 20 Last

1 0.793± 0.09 0.724± 0.14 0.630± 0.16 0.567± 0.16 0.520± 0.16 0.203± 0.15
2 0.858± 0.08 0.833± 0.09 0.729± 0.14 0.684± 0.14 0.664± 0.14 0.187± 0.13
3 0.872± 0.06 0.858± 0.06 0.827± 0.07 0.800± 0.07 0.770± 0.09 0.17± 0.11
4 0.869± 0.06 0.836± 0.06 0.822± 0.07 0.809± 0.07 0.770± 0.09 0.211± 0.11
5 0.808± 0.11 0.789± 0.10 0.767± 0.11 0.745± 0.12 0.707± 0.12 0.21± 0.13

the optimization of the policy representation by gradient ascent along the direction of increasing
values of Vθ.

Algorithm 2: PAnDR: Value Function Network Approximation
input : Environment encoder ϕe, policy encoder ϕπ , training set D and value estimation

network Vθ .

1 for each training step do
2 Sample episode τ = (si, ai, si+1)

T
i=0 and episode reward G(s0);

3 Input τ into environment encoder ϕe to get environment embedding ze;
4 Input τ into policy encoder ϕπ to get policy embedding zπ;
5 Update Vθ with equation 7;

E RELATED WORK

E.1 META-RL

Meta-RL is meta-learning in the field of RL that the training and testing tasks are drawn from the
same family of problems while having different components such as reward probabilities, environ-
mental dynamics and so on. Common meta-RL methods are mainly divided into three classes. The
first class is the model-based meta-RL, Duan et al. (2016) uses a RNN structure to record historical
information in the agent model and incoporate task-related knowledge into the model parameters.
The second class is the optimization-based meta-RL methods. A representative method is (Finn
et al., 2017) that use base-learners to collect data on different subtasks and then use a meta-learner
to learn from these data. However, both model-based and optimization-based method requires on-
policy learning, of which the sampling efficiency is poor. The third class is the context-based meth-
ods which propose to train an encoder in multi different environments to extract the environmental
information. The context of new environments is inferred using a small amount of data collected
during the initial limited interactions. Then the context is used as the input of the policy and value
networks to help the agent quickly adjust its policy and adapt to the new environments. The encoder
is expected to capture the different task information. In (Rakelly et al., 2019; Fakoor et al., 2020),
the encoder networks are learned based on the reward signal. In (Fu et al., 2021), the encoder is
trained on the trajectories through contrastive learning. However, training context encoders using
reward signals maybe unstable while directly using trajectories may introduce redundant informa-
tion as the encoder learned based on trajectory may contains policy information. Recently, Raileanu
et al. (2020) uses a predictive approach to try to extract environment context and policy context sep-
arately, but they are not completely decoupled. In contrast to these methods, our PAnDR can extract
and refine policy and environment embeddings to obtain the decoupled representations.

15

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 9: Policy evaluation at different GA frequency on Swimmer

Test Env. / Freq (step) 1 2 5 10 20 Last

textbf1 80.0± 8 73.9± 13 54.5± 13 52.8± 13 51.0± 12 42.0± 12
2 105.7± 14 104.7± 14 86.0± 14 85.2± 14 83.0± 14 74.0± 13
3 132.8± 15 129.9± 13 110.7± 14 109.1± 14 108.0± 14 98.9± 13
4 154.3± 14 151.4± 13 136.2± 14 135.1± 13 133.4± 12 123.4± 13
5 167.4± 14 164.0± 13 149.6± 13 148.1± 12 145.8± 11 134.8± 10

Table 10: Policy evaluation at different GA frequency on HalfCheetah

Test Env. / Freq (step) 1 2 5 10 20 Last

1 529.4± 62 524.5± 45 521.7± 50 494.4± 49 486.9± 46 314.0± 92
2 656.8± 60 642.1± 67 636.7± 62 613.8± 62 591.4± 70 312.2± 96
3 816.19± 105 781.5± 56 681.6± 74 645.7± 74 578.8± 83 272.2± 97
4 807.3± 138 742.5± 94 577.4± 104 519.6± 108 410.2± 116 93.6± 126
5 803.9± 147 754.5± 101 463.6± 152 392.6± 147 280.9± 129 −91.2± 146

E.2 REPRESENTATION LEARNING

Due to the high complexity of the policy space in RL, it is difficult to directly optimize the policy in
this space. Therefore, a possible way is to map the original high-dimensional policy space to a low-
dimensional representation space and optimizing the policy in this representation space. In this way,
one can greatly reduce the difficulty of searching for the optimal policy in the policy space. Some re-
cent works focus on the policy representation and use the policy representation as auxiliary input to
the value function. For example, PDVF (Raileanu et al., 2020) used this idea in meta-RL. It’s trained
by using state and policy representations to predict corresponding action. Harb et al. (2020) uses the
actions that policy sampled in probing states as policy representations. There are also some articles
(Faccio et al., 2021; Tang et al., 2020) that use policy network parameters as policy representations.
Then given the policy representation, by gradient ascent, the policy representation can be updated
along the direction of increasing the values of value function. In this way, one can find an approx-
imated optimal policy without the overhead of interacting with the environment. However, how to
characterize the policy in a reasonable and efficient way and whether the policy representation can
improve the meta-RL is still an open challenge. In contrast to policy representation, environment
representation is usually applied in context-based meta-RL. There are two common ways to extract
envionment representations. One way is to predict future information based on the information of
current steps (Raileanu et al., 2020; Guo et al., 2020). The other way is to extract representations
based on contrastive learning (Fu et al., 2021). The goal of contrastive learning is to learn an embed-
ding space in which similar sample pairs stay close to each other while dissimilar ones are far apart.
A metric is then given to measure the similarity of the feature representations of these samples and
a discriminative encoder is trained to group data with similar embedding while distinguish data with
dissimilar embedding. Then the learned representations are used for downstream tasks. PAnDR
also use contrastive learning to extract representations. We follow the training framework and the
infoNCE loss used in CURL (Laskin et al., 2020). But we take a different approach than CURL to
construct positive and negative examples. Details are given in Sec. 3.

Algorithm 3: PAnDR: Policy Adaptation via Representation Gradient Ascent

input : Environment encoder ϕe, policy encoder ϕπ , policy decoder ϕdec
π , value estimate

network Vθ and a initial policy π.

1 Sample a trajectory τ = (si, ai, si+1)
K
i=0 using policy π;

2 Input τ into environment encoder ϕe to get environment embedding zon
e ;

3 Input τ into policy encoder ϕπ to get policy embedding z0π;
4 for t = 0, ..., N do
5 Update policy embedding: zt+1

π = ztπ + η∇ztπ
Vθ(s, zon

e , z
t
π);

6 Using policy decoder ϕdec
π based on z∗π to output action to interact with new environment.

16

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Table 11: Hyperparameters Setting of PPO

Hyperparameters Value
Batch size 32

Training steps 1e6
ϵ 0.2

Learning rate 3e-4
γ 0.99

Number of trajs. collected under each Env. 50

Table 12: Hyperparameters Setting of Encoder Networks

Hyperparameters Value
Training episodes 3000
ϕπ learning rate 0.01
ϕe learning rate 0.001
ψ1 learning rate 0.005
ψ2 learning rate 0.005

The weight of MIN MI loss α 1000
The weight of MAX MI loss β 1

The dimension of ze 8
The dimension of zπ 8
The dimension of zb 8

Table 13: Hyperparameters Setting of Value Approximation and Policy Adaptation

Hyperparameters Value
Training episodes 3000

Learning rate 0.005
Batch size 128

The steps for gradient ascent in adaptation 100

17

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.1 Policy1

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.2 Policy1

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy1

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.4 Policy1

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.5 Policy1

(a) Policy 1 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.1 Policy2

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy2

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy2

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy2

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy2

(b) Policy 2 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy3

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy3

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy3

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.4 Policy3

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.5 Policy3

(c) Policy 3 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy4

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy4

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy4

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.4 Policy4

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.5 Policy4

(d) Policy 4 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.3 Policy5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y-
ax

is

Env.4 Policy5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

Y-
ax

is

Env.5 Policy5

(e) Policy 5 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy6

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy6

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy6

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.4 Policy6

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.5 Policy6

(f) Policy 6 Env. 1 to Env. 5

Figure 8: Episodic MC return distribution of adapted policy during GA process.

18

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y-
ax

is

Env.1 Policy7

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.2 Policy7

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.3 Policy7

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy7

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Y-
ax

is

Env.5 Policy7

(g) Policy 7 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy8

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy8

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy8

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy8

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy8

(h) Policy 8 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy9

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy9

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy9

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy9

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy9

(i) Policy 9 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.1 Policy10

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy10

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y-
ax

is

Env.3 Policy10

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy10

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Y-
ax

is

Env.5 Policy10

(j) Policy 10 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy11

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy11

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.3 Policy11

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy11

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy11

(k) Policy 11 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.1 Policy12

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy12

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy12

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy12

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Y-
ax

is

Env.5 Policy12

(l) Policy 12 Env. 1 to Env. 5

Figure 8: Episodic MC return distribution of adapted policy during GA process.

19

Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy13

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy13

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy13

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy13

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy13

(m) Policy 13 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.1 Policy14

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.2 Policy14

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y-
ax

is

Env.3 Policy14

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

Y-
ax

is

Env.4 Policy14

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy14

(n) Policy 14 Env. 1 to Env. 5

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.1 Policy15

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

Y-
ax

is

Env.2 Policy15

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.2

0.4

0.6

0.8

Y-
ax

is

Env.3 Policy15

0 25 50 75 100 125 150 175 200
X-axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y-
ax

is

Env.4 Policy15

0 25 50 75 100 125 150 175 200
X-axis

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y-
ax

is

Env.5 Policy15

(o) Policy 15 Env. 1 to Env. 5

Figure 8: Episodic MC return distribution of adapted policy during GA process.

20

	Introduction
	Preliminaries
	Reinforcement Learning
	Mutual Information Optimization

	Methodology
	Self-supervised Representation Learning
	MI-based Representation Refinement
	Value Approximation and Policy Adaptation

	Experiment
	Setup
	Performance Comparison
	Ablation Study and Analysis

	Conclusion and Discussion
	Environments Setting Details
	Complete Experimental Results
	Performance on Training Environments
	In-depth Analysis of MI-based Refinement
	Adaptation Performance against GA Steps.
	Remaining Ablation Analysis

	Additional Experimental Details
	Other Algorithms Experimental settings
	Equipment and Software
	Hyperparameters Setting

	Algorithm Pseudocode
	Related Work
	Meta-RL
	Representation Learning

