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Abstract—Channel simulation algorithms can efficiently en-

code random samples from a prescribed target distribution

Q and find applications in machine learning-based lossy data

compression. However, algorithms that encode exact samples

usually have random runtime, limiting their applicability when a

consistent encoding time is desirable. Thus, this paper considers

approximate schemes with a fixed runtime instead. First, we

strengthen a result of Agustsson and Theis [1] and show that

there is a class of pairs of target distribution Q and coding

distribution P , for which the runtime of any approximate scheme

scales at least super-polynomially in D1[Q k P ]. We then show,

by contrast, that if we have access to an unnormalised Radon-

Nikodym derivative r / dQ/dP and knowledge of DKL[Q k P ],
we can exploit global-bound, depth-limited A* coding [2] to en-

sure DTV [Q k P ]  ✏ and maintain optimal coding performance

with a sample complexity of only exp2

�
(DKL[Q k P ]+o(1) )

�
✏
�
.

I. INTRODUCTION

One-shot channel simulation is a communication problem
between two parties, Alice and Bob, who share a probabilistic
model over a pair of correlated random variables x,y ⇠ Px,y,
as well as a source of common randomness. In one round of
communication, Alice receives a sample y ⇠ Py and needs
to send the minimum number of bits to Bob, so that he can
simulate a sample x ⇠ Px|y.

Solutions to this problem provide an alternative to quanti-
zation and entropy coding for implementing transform coding.
Thus, efficient channel simulation protocols have far-reaching
applications in machine learning-based data compression, as
we can use them to turn essentially any generative model into
a lossy compression algorithm [1], [3]–[6]. Furthermore, chan-
nel simulation provides unique advantages over quantization-
based transform coding in many scenarios, such as when in
addition to the rate-distortion trade-off we consider realism
constraints [7], [8] or differential privacy [9].

Unfortunately, under a reasonable computational model of
sampling, exact channel simulation in general is hopelessly
difficult. Concretely, for a given y ⇠ Py, let us set P  Px

and Q Px|y for brevity. The standard computational model
of channel simulation protocols assumes that Alice and Bob’s
shared randomness takes the form of an infinite sequence of
i.i.d. P -distributed samples (X1, X2, . . .) and Alice has to
select an index N , such that XN ⇠ Q. Then, under mild
assumptions on the selection rule, Goc and Flamich [10] show
that the sample complexity, i.e. the number of samples Alice

needs to examine on average from the sequence before she can
determine N , is at least exp2(D1[Q k P ]), where D1[Q k P ]
is the Rényi 1-divergence and exp2(x) = 2x.

It is thus natural to ask whether relaxing the requirement that
the law PXN of the selected sample be exactly Q could help
reduce the computational complexity of channel simulation
algorithms. This question is related to previous investigations
by Chatterjee and Diaconis [11], Agustsson and Theis [1],
and Block and Polyanskiy [12], who considered approximate
sampling without regard for how efficiently the sample can
be encoded. In this paper, we build on these works and
strengthen some of their relevant results. Interestingly, we
find that approximate channel simulation is not harder than
approximate sampling. In fact, taking inspiration from the
channel simulation literature we can improve sample complex-
ity bounds in general, as we demonstrate in Section V.

Contributions. The goal of our paper is to determine the
sample complexity required for approximate channel simula-
tion under different computational assumptions. In particular,

1) We strengthen a result of Agustsson and Theis, and show
that approximate sampling is prohibitively expensive for
general distributions. Concretely, we show that under the
standard complexity-theoretic assumption that P 6= RP ,
there is no algorithm whose runtime scales polynomially
in D1[Q k P ] and which can output an approximate
sample with law eQ such that DTV [ eQ k Q]  1/12.

2) We give an improved variant of Block and Polyanskiy’s
approximate rejection sampler [12], that can achieve
DTV [ eQ k Q]  ✏ with a sample complexity of

ln

✓
1

(1� �)✏
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Df [Q k P ]
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◆

for any f -divergence and � 2 (0, 1). While this might
seem to contradict our first result, we clarify that this
requires exact knowledge of Df [Q k P ] and dQ/dP .

3) We demonstrate that global-bound, depth-limited A*
coding [2] can achieve DTV [ eQ k Q]  ✏ error with
a sample complexity of exp2((DKL[Q k P ] + c)/✏) for
c = e

�1 log2 e+ 1.

II. BACKGROUND

Notation. For two real numbers a, b we define the infix
notation a^b = min{a, b} and a_b = max{a, b}. We denote



the base two logarithm as log2 and its inverse function as
exp2. Likewise, we denote the natural logarithm as ln and its
inverse function as exp. Let Q and P be probability measures
over the measurable space (⌦,A); we will always assume that
⌦ is Polish. Then, we define their total variation distance as
DTV [Q k P ] = supB2A|Q(B)�P (B)|. Furthermore, assum-
ing Q⌧ P and denoting their Radon-Nikodym derivative as
r = dQ/dP , we define the Kullback-Leibler divergence of Q
from P as DKL[Q k P ] = EX⇠Q[log2 r(X)] and the Rényi
1-divergence as D1[Q k P ] = log2krk1, where k·k1 is the
P -essential supremum of a P -measurable function. Finally, let
F={f : [0,1)! R�0[{1} | f convex, f(1)=0, f 0(1)=0}.
Then, for an f 2 F we define the f -divergence of Q from P

as Df [Q k P ] = EX⇠P [f(r(X))].
One-shot channel simulation (OSCS), also known as relative

entropy coding [4] or reverse channel coding [13], is a
communication problem between two parties, Alice and Bob,
and is defined as follows. Let x,y ⇠ Px,y be a pair of random
variables, whose law is known to both parties. Furthermore,
we assume that Alice and Bob share a source of common
randomness S . In one round of channel simulation, Alice
receives a symbol y ⇠ Py and sends the minimum number
of bits to Bob such that he can simulate a sample x ⇠ Px|y
using S . Surprisingly, it can be shown that Alice needs to send
only I[x ; y] + log2(I[x ; y] + 1) + 4.732 bits on average to
achieve this [14].

Selection samplers and sample complexity. In practice, we
are also concerned with the encoding time of the channel
simulation algorithm. However, we first need to establish a
reasonable model of computation within which we can make
sense of runtime. One could use notions from computational
complexity theory, where runtime can be associated with the
number of steps taken by a universal Turing machine that exe-
cutes the sampling algorithm, we consider such a framework in
Section IV. However, we are also interested in purely statistical
or information theoretical properties of sampling; we focus on
a natural formulation of sample complexity for a certain class
of sampling algorithms. We define this class of algorithms
below, taking inspiration from [10, Definition A.2].

Definition II.1 (Selection samplers). Let Q⌧ P be probabil-
ity measures over some space ⌦. Let (Xi)i2N be a sequence
of i.i.d. P -distributed random variables. A selection sampler
selectsan index, modeled by some random variable N over N,
and returns a sample XN . Moreover,

• if Law (XN ) = Q we say that the sampler is exact.
• if DTV [Law (XN ) k Q]  ✏ for some ✏ > 0 we say that

the sampler is ✏-approximate.
Finally, if there is a constant k 2 N such that N  k then
we call k the sample complexity of the sampler. If there is a
stopping time K adapted to the sequence (Xi)i2N such that
1  N  K then we say that the sampler is A*-like and call
E[K] its sample complexity.

Intuitively, an A*-like sampler needs to examine K proposal
samples, after which it has to select one of the samples it
already examined to output a sample from the target. We

can now precisely state the result of Goc and Flamich [10]
mentioned in the introduction: the sample complexity of any
exact A*-like sampler is at least exp2(D1[Q k P ]).

A* coding. We now briefly describe global-bound A* coding
[2], the namesake of Definition II.1, as we will utilise it in
Sections V and VI. The algorithm is equivalent to the Poisson
functional representation [15] and is based on A* sampling
[16]. Given the shared sequence (Xi)i2N of i.i.d. P -distributed
samples and the (potentially unnormalized) Radon-Nikodym
derivative er / dQ/dP , A* coding selects the sample with
index N = argmaxk2N{ln er(Xk) + Gk}, where G1 is a
Gumbel random variable with mean 0 and scale 1, and for
k > 1 each Gk | Gk�1 is a standard Gumbel random variable
truncated to (�1, Gk�1). While the maximisation to select
N is over all positive integers, it can be shown [17] that it
is sufficient to examine the first K elements of the sequence,
where K is a geometric random variable with mean kerk1.

III. WHY CHARACTERISE APPROXIMATE CHANNEL
SIMULATION USING TOTAL VARIATION?

A crucial detail to consider in studying approximate channel
simulation protocols is how we ought to measure the approx-
imation error. In this section, we present some arguments for
why total variation distance is an appropriate choice.

Our main motivation stems from the following “one-shot”
interpretation of the total variation distance. Let a sample X

follow distribution Q or eQ with probability 1/2. Then the
probability that an optimal observer can successfully tell which
of the two distribution a given sample X follows is [18], [19]:

psuccess =
1

2
DTV [Q k eQ] +

1

2
.

Identifying Q with the target distribution of a channel simu-
lation algorithm and eQ with its output distribution, we see
the above characterisation aligns well with our goal: we
are interested in the quality of a single encoded sample, as
opposed to the quality of quantities derived from samples.

Furthermore, providing guarantees on the total variation
integrates well with our main application of interest: lossy data
compression with realism constraints, or the rate-distortion-
perception trade-off [7], [19], [20]. For this argument, we
briefly describe how lossy data compression is usually imple-
mented using transform coding. We first encode a stochastic
representation x⇠Q of some data y⇠Py using a channel sim-
ulation algorithm, and use some measurable transformation g

(usually a neural network) to recover the data: y0=g(x). Now,
in addition to the rate and the distortion of our compressor, we
are also interested in controlling its output distribution, given
by the pushforward measure Py0 = g⇤Q. In the usual, adver-
sarial formulation of realism we require DTV [Py k Py0 ]  �,
where � = 0 corresponds to perfect realism [7], [19].

Now, assume that we wish to use an ✏-approximate scheme
to encode a sample from Q instead of an exact one, resulting
in a sample with distribution eQ with DTV [ eQ k Q]  ✏. Then
the output distribution is given by g⇤ eQ, so the realism of
our transform coder depends on both the transform g and the



channel simulation protocol we use. By applying the triangle
inequality, we can bound the realism error as

DTV [Py k g⇤ eQ]  DTV [Py k g⇤Q] +DTV [g⇤ eQ k g⇤Q]

 DTV [Py k g⇤Q] +DTV [ eQ k Q]

 � + ✏,

where the second inequality uses the data processing inequality
and the third applies the assumed bounds on the TV distances.
The practical significance of this decomposition is that in
machine-learning-based pipelines, where g is usually a neural
network and we wish to learn its parameters, it provides
principled justification for optimizing DTV [Py k g⇤Q], which
can be done relatively easily using adversarial methods [21],
instead of DTV [Py k g⇤ eQ].

Finally, on a more technical note, we consider an error
bound proposed by Chatterjee and Diaconis [11] for self-
normalized importance sampling that has been adapted to min-
imal random coding [3] and A* coding [2]. To state the bound,
write eQn for the approximate distribution of the procedure;
consider a sample complexity of n = exp2(DKL[Q k P ] + t)
for some t � 0; then for any measurable function f , we have

P

���E eZ⇠ eQn
[f( eZ)]� EZ⇠Q[f(Z)]

��� �
2kfk✏

1� ✏

�
 2✏, (1)

✏ =

 
2

�t
2 + 2

s

PX⇠Q


log2

dQ

dP
(X)�DKL[Q k P ]+

t

2

�! 1
2

and kfk denotes the L
2(Q) norm of f . It might appear that the

error ✏ vanishes exponentially quickly in the quantity t, which
was introduced as an additive overhead to DKL[Q k P ], at
odds with the results from [1], [12]. To resolve this conflict,
first note that this bound applies to a test function f rather than
providing a one-shot guarantee on the approximate sample.
Secondly, as noted in [11], the bound is only meaningful when
log2

dQ
dP (X) is concentrated; we present a simple calculation

in Appendix B that shows that for certain pairs of distributions,
ensuring a given tolerance in fact requires t to scale with
DKL[Q k P ], corresponding to a much larger sample size.
In Appendix B we also present a (strict) strengthening of this
bound inspired by ideas that we will develop in Section V.

IV. IMPROVING A RESULT OF AGUSTSSON AND THEIS

In this section, we strengthen the result of [1] on the compu-
tational hardness of approximate sampling. However, before
we begin, we make some definitions that we will use later.

Definition IV.1 (Restricted Boltzmann Machine (RBM)). For
some integer M , let ⌦ = {0, 1}M and let a,b 2 R

M and
A 2 R

M⇥M . Then, the RBM distribution Q with parameters
✓ = {a,b,A} is given by the probability mass function

q(z) /
X

h2⌦

exp
�
a>z+ h>Az+ b>h

�
. (2)

Definition IV.2 (Efficiently evaluatable representation). For
positive integers N,M a function f : {0, 1}N ! {0, 1}M is
an efficiently evaluatable representation of a distribution Q if:

1) f consits of a Boolean circuit of poly(M) size and
N = poly(M) input bits and M output bits.

2) For B ⇠ Unif
�
{0, 1}N

�
, we have f(B) ⇠ Q.

Theorem IV.1. Consider an algorithm which receives the
parameters of an arbitrary RBM Q of problem size M as
input and has access to an unlimited number of i.i.d. random
variables Zn ⇠ P , where P is the uniform measure over
{0, 1}M . It outputs eZ ⇠ eQ with DTV

h
eQ
��� Q

i
 1/12. If

RP 6= NP , there is no such algorithm with poly(D1[Q k P ])
time complexity.

Proof. The proof follows the proof of Agustsson and Theis
[1] mutatis mutandis, which we repeat here for completeness.

The high-level idea is that for such pairs of distributions
Q⌧ P , even evaluating their Radon-Nikodym derivative r =
dQ/dP is difficult. To this end, we make use of the result of
Theorem 13 of Long and Servedio [22]:

Theorem IV.2. If RP 6= NP , then there is no polynomial-
time algorithm with the following property: Given parameters
✓ = (A,a,b) as input, the algorithm outputs an efficiently
evaluatable representation of a distribution whose total varia-
tion distance from an RBM with parameters ✓ is at most 1/12.

Now, fix some positive integer M and fix some ✓ as given in
Theorem IV.2. Assume there is an algorithm A which outputs
eZ ⇠ eQ in  (D1[Q k P ]) steps with DTV

h
eQ
��� Q

i
 1/12

for some polynomial  . We compute

D1[Q k P ] = log2 max
z2⌦

⇢
q(z)

2�M

�
 log2

⇢
1

2�M

�
= M . (3)

Then by Equation (3) the computational complexity of A is
at most N =  (M). In that time, A can examine at most
N random variables Zn; since the input random variables
are i.i.d., we can assume without loss of generality that A

examines the first N of them. Since the proposal P is the
uniform measure on {0, 1}M , these N variates correspond to
an input of M ·  (M) = poly(M) uniformly random bits.
This is an efficiently evaluatable representation of eQ, which
contradicts Theorem IV.2, assuming RP 6= NP .

V. IMPROVING THE SCHEME OF BLOCK AND POLYANSKIY

Recently, Block and Polyanskiy [12] have shown that by
modifying rejection sampling [23], we can achieve ✏ error in
total variation at a sample complexity of

k =
2

1� ✏
ln

✓
2

✏

◆
(f 0)�1

✓
4 ·Df [Q k P ]

✏

◆
_ 2. (4)

In particular, as a special case of the above equation we get
that k = O(exp2(4 · DKL[Q k P ]/✏)). Note that, in general,
we can have DKL[Q k P ]⌧ D1[Q k P ] so this might seem
at odds with Theorem IV.1. To reconcile these two results, we
highlight that additional assumptions were needed in Block
and Polyanskiy’s scheme to achieve this improved sample
complexity: we need to be able to compute Df [Q k P ] as well
as evaluate dQ/dP exactly. By contrast these are not given in
the setup of [1], and it is shown in [22, Theorem 8] that it



Algorithm 1: Depth-limited A* coding.
Input : Sequence (Xi)i2N of i.i.d. P -distributed

samples, target Q defined via er / dQ/dP ,
computational budget k

N, Y,G0, L (0,?,1,�1)
for i = 1 to k do

Gi ⇠ TruncGumbel(0, 1)|(�1,Gi�1)

if L < ln er(Xi) +Gi then

L ln er(Xi) +Gi

N,Y  i,Xi
end

end

return N,Y

is computationally hard to even approximate the normalizing
constants corresponding to densities in Equation (2) to within
an exponentially large factor!

The approximate rejection sampler: We now describe the
three key ideas of Block and Polyanskiy to modify rejection
sampling [23] to get an approximate scheme for some target
Q and proposal P :

1) They fix a budget k 2 N and if the rejection sampler
does not terminate, they pick one of the proposed
samples at random. Denoting the output distribution of
the budgeted sampler as eQ and its termination step as
K, the sampler’s error is

DTV [ eQ k Q] = P[K>k]DTV [Q k P ]  P[K>k] (5)

2) Since P[K > k] in Equation (5) depends on D1[Q k P ],
they propose to use a truncated target QM , defined via
its Radon-Nikodym derivative

dQM

dP
(x) / 1


dQ

dP
(x) M

�
·
dQ

dP
(x). (6)

Then, using QM in the rejection sampler with a budget
of k samples will have distribution eQM .

3) They show that for a fixed ✏ > 0, setting

M = (f 0)�1(4 ·Df [Q k P ]/✏)

and k as in Equation (4) yields DTV [ eQM k QM ]  ✏/2
and DTV [QM k Q]  ✏/2. Combining these two
inequalities and applying the triangle inequality then
yields the desired guarantee DTV

h
eQM

��� Q

i
 ✏ at the

sample complexity given in Equation (4).
We now propose several small improvements to this scheme.

In this section, we focus on the sample complexity of the
improved scheme and deal with encoding the approximate
samples in Section VI.

Useful quantities and identities: inspired by [10], take
wQ(h) = PX⇠Q[r(X) � h], wP (h) = PX⇠P [r(X) � h], and
WP (h) =

R h
0 wP (⌘) d⌘, SP (h) = 1 �WP (h). Note, that by

Fubini,
Z 1

0

=wP (h)z }| {
PX⇠P [r(X) � h] dh = EX⇠P [r(X)] = 1.

This, taken together with the fact that wP � 0 shows that we
can interpret it as the probability density of a random variable
H . Thus, we can also interpret WP as WP (h) = P[H  h],
and similarly SP (h) = P[H > h] as H’s survival function.
Now, for any f 2 F and a � 1, we can bound SP by noting

f
0(a)P[H > a] = f

0(a)

Z 1

a
wP (h) dh



Z 1

a
f
0(h)wP (h) dh



Z 1

1
f
0(h)wP (h) dh

=

Z

⌦
(

Z 1

1
f
0(h)1[r(x) � h]dh)dP (x)

=

Z

⌦
1[r(x) � 1]f(r(x)) dP (x)

 Df [Q k P ],

where the second equality follows from Fubini (positive in-
tegrand), the third equality from the fundamental theorem of
calculus, and we exploit f � 0 = f(1). Rearranging, we get

SP (a)  Df [Q k P ]/f 0(a). (7)

Next, note that

WP (h) =

Z

⌦

Z h

0
1[r(x) � ⌘] d⌘ dP (x)

=

Z

⌦
r(x) ^ h dP (x) (8)

=

Z

x:r(x)�h
h dP (x) +

Z

x:r(x)h
r(x) dP (x)

= h · wP (h) + (1� wQ(h)).

Rearranging the terms, we find

SP (h) = wQ(h)� h · wP (h). (9)

Better approximate target distribution for a tighter bound:

The truncated target in Equation (6) is a rough approximation
of Q. Instead, we propose a better approximation that will also
lend itself to simpler analysis and will allow us to improve
Equation (4). We define this through its density

dQM

dP
(x) = rM (x) =

r(x) ^M

WP (M)
. (10)

That WP (M) normalises r(x)^M follows from Equation (8).
Now, set fM = M/WP (M). In Appendix A we show that

DTV [QM k Q] = SP (fM)
eq. (7)


Df [Q k P ]

f 0(fM)
(11)

We now substitute this improved truncation into Block and
Polyanskiy’s scheme to improve upon Equation (4). Let ✏ be
given, and let � 2 (0, 1) a constant that we have yet to choose.
By a standard result for rejection sampling, K is geometrically
distributed with mean krMk1 = M/WP (M) = fM . Thus,

P[K > k] =

✓
1�

1
fM

◆k

 exp

✓
�

k

fM

◆
. (12)



Setting k � fM ln(1/(1� �)✏) thus gives DTV [ eQM k QM ] 
(1� �)✏. Furthermore, by Equation (11), setting

fM = (f 0)�1

✓
Df [Q k P ]

�✏

◆

will guarantee DTV [QM k Q]  �✏. Combining these facts
with the triangle inequality shows that for a fixed ✏ > 0, a
sample complexity of

k � ln

✓
1

(1� �)✏

◆
(f 0)�1

✓
Df [Q k P ]

�✏

◆
(13)

is sufficient to achieve ✏ error in the TV distance. Since the
dependence on (1 � �) is only logarithmic, the bound will
often be tightest by taking � very close to 1. This improves
on Equation (4) by reducing the coefficient of Df [Q k P ] from
4 to a constant 1/� that can be taken arbitrarily close to 1, re-
moving the 2/(1�✏) coefficient in the bound and additionally
removing the requirement that k be at least 2. In practice,
we can compute M from fM by numerically inverting the
function h 7! h/WP (h). This function is strictly increasing
on a suitable domain by a simple calculation in Appendix A.
In the rest of Appendix A, we also derive cleaner bounds for
exact rejection sampling from QM (allowing random runtime),
and show that our truncation is optimal in a certain sense.

Replacing rejection sampling by global-bound A* sampling

yields identical analysis. Indeed, if we use the truncated target
QM , the index K at which we can guarantee termination
is again geometrically distributed with mean krMk1 [17].
Remarkably, we in fact only need access to an unnormalised
version of r̃M / rM to run the algorithm, though we would
also need knowledge of Df [Q k P ] to compute the sample
complexity in Equation (13).

Depth-limited A* sampling yields better bounds without

needing truncation. Using depth-limited A* sampling, as
described in Algorithm 1, again only requires access to an
unnormalised density ratio, but now is well behaved even when
this density ratio is unbounded. Indeed, there is now no need
for truncation; we next obtain tighter bounds by working with
the original target distribution Q and basing the bounds on
the index N of the accepted sample instead of the sampler’s
runtime K.

As before, we use Equation (5) to obtain the bound
DTV [ eQ k Q]  P[N > k] for a fixed sample complexity k.
Now, note that by Markov’s inequality, we have

P[N > k] = P[log2 N > log2 k]


E[log2 N ]

log2 k


DKL[Q k P ] + e

�1 log2 e+ 1

log2 k
, (14)

where the last equality follows from the identity given in
Appendix A of [15]. Note that the bound in Equation (14) does
not depend on krk1. Therefore, for a fixed ✏ > 0, choosing

k = exp2

✓
DKL[Q k P ] + e

�1 log2 e+ 1

✏

◆
(15)

yields the desired bound DTV [ eQ k Q]  ✏. Equation (15)
significantly improves Equation (4), and is close to being
worst-case optimal [12, Theorem 5]. It also significantly
improves a result of Theis and Yosri [13, Corollary 3.2], which
requires that k = O(exp2(D1[Q k P ])) to guarantee the same
✏ total variation error.

Remark. We can obtain almost-optimal ✏-approximate sam-
ple complexities similar to Equation (15) by using ordered
random coding [13], greedy Poisson rejection sampling [24]
or greedy rejection coding [25], [26] and modifying the
arguments that yield Equation (14) appropriately. Furthermore,
via similar arguments we can also obtain linear-in-the-KL sam-
ple complexities for the branch-and-bound variants of these
algorithms when ⌦ is one-dimensional and r̃ is unimodal.

VI. APPROXIMATE CHANNEL SIMULATION USING THE
IMPROVED SCHEME

Unfortunately, an issue with Block and Polyanskiy’s sampler
is that it cannot be used for channel simulation. As we show in
Appendix C, H[N ] � 4 ·I[x ; y]/✏, which is much worse than
the optimal upper bound of I[x ; y]+log2(I[x ; y]+1)+O(1).

Thankfully, this can also be fixed by replacing rejection
sampling with A* coding. For some fixed target Q and
proposal P , let N denote the index returned by A* coding, and
let N 0 denote the index returned by Algorithm 1, i.e. depth-
limited A* coding with given a budget of k samples. Then,

N
0 = argmax

n2{1,...,k}
{ln er(Xk) +Gk}

 argmax
k2N

{ln er(Xk) +Gk} = N

Hence, we have E[log2 N
0]  E[log2 N ]. We encode N

0 using
the ⇣-distribution ⇣(n | �) / n

��. Li and El Gamal [15] show
that by setting � = 1 + 1/(I[x ; y] + e

�1 log2 e+ 1) we get

H[N 0] < I[x ; y] + log2(I[x ; y] + 1) + 4, (16)

meaning we can encode our sample at the optimal rate.

VII. DISCUSSION AND FUTURE WORK

To summarise our results: ✏-approximate sampling has
computational complexity super-polynomial in D1[Q k P ]
without further assumptions. When DKL[Q k P ] is known,
one can get ✏-approximate samples with sample complexity
exponential in DKL[Q k P ]/✏ and we can also encode these
samples at the optimal rate using Algorithm 1. It would be
interesting to consider what other structural assumptions may
be leveraged to achieve lower sample complexity.
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