Under review as a conference paper at ICLR 2023

AUTOFHE: AUTOMATED ADAPTION OF CNNS FOR EF-
FICIENT EVALUATION OVER FHE

Anonymous authors
Paper under double-blind review

ABSTRACT

Secure inference of deep convolutional neural networks (CNNs) was recently
demonstrated under the fully homomorphic encryption (FHE) scheme, specifically
the Full Residue Number system variant of Cheon-Kim-Kim-Song (RNS-CKKS).
The state-of-the-art solution uses a high-order composite polynomial to approxi-
mate non-arithmetic ReLUs and refreshes zero-level ciphertext through bootstrap-
ping. However, this solution suffers from prohibitively high latency, both due
to the number of levels consumed by the polynomials (47%) and the inference
time consumed by bootstrapping operations (70%). Furthermore, it requires a
hand-crafted architecture for homomorphically evaluating CNNs by placing a boot-
strapping operation after every Conv-BN layer. To accelerate CNNs on FHE and
automatically design a homomorphic evaluation architecture, we propose AutoFHE:
Automated adaption of CNNs for evaluation over FHE. AutoFHE exploits the
varying sensitivity of approximate activations across different layers in a network
and jointly evolves polynomial activations (EvoReLUs) and searches for placement
of bootstrapping operations for evaluation under RNS-CKKS. The salient features
of AutoFHE include: i) a multi-objective coevolutionary (MOCoEv) search algo-
rithm to maximize validation accuracy and minimize the number of bootstrapping
operations, ii) a gradient-free search algorithm, R-CCDE, to optimize EvoReLU
coefficients, and iii) polynomial-aware training (PAT) to fine-tune polynomial-only
CNNs for a few epochs to adapt trainable weights to EvoReLUs. We demonstrate
the efficacy of AutoFHE through the evaluation of ResNets on encrypted CIFAR-10
and CIFAR-100 under RNS-CKKS. Experimental results on CIFAR-10 indicate
that in comparison to the state-of-the-art solution, AutoFHE can reduce inference
time (50 images on 50 threads) by up to 3,297 seconds (43%) while preserving
the accuracy (92.68%). AutoFHE also improves the accuracy of ResNet-32 on
CIFAR-10 by 0.48% while accelerating inference by 382 seconds (7%).

1 INTRODUCTION

Fully homomorphic encryption (FHE) is a promising solu- O ——
tion for secure inference of neural networks (Gilad-Bachrachl AutoFHE ~ ResNeta6
et al.,[2016; |Brutzkus et al.,[2019; |Lou & Jiang, |[2021; Lee, _ 93.0¢ ResNet32
et al}, 2022bza). However, Homomorphically evaluating < g9 5t RepNet3g
CNN s on encrypted data is challenging in two respects: 1) &
the design of homomorphic evaluation architecture of deep = 92.0}
CNN s with arbitrary depth and 2) non-arithmetic operations =~ 915¢
like ReL.U. Recently, FHE-MP-CNN (Lee et al.}[2022a) suc- ’
cessfully implemented a homomorphic evaluation architec- 91.0
ture of ResNets by using bootstrapping (Cheon et al.| [2018a;
Bossuat et gl., 2021)) to refresh zero-level c1phertext under Figure 1: Pareto fronts of AutoFHE ver-
the full residue number system (RNS) variant of Cheon-

. . sus FHE-MP-CNN on encrypted CIFAR-
Kim-Kim-Song (RNS—CKKS) scheme (Cheon et al.| 2017; 10 under the RNS-CKKS FHE scheme.
2018b). However, since FHE supports only homomorphic
multiplication and addition, non-arithmetic operations are approximated by polynomials (Gilad+
Bachrach et al.| 2016 |Chou et al.l 2018; [Brutzkus et al., 2019; [Lee et al.l 2021alc; 2022a). For
example, FHE-MP-CNN adopts a high-precision Minimax composite polynomial (Lee et al.,[2021ajc)

ResNet44 4
ResNet32

FHE-MP-CNN 1

#Bootstrapping

o @@ @]

ResNet20 13 29 54

2 3 4 5 6 7 8 910
Inference Time (1000 Seconds / 50 Images)

Under review as a conference paper at ICLR 2023

ot O
T

—= FHEMPCNN | RasNet20
= Pre-Activation

R I II ResNet32

ResNet44

Backbone
® same
© Mixed
~— AppReLU+NSGA-II
—%— AutoFHE

Val Top-1 (%)
B~ ©
o O
T

CEIIYO |

pre—————ey

IXI00

O

GO QX
wwtur)
Max Abs Value
~

&

L

30 F 1 F
15¢ 1R e soHURNBEET =1 T ResNets6
0 |7 A | 1 ! veeee’ e P este
200 300 400 15 20 25 30 0 10 20 30 40 50
Depth #Bootstrapping ReLU Index

Figure 2: Motivating AutoFHE. Left: depth consumption of AppReLUs based on ResNet-20 backbone on
CIFAR-10. The purple line is when the same precision AppReLU is used in all layers, while the red circles
show 5000 randomly-sampled combinations of mixed-precision layerwise AppReLUs. Middle: the number
of bootstrapping operations where we show trade-offs of the same AppReLU and mixed AppReLUs as in the
left panel. We also show a multi-objective search result using mixed-precision layerwise AppReLUs and the
Pareto front of the proposed AutoFHE. Right: distributions of pre-activations (the maximum absolute values) of
ResNets on CIFAR-10 where the green line corresponds to B, the scale value of AppReLU in FHE-MP-CNN.

with degree {15, 15, 27} to approximate ReLUs (AppReLU). A more comprehensive discussion of
related work is in Appendix [B]

FHE-MP-CNN, the state-of-the-art approach, is limited by three main design choices. First, high-
precision approximations like AppReLU only consider function-level approximation and neglect the
potential for end-to-end optimization of the entire network response. As such, the same high-precision
AppReLU is used to replace all the network’s ReLLU layers, which necessitates the evaluation
of very deep circuits. Secondly, due to the high number of levels required for each AppReLU,
ciphertexts encrypted with leveled HE schemes like CKKS quickly exhaust their levels. Therefore, a
bootstrapping operation is necessary for each AppReLU to refresh the level of zero-level ciphertexts.
While these design choices are collectively very effective at maintaining the performance of the
plaintext networks under FHE, they require many multiplicative levels and, consequently, numerous
bootstrapping operations. Thirdly, due to the constraints imposed by the cryptographic scheme
(RNS-CKKS in this case), inference of networks in FHE requires the codesign of AppReLU and the
homomorphic evaluation architecture. These include the careful design of AppReLU (number of
composite polynomials and their degrees), cryptographic parameters, placement of bootstrapping
operations, and choice of network architectures to evaluate.

We illustrate the limitations of FHE-MP-CNN’s design choices through a case study (Figure [2))
of ResNet-20 on CIFAR-10. We consider two plausible solutions to trade-off accuracy and com-
putational burden of FHE-MP-CNN. (i) Same Precision AppReLU: We replace all ReLU layers
with AppReLU of a given precision. We can trade-off (purple line in the left panel) accuracy and
depth consumption using AppReLU with different precision. However, as the middle panel shows,
these solutions (purple dots) do not necessarily translate to a trade-off between accuracy and the
number of bootstrapping operations due to many wasted levels. All the trade-off solutions collapse
to either 15 or 30 bootstrapping operations. (ii) Mixed-Precision AppReLU: Each ReL.U layer in
the network can be replaced by AppReLU of any precision. We randomly sample 5,000 combina-
tions of mixed-precision layerwise AppReLLUs and show (red dots) their depth consumption and
the number of bootstrapping operations in the left and middle panels, respectively. Observe that
layerwise mixed-precision AppReL.U leads to a better trade-off between accuracy and the number
of bootstrapping operations. However, FHE-MP-CNN neglects the layerwise sensitivity (range) of
ReLU pre-activations (the right panel shows the distribution of the layerwise maximum absolute value
of pre-activation) and uses AppReLU which is optimized for a ReLU with a large pre-activation range.
Therefore, the Pareto front of mixed-precision layerwise AppReLU optimized by a multi-objective
search algorithm NSGA-II (2002) is still inferior to AutoFHE, our proposed solution, by
a significant margin. In summary, while both the solutions we considered were able to reduce the
number of bootstrapping operations, unlike AutoFHE, it also lead to severe loss in performance.

In this paper, we relax the design choices of FHE-MP-CNN and accelerate the inference of CNN’s
over homomorphically encrypted data while maximizing performance. The main premise behind
our approach is to directly optimize the end-to-end function represented by the network instead
of optimizing the function represented by the activation function. This idea allows us to exploit
the varying sensitivity of activation function approximation across different layers in a network.
Therefore, theoretically, evolving layerwise polynomial approximations of ReLUs (EvoReLU) should
reduce the total multiplicative depth required by the resulting polynomial-only networks, and thus the
number of time-consuming bootstrapping operations and the inference time on encrypted data. To

Under review as a conference paper at ICLR 2023

this end, we propose AutoFHE, a search-driven approach to jointly optimize layerwise polynomial
approximations of ReLLU and the placement of bootstrapping operations. Specifically, we propose
a multi-objective co-evolutionary (MOCOoEvV) algorithm that seeks to maximize accuracy while
simultaneously minimizing the number of bootstrapping operations. AutoFHE jointly searches for the
parameters of the approximate activation functions at all layers, i.e., degrees and coefficients and the
optimal placement of the bootstrapping operations in the network. Our contributions are three-fold:

1. AutoFHE automatically searches for EvoReLUs and bootstrapping operations. It provides a
diverse set of Pareto-effective solutions that span the trade-off between accuracy and inference
time under RNS-CKKS.

2. From an algorithmic perspective,

(a) We propose a simple yet effective multi-objective co-evolutionary (MOCoEv) algorithm to
effectively explore and optimize over the large search space (107 ~ 10%3°) and optimize
high-dimensional vectors (114 ~ 330) corresponding to our formulation.

(b) We design a gradient-free algorithm, regularized co-operative co-evolutionary differentiable
evolution (R-CCDE), to optimize the coefficients of high-degree composite polynomials.

(c) We introduce polynomial-aware training (PAT) to finetune EvoReLU DNNss for a few epochs.

3. Experimental results (Figure[I)) on encrypted CIFAR-10 and CIFAR-100 under RNS-CKKS show
that, compared to FHE-MP-CNN, the state-of-the-art approach, AutoFHE can effectively trade-off
accuracy and inference time and result in a better Pareto front. On CIFAR-10, AutoFHE reduces
inference time (50 images on 50 threads) by up to 3,297 seconds (43%) while preserving the
accuracy (92.68%). Specifically, AutoFHE reduces inference time of ResNet-20, ResNet-32 (21
bootstrapping operations) and ResNet-56 by 25%, 23% and 12%, respectively, while improving
accuracy up to 0.28%. AutoFHE also improves accuracy of ResNet-32 (29 bootstrapping opera-
tions) on CIFAR-10 by 0.48% while accelerating inference by 382 seconds (7%). On CIFAR-100,
AutoFHE saves inference time by 972 seconds (17%) while preserving accuracy.

2 PRELIMINARIES

RNS-CKKS: The full residue number system (RNS) variant of Cheon-Kim-Kim-Song (RNS-
CKKS) (Cheon et al., |2017; |2018b) is a leveled homomorphic encryption (HE) scheme for ap-
proximate arithmetic. Under RNS-CKKS, a ciphertext ¢ € R2Qz satisfies the decryption circuit

[{c, sk))g, = m + e, where (-,-) is the dot product and [-]¢ is the modular reduction function.

Ro, = Zg,[X]/(XN +1) is the residue cyclotomic polynomial ring. The modulus is @, = Hf:o qe,
where 0 < ¢ < L. /is a non-negative integer referred to as level, and it denotes the capacity of homo-
morphic multiplications. sk is the secret key with Hamming weight h. m is the original plaintext
message, and e is a small error that provides security. A ciphertext has N/2 slots to accommodate
N/2 complex or real numbers. RNS-CKKS supports homomorphic addition and multiplication:

Homomorphic Addition: Decrypt(c & ¢’) = Decrypt(c) + Decrypt(c') ~ m + m’

1
Homomorphic Multiplication: Decrypt(c ® ¢’) = Decrypt(c) x Decrypt(c’) ~ m x m’ W

Bootstrapping: Leveled HE only allows a finite number of homomorphic multiplications, with
each multiplication consuming one level due to rescaling. Once a ciphertext’s level reaches zero,
a bootstrapping operation is required to refresh it to a higher level and allow more multiplications.
The number of levels needed to evaluate a circuit is known as its depth. RNS-CKKS with boot-
strapping (Cheon et al [2018a)) is an FHE scheme that can evaluate circuits of arbitrary depth. It
enables us to homomorphically evaluate deep CNNs on encrypted data. Conceptually, bootstrapping
homomorphically evaluates the decryption circuit and raises the modulus from Qg to @)1, by using the
isomorphism Ry, = Ry, X Ry, X -+ - x Ry, (Bossuat et al.,[2021). Practically, bootstrapping (Cheon
et al.l [2018a) homomorphically evaluates modular reduction [-]g by first approximating it by a
scaled sine function, which is further approximated through polynomials (Cheon et al.|[2018a; Lee
et al., 2020). Bootstrapping [Bossuat et al.[(2021)) has four stages, including ModRaise, CoeffToSlot,
EvalMod, and SlotToCoeff. These operations involve a lot of homomorphic multiplications and
rotations, both of which are costly operations, especially the latter. The refreshed ciphertext has level
¢ =L — K, where K levels are consumed by bootstrapping (Bossuat et al., 2021} for polynomial
approximation of modular reduction.

Under review as a conference paper at ICLR 2023

FHE-MP-CNN (Lee et al., 2022a) is the state-of-the-art framework for homomorphically evaluating
deep CNNs on encrypted data under RNS-CKKS with high accuracy. Its salient features include
1) Compact Packing: All channels of a tensor are packed into a single ciphertext. Multiplexed
parallel (MP) convolution was proposed to process the ciphertext efficiently. 2) Homomorphic
Evaluation Architecture: Bootstrapping operations are placed after every Conv-BN, except for the
first one, to refresh zero-level ciphertexts. This hand-crafted homomorphic evaluation architecture
for ResNets is determined by the choice of cryptographic parameters, the level consumption of
operations, and ResNet’s architecture. 3) AppReLU: It replaces all ReLUs with the same high-
order Minimax composite polynomial |[Lee et al.|(2021azc) of degrees {15, 15, 27}. By noting that
ReLU(z) = = - (0.5 4 0.5 - sgn(x)), where sgn(x) is the sign function, the approximated ReLU
(AppReLU) is modeled as AppReLU(x) = z-(0.5+0.5-p(2)), z € [—1, 1]. ps(x) is the composite
Minimax polynomial. The precision « is defined as |p, () —sgn(x)| < 27. AppReLU is expanded
to arbitrary domains x € [—B, B] of pre-activations in CNNs by scaling it as B - AppReLU(z/B).
However, this reduces approximation precision to B - 2~%. To estimate the maximum dynamic
range B (40 for CIFAR-10 and 65 for CIFAR-100) of ReLUs, FHE-MP-CNN evaluates the pre-
trained network on the training dataset. FHE-MP-CNN uses the same dynamic range B for all
polynomials and neglects the uneven distribution of pre-activations as shown in Figure 2] Explicitly
accounting for this uneven distribution allows us to use smaller B’ and o’ but with the same precision,
ie, B -27% = B.27% for B < Band o/ < a. 4) Cryptographic Parameters: FHE-MP-
CNN sets N = 216, [= 30 and Hamming weight h = 192. Please refer to [Lee et al.| (2022a)
for the detailed implementation of FHE-MP-CNN and other parameters. These parameters provide
128-bits of security |Cheon et al.| (2019). 5) Depth Consumption: To reduce level consumption,
FHE-MP-CNN integrates scaling parameter B into Conv-BN. The multiplicative depth consumption
of Bootstrapping (i.e., K), AppReLU, Conv, DownSampling, AvgPool, FC and BN layers are 14,
14,2, 1, 1, 1, 0, respectively. Statistically, when using FHE-MP-CNN to homomorphically evaluate
ResNet-18/32/44/56 on CIFAR-10 or CIFAR-100, AppReLUs consume ~ 47% of total levels and
bootstrapping operations consume ~ 70% of inference time.

3 AUTOFHE: JOINT EVORELU AND BOOTSTRAPPING SEARCH

To minimize the latency of secure inference dominated by bootstrapping operations induced by
high-degree polynomials and automatically design suitable homomorphic evaluation architecture, we
propose AutoFHE. It is designed to search for layerwise polynomial approximation of ReLU jointly
with the placement of bootstrapping. Furthermore, we directly optimize the end-to-end objective to
facilitate finding the optimal combination of layerwise polynomials.

3.1 EvVORELU

EvoReLU is defined as y = EvoReLU(z) = z - (0.5+ p%(z)),z € [-1,1],y € [0,1]. The
composite polynomial p?(z) = (p4 o- - ~opg’“ o---op{)(x),1 < k < K approximates 0.5-sgn(z).
The composite polynomial p?(x) has K sub-polynomial functions and degree d = Hle. This
structure for EvoReLLU bears similarity to the Minimax composite polynomial in Lee et al.|(2021c;
2022a). However, the objective for optimizing the coefficients is significantly different. We represent
the composite polynomial p¢(z) by its degree vector d = {di}f;‘l, and each sub-polynomial pi"‘ (x)
as a linear combination of Chebyshev polynomials of degree dy, i.e., p{* (z) = Sy, 2?21 a; Ti(z),
where T;(x) are the Chebyshev bases of the first kind, «; are the coefficients for linear combination
and Sy is a parameter to scale the output. The coefficients o, = {ai}?il control the polynomial’s
shape, while 3, controls its amplitude. A = (o, 1, , @, Bk, -+ , @K, Bk) are the learnable
parameters of EvoReLU with the degree d.

Homomorphic Evaluation Architecture: The ResNet architecture comprises two types of connec-
tions, a chain, and a residual connection (see Fig.[3). To extend the domain of EvoReLU from [—1, 1]
to [— B, B] but avoid extra depth consumption for scaling, we scale the plaintext weight and bias
of BatchNorm by 1/B in advance for chain connections. But for residual connections, we cannot
integrate the scale 1/B into BatchNorm’s weight and bias. In this case, we scale the ciphertext output
of the residual connection by 1/ B at the expense of one level. Finally, we integrate B into coefficients

of p% () to re-scale the output of EvoReLU by B. Given the pre-activation = € [— B, B], the scaled

Under review as a conference paper at ICLR 2023

: O

Chain Connection Residual Connection

Figure 3: Homomorphic evaluation architectures of the chain and residual connections. Upper: standard ResNet
Conv-BN-ReLU triplet|He et al.{(2016). Middle: FHE-MP-CNN. Bottom: AutoFHE, where dashed rectangles
are placement of bootstrapping layers to search.

EvoReLU

Co-evolutionary Mutation

Top-1 Accuracy

=
Population 3 — - — Crossover
B~ | I —
Parco Front ———— > | e - >
Ty = [
°® Offspring
R-CCD!

= Update Pareo Front PAT

#Bootstrapping

Figure 4: Overview of Multi-objective co-evolutionary (MOCoEv) search algorithm.

EvoReLU with the degree d is parameterized by A:
y = EvoReLU(z, \;d) = 2 - (0.5 + p%(x)), where x € [~ B, B],y € [0, B] 2)

where we estimate B values for layerwise EvoReLUs on the training dataset. From Figure 3] FHE-
MP-CNN places bootstrapping after every Conv-BN, while AutoFHE will search for placement of
bootstrapping operations by adapting to different depth consumption of layerwise EvoReLUs.

The Depth Consumption of EvoReLU is 1 + Zszl [logs(dr + 1)] when using the Baby-Step
Giant-Step (BSGS) algorithm |Lee et al.[(2020); Bossuat et al.| (2021)) to evaluate pd(x).

3.2 MOCOEV: MULTI-OBJECTIVE CO-EVOLUTIONARY SEARCH

Search Objectives: Given a neural network function f with L ReLUs and the pre-trained weights
wo, our goal is to maximize the accuracy of the network while minimizing its inference latency on
encrypted data. A possible solution to achieve this goal is to maximize validation accuracy while
minimizing the total multiplicative depth of the network with EvoReLLUs. However, this solution
does not practically accelerate inference since bootstrapping contributes most to latency, and this
solution may not necessarily lead to fewer bootstrapping operations. Therefore, we optimize the
parameters of all the EvoReL.Us to maximize accuracy and directly seek to minimize the number of
bootstrapping layers through a multi-objective optimization problem:

min {1 — Accya(f(w*); A*(D), D), Boot(D)}
st. Af = argjrxnax {Accyai(f(wo); A(D), D)} 3)

w* = argmin Liqin (f(w); A" (D), D)

w

where Acc,q; is the Top-1 accuracy on a validation dataset val, Boot is the number of bootstrap-
ping operations, D = {d;,ds, - ,d} is the degree vector of all EvoReLUs, the corresponding
parameters are A = {1, Aa, - , AL}, f(wp) is the neural network with the pre-trained weights wy,
Lytrain 18 the training loss. Given a degree vector D, the number and placement of bootstrapping
operations can be deterministically determined. Given D, we can optimize A to maximize the
validation accuracy. We further fine-tune the network f(-) to minimize the training loss L¢pqin-
The objectives in equation 3] guide the search algorithm to, i) explore layerwise EvoReLU includ-
ing its degrees and coefficients; 2) discover the placement of bootstrapping to work well with
EvoReLU; 3) trade-off between validation accuracy and inference speed to return a diverse set
of Pareto-effective solutions. In this paper, we propose MOCoEv to optimize the multi-objective
minp {1l — Accyai(f(w*); A*(D), D),Boot(D)}. We propose R-CCDE and use an evolution-
ary criterion to maximize Accyq;(f(wo); A(D), D). We propose PAT to fine-tune approximated
networks with EvoReLUs to minimize Liyqin (f(w); A*(D), D).

Under review as a conference paper at ICLR 2023

Search Space: Our search space includes the number of sub-polynomials (X') in our composite
polynomial, choice of degrees for each sub-polynomial (dj) and the coefficients of the polynomials
A. Table[Ta] shows the options for each of these variables. Note that choice dj, = 0 corresponds
to an identity placeholder, so theoretically, the composite polynomial may have fewer than K sub-
polynomials. Furthermore, when the degree of (p{* o pZ’i 5')(x) less than or equal to 31 (maximum
degree of a polynomial supported on RNS-CKKS |Lee et al.| (2021ajc)), we merge the two sub-
polynomials into a single sub-polynomial pg’“ (pi’i 7')(x) with degree dj,-dj,—1 < 31 before computing
its depth. This helps reduce the size of the search space and leads to smoother exploration. Tab. [Ib|
lists the number of ReL.Us of our backbone models and the corresponding dimension and size of
search space for D.

Backbone ‘ #ReLUs Dimension of D Search Space Size

Variable Option
79
 polynomials (K) 6 ResNet:20 | 19 114 0
B ResNet-32 | 31 186 10%
poly degree (dy) {0,1,3,5,7} ResNet-44 | 43 258 10180
coefficients (A) R ResNet-56 55 330 10230
(@) (b)

Table 1: (a) Search variables and options; (b) AutoFHE search space for ResNets.

MOCOoEv: To overcome the challenge of multi-objective search over a high-dimensional D and
explore the massive search space, we propose a multi-objective co-evolutionary (MOCoEv) search
algorithm. Our approach is inspired by the divide-and-conquer strategy of cooperative co-evolution
(CC) Yang et al.{(2008); Mei et al.[(2016); Ma et al.| (2018)). The key idea of MOCoEv is to decompose
the high-dimensional multi-objective search problem to multiple low-dimensional sub-problems.

MOCoEy includes i) Decomposition: given a Pareto-effective solution D = {d;,ds,--- ,d},
MOCoEyv improves D by locally mutating dy, 1 < ¢ < Lsothat D’ = {dy,dz,--- ,d},--- ,d}
dominates D = {d;,ds, - ,dy,--- ,dr} in terms of the validation accuracy and the number of

bootstrapping; and ii) Cooperative Evaluation: we maintain the Pareto front as the context Mei
et al|(2016) so we can evaluate the locally mutated solutions cooperatively with each other d;, j #
¢,1 < 5 < L. Figure 4| shows a step of one iteration of MOCoEv. During one iteration, we
repeat the step L times until we update all EvoReLUs. We design crossover and co-evolutionary
mutation of MOCoEv to explore and exploit: (1) Crossover: given the current Pareto front, we
select mating individuals to generate offspring and crossover offspring to exchange genes across
EvoReLUs. For example, given two mating individuals D; and D5, we crossover them to obtain
Di = {bg by e DiUD, 1 <0 < L}, DIQ = {b[by € (D1UD2)/D/1,1 <t < L}; 2)
Co-Evolutionary Mutation: we mutate the /-th EvoReLU offspring, obtain a new Pareto front from
mutated offspring and the current population, and finally update the current population. Then, we
move onto the (£ + 1)-th EvoReLU and repeat (1)(2) until L EvoReLUs are updated. Therefore, we
update the Pareto front L times at the end of each iteration. We design three types of operators to
mutate a composite polynomial function. i) randomly replace one polynomial sub-function with a
new polynomial. ii) randomly remove a sub-function. iii) randomly insert a new polynomial. Please
refer to Appendix [C|for background on evolutionary search algorithms. The implementation details
of MOCoEv algorithm are in Appendix [D.1]

3.3 REGULARIZED COOPERATIVE DIFFERENTIABLE CO-EVOLUTION

To solve A* = argmax, {Accya(f(wo); A(D), D)} in equation[3|where D = {d,|1 < ¢ < L},
A = {X¢|1 < ¢ < L}, we propose regularized cooperative co-evolutionary differentiable evolution
(R-CCDE). Given degree dy, it optimizes A, for function approximation level. However, the function
approximation solution A maybe not the optimal solution for maxa {Acc,q(f(w); A(D), D)}. So,
we use MOCoEYv to update the Pareto front in terms of the validation accuracy and the number of
bootstrapping. R-CCDE decomposes Ay into {e1, 51, -+ , &k, Bk } corresponding to polynomial
sub-functions y1 = p{* (z|or, B1),y2 = P (Y1lea, Ba), -,y = PR (yk—1lax, Bxk) by using
the forward architecture, x — y; — yo--- — yx—1 — y. We adopt gradient-free differentiable
evolution (DE) Rauf et al.| (2021) to learn « and 5. DE uses the difference between individuals for
mutation. Given the context vector A*, we optimize oy and [, 1 < k < K alternatively as:

a; = argmin‘c(aklA*)7 ak|A* = (aia/@i‘7 FEC 7 TR aaﬁ(aﬁ;}) (4)
oy

B}: = argﬁmmﬁ(,@k\)*) +’7 : B}?;? ﬁk|)‘* = (aivﬁra e 7ﬁka e ’a}‘(’ﬁ}}) (5)
k

Under review as a conference paper at ICLR 2023

where £(-) is the ¢; distance between p?(z) and 0.5 - sgn(x). o and B are then used to update A*.
We introduce a regularization term for optimizing the scale parameters, where + is the scaling decay.
Scale parameters can prevent polynomials from growing exponentially during the initial iterations.
The decay helps guide the parameters gradually toward a value of one and eventually select promising
coefficients. Our R-CCDE algorithm is detailed in Appendix [D.2}

3.4 PAT: POLYNOMIAL-AWARE TRAINING

Replacing ReLLU with EvoReLU in pre-trained neural networks injects minor approximation errors,
which leads to performance loss. Fine-tuning can mitigate this performance loss by allowing
the learnable weights to adapt to the approximation error. However, backpropagation through
EvoReLU leads to exploding gradients due to high-degree polynomials. Thanks to precise forward
approximation of EvoReLU, we can use gradients from the original non-arithmetic ReL.U function for
backpropagation, specifically, during forward pass, EvoReLU injects slight errors, which are captured
by objective functions like cross-entropy loss. During the backward pass, we bypass EvoReLU and
use ReL.U to compute gradients to update the weights of the linear trainable layers (e.g., convolution
or fully connected). We refer to this procedure, which bears similarity to STE Bengio et al.|(2013)) and
QAT Jacob et al.|(2018)), as polynomial-aware training (PAT). The following pseudocode illustrates
this procedure for a simple example, EvoReLU(z) = x(0.5 + (f3 o f2 o f1)(x)). In the forward
function, we first scale the coefficients of f3 by B so that the output range of y is [0, B]. In the
backward function, we compute the gradient Oy/0ReLU(x) instead of dy/0EvoReLU(x).

def EvoReLU_forward(x, B): def EvoReLU_backward(x, grad):
f3 = £3 * B y = RelU (x)
y = £3(£f2(f1(x))) grad_y = dy/dx
y = x(0.5 + vy) grad = grad x grad_y
return y return grad

4 EXPERIMENTS

Setup: We benchmark AutoFHE on CIFAR-10 and CIFAR-100 Krizhevsky et al.| (2009). Both
datasets have 50,000 training and 10,000 validation images at a resolution of 32 x 32. The validation
images are treated as private data and used only for evaluating the final networks. We randomly select
5,120 images from the training split as a minival Tan & Le|(2021) dataset to guide the search process.
The Top-1 accuracy on the minival dataset optimizes equation[3] In addition, PAT uses the training
split to fine-tune polynomial networks. Finally, as our final result, we report the Top-1 accuracy on the
encrypted validation dataset under RNS-CKKS. To evaluate AutoFHE under RNS-CKKS, we adopt
the publicly available code of FHE-MP-CNN and adapt it for inference with layerwise EvoReLU.
During inference, we keep track of the ciphertext levels and call the bootstrapping operation when the
level reaches zero, thanks to the optimal placement of bootstrapping operations found by AutoFHE.
For a fair comparison between AutoFHE and the baseline FHE-MP-CNN, we use the pre-trained
network weights provided by FHE-MP-CNN.

Hyperparameters: For MOCoEv, we use a population size of 50 and run it for 20 generations. We
set the probability of polynomial replacement to 0.5, the probability of polynomial removal to 0.4,
and the probability of polynomial insertion to 0.1. For R-CCDE, we set the search domain of c to
[—5, 5] and that of 5 to [1, 5]. We set the population size for optimizing S to 20. For «, we set the
population size equal to 10x the number of variables. We set the scaling decay to v = 0.01 and
the number of iterations to 200. For PAT, we use a batch size of 512 and weight decay of 5 x 1073
and clip the gradients to 0.5. We use learning rates of 5 x 10~% for CIFAR-10 and 2 x 10~* for
CIFAR-100. During MOCOoEYV search, we set the fine-tuning epoch to one. After the search is done,
we fine-tune searched polynomial networks for ten epochs. On one NVIDIA RTX A6000 GPU, the
search process for ResNet-20/32/44/56 on CIFAR-10 took 59 hours, 126 hours, 200 hours, 281 hours,
respectively. The search for ResNet-32 on CIFAR-100 took 140 hours.

Under review as a conference paper at ICLR 2023

ResNet-20 ResNet-32 ResNet-56 ResNet-32/CIFAR-100
~ 90 =T T T T FEEE L 70 T IO
égg E 3 1 B _/ 1
Z60F 3 3 R66F 1
2 2,

o'45 E R E E
E 30 3 B;u'kbonc_ E E 64 Backbone

§ 15 ¢ —=— AutoFHE] E § 62) 3 —— AutoFHE]
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (1 1 L L L

8 1012 14 16 13 17 21 25 29 20 24 28 32 36 26 31 36 41 46 15 17 19 21 23

#Bootstrapping

Figure 5: Pareto fronts of AutoFHE. We report the accuracy on plaintext validation datasets and the number of

bootstrapping operations. Left: ResNet-20/32/44/56 on CIFAR-10; Right: ResNet-32 on CIFAR-100.

Dataset Backbone FHE-MP-CNN AutoFHE
atase Network Top-1 | Boot Top-1*(%) Inference Amortized | Boot Top-1(%) Inference Amortized
| ResNet-20 91.86 | 18 91.31 3,532s 71s | 13 91.39 2,643s 53s
20 92.25 4,201s 84s
CIFAR-10 ResNet-32 92.80 30 92.40 5,768s 115s 21 92.68 4,435s 89s
29 92.88 5,386s 108s
| ResNet-44 93.13 | 42 92.65 7,732s 155s | 38 92.04 7,209s 144s
| ResNet-56 9349 | 54 93.07 9,837s 197s | 47 93.27 8,684s 174s
21 67.75 3,908s 78s
CIFAR-100 | ResNet-32 69.38 30 69.43 5,684s 114s 22 68.66 4,573s 91s
23 6937 47125 94s

Table 2: AutoFHE under the RNS-CKKS scheme. Top-1* accuracy for FHE-MP-CNN, as reported in|Lee et al.
(2022a). The inference time for 50 images is evaluated on AMD EPYC 7H12 64-core processor using 50 threads.
Boldface denotes the best criterion on a backbone network, like the best Top-1 accuracy and the least inference
time; underline denotes AutoFHE outperforms FHE-MP-CNN.

4.1 PARETO FRONTS OF AUTOFHE

Figure [5] shows Pareto-effective solutions found by AutoFHE on CIFAR-10 and CIFAR-100 for
different ResNet models. The trade-offs are between the Top-1 validation accuracy on plaintext
data and the number of bootstrapping operations required for the corresponding homomorphic
evaluation architecture. By optimizing the end-to-end network prediction function, AutoFHE adapts
to the differing sensitivity of the activation layers to approximation errors and reduces the number
of levels required compared to using the same high-degree AppReLU in all the layers. Thus,
AutoFHE significantly reduces the number of bootstrapping operations. For ResNet-32 on CIFAR-
10, AutoFHE removes 10 bootstrapping operations (33.33%) compared to FHE-MP-CNN with the
negligible accuracy loss 0.08% compared to the original network with ReLUs. Lastly, AutoFHE
provides a family of solutions offering different trade-offs rather than a single solution, thus providing
flexible choices for practical deployments.

4.2 SECURE INFERENCE OF AUTOFHE UNDER RNS-CKKS

Due to the high computation cost of validating net- ResNet-32/CIFAR-10 ResNet-32/CIFAR-100
93.0 [T T T 70.0 T

works performance on encrypted data under the RNS- i o F P
CKKS, we select nine solutions for evaluationona = #¢ 1 ot il
machine with AMD EPYC 7H12 64-Core Processor 2 **°f 685

and 1000 GB RAM. In Table 2] we evaluate three so- = ?2‘4] "1 esop . Do NN]
lutions for ResNet-32 on both CIFAR-10 and CIFAR- ~ Z;(?)]] g;g | e Awornn]

4.7 52 5.7 4.0 45 5.5

Inference Time (1000 Seconds / 50 Images)

100 and evaluate one solution for ResNet-20/-44/56.
We estimate the inference time for 50 images on 50
CPU threads. Amortized inference time is amortized
runtime for each image. We report the Top-1 accu-
racy of AutoFHE on all (10,000) encrypted validation
images under the RNS-CKKS. We plot Pareto fronts on CIFAR-10 of AutoFHE versus the baseline
in Figure[I] Figure [6|shows Pareto fronts of AutoFHE of ResNet-32 on encrypted CIFAR-10/-100.
We observe that, on CIFAR-10, AutoFHE provides significant acceleration while having better
accuracy or preserving accuracy. AutoFHE of ResNet-32 with 21 bootstrapping operations has
slightly better accuracy than the baseline of ResNet-44 and accelerates inference by 3,297 seconds

4.2 5.0

Figure 6: Pareto fronts of AutoFHE for ResNet-32
on CIFAR-10/-100 under RNS-CKKS.

Under review as a conference paper at ICLR 2023

#Bootstrapping

Chain-EvoRelU i Residual-EvoRelU EvoRelU Layer Index

Figure 7: Depth consumption of layerwise EvoReLU for ResNet-56 with 36, 42 and 47 bootstrapping. The
green dash line denotes the depth consumption of FHE-MP-CNN.

(43%). AutoFHE reduces inference time of ResNet-20, ResNet-32 (21 bootstrapping operations)
and ResNet-56 by 25%, 23% and 12% compared with the corresponding solutions of FHE-MP-
CNN while improving accuracy up to 0.28%. AutoFHE with 29 bootstrapping operations improves
accuracy of ResNet-32 by a great margin 0.48% while accelerating inference by 382 seconds (7%).
AutoFHE can achieve a Top-1 accuracy of 91.39% on encrypted CIFAR-10 under the RNS-CKKS at
an amortized inference latency of under one minute (53 seconds) per image, which brings us closer
towards practically realizing secure inference of deep CNNs under RNS-CKKS. On CIFAR-100,
AutoFHE saves inference time by 972 seconds (17%) while preserving the accuracy. The experiments
prove that AutoFHE can find Pareto-effective solutions that trade-off accuracy and inference time.
Furthermore, the results validate our assumption that directly reducing the number of bootstrapping
operations can effectively accelerate inference speed.

Depth Distributions of Layerwise EvoReLU for ResNet-56 with 36, 42, 47 bootstrapping operations
are in Figure[7] (see Appendix [H]for more results). Chain EvoReLU and residual EvoReLU refer to
EvoReLU in the chain connection and the residual connection shown in Figurd3] We make three
observations: (1) residual EvoReLUs consume more levels than chain EvoReLUs, suggesting that
residual ReLU layers have less tolerance to approximation errors; (2) since pre-activations of chain
EvoReLUs are normalized, they follow a tighter distribution and need smaller scaling values; (3) the
last EvoReLU close to the output does not need high-precision approximation.

4.3 ABLATION STUDY

1. Evaluating Co-evolution: To evaluate the effectiveness of co-evolution in MOCoEv, we compare
MOCoEv with a standard multi-objective evolution algorithm NSGA-II in
Appendix [E] The experimental results in Figure[8|and Table 4] show that co-evolution explores the
optimization landscape of high-dimensional variables more effectively.

2. Evaluating Layerwise Approximation: To evaluate the effectiveness of adaptive layerwise
approximation of AutoFHE, we compare it with uniformly distributed Minimax composite poly-
nomials in Appendix [F} Figure [9]shows that by exploiting the varying approximation sensitivity of
different layers AutoFHE has a better trade-off than uniformly distributed Minimax polynomials.

3. Evaluating AutoFHE on ImageNet: We demonstrate the efficacy of AutoFHE on ImageNet[Rus]
sakovsky et al| (2013)), a large-scale high-resolution image dataset, in Appendix [G] The exper-
imental result in Figure [TT] shows that AutoFHE can effectively trade-off the accuracy and the
depth consumption on large-scale datasets with high-resolution images.

5 CONCLUSION

This paper introduced AutoFHE, an automated approach for accelerating CNNs on FHE and au-
tomatically designing a homomorphic evaluation architecture. AutoFHE seeks to approximate the
end-to-end function represented by the network instead of approximating each activation function.
We exploited the varying sensitivity of approximate activations across different layers in a network to
jointly evolve composite polynomial activation functions and search for placement of bootstrapping
operations for evaluation under RNS-CKKS. Experimental results over ResNets on CIFAR-10 and
CIFAR-100 indicate that AutoFHE can reduce the inference time by up to 3,297 seconds (43%) while
preserving the accuracy. AutoFHE also improves the accuracy by up to 0.48%. Although our focus
in this paper was on ResNets, and consequently ReLLU, AutoFHE is a general-purpose algorithm that
is agnostic to the network architecture or the type of activation function.

Under review as a conference paper at ICLR 2023

REFERENCES

Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Proceedings
of the 2012 ACM conference on Computer and communications security, pp. 784-796, 2012.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux. Effi-
cient bootstrapping for approximate homomorphic encryption with non-sparse keys. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pp. 587—
617. Springer, 2021.

Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy preserving inference. In
International Conference on Machine Learning, pp. 812-821. PMLR, 2019.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Infernational conference on the theory and application of
cryptology and information security, pp. 409—437. Springer, 2017.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping for
approximate homomorphic encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 360-384. Springer, 2018a.

Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. A full rns variant
of approximate homomorphic encryption. In International Conference on Selected Areas in
Cryptography, pp. 347-368. Springer, 2018b.

Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A hybrid of dual and meet-in-the-
middle attack on sparse and ternary secret lwe. IEEE Access, 7:89497-89506, 2019.

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. arXiv preprint arXiv:1811.09953, 2018.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182—-197,
2002.

Carlos M Fonseca, Luis Paquete, and Manuel Lépez-Ibanez. An improved dimension-sweep algorithm
for the hypervolume indicator. In 2006 IEEE international conference on evolutionary computation,
pp. 1157-1163. IEEE, 2006.

Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic relus for
private deep learning. Advances in Neural Information Processing Systems, 34:2241-2252, 2021.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In
International conference on machine learning, pp. 201-210. PMLR, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In IEEE Conference on Computer Vision and Pattern Recognition,
2018.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, lain Dunning, Karen Simonyan, et al. Population based training
of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. { GAZELLE}: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1651-1669, 2018.

10

Under review as a conference paper at ICLR 2023

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. Crypten: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961-4973, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Eunsang Lee, Joon-Woo Lee, Young-Sik Kim, and Jong-Seon No. Minimax approximation of
sign function by composite polynomial for homomorphic comparison. IEEE Transactions on
Dependable and Secure Computing, 2021a.

Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No, and
Woosuk Choi. Low-complexity deep convolutional neural networks on fully homomorphic encryp-
tion using multiplexed parallel convolutions. In International Conference on Machine Learning,
pp. 12403-12422. PMLR, 2022a.

Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. Optimal minimax
polynomial approximation of modular reduction for bootstrapping of approximate homomorphic
encryption. JACR Cryptol. ePrint Arch., 2020:552, 2020.

Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-precision
bootstrapping of rns-ckks homomorphic encryption using optimal minimax polynomial approxima-
tion and inverse sine function. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 618—647. Springer, 2021b.

Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim Deryabin,
Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al. Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network. /IEEE Access, 10:30039—
30054, 2022b.

Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and Jong-Seon No.
Precise approximation of convolutional neural networks for homomorphically encrypted data.
arXiv preprint arXiv:2105.10879, 2021c.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp. 619-631, 2017.

Qian Lou and Lei Jiang. Hemet: A homomorphic-encryption-friendly privacy-preserving mobile
neural network architecture. In International conference on machine learning, pp. 7102-7110.
PMLR, 2021.

Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet: A secure, accurate and fast neural network
inference. In International Conference on Learning Representations, 2020.

Xiaoliang Ma, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang, Weixin Xie, and Zexuan
Zhu. A survey on cooperative co-evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 23(3):421-441, 2018.

Yi Mei, Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. A competitive divide-and-conquer al-
gorithm for unconstrained large-scale black-box optimization. ACM Transactions on Mathematical
Software (TOMS), 42(2):1-24, 2016.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In USENIX Security Symposium,
2020.

Jaiyoung Park, Michael Jaemin Kim, Wonkyung Jung, and Jung Ho Ahn. Aespa: Accuracy preserving
low-degree polynomial activation for fast private inference. arXiv preprint arXiv:2201.06699,
2022.

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. Sirnn: A math library for secure rnn inference. In 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1003-1020. IEEE, 2021.

11

Under review as a conference paper at ICLR 2023

Hafiz Tayyab Rauf, Waqas Haider Khan Bangyal, and M Ikramullah Lali. An adaptive hybrid
differential evolution algorithm for continuous optimization and classification problems. Neural
Computing and Applications, 33(17):10841-10867, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211-252, 2015.

Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary computation, 2(3):221-248, 1994.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, 2021.

Zhenyu Yang, Ke Tang, and Xin Yao. Large scale evolutionary optimization using cooperative
coevolution. Information sciences, 178(15):2985-2999, 2008.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pp. 162—-167. IEEE, 1986.

APPENDIX

In this appendix, we include the following:

* Appendix [A} Notations;

* Appendix [B} An expanded discussion of related work for secure inference;

* Appendix [C} Background and related work for evolutionary algorithms;

* Appendix D} Implementation of the MOCoEv and R-CCDE algorithms in[D.T|and[D.72] respectively;
» Appendix [E} Experimental details for evaluating co-evolution;

* Appendix [F} Experimental details for evaluating layerwise comparison;

* Appendix |G} Evaluation of AutoFHE on plaintext ImageNet;

» Appendix [Ht EvoReLUs of ResNet-56 on CIFAR-10.

A NOTATIONS

We list variable notations of the RNS-CKKS and EvoReLU in Table[3]

B RELATED WORK

Secure Inference: Secure inference is a promising solution for resolving the safety and privacy
concerns in applications driven by deep learning as a service (DLaaS). Fully homomorphic encryption
(FHE) and secure multiparty computation (MPC) are becoming thede-facto standard of secure
inference of deep learning. Secure inference-based FHE |Gilad-Bachrach et al.| (2016)); Brutzkus
et al.|(2019); |Lou & Jiang| (2021);|Lee et al.|(2022bga) better takes advantage of the Cloud service
provider’s infrastructure. Customers only need to encrypt their private data, send ciphertexts to the
Cloud, and decrypt the encrypted result. On the other hand, secure MPC Liu et al.|(2017); Juvekar
et al. (2018); Mishra et al.| (2020); |Lou et al.| (2020); /Ghodsi et al.| (2021)); |Knott et al.|(2021); Rathee
et al.| (2021)) requires regular communication between customers and the Cloud. FHE cannot directly
evaluate ReLU because it only allows arithmetic homomorphic addition and multiplication. However,
secure MPC can evaluate ReL.U using Garbled Circuits (GC) Yao|(1986)); Bellare et al.| (2012) but
suffers from high online computation and communication costs [Mishra et al.| (2020). Adaption of
CNN s to secure inference by polynomial approximation of non-arithmetic functions, is a necessary
pre-processing stage. Polynomial approximation enables us to homomorphically evaluate encrypted
data on FHE, while it also can greatly reduce online computation and communication costs of secure
MPC.

12

Under review as a conference paper at ICLR 2023

Notation | Domain | Description
N ‘ 7t | degree of polynomial rings
1 | {0,1,---,L} | level
Qe ‘ 7+ ‘ modulus Q, = Hf:o q¢ wWhere g, are primes
Rq, | | residual cyclotomic polynomial ring
m \ Rq, | plaintext
e \ Ra, | error
c ‘ RY, | ciphertext
sk ‘ RS, | private key
() | dot product
[lo | | modular reduction function
h ‘ A | Hamming weight
T,y \ R | scalar
B \ R | the maximum absolute value of pre-activations of ReLU
O | a Minimax composite polynomial with precision a
P a composite polynomial p?(z) = (p3 o --- o pfk o -0 p{')(2)
Pi() where 1 < k < K and degree d = Hszl
e a sub-polynomial function p* (z) = By Zfi 1o Ti(x)
Pyt () a; € R, B; € R, T is the Chebyshev bases of the first kind
d ‘ {d;}ox, ‘ degrees of all sub-polynomials
ag | {ai}, | coefficients of a sub-polynomial function
EvoReLU | | y =EvoReLU(z) =z - (0.5 + p*(z)) ,x € [-1,1],y € [0,1]
A \ | EvoReLU’s parameters A = (a1, 1, , &k, fk)

Table 3: Variable Notations.

Polynomial Approximation of ReLU: A simple square activation function 22 is used in Cryp-
toNets |Gilad-Bachrach et al.| (2016), LoLa Brutzkus et al] (2019) and Deiphi Mishra et al|
(2020). Faster CryptoNets |Chou et al.[(2018)) exploits more accurate low-degree approximation
27322 427124272, SAFENet|Lou et al|(2020) adopts a3 4+ as2? + azx + a4 or byz? + byx + bs
and uses SGD to train coefficients. When applying SGD to train low-degree polynomial coeffi-
cients and network weights simultaneously, polynomials easily lead to exploding gradients. On the
other hand, low-degree polynomials need to train approximated networks from scratch, cannot use
pre-trained weights, and has a big accuracy gap compared with ReLU networks. More recently,
AESPA proposes basis-wise normalization to address the problem of exploding
gradients in low-degree polynomial approximated networks. Delphi and SAFENet apply population-
based training (PBT)|Jaderberg et al.|(2017) to search for placement of polynomials. Because Delphi
and SAFENet are evaluated under secure MPC, they maintain some ReLLUs to preserve accuracy.
SAFENet also observed that layerwise and channel-wise mixed-precision approximation could better
take advantage of the varying sensitivity of different layers. Minimax composite polynomials
are specially designed to approximate ReLU under FHE with high precision using
composite polynomials. FHE-MP-CNN (20224) applies the Minimax composite poly-
nomial with degree {15, 15,27} and proves it can maintain the performance of pretrained ResNets
under the RN'S-CKKS FHE scheme. Unlike the abovementioned methods, learn trainable weights,
including coefficients of polynomial-only networks, by optimizing cross Entropy loss. Minimax is
function-level approximation by optimizing the polynomial interpolation of ReLU. Given the depth,
Minimax uses dynamic programming to optimize degrees of composite polynomials and applies
improved multi-interval Remez algorithm [Lee et al.| (2021D) to solve coefficients. So, Minimax can
achieve high approximation precision given depth. However, it neglects i) the learning ability of

13

Under review as a conference paper at ICLR 2023

neural networks to adapt to polynomial approximation, 2) the layerwise varying sensitivity, and 3) the
combination of all polynomial activations in a network. In this paper, we consider both high-precision
approximation and network performance. MOCoEv searches for degrees across all layers and directly
optimizes validation accuracy. We consider function-level approximation using R-CCDE to minimize
the ¢ distance. We use pre-trained ResNets and propose PAT to fine-tune network trainable weights
to adapt to EvoReLUs for just a few epochs.

C EVOLUTIONARY SEARCH ALGORITHMS

Evolutionary Algorithms (EAs) are a class of search algorithms inspired by Darwin’s natural
selection. Each candidate solution is a individual. N P individuals constitute the population with the
population size N P. Individuals are assigned fitness related to the objective, like validation accuracy
for image classification. Based on fitness, we randomly select mating individuals. Crossover combine
mating individuals to generate offspring. Offspring can be further mutated to better exploit current
knowledge. Finally, offspring is used to update the current population. We can iteratively repeat
this process many times. Each iteration is called generation. The number of generations is a simple
criterion for stopping the EA search.

Multi-Objective EA (MOEA): Given two d-dimensional vectors x1 and x5 for a minimization
problem, if ¢1,; < ®s,;,Vi € {1,2,--- ,d} and &1 ; < ®2,,35 € {1,2,--- ,d}, ¢1 dominates
axo Srinivas & Deb| (1994). It means x; is better than x,. It is denoted as @1 < xo. Pareto front
or Pareto-effective solutions are those not dominated by others. Delphi Mishra et al.| (2020) and
SAFENet|Lou et al.[(2020) combine two objectives (accuracy and ReLLU replacement ratio) into a
single objective by weighted sum. It is a widely-used trick to release multi-objective problems to a
single objective. However, it only obtains a single solution balancing multiple objectives and cannot
get Pareto-effective solutions. This is why we apply multi-objective search to obtain Pareto-effective
solutions corresponding to different accuracy and latency requirements. EA is naturally well suited
for multi-objective search due to population-based optimization. It allows us to obtain the entire
set of Pareto-effective solutions in a single run. NSGA-II|Deb et al.| (2002) is the most well-known
evolutionary multi-objective algorithm. The proposed MOCoEv adopts nondominated sorting and
crowding distance from NSGA-II. The nondominated sorting can return all Pareto fronts, while
crowding distance selects the uniformly distributed individuals within a Pareto front.

Differentiable Evolution (DE) is a gradient-free evolutionary algorithm used to optimize continuous
variables Rauf et al|(2021). Given population X = {x1,x2, --- ,Zyp}, Where each individual
x, € R?, 1 <7 < NP, the mutation, crossover and selection of DE are defined as:

Mutation: v = @, + F - (Try, — Try),1 < 71,73, 73 < NP
vj, U0,1) <CR
Tr, j, Otherwise

u, F(u) = F(n)
T, Otherwise

Crossover: u; = { , 1<5<d

(6)

Selection: u = {

where F' is scaling factor, C'R is crossover rate, F(-) is the fitness evaluation function, and 2/(0, 1) is
the uniform distribution between O and 1.

Cooperative Co-Evolution (CC) algorithms were proposed to address the challenge of optimizing
high-dimensional variables|Yang et al.[(2008));/Mei et al.|(2016); Ma et al.|(2018). Co-evolution decom-
poses the high-dimensional optimization problem into low-dimensional sub-problems. Then, we can
apply EAs or DE to solve sub-problems for discrete or continuous variables, respectively. CC includes
two major stages, decomposition and cooperative evaluation. Decomposition refers to grouping vari-
ables. Simple grouping strategies include random or interaction-based (gradient-based) grouping |Mei
et al.[(2016). When the proposed R-CCDE searches for parameters A = (a1, (1, -+ , @k, Bi) of
EvoReLU(z, A|d), we decompose A to a1, 01, ,ak, Bi corresponding to polynomial sub-
functions y1 = p{ (zou, B1),y2 = P32 (yilas,),y = P (yx—1lax,Bx). Because
the scaling parameter (is used to adjust the amplitude of polynomials, we evolve 3 followed
by a. We maintain 2K populations for a, 1, ,ak, Bk, separately. These populations
are called sub-populations or species in CC. This decomposition of R-CCDE takes advantage
of the forward architecture of composited polynomials, x — y1 +— yYs--- — Yg_1 +— Y.

14

Under review as a conference paper at ICLR 2023

When the proposed MOCOEV searches for D = {d;,ds,- - ,d.} to minimize the objective
{1 — Accypai(f(w*); A*(D), D),Boot(D)}, we evolve sub-populations for dy, ds, - - - ,dy, sepa-
rately. It decomposes original problems with dimension 114 ~ 330 to dimension six and greatly
reduces the search space size from 107 ~ 10%3° to 10%. Cooperative evaluation refers to cooper-
atively evaluating an individual’s fitness in a sub-population. We should take into account other
sub-populations when evaluating the individual. R-CCDE is a single objective optimization, so

we maintain a context vector Mei et al|(2016) A* = (af, 57, -+, ¢, Bi). When evaluate o,
or i, we just need to replace the corresponding o, or 3* and assign oy, or 3 with the fitness of
(a3, 87, g,k Br)or (af, f1, - Br -+, al, B5%). In the beginning, the context vector

is randomly initialized. Finally, R-CCDE outputs the context vector as the searched result. We extend
the context vector for multi-objective optimization. MOCoEv maintains context vectors that are the
current Pareto Front. Therefore, MOCoEv can effectively improve the Pareto Front using CC.

D THE PROPOSED SEARCH ALGORITHMS

D.1 MULTI-OBJECTIVE COOPERATIVE EVOLUTION

Algorithm [I]shows the details of our proposed MOCoEv search algorithm. MOCoEv takes as input a
neural network f with L ReLUs that will be replaced by EvoReLUs, the number of sub-functions
of a composite polynomial K, the population size NP, the number of iterations 7', the initial
population size Ny. Ny > N because random initialization will generate invalid individuals. Invalid
individuals refer to those that will lead to negative levels. The dataset, like CIFAR-10, with training
and validation datasets, will be used. We will randomly sample a subset from the training dataset as
minival dataset used for search. The training dataset will be used for fine-tuning. During search and
fine-tuning, the validation dataset is strictly unseen. We will report the Top-1 validation accuracy on
the validation dataset as the final result. MOCoEv will output the Pareto front, namely the population.
The population is composed of non-dominated individuals with varying numbers of bootstrapping.

Algorithm 1: MOCoEv

input :The Network f with L ReLUs, the number of sub-functions of a composite polynomial
K, the population size N P, the number of iterations 7, the initial population size
No > NP, the replace probability P,eplace, the remove probability Premove, the insert
probability Pieert, the training dataset Training, the mini-validation dataset Minival;
output : The Pareto front Population;
initial :Population {Dy, Dy, -, Dy, } + LHS (Ny, L, K) where D = {d1,--- ,dL};
foreach d in D do \ + R—CCDE (d) ;
foreach D in Population do Acc < Evalaute (f(D, A), Minival) ;
Population + Pareto (Population, Acc, NP)
foreach D in Population do w « PAT (f(D, A), Training) ;
foreach D in Population do Acc <+ Evalaute (f(w, D, A), Minival) ;

fort < 1toT do

fori < 1to L do

Offspring < select (Population) ;

Offspring <+ Crossover (Offspring) ;

Offspring «+ Mutate (Offspring [:,4]) ;

foreach d in Offspring [, i{] do A + R-CCDE (d) ;

foreach D in Offspring do w + PAT (f(D, A), Training) ;

foreach D in Offspring do Acc <+ Evalaute (f(w, D, A), Minival) ;
Population < Pareto (Population +Offspring, Acc, NP) ;

In the initialization, we randomly initialize the population with Ny individuals, { Dy, Da,--- , Dy, }
where D; = {dy,-- ,d.} € ZV*5K 1 < j < Np. d;, 1 < i < L is the degrees of a composite
polynomial and is randomly sampled using the Latin hypercube sampling (LHS) method. The
composite polynomials with the layer index ¢ constitute the i-th sub-populations of CC. The proposed
R-CCDE searched for coefficients of composite polynomials. The Pareto function is first to use
nondominated sorting to find Pareto fronts and then use crowding distance to select individuals given

15

Under review as a conference paper at ICLR 2023

the population size N P. In iteration ¢, we sequentially evolve EvoReLUs one by one. Given i-th
EvoReLU, we first randomly select mating individuals from the population based on their accuracy
on the minival dataset. We crossover mating individuals to generate offspring. Crossover operates at
the network level. Then, we mutate the ¢-th sub-population. We randomly replace, remove and insert
polynomials of the i-th sub-population with the probability Preplace, Premove and Pingert, respectively.
So, we need to apply R-CCDE to search coefficients of the ¢-th sub-population and also use PAT
to fine-tune the network. We evaluate the fine-tuned networks on the minival dataset. Finally, we
use Pareto function to obtain the new Pareto front given the population size N P. Individuals in the
Pareto front will be used to replace the population.

D.2 REGULARIZED CO-OPERATIVE DIFFERENTIAL CO-EVOLUTION

Algorithm 2: R-CCDE

input :A composite polynomial p¢(z) = (p% o pfj‘:ll o---op¥)(x) with parameters
A={a1, B, - ,axk, P}, the target non-arithmetic function ¢(x), the number of

iterations 7', the scaling decay ~;
output : The context vector A*;
initial : * < LHS
fort < 1to T do
for k < 1to K do

aj = argming,, Ly (ap|N*), ap| X = (af, B], o, -, o, B)s

A* (aivﬁf7a27 7a;(15;(),

Bl: = argminﬁk ‘de,q(ﬁk‘)‘*) +’Y) B[%a Bk|)* = (a}f76fa e 7674)’ e 7a}((7ﬁ}k'{)7
A* (aT?BT7ﬂI:7 aa}c(aﬂ;{()’

Algorithm [2] details the proposed R-CCDE searches for coefficients of a composite polynomial.
R-CCDE takes as input a composite polynomial p(x), the target non-arithmetic function ¢(z), the
number of iterations T" and scaling decay parameter ~. In this paper, ¢(x) = 0.5 - sgn(z). R-CCDE

will output the context vector A* as result. The composite polynomial p?(z) = (deK o p;l(K:f o

. op‘fl)(:c) has learnable parameters A = {1,051, - ,ak,Pfrx}. ar = {a1,-- -, a4, } and

Br, 1 < k < K satisfy pi* (z) = By, ;121 a;T;(x). We apply LHS to initialize sub-populations of

each ay; and S. The population size of a, sub-populations is equal to 10 x |dy + 17/2, where S,
is 20. We set S = 1 and not learnable. Given iteration ¢ and sub-population index k, we apply DE
to solve argming, L4 ,(0u|A*) where £,4 , is the {1 distance between p?(z) and g(z). a|A*
means to use the current context vector A* but only search for the corresponding ay,. The solution o},
evolved by DE is used to update the context vector A* = (af, 8], - af, -+ , o, f). Similarly,
we also evolve (. After obtaining A*, we can scale a; by S and obtain the coefficients of the

composite polynomial in terms of the first kind of Chebyshev basis.

E COMPARISON OF SEARCH ALGORITHMS

To solve the high-dimensional search problem minp {1 — Accyq(f(w*); A*(D), D), Boot(D)},
we propose MoCoEv by using cooperative co-evolution to decompose high-dimensional optimization
problem to low-dimensional sub-problems. Because we adopt non-dominated sorting and crowding
distance from NSGA-II |Deb et al.| (2002) to obtain Pareto-effective solutions. NSGA-II is a fair
comparison to demonstrate the efficacy of MoCoEv. We conduct the search experiments of ResNet-20
and ResNet-32 on plaintext CIFAR-10. When we use NSGA-II, we set the same hyper-parameters
except for increasing the population size by the number of ReL.Us. However, we cannot control
the number of polynomials being evaluated, the number of evaluations on the minival dataset, and
the number of fine-tuning on the training dataset. So, we use the wall-clock search time to make
computation comparable, as shown in Table [

The upper row of Figure[§]shows the Pareto fonts of NSGA-II and AutoFHE. In terms of the trade-off
of the Top-1 validation accuracy (> 80%) versus the number of bootstrapping operations, NSGA-II

16

Under review as a conference paper at ICLR 2023

ResNet-20 ResNet-32
T T T T
92
S oof
2 88}
:_’«T 86
E 84 Backbone][
—=— NSGA-II
821 —=— AutoFHE
18F Reference
< 16F
2 uaf
S|
Loef
3
2 10f
=
sl

8 13 18 18 24 30
#Bootstrapping

Figure 8: Comparison between AutoFHE with Co-evolution and NSGA-II.

Backbone NSGA-II|Deb et al.|(2002})

AutoFHE
Network Topl HV Time #lter #Poly #Eval #Tune

HV Time #lter #Poly #Eval #Tune

ResNet-20 91.86 | 55.13 2days 17hrs 12 219k 9k 8k 7298 2days 17hrs 20 24k 18k 18k
ResNet-32 92.28 | 7492 6days 14hrs 15 713k 14k 14k | 92.89 6days S hrs 20 36k 30k 30k

Table 4: The ablation experiment of search algorithms on plaintext CIFAR-10.

is inferior to AutoFHE. It proves the effectiveness of co-evolution. Hypervolume (HV) Fonseca et al.
(2006) is used to compare NSGA-II and AutoFHEquantitatively. Hypervolume denotes the volume
dominated by the Pareto front. The bigger is HV, the better the Pareto Front. The bottom row of
Figure 8] shows the trade-off between the Top-1 validation error and the number of bootstrapping. We
compute the HV with respect to the reference points, (18.00, 18.56) for ResNet-20 and (30.00, 16.06)
for ResNet-32, respectively. Table] shows AutoFHE has better HV values than NSGA-IIL. These
ablation experiments prove that co-evolution facilitates the high-dimensional multi-objective search.

F EVALUATION OF LAYERWISE RELU APPROXIMATION

To demonstrate the efficacy of layerwise approximation of EvoReLUs, we compare AutoFHE with the
uniformly approximated networks. We adopt the Minimax composite polynomials Lee et al.|(2021ajc)
from precision 4 to 14 and use them to replace ReLUs uniformly. However, the Minimax polynomials
require a re-design of homomorphic evaluation architecture for all composite polynomials with
different precision. For example, FHE-MP-CNN uses the polynomial with precision 13 and designs
the suitable homomorphic evaluation architecture. To fairly compare the layerwise EvoReLLUand the
uniformly distributed Minimax polynomial, we use the number of depths consumed by polynomials
rather than the number of bootstrapping as the criterion. We report the Top-1 validation accuracy on
CIFAR-10 as the estimated performance under the RNS-CKKS. Hence, we used the search objective
minp{l — Accyai(f(w*); A*(D), D), Depth(D), where Depth(-) is the total number of depth
consumed by polynomials. On the other hand, in this ablation, we do NOT use PAT to fine-tune
networks to make the comparison fair.

The upper row of Figure[9]shows Pareto fronts of Minimax and AutoFHE in terms of Top-1 validation
accuracy and the number of depth. From the bottom row of Figure[9] we compute the hypervolume
values with respect to the reference point (285, 90) for ResNet-20 and the reference point (372, 90)
for ResNet-32, respectively. AutoFHE has HV 1.58 x 10* better than Minimax HV 1.06 x 10*
on ResNet-20, while AutoFHE HV is 1.84 x 10 compared with Minimax HV 1.00 x 10%. These
experimental results prove: 1) the layerwise approximation is better than uniform approximation; 2)

17

Under review as a conference paper at ICLR 2023

ResNet-20 ResNet-32
80+]]
S
Soor 1 1
~
&
40t ,]
g Backbone
20} —=— Minimax | 1
—=— AutoFHE
S I o]
Reference!
i E i
— i
X |
= i
2 1]
= i
M |
5] e
a i
E !
] i
|
1

40 160 280 80 180 280 380
#Depth

Figure 9: Evaluation of AutoFHE and layerwise Minimax.

#Bootstrapping

0 6 12 18 24 30 36 42 48 54

W Chain-EvoRelU W Residual-EvoRelLU EvoRelLU Layer Index

--- FHE-MP-CNN

0 6 12 18 24 30 36 42 48 54

Figure 10: Depth consumption distribution of EvoReLUs of ResNet-56. Upper: depth consumption distributions
of layerwise EvoReLUs of different bootstrapping consumption. Bottom: the distribution of scaling parameters
(B) of layerwise EvoReLUs. The green dashed lines show the depth consumption or B of AppReLUs of
FHE-MP-CNN.

the approximation of AutoFHE is also precise and AutoFHE’s performance is not simply because of
fine-tuning.

G EVALUATE AUTOFHE ON PLAINTEXT IMAGENET

It is not practical to evaluate high-resolution images under the RNS-CKKS scheme due to the
extremely high memory footprint and computational complexity constraints. To realize the goal of
practically processing high-resolution images in the encrypted domains, we need advancements in

18

Under review as a conference paper at ICLR 2023

—#— AutoFHE_J
N PR

(@)
| A RAALE RAALY RLALY RLLLS RALL LLLM 1

20 45 70 95 120
Depth

Figure 11: Evaluate AutoFHE over ResNet-18 on plaintext ImageNet.

RNS-CKKS primitives, custom hardware for FHE, more efficient packing algorithms, etc. This is
the reason why all current works use CIFAR to benchmark performance. We evaluate AutoFHE on
plaintext ImageNe Russakovsky et al|(2015) to demonstrate its efficacy on the large-scale high-
resolution dataset. We use the ResNet-18 model provided by Pytorch. It has 9 ReLLUs and 1
MaxPooling. We replace the non-arithmetic MaxPooling by the arithmetic AvgPooling and train it
from scratch for 90 epochs. Its Top-1 accuracy is 69.62% slightly lower than its MaxPooling version,
69.76%. We set the number of generations to 10, the size of the minival dataset to 2,560, and the
population size to 30. Other hyper-parameters are as same as CIFAR experiments. We turn off
fine-tuning during the search and fine-tune the final result for one epoch. The search experiment took
18 hours. We estimate accuracy on the plaintext validation dataset and use depth consumption as the
inference cost under the RNS-CKKS. We adopt the Minimax polynomials with precision from 4 to
13 as our baseline and set B = 100. Figure[TT]shows Pareto fronts of AutoFHE and
Minimax. AutoFHE has 69.26% accuracy with a depth consumption of 91, while Minimax consumes
126 depth to have the same accuracy. AutoFHE can reduce 28% depth consumption. When depth
consumption is equal to 99, Minimax has an accuracy 14.71%. AutoFHE reports accuracy 65.56%
with the same depth consumption. This experiment demonstrates that AutoFHE can effectively trade
off the accuracy and the depth consumption on large-scale high-resolution datasets.

H EVORELUS OF RESNET-56

Figure [T0]shows distributions of depth consumption of EvoReLUs of Pareto-effective solutions with
varying numbers of bootstrapping operations. From the upper panel of Figure [T0] MoCoEv exploits
the layerwise variable approximation sensitivity and assigns different depths to each EvoReLU.
So, AutoFHE can reduce depth consumption, save the number of bootstrapping operations and
further accelerate inference. From the bottom panel of Figure[T0] it shows different distributions
of pre-activations. It proves we can use smaller B values and lower-degree polynomials to have the
same precision, namely B’ - 2= = B -2~ where B’ < B and o/ < o The pre-activations of
residual EvoReLU are not normalized, so its B values are bigger than chain EvoReL.U. So, residual
EvoReLUs prefer higher-degree polynomial approximation with more depth consumption to maintain
approximation precision.

Figure[T2)and Figure[I3|show EvoReLUs of different layers of ResNet-56. We include Pareto-effective
solutions with the number of bootstrapping operations from 26 to 52. From Figure [[2]and Figure 3]
high-precision solutions consume more depth and approximate ReLLUs precisely. Low-precision
solutions use low-degree polynomials to reduce depth consumption. From EvoReLU approximation,
we learn how AutoFHE can trade off accuracy and inference speed.

19

paper at ICLR 2023

view as a conference

Under re

#Bootstrapping
25 29 32 34 36 39 40 41 42 44 45 47
A NNNNNANNANNAN S/

A AANNANNNANNNANS

" NNNNNNNANNANANS

" NNNNNANANNANNSNS

T NTNNANANANANNNN NS
- NNANNNNANANNASS

"N NN N ANANNANANNANS

" NNNNNANANNNNSNS
N NNNNANNNNNSNS

 ANANNNNNANNNANNS

A NNNNNNNANANNSS

A\ NANANANANNNNNNNS
N NNNANNNANNNANS

 NNNNNANANNNNSNS
N NNNNANANANNNSNS

N NNNNANANANNNSNS
A NNNNNNNANANNSS

ANNNSNNANANNANS

* N NNNNNANANNNSNS
' NANANANANNANNANNANS

A NNNNNNNANANNSS

L NNNNNANANANANNNS
A NNNNNNNANANN S

N NNNNNANNNNNS
A ANNNNNNNANANNSS

AANANNNNANAN NS

N NNNANNANNANNNS

mmmmmmmmmmmmmmmmm

Figure 12: EvoReLUs of ResNet-56 from layer O to 26.

20

Under review as a conference paper at ICLR 2023

#Bootstrapping
25 29 32 34 36 39 40 41 42 44 45 47
~

mmmmmmmmmmmmmmmmm

AERENERENENERERERENEENE RN
AERERERNRERERERERENNEREREREN
AERERERRERERERERENNENEREREN
AERERERRERERERERENNENEREREN
AERERERRERERERERENNENEREREN
AERERERRERERERERERNEREREREN
AERERERRERERERERENNENEREREN
AERERENREREREREREENNENEREREN
AERERERRERERERERENNENEREREN
AERERENRERERERNENENENEREREN
AERRRENRERERERNENERERNERENEN
REREDEBREBRRRSERREREBRERERED

Figure 13: EvoReLUs of ResNet-56 from layer 27 to 54.

21

	Introduction
	Preliminaries
	AutoFHE: Joint EvoReLU and Bootstrapping Search
	EvoReLU
	MOCoEv: Multi-Objective Co-Evolutionary Search
	Regularized Cooperative Differentiable Co-evolution
	PAT: Polynomial-Aware Training

	Experiments
	Pareto Fronts of AutoFHE
	Secure Inference of AutoFHE under RNS-CKKS
	Ablation Study

	Conclusion
	Notations
	Related Work
	Evolutionary Search Algorithms
	The Proposed Search Algorithms
	Multi-Objective Cooperative Evolution
	Regularized Co-operative Differential Co-Evolution

	Comparison of Search Algorithms
	Evaluation of Layerwise ReLU Approximation
	Evaluate AutoFHE on Plaintext ImageNet
	EvoReLUs of ResNet-56

