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Abstract001

Unsupervised keyphrase prediction has gained002
growing interest in recent years. However, ex-003
isting methods typically rely on heuristically004
defined importance scores, which may lead to005
inaccurate informativeness estimation. In ad-006
dition, they lack consideration for time effi-007
ciency. To solve these problems, we propose008
ERU-KG, an unsupervised keyphrase genera-009
tion (UKG) model that consists of a phraseness010
and an informativeness module. The former011
generate candidates, while the latter estimate012
their relevance. The informativeness module013
innovates by learning to model informativeness014
through references (e.g., queries, citation con-015
texts, and titles) and at the term-level, thereby016
1) capturing how the key concepts of the doc-017
ument are perceived in different contexts and018
2) estimate informativeness of phrases more ef-019
ficiently by aggregating term informativeness,020
removing the need for explicit modeling of the021
candidates. ERU-KG demonstrates its effec-022
tiveness on keyphrase generation benchmarks023
by outperforming unsupervised baselines and024
achieving on average 89% of the performance025
of a supervised baseline for top 10 predictions.026
Additionally, to highlight its practical utility,027
we evaluate the model on text retrieval tasks028
and show that keyphrases generated by ERU-029
KG are effective when employed as query and030
document expansions. Finally, inference speed031
tests reveal that ERU-KG is the fastest among032
baselines of similar model sizes.033

1 Introduction034

Keyphrases are short sequences of words that de-035

scribe the core concepts of a document. Automati-036

cally predicting keyphrases is a crucial problem, as037

the outputs can be utilized in various downstream038

tasks, such as document retrieval (Zhai, 1997;039

Gutwin et al., 1999; Jones and Staveley, 1999; Wit-040

ten et al., 2009; Fagan, 2017; Boudin et al., 2020)041

and document visualization (Chuang et al., 2012).042

There are two approaches for keyphrase prediction,043
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Figure 1: An example of the different type of references.

namely keyphrase extraction (KE) and keyphrase 044

generation (KG). The two approaches differ in the 045

output space, where keyphrase generation addi- 046

tionally predicts absent keyphrases. Since human 047

tend to use both present and absent keyphrases to 048

describe documents, keyphrase generation has re- 049

ceived much attention in recent years. 050

In this work, we focus on unsupervised 051

keyphrase generation (UKG). In line with previous 052

work, we target a model that receives a document as 053

input and predicts present and absent keyphrases. 054

The desired UKG model must learn to generate 055

keyphrases without labeled data. Being able to 056

build an UKG model in the unsupervised setting is 057

highly desirable, since labeled data is often expen- 058

sive and difficult to obtain. In addition, KG models 059

are expected to be used to process large volumes of 060

documents, as evidenced by their potential appli- 061

cations. For example, when utilized for document 062

visualization or retrieval tasks, these models must 063

efficiently handle entire corpora. Therefore, it is 064

desirable for KG models to be time efficient, to 065

manage large scale data processing. 066

There are two challenges of building a keyphrase 067

generation model that meet those requirements. 068

The first challenge is ensuring accurate informa- 069

tiveness estimation. Informativeness refers to how 070

well the phrase illustrates the core concepts of the 071

text. Without labeled keyphrases, it is not straight- 072
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forward to train a model that captures informative-073

ness. Unsupervised approaches, including unsuper-074

vised keyphrase extraction (UKE) and generation,075

rely on heuristically designed importance scores as076

proxies for estimating informativeness (see Section077

A). However, since these importance scores are078

heuristically defined, they may lead to inaccurate079

estimations.080

The second challenge is efficient informative-081

ness estimation. Existing keyphrase generation082

methods typically employ a seq2seq approach that083

directly model the distribution of keyphrases given084

a document. This could make keyphrase gen-085

eration slow due to the autoregressive approach086

taken by most models (Wu et al., 2022b). Existing087

UKE models, on the other hand, separate candidate088

phrase generation and informativeness estimation.089

While candidate generation is typically fast, mod-090

ern UKE approaches leverage complex importance091

scoring function that require modeling of a doc-092

ument and all its candidates, potentially slowing093

down the process. Specifically, embedding-based094

approaches (Bennani-Smires et al., 2018; Sun et al.,095

2020) generate embeddings for the given text and096

all candidates, then measure informativeness via097

proximity in the embedding space. On the other098

hand, language model-based approaches (Ding and099

Luo, 2021; Kong et al., 2023) use pretrained lan-100

guage models (PLMs) to score each document-101

candidate pair individually.102

Our key idea for addressing the first challenge103

is learning to model informativeness through refer-104

ences. We propose that accurate informativeness105

estimation can be achieved by capturing community106

perception of a document’s key concepts, i.e. the107

central ideas as recognized by domain experts and108

readers. This community perception can be learned109

by analyzing references - the different contexts that110

mention the document. We illustrate this observa-111

tion in Figure 1, where we consider three types of112

references, including queries (how the document is113

retrieved), citation contexts (how the document is114

cited) and titles (how the authors summarize their115

own work). These references provide insights into116

of what the community considers the key concepts117

of the text.118

Next, our key idea for addressing the second119

challenge is learning to model informativeness at120

the term-level rather than at the phrase-level. Esti-121

mating informativeness for each candidate phrase122

can be computationally expensive and slow down123

keyphrase generation. Instead, we propose estimat-124

ing informativeness at the term-level. In particular, 125

we leverage pairs of references and documents to 126

train a term importance predictor, which are used to 127

estimate informativeness of phrases by aggregating 128

informativeness of its constituent terms, removing 129

the need to explicitly model each candidate phrase 130

individually. 131

We summarize the contributions of our paper. 132

Firstly, we propose ERU-KG: an Efficient, 133

Reference-aligned, Unsupervised Keyphrase 134

Generation model. ERU-KG comprises two 135

components - a phraseness and an informativeness 136

module. The former generates present and 137

absent keyphrase candidates by extracting noun 138

phrases from the given text and retrieving present 139

keyphrases from textually-similar documents. 140

On the other hand, the informativeness module 141

incorporates our novel key ideas to tackle the 142

identified challenges. Secondly, we conduct 143

groundtruth-based evaluation and show that 144

ERU-KG outperforms unsupervised baselines 145

and comes very close to CopyRNN (Meng et al., 146

2017), a supervised model. Thirdly, to assess 147

the utility of generated keyphrases, we carry out 148

retrieval-based evaluation. Our results show that 149

keyphrases generated by ERU-KG enhance text 150

retrieval performance when employed as query 151

and document expansions. Finally, we perform 152

inference speed test to assess the time-efficiency of 153

ERU-KG, showing that our method is faster than 154

existing KE and KG baselines with comparable 155

model sizes. 156

2 Methodology 157

Figure 2 presents an overview of ERU-KG. Our 158

proposed model takes as input a document x 159

and outputs sets of present and absent keyphrases 160

Y present
x and Y absent

x , each containing k keyphrases. 161

Similar to (Do et al., 2023), ERU-KG consists of 162

two modules, called phraseness and informative- 163

ness. The former is responsible for generating can- 164

didates, while the latter decides which best repre- 165

sents the core concepts of the given text. 166

2.1 Informativeness Module 167

The informativeness module is responsible for rank- 168

ing candidate phrases. As mentioned above, it in- 169

corporates our key ideas to addressing the chal- 170

lenges of accurate and efficient informativeness 171

estimation: modeling informativeness through ref- 172

erences and at the term-level. Specifically, we lever- 173
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Figure 2: Overview of ERU-KG. Further details of the inference process are provided in Algorithm 1

age pairs of references and documents to train a174

term importance predictor, which is used to esti-175

mate informativeness of candidate phrases in the176

during inference.177

There exists multiple term importance predic-178

tors in the area of text retrieval. One option is179

DeepCT (Dai and Callan, 2019), which predicts180

importances for all terms appearing in a given doc-181

ument. However, since DeepCT is not designed to182

model importances of absent terms, it is not suit-183

able for evaluating absent candidate phrases. In an-184

other line of work, EPIC (MacAvaney et al., 2020),185

SparTerm (Bai et al., 2020) and SPLADE (Formal186

et al., 2021b,a) predict importances for all terms187

in a vocabulary, making them more suitable for188

evaluation of both present and absent candidates.189

Among these models, SPLADE is the most suit-190

able for predicting keyphrases. Different from191

EPIC and SparTerm, SPLADE employs explicit192

sparsity regularization mechanisms, which encour-193

ages assigning non-zero importance for only the194

most relevant terms. In the next sections, we195

discuss the term importance predictor: SPLADE196

(§2.1.1), training data (§2.1.2) and informativeness197

estimation (§2.1.3).198

2.1.1 Term Importance Predictor: SPLADE199

SPLADE predicts term importances based on the200

logits produced by the Masked Language Model-201

ing (MLM) layer. In particular, wx
ij denotes the202

importance, predicted by MLM layer, of the term203

i in the input document x and the term j in BERT204

vocabulary. Then, the importance of j given x is 205

computed by max pooling 206

wx
j = max

i∈x
log(1 + ReLU(wx

ij)) (1) 207

Model training. SPLADE is trained by optimizing 208

a ranking loss and two regularization losses 209

L = Lrank−IBN + λqLqreg + λdLdreg (2) 210

where Lreg is the sparse regularizer introduced in 211

(Paria et al., 2020). Given a training batch, contain- 212

ing the query qi, the positive (referenced) document 213

d+i and the negative document d−i , the ranking loss 214

Lrank−IBN is a contrastive loss that maximizes the 215

relevance of d+i , while lowering the relevance of 216

d−i . Relevance is measured by dot product between 217

q and d representations from Eq. 1. For further de- 218

tails, we refer readers to the original papers (Formal 219

et al., 2021b,a). 220

2.1.2 Training Dataset 221

To train SPLADE, we build a training set T = 222

{(ri, d+i , d
−
i )}

|T |
i=1, containing triplets, where ri is 223

a reference, while d+i and d−i denote positive (ref- 224

erenced) and negative documents, respectively. We 225

note that references ri are used in place of queries 226

qi. In this work, we focus on scientific text, as all 227

three types of references (queries, citation contexts, 228

and titles) are readily accessible in this domain. 229

Query. Our work leverages training data from 230

the Search task within SciRepEval 1 (Singh et al., 231

1https://huggingface.co/datasets/allenai/
scirepeval/viewer/search
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2023), which contains 478,000 queries from real232

users on Semantic Scholar. Each query accompa-233

nies a list of candidates and their relevance score.234

We build triplets from this dataset by regarding235

query as reference ri. We concatenate the title and236

abstract of each candidate as d+i for those with a237

relevance score > 0, and as d−i for those with a238

relevance score = 0.239

Citation context. We utilize the permissively li-240

censed subset of unarXive2 (Saier et al., 2023),241

which contains over 165,000 full-text documents.242

For each document, we extract citing sentences as243

references ri. We employ only citation contexts244

that cite one paper, or collectively cite several paper245

as a single group, to ensure focus on the concepts246

of the referenced document. The concatenated ti-247

tles and abstracts of cited articles are chosen to248

be positive documents d+i . Negative documents249

d−i are similarly constructed by concatenating ti-250

tles and abstracts but are selected from research251

articles cited in different sections of the same pa-252

per, distinct from the section containing the citing253

sentence.254

Title. We continue to utilize unarXive dataset255

(Saier et al., 2023). More specifically, we designate256

titles as ri and corresponding abstracts as d+i for257

research articles. For negative documents d−i , we258

select abstracts of research articles cited within the259

paper.260

2.1.3 Estimating Informativeness of Phrases261

In this section, we explain how to measure informa-262

tiveness of phrases based on the term importance263

predictor described above. A simple approach is to264

aggregate the importance of the component terms.265

More formally, the probability that a candidate266

phrase c is informative given the document x is267

defined as268

Pin(c|x) ∝ f(c,x) =
1

|c| − γ

∑
ci∈c

wx
ci (3)269

where wx
ci is the predicted importance of term270

ci ∈ c. Next, γ is the length penalty, which is271

used to control the preference towards longer can-272

didates. A negative value of γ leads to larger value273

of f(c,x) for longer candidates, and vice versa.274

Although SPLADE can evaluate importance of275

absent terms, the scores for these terms are often un-276

derestimated. On a set of 20k documents sampled277

from SciRepEval Search, only 25% of terms with278

2https://zenodo.org/records/7752615

non-zero importances are absent terms. This could 279

lead to inaccurate ranking of absent candidates. 280

To mitigate this problem, our approach is inspired 281

by pseudo-relevance feedback (Cao et al., 2008), 282

which is to incorporate additional context from re- 283

lated documents. In particular, the importance of 284

each candidate is determined by its importance in 285

the given document x and its related documents 286

x′ ∈ N (x). Consequently, the informativeness 287

probability is redefined as follows 288

Pin(c|x) ∝ f̂(c,x) =
1

|c| − γ

∑
ci∈c

ŵx
ci (4) 289

ŵx
ci = α wx

ci + (1− α)
∑

x′∈N (x)

s̃x′,x wx′
ci (5) 290

Here,N (x) is retrieved using BM25 from a doc- 291

ument collection D. The hyperparameter α con- 292

trols the relative contribution of the given document 293

and its related documents. s̃x′,x =
sx′,x∑

x′′∈N (x) sx′′,x
294

is the normalized similarity between two docu- 295

ments, where sx′,x denotes the BM25 similarity 296

score. It is worth noting that the term importances 297

of the documents in D are precomputed and there- 298

fore no additional computations are required. 299

2.2 Phraseness Module 300

The phraseness module is responsible for generat- 301

ing keyphrase candidates, including present and 302

absent ones. A discussion in (Do et al., 2023) 303

mentions that most keyphrases are noun phrases 304

(Chuang et al., 2012) and absent keyphrases can be 305

found in other documents (Ye et al., 2021). Based 306

on this idea, we employ a candidate generation 307

procedure that extract noun phrases from 1) the 308

given document x and 2) its related documents 309

N (x). More formally, given a document, its can- 310

didate set Ĉx = {c1, c2, ...} containing keyphrase 311

candidates, is obtained as follows 312

Ĉx = Cx ∪CN (x) = Cx ∪
⋃

x′∈N (x)

Cx′ (6) 313

where Cx denotes the set of noun phrases ex- 314

tracted from x. CN (x) denotes the set of noun 315

phrases extracted from x′ ∈ N (x). To assign a 316

phraseness probability of each candidate c ∈ Ĉx, 317

we compute the likelihood of drawing it from the 318

candidate set of the given document (Cx) or from 319

its related documents (CN (x)) 320
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Ppn(c|x) = β P (c|Cx) + (1− β)
∑

x′∈N (x) s̃x′,x P (c|Cx′)

(7)321

P (c|C) =

{
1
|C| , c ∈ C

0, otherwise
(8)322

The parameter β controls the contribution from323

the given document and its related documents.324

However, as the size of N (x) grows, the size325

of CN (x) (and therefore Ĉx) may grow signifi-326

cantly. The large number of candidates slows down327

keyphrase generation process, regardless of how328

fast informativeness estimation is. To limit the num-329

ber of candidates for speeding up the KG process,330

we employ two strategies for pruning CN (x).331

Strategy 1: Pruning low informativeness and low332

reliability candidates from each Cx′ . The informa-333

tiveness of a candidate given the input document x334

depends not only on x but also on how important335

that candidate is to the related documents. Specifi-336

cally, we can see from Eq. 4 and 5 that unimportant337

candidates given the related documents are likely338

to have low informativeness and hence unlikely to339

be chosen as keyphrases. Based on this idea, we340

prune Cx′ by keeping only the top 10 c ∈ Cx′341

with the highest value of f(c,x′) see (Eq. 3).342

Next, we further prune Cx′ based on their relia-343

bility. Inspired by (Boudin and Aizawa, 2024), we344

estimate phrase reliability by using the number of345

documents in which they appear as one of the most346

informative candidates. Specifically, we employ347

GD, which is a glossary formed by retaining noun348

phrases that appear in the top 10 most informative349

candidates for at least three documents x′ ∈ D.350

Applying the first strategy, the pruned candidate351

set from related documents x′, denoted as C̃x′ , is352

defined as follows353

C̃x′ = Top10(Cx′ , f) ∩GD (9)354

We note that C̃x′ is precomputed for every docu-355

ment inD and therefore no additional computations356

are required in the inference phase. The pruned can-357

didate sets C̃x′ are used in place of Cx′ in Eq. 6358

and 7.359

Strategy 2: Pruning low phraseness candidates360

from CN (x). As will be discussed in §2.3, candi-361

dates chosen as keyphrases need to exhibit high362

informativeness, but also phraseness probability.363

Therefore, candidates with low phraseness are un-364

likely to be chosen as keyphrases. Based on this365

idea, we prune CN (x) by retaining only the top 100 366

with the highest value of Ppn(c|x). Applying the 367

second strategy, the final candidate set is redefined 368

as follows 369

Ĉx = Cx ∪ Top100(CN (x), Ppn) (10) 370

2.3 Combining Phraseness and 371

Informativeness 372

To generate keyphrases, we combine the two mod- 373

ules. Specifically, given an input text, we first ap- 374

ply the phraseness module to generate keyphrase 375

candidates Ĉx. Next, we evaluate the informative- 376

ness of each candidate. The candidates are ranked 377

based on a composite ranking score, which is com- 378

puted as the product-of-experts (Hinton, 2002) of 379

the phraseness and informativeness probabilities 380

Pkp(c|x) ∝ Ppn(c|x)λ × Pin(c|x) (11) 381

where λ is a hyperparameter that controls the 382

importance of phraseness in the ranking score. 383

Position penalty. Previous work have shown that 384

position information is useful for predicting present 385

keyphrases (i.e. keyphrase extraction) (Florescu 386

and Caragea, 2017; Boudin, 2018; Gallina et al., 387

2020). Therefore, we include this feature into mea- 388

suring informativeness of phrases. In particular, 389

we adopt the position penalty defined in (Do et al., 390

2023). The final ranking score is defined as follows 391

sx(c) = ωx(c)Pkp(c|x) (12) 392

where ωx(c) = 1 + 1
log2[Px(c)+1] is the posi- 393

tion penalty. The position Px(c) is the number of 394

words preceding the phrase c in x. This penalty 395

prioritizes phrases appearing earlier in the text. For 396

absent phrases, we define Px(c) →∞ and there- 397

fore ωx(c) → 1. Finally, top ranked (present or 398

absent) candidates are chosen as (present or absent) 399

keyphrases. 400

Switching between generation and extraction. 401

Our proposed framework can flexibly switch be- 402

tween generation and extraction. This is achieved 403

by setting both interpolation hyperparameters, α 404

and β (Eq. 5 and 7, respectively) to 1. Setting these 405

two parameters to 1 disables the use of N (x) and 406

therefore is equivalent to not retrieving any related 407

documents, i.e. |N (x)| = 0. 408
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3 Experiments409

In this work, we assess the effectiveness of ERU-410

KG using two evaluation methods: Ground truth-411

based and Retrieval-based evaluation. The for-412

mer measures the alignment between predicted413

keyphrases and human-annotated keyphrases,414

while the latter assesses the usefulness of predicted415

keyphrases when applied to text retrieval tasks.416

More specifically, retrieval-based evaluation aim to417

determine if keyphrases effectively serve as query418

and document expansion to enhance text retrieval419

performance. The datasets, baselines & evaluation420

metrics, and experiment results are respectively421

presented in §3.1, §3.2 and §3.3.422

One of the core contributions of this work is423

that keyphrase generation can be made more time-424

efficient by leveraging term-based representations425

of documents. To validate this, we conduct Infer-426

ence speed evaluation (§3.4).427

3.1 Datasets428

We present the statistics for the evaluation datasets429

in Table 4.430

Ground truth-based evaluation. We utilize 5431

datasets, namely SemEval (Kim et al., 2010), In-432

spec (Hulth, 2003), NUS (Nguyen and Kan, 2007),433

Krapivin (Krapivin et al., 2009) and KP20K (Meng434

et al., 2017) for the ground truth-based evaluation435

of our model. We follow previous work and form436

the testing document by concatenating the title and437

abstract of each testing example.438

Retrieval-based evaluation. We utilize 6 scientific439

retrieval datasets. Four of these datasets - TREC-440

COVID (Voorhees et al., 2021), SCIDOCS (Cohan441

et al., 2020), SciFact (Wadden et al., 2020) and442

NFCorpus (Boteva et al., 2016) - are sourced from443

the BEIR benchmark (Thakur et al., 2021). The444

other two datasets are DORIS-MAE (Wang et al.,445

2024) and ACM-CR (Boudin, 2021).446

3.2 Baselines & Evaluation Metrics447

3.2.1 Baselines448

Ground truth-based evaluation. We evaluate449

our proposed model by comparing against four un-450

supervised keyphrase extraction algorithms: Tex-451

tRank (Mihalcea and Tarau, 2004), MultiPartiteR-452

ank (Boudin, 2018), EmbedRank (Bennani-Smires453

et al., 2018), and PromptRank (Kong et al., 2023).454

Additionally, we compare our model with three455

unsupervised keyphrase generation methods: Au-456

toKeyGen (Shen et al., 2022), UOKG (Do et al.,457

2023) and TPG (zero-shot setting) (Kang and Shin, 458

2024). Finally, we include CopyRNN (Meng et al., 459

2017) as a supervised baseline. 460

Retrieval-based evaluation. We compare ERU- 461

KG with keyphrase generation methods mentioned 462

above. For all keyphrase generation models, we 463

generate keyphrases for each document (or query). 464

We employ the top 10 present keyphrases and top 465

10 absent keyphrases (20 total) as query and docu- 466

ment expansions. In the case of TPG, we evaluate 467

its performance solely on query expansion, due to 468

its slow inference speed. 469

In addition, we compare our model with well- 470

established methods for document and query ex- 471

pansion, specifically DocT5Query (Nogueira et al., 472

2019b,a) for document expansion and RM3 (Abdul- 473

Jaleel et al., 2004) for query expansion. 474

3.2.2 Evaluation Metrics 475

Ground truth-based evaluation. In line with pre- 476

vious work, we utilize the macro-average F1-score 477

and Recall for evaluation of present and absent 478

keyphrases. For both, we conduct evaluations at 479

top 5 and 10 predictions. Before evaluation, both 480

the predicted and ground truth keyphrases are pro- 481

cessed using Porter Stemmer (Porter, 1980), after 482

which duplicates are removed. Our implementation 483

of F1-score is similar to that of (Chan et al., 2019). 484

Specifically, for F1@k we add wrong keyphrases 485

until the number of predictions reaches k if a model 486

predicts fewer than k keyphrases. The purpose of 487

this processing step is to eliminate the favor to- 488

wards models that produce fewer keyphrases. 489

Retrieval-based evaluation. We utilize recall at 490

top 1000 (R@1000) as the primary evaluation met- 491

ric, with the aim to assess the effectiveness of gen- 492

erated keyphrases in enhancing the recall of First- 493

stage Retrieval. 494

3.3 Results 495

3.3.1 Ground truth-based Evaluation 496

Table 1 presents the performance of our proposed 497

method and the baselines on the five benchmark 498

datasets. In addition, we report the average perfor- 499

mances. 500

Present keyphrase generation. For generating 501

present keyphrases, our proposed method achieves 502

the best or second-best performance across all 503

datasets except Inspec. While our model does 504

not outperform the baselines on every dataset, it 505

achieves the highest average results overall. No- 506

tably, compared to CopyRNN, a supervised base- 507
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Present keyphrase generation
SemEval Inspec NUS Krapivin KP20K Avg

F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10 F@5 F@10
TextRank 16 20.3 29.3 36.2 11.6 16.6 10.1 13.6 9.1 11.6 15.2 19.7
MultiPartiteRank 22.3 22.5 26.3 30.3 23.7 22.2 17.9 15.9 18.4 15.9 21.7 21.4
EmbedRank 23.5 25.2 27.9 33.4 23.8 22.3 18.6 17.7 19.5 16.8 22.7 23.1
EmbedRank (SBERT) 25.4 27.1 35.1 39.8 22.5 24.1 20.7 19.3 18.3 17.1 24.4 25.5
PromptRank 16.1 19.9 33.4 37.5 18.5 19.8 15.9 15.5 16.3 15.6 20 21.7
AutoKeyGen 22.1 24.4 23.1 23.7 26.1 27.1 20.6 18.6 20.4 19 22.5 22.6
UOKG 21.5 22.1 23.9 22.9 27.8 26.2 21.5 17.9 21 17.6 23.1 21.3
TPG 24.7 22.2 34 33.3 25 21.3 20.3 16.3 18.7 14.2 24.5 21.5
ERU-KG-small 27.4∗ 30.1∗ 28.4 35.7 28.1∗ 26.9 20.7 19.6 21.6∗ 19.2 25.2 26.3∗

ERU-KG-base 27.6∗ 30.6∗ 29 36 27.8 27 21.3 19.5∗ 22∗ 19.4∗ 25.5 26.5∗

Supervised - CopyRNN 29.6 29.7 22.6 23.7 37.2 34.3 30.1 24.5 30.6 25.7 30 27.6
Absent keyphrase generation

SemEval Inspec NUS Krapivin KP20K Avg
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

AutoKeyGen 0.7 1.1 1.8 2.6 2.3 3.2 2.5 3.7 2.2 3.6 1.9 2.8
UOKG 1.4 2.3 1.9 2.9 2.5 3.6 4.6 6.9 2.6 4.5 2.6 4
TPG 0.4 0.8 1.5 2.4 1.7 2.4 1 1.2 1.2 1.9 1.2 1.7
ERU-KG-small 2.1∗ 3.1 5.4∗ 6.5∗ 3.7∗ 5.9∗ 5 6.2 6∗ 8∗ 4.4∗ 5.9∗
ERU-KG-base 2.3∗ 3∗ 5.3∗ 6.5∗ 3.4∗ 5.5∗ 4.9 6.2 6∗ 8.1∗ 4.4∗ 5.8∗

Supervised - CopyRNN 2.3 2.8 3.5 4.9 5.9 7.8 7.9 10.8 7.1 9.3 5.3 7.1

Table 1: Keyphrase generation performances on five benchmark datasets. The best results are bolded, while the
second-best are underlined. Experiments for AutoKeyGen, UOKG, TPG, CopyRNN, and our method are conducted
three times, with the mean reported. Both F1 and Recall are presented as percentages. ∗ indicates significance over
AutoKeyGen, UOKG and TPG with p < 0.05.

line, our model demonstrates competitive results.508

Specifically, CopyRNN outperforms ERU-KG by509

only 1.1 percentage point in the overall F1@10510

score. This illustrates the effectiveness of our511

approach, particularly since it is independent of512

human-labeled keyphrases.513

Absent keyphrase generation. For generating514

absent keyphrases, our model achieves the best per-515

formance across all benchmark datasets, leading to516

the highest average results overall. Furthermore,517

our approach continues to demonstrate competi-518

tive performance in comparison to the supervised519

baseline.520

3.3.2 Retrieval-based Evaluation521

Table 2 displays the performance of our model522

and the baselines on six text retrieval evaluation523

datasets. In addition, we report average perfor-524

mance across datasets. For KG models, we investi-525

gate their effectiveness in three settings: 1) when526

employed as query expansion (Query); 2) when em-527

ployed as document expansion (Doc) and 3) when528

employed as both query and document expansion529

(Both).530

Comparison with KG methods. In the Query and531

Both setting, ERU-KG consistently achieve the best532

performance among existing KG models across533

datasets, with one exception being the ACM-CR534

dataset, where ERU-KG is second best after Copy-535

RNN. In the Doc setting, the performance gain is536

less consistent. In particular, although our proposed 537

method achieves performance that matches or ex- 538

ceeds the baselines on the majority of datasets, it 539

is outperformed by all baselines on TREC-COVID 540

and DORIS-MAE. 541

In addition, it is worth noting that when em- 542

ployed as query and document expansion in con- 543

junction (i.e. Both setting), ERU-KG on average re- 544

sults in superior performance comparing to Query 545

and Doc setting, where query and document expan- 546

sion are employed individually. This effect is not 547

evident in other KG models. 548

Comparison with existing expansion methods. 549

ERU-KG achieves performance on par with RM3 550

in the Query setting, DocT5Query in the Doc set- 551

ting, and DocT5Query + RM3 in the Both setting. 552

While it does not demonstrate a clear performance 553

advantage over existing expansion methods, it of- 554

fers a distinct benefit in terms of visualizability. 555

Specifically, the keyphrases generated by ERU-KG 556

are more structured and concise, making them eas- 557

ier to visualize compared to the term-based expan- 558

sions of RM3 and the synthetic queries produced 559

by DocT5Query. 560

3.4 Inference Speed Evaluation 561

We evaluate the inference speed of our method 562

to measure its time efficiency. Throughput (TP), 563

defined as the number of documents processed 564
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Type Model SCIDOCS SciFact TREC-COVID NFCorpus DORIS-MAE ACM-CR Avg
- BM25 56.4 97.7 39.6 37 70.1 71.5 62.1

Query

+ RM3 59 98 44.5 56.5 59.6 74.4 65.3
+ AutoKeyGen 52.3 97 33.4 48.7 70.4 69.2 61.8
+ UOKG 54.2 98 35.4 48.6 69 70.2 62.6
+ TPG 54.1 98.3 34.5 48.1 73.9 71 63.3
+ CopyRNN 53.6 97.7 35.8 48 72.8 73.8 63.6
+ ERU-KG-small 58.5 99.3 43.7 56.3 73.9 72.1 67.3
+ ERU-KG-base 58.7 99 43.2 54.8 73.4 72.6 67

Document

+ docT5query 57 98 43.2 37 - - -
+ AutoKeyGen 57 97.3 40.5 37.3 69.8 71.3 62.2
+ UOKG 57.7 97.7 40.9 37.5 70.1 72.4 62.7
+ CopyRNN 57 97.3 40.8 37.2 69.7 71.6 62.3
+ ERU-KG-small 59.9 98.3 38.5 39 68.9 73 62.9
+ ERU-KG-base 60 98.3 39.6 38.7 68 72.7 62.9

Both

+ docT5query + RM3 59.7 98.3 47.7 56.5 - - -
+ AutoKeyGen 52.8 97 33.5 48.3 69.3 68 61.5
+ UOKG 54.8 98.3 36.1 49.2 69.1 69.4 62.8
+ CopyRNN 54.7 97.5 32.4 48.1 72 73.8 63.1
+ ERU-KG-small 62.4 100 46.2 56.2 73.6 72.8 68.5
+ ERU-KG-base 62.9 99.7 46.7 55.6 71.7 73.5 68.4

Table 2: Retrieval-based evaluation (R@1000) on four benchmark datasets. For each dataset, we bold the best
overall results and underline the best results in each type (query expansion, document expansion and both).

per second, serves as the primary metric for this565

assessment. ERU-KG is tested in two scenar-566

ios: keyphrase extraction and keyphrase genera-567

tion. In the keyphrase extraction scenario, we com-568

pare ERU-KG (α and β set to 1, as described in569

§2.3) against EmbedRank and PromptRank, using570

SBERT in place of Sent2vec for EmbedRank to571

ensure a fair comparison. For the keyphrase gener-572

ation scenario, we benchmark ERU-KG against the573

previously mentioned KG baselines, along with an574

additional baseline, PromptKP (Wu et al., 2022b)575

— a non-autoregressive supervised keyphrase gen-576

eration model. Furthermore, we evaluate two con-577

figurations of ERU-KG by varying the size of578

N (x), setting it to 100 (default), 50 and 10. For579

fair comparison, we run all experiments with batch580

size of 1, on the same hardware (see §B.4), using581

a dataset composed of SemEval, Inspec, NUS and582

Krapivin.583

We present the results in Table 3. ERU-KG584

achieves the best throughput in both scenarios.585

Results in the keyphrase generation scenario re-586

quires further explanations. In the default setting,587

i.e. |N (x)| = 100, our proposed method fails to588

achieve a clear advantage over all baselines. How-589

ever, when setting |N (x)| to smaller sizes, e.g. 50590

or 10, ERU-KG becomes significantly faster. This591

shows that the retrieval of related documents is592

the bottleneck and create a trade-off between ef-593

fectiveness and efficiency, as will be illustrated in594

§C.2, retrieving fewer related documents cause the595

performance to drop.596

Scenario Model name Note Model size TP (doc/s)

Keyphrase
extraction

EmbedRank (SBERT) - 33M 43.5
PromptRank - 60M 1.4
ERU-KG-base α = 1, β = 1 66M 72.9∗

Keyphrase
generation

AutoKeyGen - 37M 9.7
UOKG - 37M 4.8
TPG - 139M 0.8
CopyRNN - 37M 11
PromptKP - 110M 10.4
ERU-KG-base |N (x)| = 100 66M 10.9
ERU-KG-base |N (x)| = 50 66M 12.1∗

ERU-KG-base |N (x)| = 10 66M 15.5∗

Table 3: Throughput (TP) of ERU-KG and baselines.
We bold and underline the highest and second-highest
throughput in each scenario. ∗ denotes significance over
the second-best baselines with p < 0.05, respectively.
Statistical significance tests are conducted separately
for each scenario.

4 Conclusion 597

In this paper, we propose ERU-KG, an unsuper- 598

vised keyphrase generation model that 1) captures 599

how the community perceives key concepts and 600

2) estimate informativeness of phrases efficiently. 601

Experiments on keyphrase generation benchmarks 602

demonstrate the effectiveness of ERU-KG. We fur- 603

ther validate its performance through evaluations 604

from text retrieval perspective. Notably, the infer- 605

ence speed assessment highlights the model’s time 606

efficiency, significantly enhancing its potential for 607

real-world applications. 608

Limitations 609

In this section, we discuss the limitations of our 610

work. Firstly, we conducted experiments only in 611

the scientific domain, and therefore it is unclear 612

how ERU-KG would perform in other domains. 613
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Secondly, we limited our analysis to only three614

types of references, which may not encompass615

all possible types (e.g. Tweets referencing a re-616

search article). Including additional type of refer-617

ences could improve the performance of our pro-618

posed model. Lastly, the design of our phrase-619

ness module does not allow customization for ab-620

sent keyphrase generation. Specifically, since our621

phraseness module source (absent) keyphrase can-622

didates from other documents, it lacks the flexi-623

bility to adapt to the specific context of the given624

document.625
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Groundtruth-based evaluation
Dataset name #doc #kps/doc %absent

SemEval 100 15.2 59.7
Inspec 500 9.8 22
NUS 211 11.6 49.3
Krapivin 460 5.7 51.2
KP20K 19,987 5.3 44.7

Retrieval-based evaluation
Dataset name #Query #Corpus Avg D /Q

SCIDOCS 1,000 25,657 4.9
SciFact 300 5,183 1.1
TREC-COVID 50 171,332 493.5
NFCorpus 323 3,633 38.2
DORIS-MAE 100 363,133 109.3
ACM-CR 552 114,882 1.8

Table 4: Statistics of test splits of evaluation datasets.

A Related Work 984

Unsupervised keyphrase extraction (UKE). 985

UKE focuses on identifying keyphrases within 986

the given text. Previous work typically employ 987

a two-stage procedure: 1) candidate generation 988

via ngram or noun phrase extraction; 2) candidate 989

ranking, where candidates are ranked based on their 990

informativeness and the top-ranked are selected as 991

keyphrases. 992

Existing methods in UKE can be classified into 993

four categories, namely statistics-based, graph- 994

based, embedding-based and language model- 995

based. These categories are distinguished by the 996

importance scoring functions that are used to es- 997

timate informativeness, i.e. how candidates are 998

ranked. Statistics-based methods (Sparck Jones, 999

1972; Campos et al., 2018) utilizes features like 1000

word frequency, word position, context diversity, 1001

etc. Graph-based method (Mihalcea and Ta- 1002

rau, 2004; Wan and Xiao, 2008; Bougouin et al., 1003

2013; Gollapalli and Caragea, 2014; Florescu 1004

and Caragea, 2017; Boudin, 2018) rank candi- 1005

dates based on different graph-theoretic measures. 1006

Embedding-based methods (Bennani-Smires et al., 1007

2018; Sun et al., 2020; Zhang et al., 2022) se- 1008

lect candidates that are closest to the given doc- 1009

ument in the embedding space. Language model- 1010

based methods utilize Pretrained Language Models 1011

(PLMs) to evaluate the informativeness of phrases. 1012

(Ding and Luo, 2021) evaluate local and global im- 1013

portance of a candidate by leveraging self and cross 1014

attention, (Kong et al., 2023) estimate informative- 1015

ness by computing the likelihood of generating the 1016

candidate given the input text and a pre-specified 1017

prompt. 1018

Unsupervised keyphrase generation (UKG). Dif- 1019

ferent from UKE, UKG focuses on generating both 1020

present and absent keyphrases. Similar to UKE 1021

methods, UKG models typically rely on impor- 1022

tance scores, but these scores are utilized in two 1023

distinct ways: 1) to extract silver-labeled data for 1024

training seq2seq models or 2) to guide the genera- 1025

tion of noun phrases towards those that represent 1026

the core concepts. 1027

The first approach is exemplified by AutoKey- 1028

Gen (Shen et al., 2022) and Title Phrase Gener- 1029

ation (TPG) (Kang and Shin, 2024). AutoKey- 1030

Gen trains a seq2seq model on silver-labeled data, 1031

where present keyphrases are sourced directly from 1032

the text, and absent keyphrases are synthesized by 1033

combining present terms. To select present and 1034
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absent keyphrases, AutoKeyGen employ an im-1035

portance score that combine semantic and lexical1036

similarity between keyphrase candidates and the1037

document. TPG proposes extracting phrases from1038

titles as silver-labeled keyphrases to train a seq2seq1039

model.1040

The second approach is demonstrated by UOKG1041

(Do et al., 2023). UOKG comprises two modules,1042

named phraseness and informativeness. The for-1043

mer, a seq2seq model trained to generate noun1044

phrases, generate phrases while the latter, an1045

embedding-based importance scoring function,1046

guide this generation towards phrases that are key.1047

Our proposed method, ERU-KG, follows this sec-1048

ond approach.1049

Generation/Extraction of keyphrases using ref-1050

erences. The use of references, particularly cita-1051

tion contexts and titles, has been explored in prior1052

work on keyphrase extraction and generation. Cite-1053

TextRank (Gollapalli and Caragea, 2014) proposes1054

a graph-based approach that incorporates citation1055

contexts. (Caragea et al., 2014) employ occur-1056

rences of candidates in citation contexts as a feature1057

for supervised keyphrase extraction. (Garg et al.,1058

2022) investigate the use of citation contexts as ad-1059

ditional information for supervised keyphrase gen-1060

eration. More recently, (Boudin and Aizawa, 2024)1061

proposes a framework that extracts silver-labeled1062

keyphrases from citation contexts for domain adap-1063

tation. TG-Net (Chen et al., 2019) leverages ti-1064

tles to enhance input text encodings for supervised1065

keyphrase generation. Recently, (Kang and Shin,1066

2024) propose TPG as an unsupervised pretraining1067

objective, where the resulting pretrained model can1068

be viewed as an UKG model.1069

Our proposed approach differs from the existing1070

work. Specifically, our approach leverage refer-1071

ences to learn document representations, which1072

are used to generate keyphrases that aligned with1073

the key concepts as recognized by the community.1074

In contrast, existing work typically use references1075

1) for mining silver-labeled keyphrases or 2) as1076

additional information to enhance the keyphrase1077

extraction/generation process.1078

Time-efficiency in keyphrase extraction and gen-1079

eration. Efficient processing of large document col-1080

lections is critical for the practicality of keyphrase1081

extraction and generation models. Despite this,1082

time-efficiency has been underdiscussed in the1083

design of modern keyphrase extraction and gen-1084

eration methods. One notable exception is the1085

work by (Wu et al., 2022b), which employs a non-1086

autoregressive decoding strategy to significantly 1087

enhance the speed of keyphrase generation com- 1088

pared to autoregressive approaches. Additionally, 1089

(Wu et al., 2022a) shows that prioritizing model 1090

depth over width and using deep encoders with 1091

shallow decoders has been shown to improve infer- 1092

ence latency while maintaining accuracy. 1093

B Implementation Details 1094

B.1 ERU-KG 1095

Informativeness module. We employ SPLADE as 1096

our term-importance predictor, as mentioned above. 1097

We initialized the models with DistilBERT-base3 1098

(66M parameters) (Sanh, 2019) for ERU-KG-base 1099

and a BERT_L-6_H-512_A-84 (33M parameters), 1100

which is a BERT (Devlin et al., 2019) with 6 layers, 1101

model dimensionality of 512 and 8 attention heads, 1102

for ERU-KG-small. Models are trained with the 1103

ADAM optimizer, with a learning rate of 2e−5, a 1104

warmup of 20000 steps and a batch size of 32. The 1105

models are trained for 100k steps. For FLOPS 1106

regularization, we set λq = 0.05 and λd = 0.03. 1107

We set the length penalty parameter, as mentioned 1108

in Eq. 3 and 4, γ = −0.25. 1109

Unless specified otherwise, the two interpolation 1110

weights α, β (Eq. 4 and 7 respectively), are both 1111

set to 0.8. In addition, the balancing parameter λ 1112

in Eq. 11, is set to 1.5. 1113

Phraseness module. We employ NLTK’s (Bird 1114

and Loper, 2004) RegexpParser and extract noun 1115

phrases from document with the following gram- 1116

mar 1117

(< NN. ∗ |JJ.∗ > + < NN. ∗ |CD >)| < NN.∗ > 1118

For finding the set of neighbor documents N (x) 1119

of the input text x, we build BM25 retrievers using 1120

the document collection D. In particular, D is the 1121

630,749 documents from the evaluation and valida- 1122

tion split of SciRepEval-Search5 dataset, alongside 1123

with their top 10 present keyphrases and predicted 1124

term-importances. We build our retrievers using 1125

Pyserini (Lin et al., 2021). In the inference phase, 1126

we set |N (x)| = 100, unless specified otherwise. 1127

3https://huggingface.co/distilbert/
distilbert-base-uncased

4https://huggingface.co/google/bert_uncased_
L-6_H-512_A-8

5https://huggingface.co/datasets/allenai/
scirepeval/viewer/search
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B.2 Keyphrase Generation/Extraction1128

Baselines1129

For TextRank and MultiPartiteRank, we use the1130

pke package (Boudin, 2016). EmbedRank is im-1131

plemented following the description in (Bennani-1132

Smires et al., 2018), with the exception that1133

we employ the same noun phrase extractor de-1134

scribed in B.1. For EmbedRank, we employ both1135

Sent2Vec (sent2vec_wiki_unigrams6) (Pagliardini1136

et al., 2018), as in the original paper, and SBERT1137

(all-MiniLM-L12-v27) (Reimers and Gurevych,1138

2019). For PromptRank (Kong et al., 2023), we1139

adopt the official implementation8.1140

For AutoKeyGen, UOKG, and CopyRNN, we1141

use the implementations and checkpoints provided1142

by the authors of (Do et al., 2023). Finally, for1143

TPG9 (Kang and Shin, 2024) and PromptKP10 (Wu1144

et al., 2022b), we utilize the official implementa-1145

tion.1146

B.3 RM3 and DocT5Query1147

For DocT5Query, we utilized the pre-generated1148

queries provided for the datasets within the BEIR1149

benchmark. For RM3, we leveraged Pyserini’s1150

(Lin et al., 2021) implementation11 and utilize the1151

default hyperparameters.1152

B.4 Computing Infrastructure1153

We run all our experiments on a server with two1154

AMD EPYC 7302 3GHz CPUs, three NVIDIA1155

Ampere A40 GPUs (300W, 48GB VRAM each),1156

and 256 GB of RAM.1157

C Ablation Studies1158

We conduct two ablation studies to understand 1)1159

how different of references (queries, citation con-1160

texts and titles) contribute to ERU-KG performance1161

and 2) how retrieving fewer related documents af-1162

fect our proposed model’s performance. In this sec-1163

tion, we conduct the experiments on ERU-KG-base,1164

i.e. the version of ERU-KG with informativeness1165

module initialized from DistilBERT-base.1166

6https://github.com/epfml/sent2vec
7https://huggingface.co/sentence-transformers/

all-MiniLM-L12-v2
8https://github.com/NKU-HLT/PromptRank
9https://github.com/kangnlp/

low-resource-kpgen-through-TPG
10https://github.com/m1594730237/

FastAndConstrainedKeyphrase
11https://github.com/castorini/pyserini

|N (x)| KG-present
(F1@10)

KG-absent
(R@10)

TR
(R@1000)

100 26.5 5.8 68.4
50 26.5 5.5↓ 67
10 26.4 4.5↓ 63.1↓

Table 5: The performance change when adjusting the
size of related documents set N (x), ↓ denotes perfor-
mance drop larger than 5% in comparison to default
setting (|N (x)| = 100).

C.1 Contribution of Each Type of References 1167

We study the contribution of each type of refer- 1168

ences by excluding one type at a time to train vari- 1169

ations of ERU-KG. We evaluate the performance 1170

change in keyphrase generation tasks (F1@10 and 1171

R@10 for present and absent keyphrases respec- 1172

tively), text retrieval tasks (Recall@1k). We evalu- 1173

ate text retrieval in the Both setting, where gener- 1174

ated keyphrases are used as both query and docu- 1175

ment expansion. We average the evaluate results 1176

across all datasets for each task to measure perfor- 1177

mance changes. We present the results in Figure 1178

3. 1179

For present keyphrase generation (keyphrase ex- 1180

traction), removing title from the training dataset 1181

effect performance the most. This suggest that ti- 1182

tle is a great source of information for enhancing 1183

keyphrase extraction, aligning with previous work 1184

(Chen et al., 2019; Song et al., 2023). Regarding ab- 1185

sent keyphrase generation, performance decreases 1186

when any reference type is removed, suggesting 1187

that this task is benefitted by understanding how 1188

the given document would be mentioned in differ- 1189

ent contexts. The same comment can be made for 1190

text retrieval, where removing any reference type 1191

hurt performance. 1192

C.2 Effect of Retrieving Fewer Related 1193

Documents 1194

We study ERU-KG’s performance change as it re- 1195

trieve fewer related documents N (x). Table 5 1196

presents the results. 1197

It can be seen that retrieving fewer related doc- 1198

uments only affect absent keyphrase generation 1199

and text retrieval. Next, we can see that perfor- 1200

mance gradually decrease as the fewer related doc- 1201

uments are retrieved. Notably, when |N (x)| = 10 1202

the performance drop exceeds 5% for both absent 1203

keyphrase generation and text retrieval. Combin- 1204

ing the results with Table 3, |N (x)| = 50 appears 1205

to strike a good balance between efficiency and 1206
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Figure 3: The performance change (in percentage) when
excluding one reference type. -[type] indicates the omi-
sion of [type]

effectiveness.1207

D Case Study1208

To gain further insights into ERU-KG’s effective-1209

ness, we display the keyphrases generated by ERU-1210

KG and the baselines on two types of text, namely1211

document and query, in Table 6 and Table 7, respec-1212

tively. For document, we use the same example1213

document as in Figure 1. For query, we provide1214

two examples, a long multi-aspected query from1215

DORIS-MAE dataset and a short query from SCI-1216

DOCS.1217

Document. Upon initial examination, there appear1218

to be no significant differences in the predicted1219

present keyphrases across methods, as they all re-1220

flect concepts used in reference to the given doc-1221

ument. However, considering absent keyphrases,1222

ERU-KG produces keyphrases that are more rele-1223

vant. Specifically, ERU-KG is able to predict “sea1224

ice classification”, “sea ice concentration” and “sea1225

ice detection”, which are not only used later in the1226

main body of the given paper, but also used in a1227

citation context (“sea ice classification” is used in1228

the second citation context in Table 6)1229

Query. It can be seen that keyphrases generated1230

by ERU-KG might be more beneficial as additional1231

information. In the first example, ERU-KG is the1232

only model that can produce the name of alterna-1233

tive GAN techniques (e.g. “ac gan”, “am gan”, “net1234

gan” and “conditional gan”). Moreover, the intro-1235

duction of phrases such as “image generation” and1236

“synthetic data” is also suitable for the objective of1237

the user.1238

In the second example, ERU-KG is the only KG 1239

model that manages to generate “brain computer 1240

interface” - the full-form version of “BCI”. In addi- 1241

tion, other absent phrases predicted by ERU-KG, 1242

e.g. “domain adaptation”, “meta learning”, are 1243

also highly relevant. On the other hand, it can 1244

be seen that absent keyphrases generated by other 1245

KG methods do not offer as much valuable addi- 1246

tional information. In particular, AutoKeyGen and 1247

UOKG produces absent keyphrases that are oftenly 1248

reorderings of present terms, while CopyRNN in- 1249

troduces irrelevant keyphrases, such as “world wide 1250

web”. 1251

E Algorithm Descriptions of ERU-KG 1252

We provide an algorithm description of the infer- 1253

ence process of ERU-KG in Algorithm 1. 1254
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Algorithm 1: ERU-KG inference
Input: Document x, number of output keyphrases k
Output: Sets of present and absent keyphrases Y present

x and Y absent
x , each containing k keyphrases

Phraseness module

1 N (x), {s̃x,x′ | x′ ∈ N (x)} ← BM25Retrieve(query = x, numdocs = 100) // Retrieve
similar documents and the similarity scores

2 Cx ← NounphraseExtract(x)
3 CN (x) ← {}
4 foreach x′ ∈ N (x) do
5 C̃x′ ← GetPrecomputedCandidate(x′)

6 CN (x) ← CN (x) ∪ C̃x′

7 Ĉx ← Cx ∪ Top100(CN (x), Ppn)

Informativeness module

8 wx = {wx
j }j∈V ← SPLADE(x) // Term importances given x. V denotes BERT’s

vocabulary
9 foreach x′ ∈ N (x) do

10 wx′
= {wx′

j }j∈V ← SPLADE(x′) // Precomputed

11 foreach j ∈ V do
12 ŵx

j ← α wx
j + (1− α)

∑
x′∈N (x) s̃x,x′ wx′

j

13 foreach c ∈ Ĉx do
14 f̂(c,x)← 1

|c|−γ

∑|c|
i=1 ŵx(ci)

Combining phraseness and informativeness

15 foreach c ∈ Ĉx do
16 Pin(c|x)← f̂(c,x)/

∑
c′∈Ĉx

f̂(c′,x) // Since the final score is only used for
ranking, we skip this normalization step in practice and directly set
Pin(c|x)← fin

x (c)
17

18 Pkp(c|x)← Ppn(c|x)λ × Pin(c|x) // Keyphrase distribution given x. Pkp(c|x) is
also not normalized since we only use it for ranking

19

20 sx(c)← ωx(c)Pkp(c|x) // Apply position penalty

21 Y ← sorted(Ĉx, sortby = sx(c), descending=True)
22 Y present

x = {y ∈ Y | y ∈ x}[: k]
23 Y absent

x = {y ∈ Y | y ̸∈ x}[: k]
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Document

[DOI: 10.1109/JSEN.2021.3084556]
Supplementing Remote Sensing of Ice: Deep Learning-Based Image Segmentation System for Automatic Detection and Localization of Sea-ice 
Formations From Close-Range Optical Images
This paper presents a three-stage approach for the automated analysis of close-range optical images containing ice objects. The proposed system is 
based on an ensemble of deep learning models and conditional random field postprocessing. The following surface ice formations were considered: 
Icebergs, Deformed ice, Level ice, Broken ice, Ice floes, Floebergs, Floebits, Pancake ice, and Brash ice. Additionally, five non-surface ice 
categories were considered: Sky, Open water, Shore, Underwater ice, and Melt ponds. To find input parameters for the approach, the performance 
of 12 different neural network architectures was explored and evaluated using a 5-fold cross-validation scheme...

Query sea ice deep learning
Citation 
context

1) ...some literatures have utilized real-time ice monitoring using aerial images captured by cameras onboard icebreakers...
2) Many researchers have applied classical semantic segmentation models such as the PSPNet and Deeplab to sea ice 
classification tasks...

Title Supplementing Remote Sensing of Ice: Deep Learning-Based Image Segmentation System for Automatic Detection and 
Localization of Sea-ice Formations From Close-Range Optical Images

ERU-KG present: ice, sea ice, sky, remote sensing, ice floes, underwater ice, sea ice formations, close-range optical images, level ice, brash 
ice
absent: sea ice detection, sea ice classification, sea ice concentration, arctic sea ice, antarctic ice sheet, ice sheet, sea ice extent, 
sea ice image classification, arctic ocean, greenland ice sheet

AutoKeyGen present: ice, ice formations, optical sensors, image segmentation system, image segmentation, approach, optical images, ice floe, 
floe, deformed ice
absent: image segmentation approach, image segmentation process, neural network approach, neural networks models, neural 
network analysis, neural network parameters, convolutional neural networks, neural networks model, segmentation approach, 
image segmentation techniques

UOKG present: ice, ice formations, neural network architectures, ice objects, deformed ice, surface ice, ice floes, water ice, neural 
networks, brash ice
absent: ice field, ice flow, optical flow, ice surface, input data, ice melt, ice sheet, ice shelf, automated approach, satellite images

CopyRNN present: conditional random field, neural networks, random field, image segmentation, remote sensing, neural network, deep 
learning, ice, ice formations, pancake ice
absent: deep neural networks, deep neural network, convolutional neural networks, random field neural networks, convolutional 
neural network, optical ice, random field neural network, ensemble learning, conditional random fields, underwater optical ice

Indexed terms image segmentation approach, image segmentation process, neural network approach, neural networks models, neural network 
analysis, neural network parameters, convolutional neural networks, neural networks model, segmentation approach, image 
segmentation technique

Table 6: Generated keyphrases for an example document, by our proposed model and the baselines. We illustrate
the top 10 present and absent keyphrases. In addition, we provide the paper’s indexed terms, as well as references of
each type (i.e. query, citation context and title) that mentions the given paper.
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Query
[Source: DORIS-MAE]
I am seeking alternatives to Generative Adversarial Networks (GANs) that can be applied to image datasets, such as CIFAR-10. The alternative 
should be capable of generating new data points based on the original data distribution and should perform comparably to GANs across various 
metrics. Could you provide information on the standard metrics typically used to evaluate the performance of GANs? I anticipate that this alternative 
method would initially estimate and model the original data distribution, possibly using a neural network, and then generate diverse data points that 
adhere to the same distribution through an intelligent sampling technique. However, I am open to learning about other promising approaches as well.

ERU-KG

present: alternatives, gans, gan, new data points, alternative, cifar-10, diverse data points, intelligent sampling technique, various 
metrics
absent: generation, image generation, gan training, ac gan, data augmentation, synthetic data, am gan, text generation, conditional 
gan, net gan

AutoKeyGen

present: data distribution, original data distribution, original data, data points, data, image data, gans, new data, neural network, 
standard metrics
absent: alternative metrics, original data points, standard data, distribution data, data distribution networks, other data points, data 
networks, various data, neural data, network data

UOKG

present: data points, data distribution, image datasets, diverse data points, original data, new data, alternatives, neural network, 
standard metrics, data
absent: diverse data sources, multiple data sources, original data set, different data sources, data sampling, various data sources, 
other data sources, time-series data, open datasets, neural networks

CopyRNN

present: neural network, image data, gans, data distribution, sampling, data, image, cifar-10, sampling technique, metrics
absent: neural networks, data mining, image data mining, generative model, generative neural networks, intelligent image data, 
artificial neural networks, adversarial neural networks, open neural networks, open data

[Source: SCIDOCS]
Real World BCI: Cross-Domain Learning and Practical Applications

ERU-KG

present: real world bci, cross-domain learning, practical applications, bci, domain, rl
absent: domain adaptation, source domain, target domain, cross domain recommendation, bcis, eeg, cross domain, brain computer 
interface, cross domain transfer, domain shift

AutoKeyGen

present: practical applications, cross-domain learning, real world, real world bci, bci, practical application, learning, world bci, 
applications, practical
absent: practical learning, real world applications, learning applications, bci applications, learning models, learning system, learning 
method, learning model, learning methods, practical systems

UOKG

present: real world bci, real world, world bci, practical applications, cross-domain learning, world, real, bci, applications, learning
absent: real world applications, bci applications, practical learning, learning applications, real applications, real world practical 
applications, practical real world applications, practical learning applications, real world learning applications, practical world bci 
applications

CopyRNN

present: cross-domain learning, bci, learning, applications, practical, cross-domain, real world, real
absent: world wide web, cross-domain world wide web, real world wide web, learning world wide web, learning applications, cross-
domain applications, support vector machines, real time, finite element method

Table 7: Generated keyphrases for two example queries, by our proposed model and the baselines. We illustrate the
top 10 present and absent keyphrases.
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