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Abstract

Existing meta-learning works assume that each
task has available training and testing data. How-
ever, we can only use many available pre-trained
models without accessing their training data in
practice. We often need a single model to solve
different tasks simultaneously as this is much more
convenient to deploy the models. Our work aims
to meta-learn a model initialization from these pre-
trained models without using corresponding train-
ing data. We name this challenging problem setting
Data-Free Learning To Learn (DFL2L). We pro-
pose a distributionally robust optimization (DRO)
framework to learn a black-box model to fuse and
compress all the pre-trained models into a single
network to address this problem. The proposed
DRO framework diversifies the learned task em-
bedding associated with each pre-trained model to
cover the diversity in the underlying training task
distributions, encouraging good generalization to
unseen new tasks. We sample a meta-initialization
from the black-box network during meta-testing
for fast adaptation to unseen new tasks. Extensive
experiments on offline and online DFL2L settings
and several real image datasets demonstrate the
effectiveness of the proposed methods.

1 INTRODUCTION

The goal of meta-learning is to learn prior knowledge from
many similar tasks such that the learned knowledge can be
fast adapted to new unseen tasks. Existing meta-learning
methods assume that each task has available training and
testing data. However, in many real scenarios, each task
only has a pre-trained model, and the task-specific data may
not be available after training due to privacy issues. For
example, many pre-trained network models are available on

GitHub without sharing training data. However, sometimes,
we need a single model to cover the multiple task knowl-
edge. Furthermore, even if we sometimes can access the
corresponding training datasets, it is prohibitive to retrain a
model using multiple datasets from scratch due to the enor-
mous computing resources needed to train the large models,
such as BERT [Devlin et al., 2018] and GPT3 [Brown et al.,
2020]. Thus, meta-learning from those pre-trained models
to learn an initialization becomes the central problem so
that the fused model can be fast adapted to the new unseen
task with only a few labeled data. We name this challenging
problem setup as Data-Free Learning To Learn (DFL2L) to
reflect that there is no available private data for each task to
centralize the meta-learning process, or retraining the model
from scratch is too costly.

According to whether pre-trained models are all collected in
advance or not, we categorize the DFL2L learning setting
into offline and online learning scenarios. Offline DFL2L
considers the setting that a fixed number of pre-trained mod-
els are available together before performing meta-training.
By contrast, online DFL2L assumes that pre-trained models
arrive sequentially during meta-training. We update the ag-
gregated network to include the newly arrived pre-trained
model. Figure 1(a) and 1(b) show the learning paradigm of
offline and online DFL2L problems. For offline DFL2L, all
the pre-trained models are collected before meta-training
and can be trained for multiple rounds. For online DFL2L,
pre-trained models arrive one by one, and the previous mod-
els are no longer available when training on a new model.
The online setting is similar to the online meta-learning
[Finn et al., 2019a], where tasks arrive in sequential order.
Thus, online DFL2L is more challenging than offline learn-
ing because when learning on the newly arrived pre-trained
model, previous ones are not available to learn again.

We propose a black-box distributionally robust optimization
(DRO) framework to fuse different pre-trained models into
a single network to address this problem. Specifically, we
first use a black-box neural network to predict the model
parameters for each pre-trained model by using the task
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embedding as input and maximizing the likelihood of pre-
trained model parameters. Next, we cast DFL2L as a bi-level
optimization from a meta-learning perspective. Moreover,
intuitively, the more diverse the task embedding, the better
generalization for the new unseen tasks. To achieve this goal,
we further encourage the learned task embedding to be as
diverse as possible with DRO by perturbing the task embed-
ding within a Wasserstein ball and optimizing the model
performance under the worst-case task embedding. We use
the ambiguity set of task embedding with distribution per-
turbation (Wasserstein ball) to approximate the underlying
task distribution uncertainty. Since this ambiguity set con-
tains an infinite number of distributions, it can encourage
diverse task distributions that would cover more tasks and
improve generalization. The DRO guarantees the model fu-
sion performance under the worst-case scenarios. To solve
this optimization, we convert it into an unconstrained opti-
mization by Lagrange multipliers. During meta-testing, the
learned meta initialization serves as the model initialization
for the unseen testing tasks. It can be effectively adapted
to new tasks with only a few labeled data. Our proposed
methods can be applied to both online and offline DFL2L
settings. Specifically, for the offline DFL2L (see Figure 1(a))
, we apply the proposed method to this setting by training
the model with multiple epochs. On the other hand, for
the online DFL2L (see Figure 1(b)) , we fuse the model
sequentially without revising previously seen pre-trained
models.

To evaluate the effectiveness of the proposed method, we
construct several benchmarks with different types of pre-
trained models. We perform extensive experiments on of-
fline and online pre-trained model fusions and achieve sig-
nificant improvement compared to state-of-the-art (SOTA)
baselines. For our proposed benchmarks with CIFAR-FS
and Mini-ImageNet pre-trained models, our method im-
proves over baselines in the range of 2% to 7%, demonstrat-
ing the effectiveness of the proposed approach.

To the end, we summarize our contributions as three-fold:

• We propose a new meta-learning paradigm, i.e., data-
free learning to learn, dubbed DFL2L, whose goal is to
meta-learn a model initialization from these (sequen-
tially arrived) pre-trained models and use it to initialize
new unseen tasks. Correspondingly, we construct a set
of new and challenging benchmarks.

• We propose a black-box distributionally robust meta-
learning framework for learning the meta initialization,
which fuses several pre-trained models into a single
model without requiring additional training data.

• We apply the proposed method to both offline and
online DFL2L settings. Experiments on various bench-
marks demonstrate the value of the proposed DFL2L
setting and verify the effectiveness of the proposed
method on both offline and online DFL2L settings.

2 RELATED WORKS

We summarize the most related work to our proposed
DFL2L settings and proposed solutions.

2.1 OFFLINE META LEARNING

Meta-learning [Schmidhuber, 1987, Naik and Mammone,
1992, Bengio et al., 1997] focuses on extracting common
knowledge from many related tasks. Most existing works
[Vinyals et al., 2016, Finn et al., 2017, Snell et al., 2017,
Ravi and Beatson, 2019, Rajeswaran et al., 2019, Finn et al.,
2019b, Raghu et al., 2020, Wang et al., 2020b, Zhou et al.,
2021, Bohdal et al., 2021, Rothfuss et al., 2021, CHEN
et al., 2021, Bronskill et al., 2021, Sun et al., 2021] fo-
cus on the offline setting, where all the training tasks are
available together upfront. These works assume that each
training task consists of labeled training and testing data.
Completely different from those works, our offline DFL2L
setting considers the data-free learning-to-learn scenario: we
only have a pre-trained model for each task. Thus, existing
meta-learning approaches are not applicable in DFL2L.

2.2 ONLINE META LEARNING

Online meta-learning (OML) [Finn et al., 2019a, Denevi
et al., 2019, Yao et al., 2020, Babu et al., 2021, Wang et al.,
2021, 2022] extends meta-learning to the online setting,
where tasks sequentially arrives. Continual-MAML [Caccia
et al., 2020] addresses the problem of fast online adapta-
tion to new tasks while maintaining acquired knowledge
on previously learned tasks; MOCA [Harrison et al., 2020]
utilizes context data from previous tasks to improve future
sequential prediction without knowing when the latent task
changes. MOML [Acar et al., 2021] is a memory-efficient
version of OML. However, those settings are entirely dif-
ferent from our work, which does not need task-specific
data. The proposed online DFL2L setting can be viewed as
a more challenging data-free OML.

2.3 MODEL FUSION

Model fusion [Yurochkin et al., 2019b,a, Wang et al., 2020a,
Lam et al., 2021] is a recent emerging research area to
fuse multiple pre-trained models without using their task
data to do retraining. Many works are in the context of
federated learning McMahan et al. [2017], Shamsian et al.
[2021]. [Yurochkin et al., 2019b,a] proposes a Bayesian non-
parametric framework that considers the neuron matching
in a probabilistic manner but only works with simple archi-
tecture, e.g., a fully connected network. Federated Matched
Averaging (FedMA) [Wang et al., 2020a] develops a layer-
wise weighted averaging method to fuse multiple networks.
Similar to FedMA, [Singh and Jaggi, 2020] utilizes opti-



Figure 1: The data-free learning to learn problem. (a) is the offline meta-learning paradigm, (b) is the online extension, and
(c) is meta-testing. In (a), meta-training is performed on a set of pre-trained models, while in (b), it is sequentially trained on
one pre-trained model after another. In (c), meta-testing is performed on a collection of unseen tasks for both the offline and
online setups, and each test task has few labeled examples for gradient steps of adaptation.

mal transport to align neurons across models in a layer-wise
fashion. MFGP [Lam et al., 2021] uses the Gaussian process
(GP) for model fusion but only works with fully connected
networks. These methods assume all the pre-trained models
solve the same task and they fuse the models in an offline
way. In contrast, we focus on the more general and chal-
lenging setting where each model solves a different task,
and we can fuse the models offline or online via a meta-
learning perspective. Thus, the problem setup of DFL2L
significantly expands the application scope of model fusion
in real scenarios.

2.4 DISTRIBUTIONALLY ROBUST
OPTIMIZATION

Distributionally Robust Optimization (DRO) [Rahimian and
Mehrotra, 2019, Sinha et al., 2018] is an effective optimiza-
tion framework for handling decision-making under uncer-
tainty. DRO aims to optimize model performance under
the worst-case perturbed distribution. We can characterize
the underlying uncertainty in various ways, including KL-
divergence, Wasserstein ball, etc. DRO has been applied to
many machine learning problems, including federated learn-
ing [Deng et al., 2021], group shift [Sagawa et al., 2020] and
reinforcement learning [Smirnova et al., 2019]. This paper
adopts the Wasserstein ball to characterize the task embed-
ding uncertainty since a fixed number of pre-trained models
cannot capture the underlying complex task distributions.
This ambiguity set allows covering the novel task embed-
ding outside the task embeddings of pre-trained models. To
our best knowledge, we are the first to develop a DRO frame-
work for the DFL2L setting to learn a meta-initialization.

3 PROBLEM DEFINITION

In this section, we clarify the definitions and scenarios for
offline and online DFL2L problem settings. We also discuss
the common meta-testing procedure for both offline and
online DFL2L.

3.1 OFFLINE DFL2L SETUP

Given a collection of N tasks consisting of C =
(T1,θ1), · · · , (TN ,θN ), where Ti is the task identifier and
θi are the pre-trained model parameters. We denote the func-
tion represented by the network with parameters θi by Hθi

.
We assume that all the tasks use the same architecture, the
more general and difficult cases that each task uses different
architecture is left as future work. The goal is to meta-learn
from C to learn a model initialization θinit that can be fast
adapted to unseen tasks with only a few labeled examples.
Figure 1(a) illustrates the offline learning setting.

3.2 ONLINE DFL2L SETUP

The offline DFL2L setting assumes all the pre-trained mod-
els are available during meta training. In contrast, the pre-
trained model sequentially arrives in online DFL2L setting,
i.e., C = (T1,θ1), · · · , (Ti,θi), · · · , (TN ,θN ), where Ti is
the task identifier and θi are the pre-trained model param-
eters received at time i. Similar to the offline scenario, we
assume that all the tasks use the same architecture. The goal
is to sequentially meta-learn an initialization θinit so that it
can be fast adapted to unseen tasks with only a few labeled
examples. The online setting is shown in Figure 1(b).



3.3 META TESTING

During testing, for both offline and online DFL2L, suppose
another M unseen tasks arrive together, and each task has
its own few labeled data for each class. The goal is to adapt
to these labeled data so that the model can perform well on
the testing data of each new task. The final accuracy is the
average accuracy for these unseen tasks. The meta-testing
step is shown in Figure 1(c).

4 METHODS

To address the DFL2L problem, we propose a black-box
DRO framework to fuse different pre-trained models into
a single one. We propose the general framework in Sec-
tion 4.1, and our improved DRO framework in Section 4.2,
including an extension to the offline and online settings.
Figure 2 illustrates the overall framework.

Figure 2: DRO-based black-box model fusion framework.
Each training task consists of a task identifier and a pre-
trained model. We first embed the task identifier as a vector
ei. We adopt distributionally robust optimization (DRO) to
approximate diverse task embeddings to capture the under-
lying uncertainty over task distributions. Specifically, we
optimize the worst-case embedding distribution to ensure
good performance over all possible perturbed embedding
distributions ν within a Wasserstein ball. We fed the opti-
mized embedding e∗i into the black-box fusion model fϕ to
obtain meta-initialization, which is encouraged to approxi-
mate each pre-trained model as close as possible.

4.1 LEARNING OBJECTIVE FOR DFL2L

For each task identity Ti, we first embed the task identifier as
the corresponding task embedding ei. We then use a black-
box network to fuse different pre-trained models. Suppose
the parameters of the black-box model are ϕ. We use the
black-box function fϕ(ei) for fitting the task Ti parameters
with task embedding ei as input. The goal is to optimize the
following objective:

max
ϕ

i=N∑
i=1

logP (θi|fϕ(ei)). (1)

The likelihood function P (θi|fϕ(ei)) measures how far
away of the black-box network prediction from the true
pre-trained task parameters. The likelihood function of θi
follows the Gaussian likelihood function:

P (θi|fϕ(ei)) = exp(−||fϕ(ei)− θi||2

σ2
), (2)

Where σ is a standard deviation constant. This optimiza-
tion objective is to fuse the knowledge of all the pre-trained
models into a single black-box network. The fused network
is expected to maintain the maximal information from all
the pre-trained models. Although some existing works on
federated learning [Wang et al., 2020a] point out that it is
beneficial to match the neurons layer-wise due to the per-
mutation invariance of the neural network parameters. This
property means that there are many equivalent networks for
a given neural network. They only differ in model parame-
ters by permuting the original model parameters. However,
these matching methods are not suitable for DFL2L since
each model is to solve a different task; there is no correspon-
dence relation for the parameters in a single layer among
different pre-trained models. In our preliminary experiments,
we found that these matching techniques do not help the
training of the black-box model.

To make the model fused by the black-box fusion network
generalizable on unseen tasks, the pre-trained models are
divided into meta-training collection S and meta-validation
(unseen) collection Q, i.e., S ∪ Q = C and S ∩ Q = ∅. We
focus on solving the following bi-level optimization problem
that directly optimizes the generalization on unseen tasks:

ϕmeta = argmax
ϕ

[F(ϕ) = E
Tj∈Q

logP (θj |fAlg∗(ϕ)(ej))]

Alg∗(ϕ) = argmax
ω

E
Ti∈S

logP (θi|fω(ei)), (3)

where Alg∗(ϕ) = ϕ − ∇ϕ ETi∈S logP (θi|fω(ei)) and
multiple steps of gradient descent are possible. ω is initial-
ized by ϕ.

The lower level optimization is on the likelihood of meta-
training pre-trained models, and the upper level is to opti-
mize the generalization on unseen pre-trained models. This



bi-level optimization ensures that the optimized meta ini-
tialization can be fast adapted to the unseen task with a
few labeled data. We denote the upper level optimization as
F(ϕ). This bi-level optimization can be efficiently solved
by first-order method, similar to first-order MAML (FO-
MAML) Finn et al. [2017].

4.2 DISTRIBUTIONALLY ROBUST BLACK-BOX
MODEL FUSION

The basic DFL2L Eq. (3) aims to improve the black-box fu-
sion model generalization to unseen testing tasks. However,
due to the underlying complex task distributions, a fixed
number of pre-trained models have significant uncertainty
and are insufficient to represent the actual task distributions.
We believe this is because the number of pre-trained models
is relatively smaller than that in the underlying task distri-
bution (data-based meta-learning), which consists of a very
large number of tasks (more than 100K tasks). The limited
number of pre-trained models (e.g., 100 tasks) is highly
insufficient to approximate the exact actual task distribution
and contains very high uncertainty. Thus, there is a big gap
between the task distribution that the pre-trained models
represent and the underlying actual task distribution. That is
to say, the task distribution uncertainty (pre-trained models
represent) in the data-free setting is much more significant
than in the data-based meta-learning setting. Uncertainty
modeling is more necessary than data-based meta-learning.
Furthermore, since the number of pre-trained models is rel-
atively small, it is easy to overfit these models but cannot
generalize to the unseen tasks.

(a) Task embedding with basic
DFL2L Eq. (3)

(b) DRO task embedding with
Eq. 7

Figure 3: Illustration of task embedding with basic DFL2L
Eq. (3) and DRO DFL2L Eq. 7. The blue dots denotes the
task embedding e, and the red dots denote the perturbed
embedding e′

To capture this uncertainty and encourage the black-box
fusion model to generalize well to unseen testing tasks, we
thus propose a DRO framework for encouraging the diver-
sity of the task embeddings to capture the diversity in the
underlying training task distributions. On the other hand,
it has been shown that the DRO with L2 loss and Wasser-

stein ball constraint can be approximately formulated by
an empirical risk minimization plus a regularization term.
The regularization term is a dual norm of the model weights
Kuhn et al. [2019]. That is to say, it can reduce overfitting
and helps generalization with DRO. Suppose the raw task
embedding {e1, e2, · · · , eN} with distribution µ. We use
the ambiguity set, P = {ν|W (µ, ν) ≤ δ}, for character-
izing the uncertainty of task embedding, where ν denotes
the distribution of the perturbed task embeddings and δ is
the constant threshold. W (µ, ν) is the Wasserstein distance
defined for a pair of probability distributions µ and ν as the
following:

W2(µ, ν) =

(
min

π∈
∏

(µ,ν)

∫
c(e, e′)dπ(e, e′))

)1/2

, (4)

where
∏
(µ, ν) = {π|π(A × Rd) = µ(A), π(Rd × B) =

ν(B)} and c(e, e′) = ||e− e′||2. π(e, e′) is the joint prob-
ability measure with marginal measures equal to µ and ν
respectively. Using Wasserstein distance allows the uncer-
tainty distribution to cover task embeddings beyond the
training set, thus enabling the black-box model to gener-
alize to unseen test tasks. Thus, we propose the following
optimization for distributionally robust model fusion:

max
ϕ

inf
ν∈P

F(ϕ) (5)

s.t. P = {ν|W (µ, ν) ≤ δ}, (6)

where the inner inf optimization in Eq. (5) is to optimize
the worst-case task embedding distribution, and Eq. (6) is to
constrain the neighboring task embeddings distribution ν are
within the Wasserstein ball of the original task embeddings
distribution µ. We use the ambiguity set of the Wasserstein
ball to approximate the underlying uncertainty since this
ambiguity set contains an infinite number of distributions
and thus can encourage diverse task distributions that would
cover more tasks and improve generalization. Compared
to Eq. (3), Eq. (5) focuses on the worse-case performance
within a Wasserstein uncertainty set. By Lagrangian duality,
we can convert the above optimization to the following
unconstrained optimization:

max
ϕ

inf
ν∈P

Eν [F(ϕ) + γW (µ, ν)], (7)

where γ is the regularization weight. The above optimiza-
tion problem can be further converted into the following
equivalent form by using the equivalent optimization from
[Blanchet and Murthy, 2017]:

max
ϕ

Eµ inf
e′
[logP (θ|fϕ∗(e

′)) + γc(e, e′)], (8)

where e′ is the perturbed task embedding. We illustrate the
difference between the basic and DRO DFL2L in Figure 3.



Algorithm 1 Offline DRO Model Fusion for Meta Training.
1: REQUIRE: Given a collection of N tasks consisting of

C = {(T1,θ1), (T2,θ2), · · · , (TN ,θN )}, where Ti is the
task identifier and θi are the pre-trained model parameters
for task i; EN is the number of meta-training epochs; The
number of inner-loop optimization steps is K; regularization
weight is γ. Divide the pre-trained model set C into meta
training S and meta-validation set Q. Randomly initialize the
black-box network parameters ϕ.

2: for q = 1 to EN do
3: for t = 1 to N do
4: randomly sample a pre-trained model (Ti,θi) from

meta-training set S and maximize the objective
logP (θi|fϕ(ei)) with gradient ascent w.r.t. ϕ by K
steps gradient ascent, obtains ϕ∗.

5: randomly sample a pre-trained model (Tj ,θj) from Q
and minimize logP (θj |fϕ∗(ej))+γc(ej , e

′) w.r.t. e′

by K steps gradient descent, obtains e∗.
6: maximize the objective logP (θj |fϕ∗(e∗)) with gradi-

ent ascent w.r.t. ϕ.
7: end for
8: end for

Offline DFL2F The meta-learned model initialization is
thus the black-box model output of the average embedding.
We summarize our proposed black-box distributionally ro-
bust model fusion for meta training in Algorithm 1. In algo-
rithm 1, line 5-7 is to alternately update the task embedding
e and ϕ for multiple epochs.

Algorithm 2 Online DRO Model Fusion for Meta Training.

1: REQUIRE: Given a sequence of N pre-trained mod-
els, i.e., (T1,θ1), (T2,θ2), · · · , (TN ,θN ), where Ti is
the task identifier and θi are the pre-trained model pa-
rameters for task i; meta-validation pre-trained model
set Q; inner-loop optimization steps is K. Randomly
initialize the black-box network parameters ϕ.

2: for t = 1 to N do
3: maximize the objective logP (θt|fϕ(et)) with gradi-

ent ascent w.r.t. ϕ by K steps gradient ascent, obtains
ϕ∗.

4: randomly sample a pre-trained model (Tj ,θj) from
Q and minimize logP (θj |fϕ∗(ej)) + γc(ej , e

′)
w.r.t. e′ by K steps gradient descent, obtains e∗.

5: maximize the objective logP (θj |fϕ∗(e∗)) with gra-
dient ascent w.r.t. ϕ.

6: end for

Extension to Online DFL2F We extend the above algo-
rithm to the online setting of DEL2L. In this setting, the
pre-trained models are revealed one after the other, and
the goal is to sequentially meta-learn on this sequence of
pre-trained models. The model training only goes through
the meta fusion process by a single pass. Each arrived pre-
trained model will be sequentially meta-trained with Eq. (8),

but previous learned pre-trained models will not be avail-
able to use. The extension algorithm to the online learning
setting is shown in Algorithm 2.

4.3 META TESTING

During meta testing, all the pre-trained models are fused by
the following way:

einit =
1

N

i=N∑
i=1

ei, (9)

θinit = fϕmeta(einit), (10)

where einit is the average embedding of all the pre-trained
models, and ϕmeta is the optimal solution to the Eq. (8).
Given a test task Ti with a few labeled training examples
Dtr

i , L(θt,Dtr
i ) is the loss function for network with param-

eters θt and Dtr
i . The learned model initialization for meta

testing is shown in Algorithm 3. In the algorithm, we use the
fused parameters θinit as initialization for new unseen tasks.
Each unseen task is equipped with a few labeled training
data for each class to fine-tune the fused model initialization
by gradient descent.

Algorithm 3 Black-box model Fusion for Meta Testing.
1: REQUIRE: Given a collection of M tasks consisting of Z =

{(T1,Dtr
1 ,Dtest

1 ), · · · , (TM ,Dtr
M ,Dtest

M )} for meta testing.
Ti is the task identifier. Dtr

i and Dtest
i are training and testing

data for task Ti respectively. ϕmeta are the learned optimal
black-box fusion model parameters; number of adaptation
steps S and learning rate α

2: einit =
1
N

∑i=N
i=1 ei

3: θinit = fϕmeta(einit)
4: for i = 1 to M do
5: θ0 = θinit

6: for t = 1 to S do
7: θt = θt−1 − α∇L(θt−1,Dtr

i )
8: end for
9: evaluate the model performance with network HθS on task-

specific testing data Dtest
i .

10: end for

5 EXPERIMENTS

We perform extensive experiments on both synthetic data
and image datasets to demonstrate the effectiveness of the
proposed method. We perform both offline and online model
fusion for real image datasets.

5.1 BASELINES

To show the effectiveness of the proposed methods, we
construct various baseline methods and compare them in
the following.



Vanilla averaging (VA), which averages all the pre-trained
model parameters.

Finetuning, which uses a few labeled data from each unseen
task to finetune the randomly initialized model.

MAML [Finn et al., 2017], which meta trains all the tasks
with their training and testing data together. This setting
is completely different from ours, for which only a pre-
trained model for each task is available and private data is
not available for meta-training.

Optimal transport averaging (OTA) [Singh and Jaggi,
2020], which uses optimal transport to calculate the
weighted average of all the pre-trained models. Their models
mainly work on the simpler case that all pre-trained models
solve the same task.

Model fusion with Gaussian process (MFGP) [Lam et al.,
2021], which uses Gaussian process for model fusion.

We provide more detailed descriptions of baselines in Ap-
pendix 1.1

5.2 OFFLINE SYNTHETIC DATA

Suppose we have N pre-trained models, where each one is
a regression model to learn the sinusoid function g(x) =
a sin(x + β) + b, where (a, β, b) denotes the magnitude,
phase and vertical shift of the sine function. Where a is
sampled from the range [0.1, 5], β is sampled from the
range [0, 2π] and b is sampled from [0, 3]. The function
domain is [-5, 5]. Note that our sampled sinusoid function
has a vertical shift to increase the task diversity. This task
construction is more difficult than existing works [Finn et al.,
2017]. The identifier of each task is simply a number from
1, · · · , N . We keep 100 pre-trained models for meta-training
and validation; another 100 unseen tasks for meta-testing.
The task embedding for task i, i.e., ei, is simply from the
look-up table. Task embeddings are jointly learned with
the black-box model parameters ϕ. The goal of DFL2L
is to learn an initialization for the unseen testing sinusoid
functions. During meta-testing, each unseen testing sinusoid
function is presented with a few labeled data points used to
adapt the meta initialization for the specific unseen tasks.
We evaluate the model performance by the mean squared
error across all the unseen testing sinusoid functions.

Implementation Details. The pre-trained model for a sinu-
soid function network is a two-layer fully connected layer
with 50 hidden units for each layer. The task embedding
dimension for each task is 100. The black-box model is
structured with the same number of layers as the pre-trained
models. Each fully connected layer of the black-box model
takes the task embedding as input. The output dimension is
the same as the number of parameters for the correspond-
ing pre-trained model layer. We use the SGD optimizer to
learn the black-box model with a learning rate of 0.03 for

Table 1: Performance comparison to baselines on sinusoid
function regression

Algorithm 5-shot 10-shot

VA 2.295± 0.08 0.682± 0.06
Finetuning 9.629± 0.19 1.765± 0.08
MAML 6.973± 0.06 1.303± 0.05
OTA 2.271± 0.07 0.667± 0.07
MFGP 2.325± 0.05 0.691± 0.09

Ours 2.235 ± 0.05 0.625 ± 0.03

three epochs. K = 1. Among all the pre-trained models, We
use 80 % of them for meta-training and 20 % of them for
meta-validation.

Results. Table 1 shows the model performance across dif-
ferent baselines. Figure 4 shows some visualization results
of different sinusoid functions. Due to the more challenging
problem setup of data-free model fusion and adding the
vertical shift term in synthesizing sinusoid functions, sim-
ply finetuning or applying MAML does not perform well.
Among all the compared methods, our method outperforms
other baselines. Finetuning performs the worst due to the
lack of good initialization, and only a few labeled data are
available. VA and OTA are the second-best because they
learned better initial parameters than MAML and finetuning.

5.3 OFFLINE META LEARNING

To evaluate the effectiveness of the proposed method on
more challenging real image datasets, we perform exper-
iments on CIFAR-FS [Bertinetto et al., 2019] and Mini-
Imagenet [Vinyals et al., 2016]. These two datasets are com-
monly used meta-learning datasets, consisting of 100 classes.
We split each dataset into meta-training, validation, and
testing subsets, where all the subsets are non-overlapping
following Vinyals et al. [2016], Bertinetto et al. [2019]. Stan-
dard meta-learning methods train on many different tasks,
where each task has its training data and testing data. Differ-
ent from existing works, the training and testing data associ-
ated with each task are not available during meta-training
but only a pre-trained model that solves a R-way classifica-
tion problem. We get each pre-trained model by standard
supervised learning on its training data. Each classification
task randomly samples R classes from the meta-training
subset and uses 60% labeled data of the corresponding class
for training and 20%, 20% labeled data of the corresponding
class labeled data for validation and testing, respectively.
We repeat the process for 100 tasks. After getting 100 pre-
trained models, we use them as meta-learning resources to
learn an initialization for novel tasks with unseen classes.
This problem scale (number of pre-trained models) is much
larger than that of existing model fusion methods [Singh
and Jaggi, 2020]. Each testing task is sampled from the



Figure 4: Visualization of different sinusoid functions with different adapttion method. We can observe that our method
can better capture the sinusoid function structure. Due to the more challenging sinusoid function fitting than existing
meta-learning setting, other compared methods cannot capture such wide range of function values.

meta-testing subset and has few labeled data to adapt the
learned meta initialization to each unseen task. We evaluate
the performance by the averaged accuracy and standard de-
viation over 600 unseen testing tasks that are sampled from
the meta-testing subset.

Implementation Details. Each pre-trained model (network)
is a four-layer convolution neural network, where each layer
has 16 filters, similar to the standard meta-learning network
[Finn et al., 2017]. The task embedding dimension for each
task is 50. For the black-box model architecture, each layer
is linear (fully connected) to predict the model parameters
of the pre-trained model with task embedding as input. The
output dimension of each linear layer is the number of pa-
rameters in the corresponding pre-trained model. We use the
SGD optimizer to learn the black-box model with a learning
rate of 0.03, K = 1. We perform each experiment for five
runs and report each method’s mean and standard deviation.
Among all the pre-trained models, we use 80 % of them for
meta-training and 20 % of them for meta-validation.

Results. Table 2 shows the evaluation results for 5-way clas-
sification on CIFAR-FS and Mini-Imagenet respectively. For
CIFAR-FS, our method outperforms best baselines by 2.3%
and 3.7% for 10-shot and 20-shot learning, respectively. For
MiniImagenet, our method outperforms best baselines by
2.1% and 3.1% for 10-shot and 20-shot learning, respec-
tively. The results show that simply finetuning the randomly
initialized model parameters is insufficient to perform well.
MAML performs better due to a better-learned meta prior
to the model parameters. However, MAML does not sig-
nificantly improve over simple finetuning due to the small
number of training tasks. VA and OTA fuse model layer-
wise; they do not perform better because each pre-trained
model trains on different tasks, thus lacking precise corre-
spondence among different pre-trained models. MFGP also
performs worse because GP cannot handle high dimensional
network parameters and lacks meta-learning objectives. Our
proposed method performs best because of the strong gener-
alization ability of the black-box DRO fusion model with
diversified task embedding.

Table 2: Compare to baselines in offline DFL2L on CIFAR-
FS and MiniImagenet with 5-way and 10-way classification

Algorithm 10-shot 20-shot

CIFAR-FS

VA 47.95± 1.8 50.88± 1.6
Finetuning 45.06± 1.4 48.81± 1.9

(5-way) MAML 47.21± 1.2 50.35± 1.7
OTA 48.09± 1.5 51.16± 1.5

MFGP 47.68± 1.6 50.72± 1.8
Ours 50.42 ± 1.5 54.86 ± 1.2

MiniImagenet

VA 35.07± 1.7 40.34± 1.5
Finetuning 30.25± 1.8 32.82± 1.6

(5-way) MAML 34.51± 1.2 36.91± 1.6
OTA 35.25± 1.6 40.58± 1.7

MFGP 34.98± 1.2 40.06± 1.4
Ours 37.36 ± 1.7 43.67 ± 1.6

CIFAR-FS

VA 34.73± 1.7 38.03± 1.4
Finetuning 27.86± 1.4 29.27± 1.6

(10-way) MAML 31.97± 1.9 34.82± 1.5
OTA 35.05± 1.6 38.25± 1.3

MFGP 34.81± 1.9 38.17± 1.7
Ours 36.57 ± 1.5 40.52 ± 1.2

MiniImagenet

VA 24.15± 1.2 28.06± 1.5
Finetuning 17.94± 1.5 18.40± 1.6

(10-way) MAML 21.36± 1.6 25.87± 1.8
OTA 24.39± 1.7 28.42± 1.9

MFGP 22.78± 1.4 26.56± 1.2
Ours 27.57 ± 1.9 32.68 ± 1.7

Effect of different number of training classes for each
task To evaluate the model performance difference where
each task has more training classes, we experiment with the
case that each task solves a 10-way classification problem. In
this scenario, it is more difficult than the previous scenario.
The results are shown in Table 2. For CIFAR-FS, our method
outperforms best baselines by 1.5% and 2.3% for 10-shot
and 20-shot learning, respectively. For MiniImagenet, our
method outperforms best baselines by 3.2% and 4.3% for
10-shot and 20-shot learning, respectively. Compared to 5-
way classification results, 10-way accuracy is lower due



to the more challenging problem. Ours outperforms all the
baselines in both 5-way and 10-way settings.

Hyperparameter Sensitivity and Ablation Study We per-
form hyperparameter sensitivity analysis for γ and abla-
tion study for DRO in Appendix 1.2. Results show that our
method is not very sensitive to hyperparameter variations,
and the DRO regularization is effective.

5.4 ONLINE META LEARNING

This is different from Section 5.3, which focuses on the case
that all the pre-trained models are available simultaneously.
This section focuses on the setting that each pre-trained
model sequentially arrives. In this case, when training on
ith pre-trained model, all the previous i − 1 pre-trained
models are not available. In this case, most compared meth-
ods in offline DFL2L are not applicable. Hence, we only
compare Finetuning and Online meta-learning (OML) [Finn
et al., 2019a]. Note that OML does not follow the setting of
DFL2L since it needs labeled raw data to train the model.

Table 3: Online DFL2L compare to baselines on CIFAR-FS
and MiniImagenet with 5-way and 10-way classification

Algorithm 10-shot 20-shot

CIFAR-FS Finetuning 45.06± 1.4 48.81± 1.9

(5-way) OML 46.91± 1.5 49.87± 1.6
Ours 49.18 ± 1.2 53.06 ± 1.7

MiniImagenet Finetuning 30.25± 1.8 32.82± 1.6

(5-way) OML 33.83± 1.2 35.56± 1.7
Ours 35.89 ± 1.1 41.93 ± 1.8

CIFAR-FS Finetuning 27.86± 1.4 29.27± 1.6

(10-way) OML 30.58± 1.6 33.57± 1.8
Ours 35.41 ± 1.8 39.25 ± 1.2

MiniImagenet Finetuning 17.94± 1.5 18.40± 1.6

(10-way) OML 20.18± 1.6 24.31± 1.8
Ours 26.08 ± 1.4 31.19 ± 1.7

Results Table 3 shows the evaluation results for 5-way clas-
sification on CIFAR-FS and Mini-Imagenet respectively. For
CIFAR-FS, our method outperforms best baselines by 2.3%
and 3.2% for 10-shot and 20-shot learning, respectively. For
MiniImagenet, our method outperforms best baselines by
2.1% and 6.3% for 10-shot and 20-shot learning, respec-
tively. In addition, Table 3 shows the evaluation results for
10-way classification on CIFAR-FS and Mini-Imagenet re-
spectively. For CIFAR-FS, our method outperforms best
baselines by 4.8% and 5.7% for 10-shot and 20-shot learn-
ing, respectively. For MiniImagenet, our method outper-
forms best baselines by 5.9% and 6.8% for 10-shot and
20-shot learning, respectively. All the results show that our
method substantially outperforms baselines by a large mar-
gin, demonstrating the effectiveness of the proposed DRO-
based model fusion method. Compared to the offline DFL2L

setting, compared methods and our proposed methods per-
form relatively lower due to the more challenging nature of
online DFL2L.

6 CONCLUSION

We propose a novel challenging meta-learning setting, i.e.,
Data-Free Learning To Learn, whose goal is to meta-learn
a model initialization from several (sequential) pre-trained
models without using their training data. The meta-learned
initialization initializes new unseen tasks. To solve this chal-
lenging problem, we propose a Wasserstein distribution-
ally robust optimization technique to fuse these existing
pre-trained models into a single model without requiring
training data, which is served as an initialization during the
meta-testing stage. At last, extensive experiments in both
offline and online settings demonstrate the possibility of
our proposed DFL2F problem and the DRO-based model
fusion solution’s effectiveness. Future work includes extend-
ing the proposed method to more complex cases where each
pre-trained model uses different architecture.
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