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Abstract

Pathological gait exhibits diverse compensatory strategies that vary across individ-1

uals, disease stages, and time. Robust downstream clinical performance can benefit2

from foundation models that learn generic, transferable motion representations.3

However, an interesting question is what inductive biases prove to be good training4

objectives for a general recipe to train such FMs.. We address this with PathoFM,5

an encoder-only pretraining recipe trained on heterogeneous gait cycles from 2306

patients, augmented with synthetic generative variants of real trials to broaden7

coverage of atypical patterns. The recipe blends three complementary objectives:8

(i) Local Completion (recovering continuous segments of the input), (ii) Temporal9

Continuity (predict future segments to enforce dynamic consistency), and (iii)10

In-Context Dynamics, an unsupervised in-context learning objective that encour-11

ages relational reasoning from a small support set of exemplars. We evaluate under12

strict patient (subject) holdout and compare PathoFM against grouping-based pre-13

texts (subject-ID discrimination, InfoNCE contrastive learning, online prototypes)14

and diffusion variants. Across clinical classification and regression endpoints,15

PathoFM achieves the best overall balance of performance. These results indicate16

that dynamics-centric pretraining yields more generalizable clinical timeseries17

representations than objectives based on grouping or instance discrimination.18

1 Introduction19

Human gait, especially in pathological conditions, is a complex timeseries signal containing valuable20

clinical information about neurological and musculoskeletal health [7]. However, developing robust21

models for gait analysis is challenging due to limited clinical datasets and the diverse ways gait can22

be impaired [4]. Large-scale foundation models that can be adapted to various tasks offer a promising23

solution to take advantage of diverse gait data for improved generalization [1]. A key question is:24

Which inductive biases should shape the pretraining objectives of a general gait foundation model?25

Based on our analysis, we adopt three key principles: (1) Emphasize information coverage rather26

than narrow task imitation: learn to complete missing structure and continue dynamics [6] in a way27

that is agnostic to any single clinical endpoint. (2) Favor relational and contextual reasoning to allow28

the model to leverage a few relevant gait exemplars provided “in context” to inform its predictions,29

mirroring a clinician’s ability to compare a patient’s gait with reference patterns. (3) we keep the30

backbone encoder-centric so most capacity is spent on representation building; small task heads can31

then adapt with minimal supervision.32

2 PathoFM: A Multi-Objective Transformer for Multivariate Gait Timeseries33

PathoFM aims to (1) capture high-dimensional pathological structure without committing to a single34

clinical taxonomy; (2) support imputation and continuation as sanity checks for learned structure;35

and (3) transfer to downstream classification and cross-modal regression with lightweight heads.36
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Figure 1: Architecture of the proposed pretraining model for multivariate time series. A shared
transformer encoder processes projected features enriched with temporal position encodings. Three
self-supervised objectives guide representation learning: (i) Local Completion, where contiguous
masked time steps across the window are reconstructed; (ii) Temporal Continuity, where future
segments are masked and predicted from past observations; and (iii) In-Context Dynamics, where
queries are reconstructed from a small support set (phase-aware, subject-balanced). The final
pretraining objective is a weighted joint loss over the three terms.

2.1 Pretraining Objectives37

We designed PathoFM to combine three complementary objectives (Fig. 1). 1) A local structure38

completion via masked encoding on contiguous temporal spans, 2) mid-range temporal continuity39

3) an unsupervised context-conditioned objective that encourages relational reasoning from a small40

support set of exemplars.41

Local structure completion (LC). This objective, analogous to masked modelling [5], focuses on42

local structure completion. We mask contiguous spans within the window (covering a certain window43

of consecutive time steps across all variables), and task the model with reconstructing the missing44

data from the surrounding context. This enables the encoder to capture local structure, correlations45

across variables, and phase-aligned morphology.46

Temporal continuity (TC). This objective is designed to enforce mid-range dynamic consistency.47

We mask the latter portion of each gait sequence and ask the model to predict the continuation of the48

timeseries beyond the observed part.49

Unsupervised in-context dynamics learning (uICD). We introduce an unsupervised in-context50

learning objective designed to favor relational reasoning by enabling the model to leverage a few51

relevant exemplars “in context.” Concretely, each training instance is a small table comprising some52

query windows and a support set of windows drawn via a phase-aware sampler from subject-balanced53

mini-batches (so every subject contributes multiple candidate supports). Our uICD pretext task54

provides no external labels (no diagnosis, class, event markers, or subject IDs fed into the model).55

The only supervision signal is the observable timeseries itself. The network processes all rows jointly56

and attends from the query to its supports, performing non-parametric adaptation: it infers subject-57

and phase-specific transformations from the supports and applies them to the query. The loss is a58

conditional masked-reconstruction error computed only on the query, which compels the model to59

use the relational structure among rows rather than memorize global averages.60

Comparison with other objectives. We compare these objective against state-of-the-art bench-61

marks such as subject-ID discrimination (supervised pretext), contrastive [3], online prototypes62

(DINO) [2], and diffusion-only [8] and diffusion-hybrid variants.63
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Figure 2: Held-out SCI subject (single trial), per-variable overlay. Ground truth (solid) vs. PathoFM
predicted local structure completion and temporal continuation (dashed) across multi-joint an-
gles/moments (X/Y/Z) and progression over a normalized gait cycle (101 samples). The model
preserves phase, amplitude, and salient transients across variables, indicating robust local structure
completion and temporal continuation on unseen patients.

3 Data and Protocol64

Gait cycles from 230 patients were used for pretraining. Trials were augmented with dynamics-65

preserving variations (e.g., amplitude/phase warps) to improve coverage of atypical pathological66

regimes while retaining plausibility. The goal is not photorealistic synthesis but coverage. Evalu-67

ation was performed on strict patient holdout to 10 unseen SCI participants (each ∼10 trials, 10168

samples), covering 33 kinematic/kinetic variables (multi-joint angles and moments along X/Y/Z and69

progression). We report: (i) qualitative sanity via continuation overlays on held-out subjects; and (ii)70

downstream performance on classification (weighted-F1, AUC) of pathology category (tetraplegic71

vs. paraplegic), gender, and spinal cord independence measurement level (SCIM: high or low) and72

regression to GRFX/Y/Z (Pearson r, RMSE), using lightweight heads for probes on frozen features.73

4 Results and Conclusion74

4.1 Pretext generalization to unseen patient population75

We found that the models generalize well for masked encoding and forecasting in patients not seen76

during the training as given by the high R2 (local structure completion: 0.90, temporal continuity:77

0.85) and r (local structure completion: 0.95, temporal continuity: 0.92) and low RMSE of predictions78
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Pathology category Gender SCIM GRF_X GRF_Y GRF_Z

Method F1 ↑ AUC ↑ F1 ↑ AUC ↑ F1 ↑ AUC ↑ ρ ↑ RMSE ρ RMSE ↓ ρ ↑ RMSE ↓

TC+uICD 0.68 0.64 0.762 0.54 0.70 0.64 0.65 0.021 0.83 0.033 0.89 0.199
LC+uICD 0.69 0.64 0.770 0.54 0.70 0.64 0.70 0.020 0.83 0.033 0.89 0.200
LC+TC 0.66 0.64 0.780 0.61 0.69 0.60 0.64 0.022 0.81 0.035 0.84 0.246

LC+TC+uICD 0.69 0.66 0.764 0.55 0.71 0.65 0.71 0.020 0.83 0.033 0.88 0.202

Table 1: Performance across downstream classification and prediction tasks when each component of
the loss term is ablated. Arrows indicate whether higher (↑) or lower (↓) values are better. The full
loss term performs best in four out of six tasks, illustrating the importance of the combined loss in
learning generalizable representations.

(local structure completion: 0.034, temporal continuity: 0.041). Qualitatively, predicted trajectories79

align well in phase and amplitude of the real trajectories (Fig. 2).80

4.2 Performance on downstream tasks81

We evaluated our proposed model variants through both ablation studies and comparisons against82

representative benchmarks.83

We performed ablation experiments to assess the contribution of local completion (LC), temporal84

continuity (TC), and unsupervised in-context dynamics (uICD) objectives (Tab. 1). Overall, the85

combination of all three objectives (LC+TC+uICD) yielded the most balanced improvements across86

tasks. In classification tasks, the full model achieved best performance in pathology and SCIM87

level classification. Unsupervised in-context dynamics (uICD) was less informative than generative88

reconstruction and temporal forecasting for gender classification. On the other hand, the inclusion of89

uICD was consistently beneficial for prediction of GRF components with the full model or uICD-90

augmented variants yielding the best performances. These results suggest that uICD contributes91

significantly to biomechanical signal fidelity, while LC and TC reinforce generalization across92

classification tasks.93

We further compared the best variant (LC+TC+uICD) against state-of-the-art baselines (Table 2).94

Our method either outperforms the baselines or provided similar performance across tasks. Overall,95

our approach performed best in at least one of the two metrics reported for each task. For pathology96

classification, our approach achieved the highest F1 while remaining competitive with the contrastive97

method in AUC. For GRF prediction, the proposed model consistently delivered either the best or98

second-best results across components. While diffusion-based methods were competitive in GRF99

prediction, they performed weaker on pathology classification task. The grouping-based methods100

(Dino and contrastive), on the other hand, was competitive in pathology classification, but weaker101

in GRF prediction, likely because their pretext objective is better aligned with classification rather102

than continuous signal reconstruction. In contrast to both grouping and diffusion-based objectives,103

our approach provided a balanced performance across both the pathology classification and GRF104

prediction tasks. Overall, these results demonstrate that the strength of the combined objective that105

we propose in offering a general and balanced clinical outcome prediction and biomechanical signal106

fidelity, outperforming both grouping-based and diffusion-based approaches.107

Pathology category GRF_X GRF_Y GRF_Z

Method F1 ↑ AUC ↑ ρ ↑ MSE ↓ ρ ↑ MSE ↓ ρ ↑ MSE ↓

Dino 0.67 0.62 0.67 0.020 0.82 0.035 0.89 0.230
Contrastive 0.68 0.68 0.63 0.021 0.78 0.038 0.78 0.281
subject identification 0.63 0.65 0.69 0.020 0.82 0.034 0.86 0.224
Diffusion+LC+uICD 0.61 0.64 0.70 0.019 0.83 0.033 0.87 0.212
Diffusion only 0.63 0.65 0.58 0.024 0.73 0.043 0.84 0.230

LC+TC+uICD 0.69 0.66 0.71 0.020 0.83 0.033 0.88 0.202
Table 2: Benchmark performance across pathology category classification and GRF prediction tasks.
Arrows indicate whether higher (↑) or lower (↓) values are better. The combined loss term that we
propose performs best in one or both the metrics reported for each task.
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