
StackMix: A complementary Mix algorithm

John Chen1 Samarth Sinha2 Anastasios Kyrillidis1

1Computer Science Dept., Rice University, USA
2Computer Science Dept., University of Toronto, Canada

Abstract

Techniques combining multiple images as in-
put/output have proven to be effective data aug-
mentations for training convolutional neural net-
works. In this paper, we present StackMix: each
input is presented as a concatenation of two im-
ages, and the label is the mean of the two one-hot
labels. On its own, StackMix rivals other widely
used methods in the “Mix” line of work. More im-
portantly, unlike previous work, significant gains
across a variety of benchmarks are achieved by
combining StackMix with existing Mix augmen-
tation, effectively mixing more than two images.
E.g., by combining StackMix with CutMix, test
error in the supervised setting is improved across a
variety of settings over CutMix, including 0.8% on
ImageNet, 3% on Tiny ImageNet, 2% on CIFAR-
100, 0.5% on CIFAR-10, and 1.5% on STL-10.
Similar results are achieved with Mixup. We fur-
ther show that gains hold for robustness to com-
mon input corruptions and perturbations at varying
severities with a 0.7% improvement on CIFAR-
100-C, by combining StackMix with AugMix over
AugMix. On its own, improvements with Stack-
Mix hold across different number of labeled sam-
ples on CIFAR-100, maintaining approximately a
2% gap in test accuracy –down to using only 5%
of the whole dataset– and is effective in the semi-
supervised setting with a 2% improvement with the
standard benchmark Π-model. Finally, we perform
an extensive ablation study to better understand the
proposed methodology.

1 INTRODUCTION

In the last decade, numerous innovations in deep learning
for computer vision have substantially improved results on

Figure 1: Base is the typical data augmentation setting, with
random crops, horizontal flips, and normalization. Improvement
over base refers to the attained test set accuracy minus the base
test set accuracy. A→B refers to generating inputs with A and then
feeding them as input to B. StackMix variants perform the best,
and exhibit complementary behavior with existing augmentation.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).



Figure 2: The StackMix procedure for k = 2. Left: The standard one-hot training. Right: StackMix with two images. Top
row: Abstract pipeline. Bottom row: Concrete example.

many benchmark tasks [Krizhevsky et al., 2012, He et al.,
2016, Zagoruyko and Komodakis, 2016, Huang et al., 2017].
These innovations include architecture changes, training pro-
cedure improvements, data augmentation techniques, and
regularization strategies, among many others. In particular,
data augmentation techniques have consistently and pre-
dictably improved neural network performance, and remain
crucial in training deep neural networks effectively.

One such recent line of work revolves around the idea of
finding effective augmentations through a search procedure
[Cubuk et al., 2018]. The resulting augmentations tend to
outperform hand-designed algorithms [Cubuk et al., 2018],
and have seen some adoption [Tan and Le, 2020, Berthelot
et al., 2019]. There is work to reduce the cost of the search
[Lim et al., 2019, Ho et al., 2019].

A different line of work follows the idea of Mixup [Zhang
et al., 2017], where inputs are generated from convex com-
binations of images and their labels. The resulting image
can be understood as one image overlaid on another, with
some opacity. Follow up works include methods such as
Cutout [DeVries and Taylor, 2017] where parts of an im-
age are removed, or CutMix [Yun et al., 2019] where parts
of one image are removed and pasted onto another, with
correspondingly weighted labels. Other works further im-
prove accuracy [Kim et al., 2020], or robustness [Hendrycks
et al., 2020]. While highly effective individually, these meth-
ods generally cannot be combined with each other (See
MixUp→CutMix and CutMix→MixUp in Tables 3,4). Fur-
thermore, many cannot effectively combine more than 3
images (see Table 10), or they suffer from information loss
due to inappropriate occlusion.

In this paper, we consider the supervised setting and intro-
duce StackMix, a complementary Mix algorithm. In Stack-
Mix, each input is presented as a concatenation of two im-
ages, and the label is the mean of the two one-hot labels.
We show StackMix works well with existing tuned hyper-
parameters, and has no change to existing losses or general
network architecture, which allows for easy adoption and

integration into modern deep learning pipelines. Most im-
portantly, not only is StackMix an effective augmentation
on its own, it can further boost the performance of existing
data augmentation, including the Mix line of work.

Our findings can be summarized as follows:

• Compared to the vanilla case, StackMix improves the
test performance on existing image classification tasks,
including by 0.84% on ImageNet with ResNet-50, 3.24%
on Tiny ImageNet with ResNet-56 [He et al., 2016],
1.30% on CIFAR-100 with VGG-16 [Simonyan and Zis-
serman, 2014] and 0.64% with PreAct ResNet-18, 0.08%
on CIFAR-10 with SeResNet-18 and 0.14% with ResNet-
20, 2.28% on STL-10 with Wide-ResNet 16-8 [Zagoruyko
and Komodakis, 2016]. Finally, StackMix improves by
2.16% on CIFAR-10, with all but 4000 labeled samples,
when combined with the semi-supervised Π-model [Laine
and Aila, 2017].

• We demonstrate that StackMix is complementary to ex-
isting data augmentation techniques, achieving over 0.8%
improvement on ImageNet, 3% improvement on Tiny
ImageNet, 2% test error improvement on CIFAR-100,
0.5% on CIFAR-10, and 1.5% on STL-10, by combining
StackMix with state-of-the-art data augmentation method
CutMix [Yun et al., 2019], as compared to CutMix alone.
Similar gains are achieved with MixUp [Zhang et al.,
2017] and AutoAugment [Cubuk et al., 2018]. In this way,
many images are effectively combined.

• Improvements carry over to the robustness setting, with
1% test error improvement on CIFAR100-C [Hendrycks
and Dietterich, 2019] and 0.2% on CIFAR10-C, by com-
bining StackMix with state-of-the-art data augmentation
method for robustness Augmix [Hendrycks et al., 2020]
over AugMix.

Some of these results are summarized in Figure 2.



Experiment short name One Hot StackMix % Diff.

RN50-IMAGENET 25, 557, 032 25, 557, 032 0%
RN56-TINYIMAGENET 1, 865, 768 2, 070, 568 10.9%
VGG16-CIFAR100 15, 038, 116 15, 300, 260 1.7%
PRN18-CIFAR100

11, 222, 244 11, 222, 244 0.0%
(-AA/-INF)
SRN18-CIFAR10 11, 267, 842 11, 267, 842 0.0%
RN20-CIFAR10 570, 602 573, 162 0.4%
WRN-STL10 11, 002, 330 11, 048, 410 0.4%
WRN-CIFAR10/100-C 2, 255, 156 2, 267, 956 0.5%
WRN-CIFAR10-SSL 1, 467, 610 1, 467, 610 0.0%
RN20-CIFAR10-N 570, 602 573, 162 0.4%
VGG16-CIFAR100-N 15, 038, 116 15, 300, 260 1.7%

Table 1: Model Parameters for each experiment - k = 2. De-
tails of the experiments are provided in the Results section.

2 THE STACKMIX DATA
AUGMENTATION

In StackMix, we alter the input to the network to be a con-
catenation of k images, and the output to be a k-hot vector
with values 1/k in active classes; see Figure 2 for the case of
k = 2. For clarity and simplicity, we will assume k = 2 for
the rest of the paper. The choice of 1/2 value (for k = 2) is
a result of using the Cross Entropy loss, and values 1 and 1
can be explored for the Binary Cross Entropy loss. Stack-
Mix is tightly related to the line of “Mix” data augmentation
work. StackMix has the following general advantages:

(a) StackMix is complementary to existing data augmenta-
tions including the “Mix” line of work (see Section 3.4).
StackMix can effectively mix more than two images,
e.g. StackMix with k = 2 and Mixup can effectively
mix four images in total. This is in contrast to, for
example, Mixup which does not benefit from mixing
more than two images (see Page 3 of Mixup [Zhang
et al., 2017] or Table 10). In addition, the various “Mix”
based methods cannot be effectively combined (See
MixUp→CutMix, CutMix→MixUp in Tables 3,4).

(b) StackMix has no additional hyperparameters in terms
of fine-tuning during training.

(c) Compared with methods which remove or replace parts
of images, StackMix has no assumption that critical
information is effectively captured in bounding boxes,
which may not be the case for real-world datasets.

This construction can be directly plugged into any existing
image classification training pipeline, with the only typical
changes being the sizes of the first layer of the network. The
change in parameters is generally insignificant (e.g., < 1%
for ResNet-20 on CIFAR10, or 0% for PreAct ResNet-18
on CIFAR100, due to average pool; see Table 1; see Tables
3,4 for controls). To ensure fairness in comparisons, we
tune hyperparameters in the original standard one-hot super-
vised setting –including epochs to ensure performance has
saturated– and we then apply the exact same hyperparam-
eters to StackMix. We note that, for testing, we concatenate

Algorithm 1 The StackMix algorithm. Produces one sample.
For concatenating two images, we set k = 2. To recover the
standard one-hot supervised training, we set k = 1.

Inputs: Samples {xi, yi}ki=0; xi are inputs and yi are
one-hot labels; stochastic transformation T ; number of
images to concatenate k.

1. Compute xi = T (xi).
2. Concatenate as x = concat

(
{xi}ki=0

)
3. Compute prediction y = 1

k

(∑k
i=0 yi

)
return x, y

the same image twice, with the one-hot vector used as the
ground truth label (see later section for discussion).

2.1 IMPLEMENTATION AND SYNERGY WITH
EXISTING DATA AUGMENTATION

In the traditional setting, a batch size of M is defined by
having M inputs per batch, where each of the M inputs is
typically the result after data augmentation. For consistency
with data augmentation techniques, which combine two
or more images such as Mixup [Zhang et al., 2017], we
define an input vector as a vector after the concatenation. In
particular, and for simplicity of presentation, for each input,
we assume we perform the following motions (for k = 2):

(a) Sample two images.

(b) Apply existing data augmentation to each image indi-
vidually.

(c) Concatenate the two images as a single input vector.

(d) Rescale each label vector to 1/2, and add them element-
wise to produce the multi-hot label.

This method can be easily extended to k-fold concatenation
of images, where each label vector is rescaled to 1/k, and
then summed element-wise. We explore k > 2 in Section
3.5. For clarity, we present this procedure as well in Al-
gorithm 1, where k = 1 is the standard one-hot training
procedure, and k = 2 is the primary focus of this paper. In
implementation, we sample two images with replacement
and thus the output can be a one-hot vector, naturally with
1/n probability, where n is the size of the dataset; although,
we note that this choice has minimal impact on performance.

3 RESULTS

We provide results for i) supervised image classification,
ii)test error robustness against image corruptions and per-
turbations, iii) semi-supervised learning, combining Stack-
Mix with existing data augmentation, iv) an ablation study,
and v) evaluation of test time augmentation. A summary



of experimental settings are given in Table 2, and com-
prehensively detailed in each section. We tuned the hyper-
parameters of the standard one-hot setting to achieve the
performance of the original papers and of the most popu-
lar public implementations, reusing the most widely used
codebases for consistency. We then used the exact same
hyperparameters and pipeline for StackMix for fairness.

3.1 SUPERVISED IMAGE CLASSIFICATION

In this section, we explore improving the performance of
well-known baselines in the supervised learning setting.
We add StackMix to seven model-dataset pairs, and lastly
observe the performance with and without StackMix across
a varying number of supervised samples in the CIFAR100
setting. See Tables 3,4 for results.

Controls. Although StackMix generally introduces a small
number of additional parameters (see Table 1), it is crucial to
introduce controls to account for the difference, in addition
to the increased training time. Therefore, we also present re-
sults with two controls. To account for the additional hyper-
parameters and computation, we introduce a control where
the StackMix procedure concatenates the same image with
itself during training, after being individually augmented
with the stochastic image augmentation for fairness. To ac-
count for increased training time, we introduce a control
with double the batch size and double the epochs, with re-
tuned learning rate. This way we effectively control for both
the model size and the total computation/number of images
seen by the model during training. Results are presented
in Tables 3,4 (See Base, 2x bs/epochs, StackMix(same)). It
appears that neither control exhibits the same improvement
as with StackMix. This suggests (but does not guarantee)
the effect of StackMix is nontrivial and potentially cannot
be explained by computation or model size differences.

Examining learned embeddings. We check the learned
embeddings for randomly drawn samples from CIFAR100
with t-SNE [Van Der Maaten and Hinton, 2008], given in
Figure 3, as sanity check. The images are processed in the
inference setting, where they are concatenated with them-
selves. Clusters form as expected (Figure 3 Left). This is
highly encouraging despite the network mostly seeing the
concatenation of images from different classes. We also
observe that by fixing one image of each concatenation to
be a certain class and varying the class of the other image,
a similarly separated distribution forms (Figure 3 Middle).
This further supports the idea that the network has learned
to differentiate between the two presented images. Finally,
we find that concatenating images from two different classes
is semantically separated from concatenating either image
with itself (Figure 3 Right), and that as a sanity check the
embeddings are generally not sensitive to which image is
placed on top. In sum, while the network sees the same
image stacked during testing and largely sees different im-

ages stacked during training, it appears to learn reasonable
embeddings.

Results on ImageNet [Russakovsky et al., 2015]. We ex-
periment with ResNet-50 [He et al., 2016]; we use the offi-
cial PyTorch implementation and train the network for the
default 90 epochs, which roughly follows popular works
[He et al., 2016, Huang et al., 2017, Han et al., 2017, Si-
monyan and Zisserman, 2014, Zhang et al., 2017]. There are
some works which train the network for 3-4x the number of
epochs, e.g. CutMix [Yun et al., 2019], but this can be com-
putationally demanding. We use the standard random crops
of size 224× 224, horizontal flips, and normalization. In in-
ference, we use a 224×224 center crop, following standard.
The network is trained with momentum SGD (η = 0.1,
β = 0.9), with a 30-60 decay schedule by factor of 0.1
using a batch size of 256. We set α = 1 for MixUp and Cut-
Mix. StackMix variants perform the best, with best variant
improving 2.02% over base. Adding StackMix to MixUp
improves 1.20% over MixUp, and adding StackMix to Cut-
Mix improves 0.80% over CutMix (Table 3 and Figure 1).

Results on Tiny ImageNet. With ResNet-56 [He et al.,
2016], we trained the model for 80 epochs with momentum
SGD (η = 0.1, β = 0.9), Cross Entropy loss, decaying
by a factor of 0.1 at 40 and 60 epochs, using a batch size
of 64. We applied the standard image augmentation [He
et al., 2016] of horizontal flips, normalization and random
crops. By adding StackMix to the vanilla case, the absolute
generalization error was reduced by 3.24%, from 42.03%
to 38.79%. By observing Figure 4 (Left), we see that while
the two methods are initially comparable, adding StackMix
reduces the error in the later stages of training. The plateau
of the StackMix curve suggests resistance to overfitting.
Furthermore, by adding StackMix to MixUp, test error is
decreased by 2%, and by adding StackMix to CutMix, test
error is decreased by 3% (Table 4 and Figure 1).

Results on CIFAR100. We trained two models, VGG16
and PreActResNet-18 (PRN18). VGG-16 was trained for
300 epochs following standard procedure as in Tiny Ima-
geNet. PRN18 was trained similarly, except for 200 epochs
and a learning rate decay schedule by a factor 0.2 at 60, 120,
and 180 epochs. A roughly 1% test error improvement is ob-
served for both cases for StackMix compared to the controls.
Relative to MixUp and CutMix, a significant decrease of
1-2% is observed by adding StackMix (Table 4 and Figure
1). We observe in Figure 4 (Right) that StackMix already
improves in the early stages of training with VGG16. It is
typical in neural network training to see the gap closed in
the first learning rate decay when there exists a gap early on
in training, but here StackMix maintains an improvement.

Results on CIFAR10. We trained ResNet20 (RN20) and
SeResNet-18 (SRN18). This is a particularly challenging
task to improve upon due to the model architecture where
doubling the number the parameters and increasing the



Experiment short name Model Dataset Setting

RN50-IMAGENET ResNet-50 ImageNet Supervised Learning
RN56-TINYIMAGENET ResNet-56 Tiny ImageNet Supervised Learning
VGG16-CIFAR100 VGG-16 CIFAR100 Supervised Learning
PRN18-CIFAR100 PreActResNet-18 CIFAR100 Supervised Learning
SRN18-CIFAR10 SeResNet-18 CIFAR10 Supervised Learning
RN20-CIFAR10 ResNet-20 CIFAR10 Supervised Learning
WRN-STL10 Wide ResNet 16-8 STL10 Supervised Learning
WRN-CIFAR10-SSL Wide ResNet 28-2 CIFAR10 Semi-Supervised Learning
WRN-CIFAR10/100-C Wide ResNet 40-2 CIFAR10/100-C Robustness
RN20-CIFAR10-N ResNet-20 CIFAR10 Ablation
VGG16-CIFAR100-N VGG-16 CIFAR100 Ablation
PRN18-CIFAR100-INF PreActResNet-18 CIFAR100 Test time inference augmentation

Table 2: Summary of experimental settings.

Figure 3: Left: Randomly selected 10 classes where each image is concatenated with itself. Middle: Randomly selected 10 classes where
each image is concatenated with an image from class 0. Right: Randomly selected 3 classes where each image is concatenated with itself,
concatenated as the top image with an image from another class, and concatenated as the bottom image with an image from another class.
Singular number denotes self-concatenation. “a-b” denotes image from class a concatenated as the top image with an image from class b.
Data used is training data and test data plots are similar with more noise.

Method Test error

Base 24.10
2x bs/epochs 24.49

StackMix(same) 23.28
MixUp 23.28
CutMix 23.48

StackMix 23.26
MixUp→CutMix 35.70
CutMix→MixUp 33.99

MixUp→StackMix 22.08
CutMix→StackMix 22.68

Table 3: Generalization error of experiments with and
without StackMix in the RN50-ImageNet setting. 2x
bs/epochs refers to doubling the batch size and epochs of
Base. StackMix(same) is another control which refers to
stacking the same image as input. A→B refers to generating
inputs with A and then feeding them as input to B.

Figure 4: Generalization error for supervised learning. Left:
RN56-TINYIMAGENET. Right: VGG16-CIFAR100.

depth results in only minor gains in performance [He et al.,
2016]. Both networks are trained similarly as previously,
except with a 30-60-90 learning rate decay schedule for
SRN18. In both cases there are small improvements over
the controls, and adding StackMix to existing augmentation
further improves results. We emphasize that ResNet20 is not
ResNet18, which is a different network architecture with sig-
nificantly more parameters. Most popular implementations



Experiment Base 2x bs/epochs StackMix(same) MixUp CutMix StackMix MixUp→CutMix CutMix→MixUp MixUp→StackMix CutMix→StackMix

RN56-TINYIMAGENET 42.03 42.00 42.11 40.76 39.46 38.79 43.80 43.24 38.55 36.25
VGG16-CIFAR100 27.80 28.63 27.69 27.35 27.20 26.50 34.44 35.66 25.69 25.49
PRN18-CIFAR100 25.93 25.41 25.63 25.05 24.00 25.29 31.36 30.20 24.58 23.61
RN20-CIFAR10 7.65 7.55 7.73 6.51 6.74 7.51 6.93 7.05 6.40 6.27
SRN18-CIFAR10 5.03 5.05 5.21 5.34 4.59 4.95 6.64 6.59 4.50 4.30
WRN-STL10 17.26 15.83 18.92 15.68 16.83 14.98 24.02 23.68 13.44 15.01

Table 4: Generalization error of experiments with and without StackMix in the supervised setting. 2x bs/epochs refers to
doubling the batch size and epochs of Base. StackMix(same) is another control which refers to stacking the same image as
input. A→B refers to generating inputs with A and then feeding them as input to B, e.g. CutMix→MixUp first generates
inputs with CutMix and then feeds them as input to MixUp.

samples% 100 50 30 20 10 5

Base 27.80% ±.10 34.88% ±.20 42.52% ±.34 50.41% ±.38 71.91% ±.57 86.03% ±.12
StackMix 26.50% ±.11 33.61% ±.21 40.40% ±.34 48.19% ±.52 68.71% ±.87 85.61% ±.40

Table 5: Generalization error (%) for VGG16-CIFAR100 with varying number of proportional samples in each class.

of ResNet20 fall in the 8-8.5% test error range on CIFAR10.
SeResNet18 is a variation of ResNet18. See Table 4.

Results on STL10. We use Wide ResNet 16-8 [Zagoruyko
and Komodakis, 2016], a 16 layer deep ResNet architecture
with 8 times the width. We trained the WRN model for 100
epochs following standard settings as before. Similar results
are observed in Table 4, except CutMix does not perform
as well, leading to MixUp→StackMix attaining the best
performance.

Understanding performance with varying labeled sam-
ples. StackMix performs well in the above supervised set-
tings, and we further explore performance in the low sample
regime. In particular, we select the VGG16-CIFAR100
setting, and decrease the number of samples in each class
proportionally. We use the exact same training setup as in
the full VGG16-CIFAR100 case, and tabulate results in Ta-
ble 5. We perform 3 runs since low-sample settings produce
higher variance results. We see that similar improvements
hold with lower samples at roughly 2% generalization error.

3.2 ROBUSTNESS

Results on CIFAR10/100-C. We investigate the impact
of StackMix on robustness. We select a corrupted dataset
as test set and reevaluate models trained with and with-
out StackMix on the uncorrupted training set, following
standardized procedure [Hendrycks and Dietterich, 2019].
AugMix [Hendrycks et al., 2020] follows the Mix line of
work with significant increases in robustness, and we con-
sider AugMix as the state-of-the-art baseline. Results with
WRN-40-2 on CIFAR100-C and CIFAR10-C are shown in
Tables 6 and 7.

In the clean case, StackMix improves over the vanilla case,
and adding StackMix to AugMix significantly decreases test
error, including 2% on CIFAR100. StackMix does not ap-

pear to provide any additional robustness improvements be-
yond improvements carried over from the clean case. How-
ever, this should not be taken for granted as some methods
which increase robustness can lower clean test error and
vice versa [Raghunathan et al., 2019]. AugMix→StackMix
outperforms AugMix in both clean and corrupted cases on
average, and outperforms AugMix in 11/15 categories in
CIFAR10-C and 10/15 categories in CIFAR100-C.

3.3 SEMI-SUPERVISED LEARNING

We explore if StackMix can be directly applied to improve
Semi-Supervised Learning (SSL) [Chapelle and Scholkopf,
2006], where the network processes both labeled and unla-
beled samples. We select a popular and practical subset of
SSL, which involves adding a loss function for consistency
regularization [Tarvainen and Valpola, 2017, Berthelot et al.,
2019, Laine and Aila, 2017, Chen et al., 2020]. Consistency
regularization is similar to contrastive learning in that it
tries to minimize the difference in output between similar
samples. In particular, we select the classic and standard
benchmark of the Π-model [Laine and Aila, 2017].

The Π model adds a loss function for the unlabeled samples
of the form: d(fθ(x), fθ(x̂)), where d is typically the Mean
Square Error, fθ is the output of the neural network, and x̂ is
a stochastic perturbation of x. Minimizing this loss enforces
similar output distributions of an image and its perturbation.
A coefficient is then applied to the SSL loss as a weight with
respect to the Cross Entropy loss. The unlabeled samples
are evaluated with the SSL loss, while the labeled samples
are evaluated with Cross Entropy.

Results on CIFAR10. We follow the standard setup in
[Oliver et al., 2018] for the CIFAR10 dataset, where 4000
labeled samples are selected, and remaining samples are
unlabeled. We use a WRN 28-2 architecture [Zagoruyko



Noise Blur Weather Digital

Setting Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

Standard 25.18 83.1 75.2 75.8 43.2 78.4 49.6 50.4 48.3 53.5 39.6 30.0 48.1 44.1 54.4 55.0 55.24
StackMix 24.80 81.4 73.8 74.0 44.0 77.5 49.8 51.3 46.7 52.8 37.6 29.6 47.7 44.1 55.7 55.7 54.78
AugMix 23.37 54.5 46.7 36.7 25.6 53.1 29.6 28.2 34.7 36.0 33.0 25.6 31.3 32.4 36.5 38.3 36.14

AugMix→StackMix 21.81 55.7 47.3 33.0 24.0 54.9 27.8 27.2 32.8 34.9 29.9 23.9 30.9 31.3 39.3 39.0 35.46

Table 6: Generalization error of experiments with and without StackMix in the WRN-CIFAR100-C setting.

Noise Blur Weather Digital

Setting Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

Standard 5.49 51.1 39.1 43.1 19.1 50.5 24.2 25.2 19.1 23.2 11.9 7.1 21.8 16.7 30.0 22.6 26.98
StackMix 5.30 53.0 42.5 43.1 18.2 49.4 23.6 23.8 18.5 21.7 11.7 6.8 22.3 17.5 29.7 23.0 26.99
AugMix 4.91 22.2 16.3 13.0 5.8 21.0 7.9 7.2 10.7 10.4 8.2 5.6 7.8 10.1 16.3 12.6 11.67

AugMix→StackMix 4.37 24.2 16.8 10.7 5.3 22.4 7.5 6.7 9.9 10.0 7.5 5.0 7.3 9.6 16.2 12.5 11.44

Table 7: Generalization error of experiments with and without StackMix in the WRN-CIFAR10-C setting.

Experiment Base StackMix

WRN-CIFAR10-SSL 17.31% 15.15%

Table 8: Generalization error of Π-model on the standard
benchmark of CIFAR10, with all but 4,000 labels removed.

Base AA StackMix AA→StackMix

25.93% 23.87% 25.29% 21.51%

Table 9: Generalization error (%) of PRN18-CIFAR100
with AutoAugment. It is no surprise that StackMix is com-
plementary to AutoAugment, and we simply present one
experiment here to confirm.

and Komodakis, 2016], training for 200,000 iterations with
a batch size of 200, of which 100 are labeled and 100 are
unlabeled. The Adam optimizer is used (η = 3 · 10−4, β1 =
0.9, β2 = 0.999), decaying learning rate schedule by a fac-
tor of 0.2 at 130,000 iterations. Horizontal flips, random
crops, and gaussian noise are used as data augmentation.
A coefficient of 20 is used for the SSL loss. By adding
StackMix, we reduce the test error by 2.16% (see Table 8).

3.4 STACKMIX IS COMPLEMENTARY TO
EXISTING DATA AUGMENTATION

Results in the previous section strongly suggest that Stack-
Mix is complementary to Mix methods, with improved
training by combining StackMix with MixUp [Zhang et al.,
2017], CutMix [Yun et al., 2019] and AugMix [Hendrycks
et al., 2020]. This differs from existing work: e.g., MixUp
and CutMix cannot be effectively combined (see Tables 3,4).
We further support the complementary nature of StackMix
by combining with AutoAugment [Cubuk et al., 2018].

Results on CIFAR100. We follow the settings in
PRN18-CIFAR100. We use existing AutoAugment poli-

cies for the CIFAR datasets, and following [Cubuk et al.,
2018] for CIFAR, we apply AutoAugment after other aug-
mentations, and before normalization and StackMix. Au-
toAugment improves 2% over standard augmentation, and
adding StackMix improves by another 2% (see Table 9);
again, suggesting a complementary behavior and easy in-
corporation into existing pipelines. We want to emphasize
the result in this section. A 2% gain by combining StackMix
with AutoAugment over either baseline on the CIFAR100
dataset is comparable to a significant increase in model size
and depth; on CIFAR100, typically moving from a ResNet18
model to ResNet101 and beyond on yields a roughly 2%
improvement in most implementations.

3.5 ABLATION STUDY

We now perform an ablation study to determine how far this
framework can be pushed. We increase the value of k, and
observe the test error in the setting of VGG16-CIFAR100
and RN20-CIFAR100. We fix the hyperparameters as used
previously, with results in Table 10 and Figure 5. For MixUp
and CutMix, k represents the number of images combined.
For MixUp/CutMix→StackMix, k represents the number
of images stacked, after they have been pairwise augmented
with MixUp/CutMix (e.g. k = 3 would be 2× 3 = 6 total).
We reduce the box size of CutMix to allow for higher k.

In almost all cases, the error deteriorates immediately af-
ter k = 2, and further increasing k typically increases the
error further, clearer in the case of VGG16-CIFAR100.
Performance deterioration is significantly more severe for
MixUp and CutMix, whereas the StackMix variants suffer
only slightly. This is likely due to loss of semantic informa-
tion with inputs looking similar for MixUp, and a failure
to capture enough critical information for CutMix. For ex-
ample, on CIFAR100 MixUp and CutMix almost double
in error from k = 2 to 5, tenfold the error rate increase
of the StackMix variants. We can see in Figure 5 that the



k

Dataset-Model Augmentation 1 (base) 2 (same image) 2 3 5

VGG16-CIFAR100

Standard 27.80% 27.69% 26.50% 27.35% 29.35%
MixUp - - 27.35% 49.04% 63.52%
CutMix - - 27.20% 36.52% 51.25%

MixUp→StackMix - - 25.69% 26.05% 27.41%
CutMix→StackMix - - 25.49% 26.95% 27.91%

RN-CIFAR10

StackMix 7.65% 7.73% 7.51% 8.13% 7.89%
MixUp - - 6.51% 8.93% 13.86%
CutMix - - 6.74% 7.63% 9.91%

MixUp→StackMix - - 6.40% 6.30% 6.05%
CutMix→StackMix - - 6.27% 6.65% 6.81%

Table 10: Generalization error for VGG16-CIFAR100 and RN20-CIFAR10 with varying number of images concatenated.

Figure 5: Left: Generalization error for VGG16-CIFAR100. Right: Generalization error for RN20-CIFAR10. Varying
number of images concatenated.

Base Base + flips StackMix StackMix + flips

25.93% 25.36% 25.29% 24.79%

Table 11: PRN18-CIFAR100-INF - Generalization error
with test time augmentation. Base + flips is the mean output
of an image and its flipped version. StackMix + flips is the
output of the concatenation of an image with itself flipped.

choice of k has limited impact in the early stages of training,
but affects the final test error, where performance begins to
deteriorate after the first learning rate decay.

Furthermore, we highlight results on the concatenation of
the same image (also in Tables 3,4). First, this results in a
sanity check that the StackMix construction on the same im-
age is identical (with respect to performance) to the one-hot
vector classification constructions. Second, worse perfor-
mance in StackMix when the same image is concatenated
twice indicates that the network learns less, as compared to
the concatenation of two images: this further strengthens
the effect that StackMix brings during training.

3.6 INFERENCE SPEED AND AUGMENTATIONS

One drawback of StackMix compared with the standard
one-hot is slower inference speed due to the larger input
size. Therefore, we designed several experiments.

On SRN18-CIFAR10, we only swept over the top image
in StackMix for the first convolutional layer. This led to
similar results to StackMix, with only 0.01 error difference.

In another case, the standard one-hot setup is given two
forward passes for inference at test time. Concretely, we
take the top-1 of the mean output of an image and its flipped
counterpart. For StackMix in this paper, we concatenated
the same image with itself without any further augmentation.
However, we observe that the benefits of test-time augmen-
tation for the standard case carry over to StackMix naturally
without additional computation, where an image is concate-
nated with a itself flipped. The improvements with respect
to each vanilla case are similar, where the standard case
gains 0.57% and StackMix gains 0.50% (See Table 11).

Finally, we upsampled the base case images to account
for the additional computation from the larger image in



StackMix. On PRN18-CIFAR100, a corresponding larger
image size (45x45≈32x32x2) worsened error from the base
case, from 25.93 to 27.15, whereas StackMix achieves
25.29 error. On SRN18-CIFAR10, using the correspond-
ing larger image size achieved similar error on the base case,
from 5.03 to 5.05, whereas StackMix achieves 4.95 error.
These results suggest that the extra compute from larger
input sizes is not the reason StackMix achieves gains.

4 RELATED WORK

In supervised learning, techniques that can be added to the
label, such as label smoothing [Sukhbaatar et al., 2014], or
directly to the data, using data augmentation [Zhang et al.,
2016, Cubuk et al., 2018, DeVries and Taylor, 2017, Yun
et al., 2019], or both [Zhang et al., 2017], boost performance.
Horizontal image flips and crops are well-established as ef-
fective data augmentation techniques [Krizhevsky et al.,
2012, He et al., 2016]. The choice of single-image augmen-
tations was discovered through a search procedure [Cubuk
et al., 2018]. The cost of the method was reduced further in
[Ho et al., 2019, Lim et al., 2019].

StackMix is tightly related to the “Mix” line of work [Zhang
et al., 2017, Yun et al., 2019, DeVries and Taylor, 2017,
Hendrycks et al., 2020, Kim et al., 2020, Guo et al., 2018],
where pairs of input images and their labels are combined.
Mixup [Zhang et al., 2017] takes convex combinations of
inputs and their labels, and has been extended to the feature
space [Verma et al., 2019]. Other work removes parts of
images [DeVries and Taylor, 2017, Zhong et al., 2017], and
paste parts of images with weighted labels [Yun et al., 2019,
Takahashi et al., 2020]. PuzzleMix [Kim et al., 2020] im-
proves the salient information in Mix images, while AugMix
[Hendrycks et al., 2020] improves robustness.

Ensembles [Dietterich, 2000] and multiple choice learning
[Guzman-Rivera et al., 2012] output multiple labels from
a single image. Ensembles utilize multiple models, while
multiple choice learning predicts multiple labels. StackMix
is strictly different from both as our aim is to predict multiple
outputs from multiple inputs.

5 CONCLUSION

We introduce StackMix, a complementary Mix algorithm.
StackMix can directly be plugged into existing pipelines
with minimal changes: no change in loss, hyperparameters,
or general network architecture. StackMix improves perfor-
mance in a variety of benchmarks. StackMix is complemen-
tary to and boosts the performance of existing augmentation,
including MixUp, CutMix, AugMix, and AutoAugment.

References

David Berthelot, Nicholas Carlini, Ian Goodfellow, Avital
Papernot, Nicolas Oliver, and Colin Raffel. Mixmatch:
A holistic approach to semi-supervised learning. arXiv
preprint arXiv:1905.02249, 2019.

Olivier Chapelle and Bernhard Scholkopf. Semi-supervised
learning. MIT Press, 2006.

John Chen, Vatsal Shah, and Anastasios Kyrillidis. Negative
sampling in semi-supervised learning. ICML, 2020.

Ekin Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc Le. Autoaugment: Learning augmentation
policies from data, 2018.

Terrance DeVries and Graham W. Taylor. Improved regu-
larization of convolutional neural networks with cutout,
2017.

Thomas G Dietterich. Ensemble methods in machine learn-
ing. In International workshop on multiple classifier
systems, pages 1–15. Springer, 2000.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Mixup as
locally linear out-of-manifold regularization, 2018.

Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli.
Multiple choice learning: Learning to produce multiple
structured outputs. In Advances in Neural Information
Processing Systems, pages 1799–1807, 2012.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyra-
midal residual networks, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking
neural network robustness to common corruptions and
perturbations. Proceedings of the International Confer-
ence on Learning Representations, 2019.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix:
A simple data processing method to improve robustness
and uncertainty, 2020.

Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, and
Xi Chen. Population based augmentation: Efficient learn-
ing of augmentation policy schedules, 2019.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708, 2017.



Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle
mix: Exploiting saliency and local statistics for optimal
mixup, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

Samuli Laine and Timo Aila. Temporal ensembling for
semi-supervised learning. In International Conference
on Learning Representations, 2017.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and
Sungwoong Kim. Fast autoaugment, 2019.

Avital Oliver, Augustus Odena, Colin Raffel, Ekin D Cubuk,
and Ian J Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. arXiv preprint
arXiv:1804.09170, 2018.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C.
Duchi, and Percy Liang. Adversarial training can hurt
generalization, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge, 2015.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. Training convolu-
tional networks with noisy labels, 2014.

Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara.
Data augmentation using random image cropping and
patching for deep cnns. IEEE Transactions on Circuits
and Systems for Video Technology, 30(9):2917–2931,
Sep 2020. ISSN 1558-2205. doi: 10.1109/tcsvt.2019.
2935128. URL http://dx.doi.org/10.1109/
TCSVT.2019.2935128.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are bet-
ter role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. In Advances
in Neural Information Processing Systems, 2017.

Laurens Van Der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 2008.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, Aaron Courville, David Lopez-
Paz, and Yoshua Bengio. Manifold mixup: Better repre-
sentations by interpolating hidden states, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localiz-
able features. In International Conference on Computer
Vision (ICCV), 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Pas. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. European conference on computer
vision, 2016.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation, 2017.

http://dx.doi.org/10.1109/TCSVT.2019.2935128
http://dx.doi.org/10.1109/TCSVT.2019.2935128

	Introduction
	The StackMix Data Augmentation
	Implementation and synergy with existing data augmentation

	Results
	Supervised Image Classification
	Robustness
	Semi-supervised Learning
	StackMix is complementary to existing data augmentation
	Ablation study
	Inference speed and augmentations

	Related Work
	Conclusion

