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Abstract

Collaborative filtering is the de facto standard for analyzing users’ activities and building
recommendation systems for items. In this work we develop Sliced Anti-symmetric De-
composition (SAD), a new model for collaborative filtering based on implicit feedback. In
contrast to traditional techniques where a latent representation of users (user vectors) and
items (item vectors) are estimated, SAD introduces one additional latent vector to each
item, using a novel three-way tensor view of user-item interactions. This new vector ex-
tends user-item preferences calculated by standard dot products to general inner products,
producing interactions between items when evaluating their relative preferences. SAD re-
duces to state-of-the-art (SOTA) collaborative filtering models when the vector collapses to
1, while in this paper we allow its value to be estimated from data. Allowing the values
of the new item vector to be different from 1 has profound implications. It suggests users
may have nonlinear mental models when evaluating items, allowing the existence of cycles
in pairwise comparisons. We demonstrate the efficiency of SAD in both simulated and real
world datasets containing over 1M user-item interactions. By comparing with seven SOTA
collaborative filtering models with implicit feedbacks, SAD produces the most consistent
personalized preferences, in the meanwhile maintaining top-level of accuracy in personal-
ized recommendations. We release the model and inference algorithms in a Python library
https://github.com/apple/ml-sad.

1 Introduction

Understanding preferences based on users’ historical activities is key for personalized recommendation. This
is particularly challenging when explicit ratings on many items are not available. In this scenario, historical
activities are typically viewed as binary, representing whether a user has interacted with an item or not.
Users’ preferences must be inferred from such implicit feedback with additional assumptions based on this
binary data.

One common assumption is to view non-interacted items as negatives, meaning users are not interested in
them; items that have been interacted are often assumed to be preferred ones (Hu et al., 2008; Pan et al.,
2008). In reality however, such an assumption is rarely met. For example, lack of interaction between a
user and an item might simply be the result of lack of exposure. It is therefore more natural to assume that
non-interacted items are a combination of the ones that users do not like and the ones that users are not
aware of (Rendle et al., 2009).

With this assumption, Rendle et al. (2009) proposed to give partial orders between items. Particularly,
they assumed that items which users have interacted with are more preferable than the non-interacted ones.
With this assumption in mind, Bayesian Personalized Ranking (BPR) was developed to perform personalized
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(a) Data transformation to form three-way binary tensor D (b) Tensor parameter X

Figure 1: Diagrams provide visualizations of both transformed observation D and parameters X underlying
the observation (Rendle et al., 2009).

recommendations. In BPR, the observed data are transformed into a three-way binary tensor D with the first
dimension representing users. The other two dimensions represent items, encoding personalized preferences
between item pairs (Figure 1a). Mathematically, this means that any first order slice of D at the u-th
user, Du::, is represented as a pairwise comparison matrix (PCM) between items. The (i, j)-th entry when
observed, duij ∈ {−1, 1}, is binary, suggesting whether u-th user prefers (duij = 1) the i-th item over the
j-th one, or the other way around (duij = −1). The tensor D is only partially observed, with missing
entries where there is no prior knowledge to infer any preference for a particular user. The recommendation
problem becomes finding a parsimonious parameterization of the generative model for observed entries in D
and estimating model parameters which best explain the observed data.

The model used in BPR assumes that among the observed entries in D, the probability that the u-th user
prefers the i-th item over the j-th item can be modeled as a Bernoulli distribution (Hu et al., 2008),

p(duij = 1|X) = 1
1 + exp (−xuij) , (1)

where X = {xuij} ∈ Rn×m×m is the collection of unknown parameters of the Bernoulli distribution (Figure
1b). In fact, xuij is the natural parameter of a Bernoulli distribution. Rendle et al. (2009) decompose the
natural parameter by

xuij := xui − xuj ∈ R. (2)

In the equation, xui (xuj) can be interpreted as the strength of preference on the i-th (j-th) item for the
u-th user. In other words, users’ strengths of preference on different items are represented by scalar values
denoted as xui. The relative preferences between items are therefore characterized by the differences between
their preference’s strengths for a particular user. With this decomposition, xuij becomes u-th user’s relative
preference on the i-th item over the j-th item.

By further letting xui be represented as a dot product between a k dimensional user vector ξu ∈ Rk and an
item vector ηi ∈ Rk,

xui = ⟨ξu, ηi⟩, (3)

Rendle et al. (2009) reveal the connection between their proposed BPR model and traditional collaborative
filtering models such as matrix factorization.

The factorization in equations 2 and 3 provides a parsimonious representation of the original Equation
1. Without the factorization, one could model xuij independently. This model requires n × m × m free
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parameters, and a model fitting would result in xuij =∞ for duij = 1, and xuij = −∞ for duij = −1. The
rests of xuij with missing duij are left unknown. The parsimonious representation, in contrast, reduces the
number of parameters to (n + m) × k. The value of xuij now becomes coupled with xuit for t ̸= j, and
entries in D jointly impact parameter estimate of xuij . This highlights a fundamental assumption behind
collaborative filtering: information can be learned from items that share similar pattern when they are
interacted by users, and one user can learn from another user who interacts with similar set of items.

Equation 3 has a direct link to the Bradley-Terry model often studied when analyzing a PCM for decision
making (Hunter, 2004; Weng & Lin, 2011). This model can be at least dated back to 1929 (Zermelo, 1929).
One property of the model is its transitivity: The relative preference xuij can be expressed as the sum of
relative preferences of xuit and xutj , for any user with t ̸= i and t ̸= j. However, in reality this transitivity
property is less frequently met. Only around 3% of real world PCM’s satisfy complete transitivity (Mazurek
& Perzina, 2017). The violation of the property is more conceivable when users are exposed to various types
of items. For example, in an online streaming platform, one favorable movie could become less intriguing
after a subscriber watches a different style/genre.

In this paper, we extend the original BPR model (which is one of the most fundamental models in recommen-
dation systems) to allow non-transitive user ratings. In particular, we extend Equation 2 to a more general
form by proposing a new tensor decomposition. We denote our new model SAD (Sliced Anti-symmetric
Decomposition). The new tensor decomposition introduces a second set of non-negative item vectors τi for
every item. Different from the first vector ηi, the new vector contributes negatively when calculating relative
preferences, producing counter-effects to the original strength of users’ preferences; see Section 4 for more
details. Mathematically, the new vector extends the original dot product in Equation 3 to an inner product.
The original BPR model becomes a special case of SAD when the values in τi are all set to 1, and the inner
product reduces to a standard dot product. When τi contains entries that are not 1, the transitivity property
no longer necessarily holds. While assigning an l1 regularization to the entries in τi to encourage its values
being 1 to reflect prior beliefs, SAD is able to infer its unknown value from real world data. We derive an
efficient group coordinate descent algorithm for parameter estimation of SAD. Our algorithm results in a
simple stochastic gradient descent (SGD) producing fast and accurate parameter estimations. Through a
simulation study we first demonstrate the expressiveness of SAD and efficiency of the SGD algorithm. We
then compare SAD to seven alternative SOTA recommendation models in three publicly available datasets
with distinct characteristics. Results confirm that our new model permits to exploit information and rela-
tions between items not previously considered, and provides more consistent and accurate results as we will
demonstrate in this paper.

2 Related Works

Inferring priority via pairwise comparison. The Bradley-Terry model (Hunter, 2004; Weng & Lin,
2011; Zermelo, 1929) has been heavily used along this line of research. In the Bradley-Terry model, the
probability of the i-th unit (an individual, a team, or an item) being more preferable than the j-th unit
(denoted as i ≻ j) is modeled by

p(i ≻ j) = λi/(λi + λj), (4)

where λi represents the strength, or degree, of preference of the i-th unit. The goal is to estimate λi for
all units based on pairwise comparisons. The link to Equation 1 becomes clear once we omitting user index
and set xi = log(λi). In fact, the original BPR model can be viewed as an extension to the Bradley-Terry
model to allow personalized parameters, and the strength of preferences are assumed to be dot products of
user and item vectors as in Equation 3.

Various algorithms have been developed for parameter estimation of this model. For example, Hunter (2004)
developed a class of algorithms named minorization-maximization (MM) for parameter estimation. In MM,
a minorizing function Q is maximized to find the next parameter update at every iteration. Refer to the
work by Hunter & Lange (2004) for more details related to MM. Weng & Lin (2011) proposed a Bayesian
approximation method to estimate team’s priorities from outputs of games between teams. Most recently,
Wang et al. (2021) developed a bipartite graph iterative method to infer priorities from large and sparse
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pairwise comparison matrices. They applied the algorithm to the Movie-Lens dataset to rank movies based
on their ratings aggregated from multiple users. Our paper is different from aforementioned models in that
we model user-specific item preferences under personalized settings.

Tensor decompositions for recommendation. Compared to traditional collaborative filtering methods
using matrix factorizations, tensor decompositions have received less attention in this field until recently.
The BPR model can be viewed as one of the first attempts to approach the recommendation problems
using tensor analysis. As discussed in Section 1, by making the assumption that interacted items are more
preferrable compared to non-interacted ones, user-item implicit feedback are represented as a three-way
binary tensor (Rendle et al., 2009). In their later work, the authors developed tensor decomposition models
for personalized tag recommendation (Rendle & Schmidt-Thieme, 2010). The relationship between their
approach and traditional tensor decomposition approaches such as Tucker and PARAFAC (parallel factors)
decompositions (Kiers, 2000; Tucker, 1966) was discussed.

Recently, tensor decomposition methods have been used to build recommendation systems using information
from multiple sources. Wermser et al. (2011) developed a context aware tensor decomposition approach by
using information from multiple sources, including time, location, and sequential information. Hidasi & Tikk
(2012) considered implicit feedback and incorporated contextual information using tensor decomposition.
They developed an algorithm which scaled linearly with the number of non-zero entries in a tensor. A
comprehensive review about applications of tensor methods in recommendation can be found by Frolov &
Oseledets (2017) and references therein. Different from leveraging multiple sources of information, the SAD
model developed in this paper considers the basic scenario where only implicit feedback are available, the
scenario that is considered in BPR model (Rendle et al., 2009). Our novelty lies in the fact that we propose
a more general form of tensor decomposition for modeling implicit feedback.

Deep learning in recommendation models. Deep learning has attracted significant attention in recent
years, and the recommendation domain is no exception. Traditional approaches such as collaborative filter-
ing and factorization machines (FM) have been extended to incorporate neural network components (Chen
et al., 2017; He et al., 2017; Xiao et al., 2017). In particular, Chen et al. (2017) replaced the dot product
that has been widely used in traditional collaborative filtering with a neural network containing Multilayer
Perceptrons (MLP) and embedding layers. Chen et al. (2017) and Xiao et al. (2017) introduced attention
mechanisms (Vaswani et al., 2017) to both collaborative filtering and FM (Rendle, 2010). Mostly recently
Rendle et al. (2020) revisited the comparison of traditional matrix factorization and neural collaborative fil-
tering and concluded that matrix factorization models can be as powerful as their neural counterparts with
proper hyperparameters selected. Despite the controversy, various types of deep learning models including
convolutional networks, recurrent networks, variational auto-encoders (VAEs), attention models, and combi-
nations thereof have been successfully applied in recommendation systems. The work by Zhang et al. (2019)
provided an excellent review on this topic. This line of research doesn’t have direct link to the SAD model
considered in the current work. However, we provide a brief review along this line since our model could be
further extended to use the latest advances in the area.

3 Notation

We use n to denote the total number of users in a dataset and m to denote the total number of items. Users
are indexed by u ∈ [1, · · ·n]. Items are indexed by both i and j ∈ [1, · · ·m]. We use k to denote the number
of latent factors, and use h ∈ [1, · · · , k] to index a factor. Capital letters are used to denote a matrix or a
tensor, and lowercase letters to denote a scalar or a vector. For example, the three-way tensor of observations
is denoted as D ∈ Rn×m×m and the (u, i, j)-th entry is denoted as duij . Similarly, the user latent matrix is
denoted as Ξ ∈ Rk×n, and its u-th column is denoted as ξu to represent the user vector for u-th user. We
use ξh to denote the h-th row (the h-th factor) of Ξ viewed as a column vector.

4 Tensor Sliced Anti-symmetric Decomposition

We start with the original BPR model. The relative preference xuij defined in Equation 2 forms a three-way
tensor X ∈ Rn×m×m. The BPR model (Rendle et al., 2009) can be viewed as one parsimonious representation
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of tensor X. Let ξu ∈ Rk and ηi ∈ Rk denote the user and item vectors respectively, and let ξhu (ηhi) indicate
the h-th entry in ξu (ηi). Equations 1, 2, and 3 can be re-written as

Xu:: =
k∑

h=1

ξhu(H̃h − (H̃h)⊤),

where Xu:: is the first order slice of X at u-th user,

H̃h = ηh ◦ 1,

ηh ∈ Rm being the h-th row of item matrix H ∈ Rk×m. 1 ∈ Rm is used to denote a vector of all 1’s and ◦
being the outer product.

4.1 Anti-symmetricity of Xu::

As discussed in Section 2, Xu:: represents a parsimonious representation of parameters of a PCM. We
formalize the property of X as follows:
Property 4.1. For every user u, the first order slice of X, is an anti-symmetric with Xu:: = −X⊤

u::.

This can be shown easily by letting puij = p(duij = 1) = p(i ≻u j) and noting that the relative preference
xuij is the natural parameter of the corresponding Bernoulli distribution with xuij = log(puij/(1 − puij)).
Note that xuij is also known as the log-odds or logit.
The decomposition introduced in BPR can be further written as

Xu:: =
k∑

h=1

ξhu(ηh ◦ 1 − 1 ◦ ηh). (5)

Note that the anti-symmetricity is well respected in the equation. Intuitively, the decomposition suggests that
for the u-th user, her item preference matrix Xu:: can be decomposed as a weighted sum of k anti-symmetric
components, each of which is the difference of a rank one square matrix and its transpose.

4.2 Generalization of BPR

By replacing 1 with arbitrary vector τh ∈ Rm, the new square matrix ηh ◦τh−τh ◦ηh is still anti-symmetric,
and Property 4.1 still holds for the resulting Xu::. With this observation, we generalize Equation 5 by
proposing a new parsimonious representation of Xu::,

Xu:: =
k∑

h=1

ξhu(ηh ◦ τh − τh ◦ ηh). (6)

In this work we require entries in τh to be non-negative. The rationale will become clear in Sec-
tion 4.3. Furthermore, by letting Ξ := (ξ1, ξ2, · · · , ξn) ∈ Rk×n, H := (η1, η2, · · · , ηk)⊤ ∈ Rk×m, and
T := (τ1, τ2, · · · , τk)⊤ ∈ Rk×m

+ (we use R+ to denote the set of non-negative real numbers), we introduce
the proposed Sliced Anti-symmetric Decomposition (SAD).
Definition 4.1. We define the Sliced Anti-symmetric Decomposition (SAD) of X to be the matrices Ξ, H, T
satisfying Equation 6 above for every user index u. We denote this by

X
SAD:= {Ξ, H, T}. (7)

4.3 Interpretation of SAD

To understand the interpretation of SAD, we start by re-writing equations 2 and 3 in BPR as

xuij = ⟨ξu, ηi⟩ − ⟨ξu, ηj⟩ =
k∑

h=1

(ξhuηhi − ξhuηhj).
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The term ξhuηhi can be interpreted as the strength of preference of the u-th user on the i-th item from
the h-th factor. The overall strength of preference, xui, is the sum of contributions from the k individual
factors. Accordingly, the relative preference over the (i, j)-th item pair for the u-th user can be viewed as
the difference between the preference strengths of the i-th and the j-th items from the u-th user.

This interpretation has a direct link to the Bradley-Terry model (4) as previously mentioned, in which the
strength of the i-th item is described as a positive number λi. Here the strength of preference is viewed as
user specific and is represented by a real number xui = log λui.

SAD extends the original equations 2 and 3 by introducing a new non-negative vector τi for every item (a
column in T in Equation 7). We can re-write Equation 6 as follows for every item pair i and j:

xuij = ⟨ξu, ηi⟩diag(τj) − ⟨ξu, ηj⟩diag(τi)

=
k∑

h=1
(ξhuηhiτhj − ξhuηhjτhi). (8)

⟨·, ·⟩diag(τi) in Equation 8 denotes the inner product with a diagonal weight matrix having τi on the diagonal.
To be a proper inner product, we require τi to be non-negative, resulting in a positive semi-definite matrix
diag(τi).

The first term on the right hand side of Equation 8, describing the preference strength of the i-th item, now
becomes dependent on τhj , the h-th entry in τj of the j-th rival. When τhj is bigger than 1, it increases
the effect of ξhuηhi. Similarly, the second term on the right hand side suggests that when τhi is bigger than
1, it strengthens the effect of the j-th item. The opposites happen when either τhj or τhi is smaller than
1. Therefore, while respecting the anti-symmetricity, the new non-negative item vector τi can be viewed
as a counter-effect acting upon the strength of relative preferences, penalizing the strength when greater
than 1, while reinforcing when smaller than 1. In real world applications, a user’s preference indeed may
be influenced by different items. For example, during online shopping, one favorable dress may become less
intriguing after a customer sees a different one with different style/color that matches her needs. In an online
streaming platform, one favorable movie could become less interesting after a subscriber watches another
one with different style/genre. SAD allows us to capture these item-item interactions by introducing a new
set of vectors τi.

To summarize, we interpret the three factor matrices in SAD as follows:

• Ξ represents the user matrix. Each user is represented by a user vector ξu ∈ Rk.

• H represents the left item matrix, which is composed of left item vectors denoted as ηi ∈ Rk. It
contributes to the strength of preference on the i-th item via an inner product with user vector ξu.

• T represents the right item matrix, which contains non-negative right item vectors denoted as
τi ∈ Rk

+. This set of vectors defines the weight matrices of inner products between ηi and ξu.
It produces counter-effects to the original preference strengths, with values bigger than 1 adding
additional strength to rival items in pairwise comparisons, and a value smaller than 1 producing the
opposite effect. When T = 1, the model reduces to the original BPR model.

In SAD we estimate the value of T from data. As discussed in Section 1, we encourage the values of entries
in T to be 1 unless there is strong evidence from the data suggesting otherwise. This is achieved by adding
an l1 regularization centered around 1 to the entries in T independently.

The l1 regularization has another side effect. In Equation 8, multiplying by any constant c to ηhi and
1/c to τhj results in the same objective function, causing H and T to be unidentifiable. The additional
l1 regularization around 1 mitigates the identifiability problem by discouraging any constant multiplication
that moves τhj away from 1, making the joint objective function identifiable between H and T .
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4.4 The transitivity problem

In social science involving decision makings, PCMs have been investigated extensively (Saaty & Vargas,
2013; Wang et al., 2021). It is usually assumed that a PCM holds the transitivity property, resulting in
the following observation introduced in Section 1: The relative preference of the (i, j)-th item pair can be
derived from the sum of relative preferences of the (i, t)-th and (t, j)-th item pairs, with t ̸= i and t ̸= j,
xuij = xuit + xutj . The original BPR meets this property nicely. After introducing T in SAD, this property
no longer necessarily holds. One can show that τi = τj = τt for ternary (i, j, t) is a sufficient condition for
transitivity in SAD. In our model, we allow the violation of this property, making the proposed model more
realistic given the fact that complete transitivity is met only in 3% of real world applications (Mazurek &
Perzina, 2017).

4.5 Inference algorithms

To estimate model parameters, we maximize the log likelihood function directly. The log likelihood given
observed entries in D can be re-written as

logp(D|Θ) =
∑

(u,i,j)

1(duij = −1)xuij − log (1 + exp (−xuij)), (9)

where 1(·) is the indicator function, and the sum is taken with respect to non-missing entries in D with
i < j. Here we require i < j to prevent us from double counting.
We take the derivatives with respect to the columns of Ξ, H, and T , resulting in following gradients

∂ log p(D|Θ)
∂ξu

= wuij(ηi ⊙ τj − ηj ⊙ τi),

∂ log p(D|Θ)
∂ηi

= wuijξu ⊙ τj ,

∂ log p(D|Θ)
∂ηj

= −wuijξu ⊙ τi,

∂ log p(D|Θ)
∂τi

= −wuijξu ⊙ ηj ,

∂ log p(D|Θ)
∂τj

= wuijξu ⊙ ηi,

(10)

from the (u, i, j)-th observation. Here wuij = 1(duij = −1) + exp (−xuij)/(1 + exp (−xuij)) and ⊙ is the
element-wise product (Hadamard product).

Equation 10 allows us to create a stochastic gradient descent (SGD) algorithm (Algorithm 1) to optimize
the negative of the log likelihood. During optimization, we add an l1 penalty with weight w1 to the entries
in T independently to encourage their values to be 1. In addition, we add an l2 independent penalties with
weight w2 to both Ξ and H for further regularization.

We also develop an efficient Gibbs sampling algorithm for full posterior inference under a Probit model
setup. By drawing parameter samples from posterior distributions, the Gibbs sampling algorithm has the
advantage of producing accurate uncertainty estimation of the unknown parameters under Bayesian inference.
We replace the logistic function in Equation 1 with p(duij = 1|Θ) = Φ(xuij), where Φ(xuij) is the cumulative
distribution function (CDF) of the standard Guassian distribution centered at xuij . By assigning spherical
Gaussian priors to Ξ, H, and T , full conditional distributions can be derived. More details can be found in
Appendix.

5 Simulation Study

We first evaluate the performance of SAD and the SGD algorithm on simulation data, with the goal of
examining the performance of our algorithm with true parameters known ahead. We choose n = 20 users,
m = 50 items, and k = 5, resulting in Ξ ∈ R5×20, H ∈ R5×50, and T ∈ R5×50

+ . We consider two scenarios in
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Algorithm 1 SGD for parameter estimation of SAD
Require: n, m, k, D ∈ Rn×m×m, ρ, w1, w2 ▷ ρ: learning rate, w1, w2 weights for l1 and l2

Initialization Ξ ∈ Rk×n, H ∈ Rk×m, T ∈ Rk×m
+

X = {Ξ, H, T} ▷ Equation 7
while Convergence not met do

for u = 1 · · ·n do
for Every item i in interacted set do

Random select item j from non-interacted item set
Calculate dξu, dηi, dηj , dτi, dτj ▷ Equation 10
ξu ← ξu + ρ · (dξu − 2w2ξu)
ηi ← ηi + ρ · (dηi − 2w2ηi)
ηj ← ηj + ρ · (dηj − 2w2ηj)
τi ← τi + ρ · (dτi − w11[τi > 1] + w11[τi < 1]) ▷ 1[·]: Entry-wise indicator to τi ∈ Rk

τj ← τj + ρ · (dτj − w11[τj > 1] + w11[τj < 1])
end for

end for
end while

the simulation. In the first simulation (Sim1) we set T to 1, effectively reducing SAD to the generative model
of BPR (Rendle et al., 2009). In the second scenario (Sim2), we set a small proportion of T to either 0.01 or
5, the other entries are set to 1. For user matrix Ξ and left item matrix H, their values are uniformly drawn
from the interval [−2, 2]. We calculate the preference tensor X with Equation 8 and draw an observation
tensor D from the corresponding Bernoulli distributions.

We first examine the performance of SAD with complete observations in Sim2 to validate if our method is
able to generate accurate parameter estimation. We run the SGD algorithm with a learning rate 0.05. The
weight of the l1 regularization assigned to T is set to 0.01, and the weight of the l2 regularization is set to
0.005. Initial values of parameters are randomly drawn from a standard Gaussian distribution. The number
of latent factors k is set to the true value. In reality when k is unknown, cross validation can be used to
select the best value of k. After 20 epochs, T̂ is able to recover the sparse structure of the true parameters
of T up to permutation of factors (Figure 2). The user matrix and left item matrix converge to the true
parameter values as well (Figure 3).

Next we examine the performance of SAD in both Sim1 and Sim2, under the scenarios with missing data.
To be more specific, we randomly mark x% of D as missing to mimic missing at random. Note that in the
real world, observations could have more complex missingness structures. As a comparison, we run BPR
under the same contexts.

Figure 2: Comparison of T̂ with ground truth. Factors are re-ordered in T̂ to match true T .

The convergences of SAD in Sim1 are shown in Figure 4a, together with the estimated sparsity of T . Here
the sparsity of T is defined as the percentage of the entries in T with |τhj − 1| < 0.05. When the percentage
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Figure 3: Comparison of Ξ̂, Ĥ with their ground truth. Factors are subject to re-order and sign flips.

(a) Likelilhood & Sparsity (Sim1) (b) Likelilhood & Sparsity (Sim2)

(c) Convergence to True Parameter (Sim1) (d) Convergence to True Parameter (Sim2)

Figure 4: Convergence in Simulation Study. Top rows in 4a and 4b show changes of log likelihood (Equation
9) during SGD optimization. log(pΘ0) is the log likelihood at 0-th iteration. Bottom row of 4b shows the true
sparsity (86%) as black line. 4c and 4d show the Frobenius distance between estimated parameter X̂ and
true parameter Xtrue during SGD optimization. Note that SAD (solid line) achieves a much lower distance
compared with BPR (dashed line) in 4d under wide range of percentages of missingness.

of missingness is at small or medium levels, SAD is able to converge to a sparsity close to 1, suggesting
the effectiveness of the l1 regularization. It becomes more challenging when the percentage of missingness
surpasses 70%. Figure 4c shows the trajectories of the mean squared error (MSE) between X̂ and the true X
under different missingness percentages for both SAD and BPR. Both SAD and BPR are able to converge to
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a low MSE with small/medium percentages of missingness. Similarly, with a high percentage of missingness,
the performance of both models begins to deteriorate. We conclude that SAD has a performance on par
with BPR when data are simulated from the generative model of BPR.

Results for Sim2 are shown in Figure 4b. Note that the true sparsity of T is 86%. SAD is able to generate
an accurate estimation of the sparsity under small/medium percentages of missingness. When evaluating
both models using MSE, SAD is able to achieve a much lower value due to its correct specification of the
generative model (Figure 4d).

6 Applications for Real Data

We select three real world datasets to evaluate SAD and compare against SOTA recommendation models.
The datasets selected contain explicit integer valued ratings. Nonetheless, we mask their values and view
them as binary. The explicit ratings are used as a means to evaluate models’ consistency in pairwise
comparison after model fitting (details below). The first dataset used is from the Netflix Prize (Bennett
et al., 2007). The original dataset contains movie ratings of 8, 921 movies from 478, 533 unique users, with
a total number of ratings reaching to over 50M . We randomly select 10, 000 users as our first dataset. The
resulting dataset contains 8, 693 movies with over 1M ratings from the 10, 000 users. For the second dataset,
we choose the Movie-Lens 1M dataset (Harper & Konstan, 2015). It contains over 1M ratings from 6, 040
users on 3, 706 movies. As a third dataset, we consider the reviews of recipes from Food-Com (Majumder
et al., 2019). The complete dataset has 1.1M reviews from 227K users on 231K recipes. We select the top
20K users with the most activities, and filter out recipes receiving less than 50 reviews. The resulting dataset
has 145K reviews from 17K users (users with zero activity are further removed after filtering recipes) on
1.4K recipes.

The three datasets have distinct characteristics. Among the three datasets, the Food-Com review dataset
has the least user-item interactions, even when the most active users/popular recipes are selected. The
maximum number of items viewed by a single user is 878. It also has the largest number of users. The
Netflix dataset is the most skewed, with the number of items interacted by a user ranging from as low as 1
to as high as over 8K. The Movie-Lens dataset contains the largest number of user-item interactions, and
is most uniformly distributed. Some details of the three datasets can be found in Table A in Appendix.

We choose seven SOTA recommendation models to compare with SAD. Their details are listed in Table 3.
For each of the model considered, we perform a grid search to determine hyperparameters. Models are chosen
based on their goodness-of-fit using log likelihood. We evaluate the models using a comprehensive leave one
interaction out (LOO) evaluation (Bayer et al., 2017; He et al., 2017; 2016), in which we randomly hold out
one user-item interaction from training set for every user. Users who have only one interaction are skipped.
We create 20 such LOO sets for each dataset considered. The dimension of latent space during evaluation
is set to 500 for all models and datasets. The choice of the latent dimension can be further optimized using
methods such as across validation. In this work we choose the same number across comparing SOTA models
such that they can be evaluated on a common ground.

1
n× (|Iu| − 1)

∑
u

∑
j∈Iu,j ̸=o

(
x̂hoj1(o ≻ j) + x̂hjo1(j ≻ o)

)
(11)

1
n× (|Iu| − 1)

∑
u

∑
j∈Iu,j ̸=o

(
1(x̂hoj > 0)1(o ≻ j) + 1(x̂hjo > 0)1(j ≻ o)

)
(12)

We consider two aspects of model’s performance during evaluation: consistency and recommendation. The
consistency is defined as whether model’s prediction matches user’s actual pairwise preference. During
evaluation, the hold out item o and other items j in interacted set Iu of user u are arranged such that o ≻u j
based on users’ actual ratings. The mean of their predicted preference (Equation 11), the percentage of
consistent predictions (Equation 12), and the median of per user percentage of consistency are reported in
Table 1. SAD has the most consistent results among all eight recommendation models except in one scenario,
in which our model is second best.
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Table 1: Model evaluations across 20 LOO datasets. When evaluating consistency, item pairs between hold
out item o and other interacted items j for a user are ordered based on the user’s actual ratings (o ≻u j).
The mean of their predicted preference (Equation 11), the percentage of predictions that match with actual
ratings (Equation 12), and the median of per user percentage of match are reported. When evaluating a
recommendation, the percentages of random hold out items that are ranked higher than 20 (out of 100)
using two different ranking method (M1 and M2) are shown. See Table 3 in Appendix for details about each
of the comparing models.

Dataset Model Consistency Recommendation

mean xuij match (%) per user (%) M1 (%) M2 (%)

Netflix

SAD 0.024 ± 0.012 33.7 ± 0.5 18.7 ± 0.3 83.3 ± 0.3 83.9 ± 0.3
BPR −0.019 ± 0.012 32.6 ± 0.5 12.7 ± 0.3 81.8 ± 0.4 81.7 ± 0.3
SVD −0.824 ± 0.032 10.1 ± 0.1 0.0 ± 0.0 2.0 ± 0.5 2.1 ± 0.3
MF −0.018 ± 0.058 8.1 ± 0.5 0.0 ± 0.0 74.8 ± 2.6 45.4 ± 8.7
PMF 0.003 ± 0.015 33.1 ± 0.3 26.9 ± 0.3 21.1 ± 0.3 20.2 ± 0.3
FM −0.538 ± 0.316 12.9 ± 0.2 8.4 ± 0.1 86.4 ± 0.2 81.6 ± 0.3
NCF −0.025 ± 0.043 13.1 ± 4.4 5.6 ± 1.2 86.0 ± 0.3 85.9 ± 2.2
β-VAE −0.011 ± 0.017 21.1 ± 0.9 9.7 ± 2.1 35.7 ± 3.1 31.0 ± 5.7

Movie
-Lens

SAD 0.120 ± 0.014 36.4 ± 0.6 29.9 ± 0.7 82.9 ± 0.4 82.1 ± 0.4
BPR 0.083 ± 0.012 35.7 ± 0.6 25.2 ± 0.6 77.7 ± 0.5 76.9 ± 0.4
SVD −0.324 ± 0.011 7.0 ± 0.4 0.0 ± 0.0 3.5 ± 0.1 3.1 ± 0.2
MF 0.024 ± 0.103 19.0 ± 0.5 0.0 ± 0.0 47.8 ± 1.0 27.0 ± 0.7
PMF 0.027 ± 0.016 32.7 ± 0.4 26.4 ± 0.4 27.3 ± 0.8 22.8 ± 0.5
FM 0.103 ± 0.025 21.7 ± 0.3 18.1 ± 0.3 78.8 ± 0.3 76.3 ± 0.4
NCF −0.241 ± 0.346 24.0 ± 1.9 14.5 ± 2.0 90.4 ± 1.5 90.1 ± 2.1
β-VAE −0.120 ± 0.301 13.2 ± 2.1 10.9 ± 2.4 71.0 ± 0.3 69.9 ± 0.7

Food
-Com

SAD −0.329 ± 0.002 14.9 ± 0.5 0.0 ± 0.0 24.7 ± 0.2 23.9 ± 0.2
BPR −1.276 ± 0.009 5.9 ± 0.5 0.0 ± 0.0 23.2 ± 0.3 21.3 ± 0.3
SVD −5.152 ± 0.039 1.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
MF −1.956 ± 0.161 6.4 ± 2.0 0.0 ± 0.0 27.8 ± 5.5 24.6 ± 6.1
PMF −0.434 ± 0.031 4.1 ± 3.5 0.0 ± 0.0 20.2 ± 0.6 21.0 ± 1.1
FM −5.324 ± 0.247 9.3 ± 1.7 0.0 ± 0.0 35.9 ± 0.2 35.1 ± 0.3
NCF −11.362 ± 0.852 8.9 ± 0.7 0.0 ± 0.0 38.2 ± 4.8 37.1 ± 5.5
β-VAE −3.127 ± 0.426 10.2 ± 1.1 0.0 ± 0.0 16.3 ± 3.1 16.1 ± 3.7

To evaluate models’ performance in recommendation, we create an item set containing 100 non-interacted
items by randomly sampling for each user. We combine the hold out item with the 100 items to form a
test set, and examine whether models are able to rank the hold out item high in the test set (Hit Ratio (He
et al., 2017)). SAD faces some unconventional challenges (hence opportunities) in producing a ranking when
violation of transitivity exists. Consider three items i, j and t. With transitivity, if user has i ≻ j and j ≻ t,
then i ≻ t must hold. However, SAD can result in a scenario in which t ≻ i, forming a preference cycle
among the three items, in which case no ranking can be inferred. We propose two methods using pairwise
comparisons for SAD in the evaluation. In the first method (M1), the number of non-interacted items in the
test set that are more preferrable than the hold out item is dubbed as its rank. In a second method (M2),
we use the ratings from interacted items kept in training set and calculate the proportion of interacted items
that are less preferable than a test item. The proportion is used as a score to rank items in the test set. We
calculate the percentage of hold out items that are ranked higher than 20 in all the hold out items. SAD
is among the top three best models that rank the hold out items in top 20 (Table 1). We argue that since
our model’s predictions match better with user’s actual ratings, it is able to bring additional information
by introducing diversity of items into recommendation, while respecting users’s potential preferences. In
Appendix, we illustrate examples in which SAD produces model predictions consistent with true ratings
while other SOTA models fail.
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7 Discussions

We proposed a new tensor decomposition model for collaborative filtering with implicit feedback. In contrast
to traditional models, we introduced a new set of non-negative latent vectors for items. While respecting anti-
symmetricity of parameters, the new vectors generalized the standard dot products for calculating user-item
preferences to general inner products, allowing items to interact when evaluating their relative preferences.
When such vectors were all set to 1’s, our model reduced to standard collaborative filtering models. We
allowed their values to be different from 1, enabling the violation of the known transitivity property. The
proposed model generated accurate recommendations across multiple real world datasets examined.

The existence of violation of transitivity has profound implication in real world applications. The items
that violate the property form cycles in the directed graph implied by pairwise preferences of a user. For
example, consider three items i, j and t. Transitivity implies if user u has i ≻ j and j ≻ t, then t ≻ i must
hold. Violation of transitivity suggests t ≻ i, forming a preference cycle among the three items. When SAD
detects such violations, even a strong prior, l1 regularization, suggesting otherwise, it indicates that users
themselves may not have a linear mental model in terms of ranking items. When making recommendations,
the items forming a cycle can be selected as a group, and users who are not certain which one in the group
is the most relevant can be exposed to the entire group, increasing the possibility of producing a hit.

When evaluating consistency in Section 6, we used users’ actual ratings to determine pairwise preference
between items. Many items in the datasets however had collided ratings due to the limited values those
ratings can take. We chose the unevenly rated items with partial orders as ground truth during evaluation.
The partial orders are a proxy for users’ true preferences, and using them is the best we can do to evaluate
whether our model is able to produce consistent predictions. For evenly rated items, there is no ground
truth available to allow us to evaluate the performance.

This topic touches one fundamental aspect in our existing rating system - using an integer valued score with
limited range as a sole reflection of user’s preference. Traditional collaborative filtering models pander to
this system, by assuming there is a linear ranking among items, and the ranking is dictated by a real number
representing the preference strength. However, reality can hold evidence that violates the assumption. For
example, Mazurek & Perzina (2017) demonstrated only a small proportion of real world pairwise comparisons
satisfy complete transitivity. Li et al. (2013) showed the ubiquity of a user providing very different rating
scores on closely correlated items, producing self-contradictions. In addition to noisiness in user ratings, the
observed self-contradictions is a manifestation of the collision between user’s mental model and the rating
system. SAD innovates by providing a novel methodology to mathematically parameterize this mental model.

There can be parameterizations that both respect anti-symmetric property of Xu::, and at the same time
allow the violation of transitivity property other than Equation 8. For example, instead of introducing the
new vector τi ∈ Rk

+ for every item, one can model xuij as

xuij =
k∑

h=1
ξuh(ηhi − ηhj)τhij ,

with Th:: = {τhij}1≤i,j≤m ∈ Rm×m. Th:: in this parameterization can be viewed as an item interaction
matrix for h-th factor. Additional structures can be assigned to Th:: to enable parsimoniousness, such as
letting Th:: be symmetric (in order to make Xu:: anti-symmetric) and modeling it as a low rank matrix with
τhij = ⟨αhi, βhj⟩, and αhi, βhj ∈ Rκ. In our current work we focused on an efficient model with a simple
interpretation. We delegate the research of exploring alternative parameterizations to future work.

In this paper, we restrict our scope to consider collaborative filterings for implicit feedbacks. SAD can be
applied to datasets beyond the scope. For instances, datasets with explicit ratings contain partial orders that
can be leveraged directly during model fitting, instead of being used to evaluate model consistency in a post-
hoc manner as in current work. Such datasets include the ones considered in Section 6, and numerous others
such as Yandex challenge and KDD Cup 2012. Other datasets that contain actual pairwise comparisons
such as the one created by Pavlichenko & Ustalov (2021) are a natural fit to SAD as well. We expect the
power of SAD can be further enhanced with neural network components integrated.
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A Properties of Real World Datasets

Table 2: Properties of the three real word datasets used in Section 6

Dataset #Users #Items #Ratings Sparsity Quantiles of #Ratings/User
(min/5%/50%/95%/max)

Netflix 10, 000 8, 693 1, 044, 318 98.80% (1/6/46/400/8, 237)
Movie-Lens 6, 040 3, 706 1, 000, 209 95.53% (20/23/96/556/2, 314)
Food-Com 17, 482 1, 358 145, 431 99.39% (1/1/4/30/878)

B Gibbs Sampler for Posterior Inference of SAD

We derive an efficient Gibbs sampling algorithm as a complement to the SGD algorithm in the main paper.
The Gibbs sampling algorithm has the advantage of producing accurate uncertainty estimation of unknowns
under Bayesian inference by drawing parameter samples from the posterior distribution. The algorithm is an
application of Bayesian Probit regression to the current setting. Specifically, we replace the original logistic
parameterization in Equation 1 with the following equation:

p(duij = 1|Θ) := Φ(xuij), (13)

where Φ(xuij) is the CDF of a Gaussian distribution with mean xuij and variance 1. By augmenting the
model with a hidden tensor Z = {zuij}, where zuij = xuij + ϵuij and ϵuij

i.i.d∼ N(0, 1), the Probit model is
equivalent to

duij =
{

1 zuij > 0
−1 zuij ≤ 0

.

With this new model, an efficient Gibbs sampling algorithm can be derived. As a toy example, we assign
spherical Gaussian priors to rows of Ξ, H and T independently. With the likelihood defined in Equation 13,
the following conditional posterior distributions can be derived.

Posterior of zuij

zuij |Ξ, H, T ∼

{
N+(xuij , 1) if duij = 1
N−(xuij , 1) if duij = −1

,

where N+(µ, σ) and N−(µ, σ) are truncated Gaussian distributions on positive and negative quadrants
respectively.

Posterior of ξu with u = 1, · · · , n

ξu|Z, Ξ \ ξu, H, T ∼ Nk(Σξ
u(Ψξ

u)⊤z̄ξ
u, Σξ

u),

where (Σξ
u)−1 = (Ψξ

u)⊤(Ψξ
u) + I,

Ψξ
u =



η11τ12 − η12τ11 η21τ22 − η22τ21 · · · ηk1τk2 − ηk2τk1
η11τ13 − η13τ11 η21τ23 − η23τ21 · · · ηk1τk3 − ηk3τk1

...
... . . . ...

η12τ13 − η13τ12 η22τ23 − η23τ22 · · · ηk2τk3 − ηk3τk2
...

... . . . ...
η1,m−1τ1m − η1mτ1,m−1 η2,m−1τ2m − η2mτ2,m−1 · · · ηk,m−1τkm − ηkmτk,m−1


∈ Rm(m−1)/2×k,

and z̄ξ
u = [zu12, zu13, · · · , zu23, zu24, · · · , zu,m−1,m]⊤ ∈ Rm(m−1)/2.
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Posterior of ηi with i = 1, · · · , m

ηi|Z, Ξ, H \ ηi, T ∼ Nk(Ση
i (Ψη

i )⊤z̄η
i , Ση

i ),

where (Ση
i )−1 = (Ψη

i )⊤(Ψη
i ) + I,

Ψη
i =



ξ11τ11 ξ21τ21 · · · ξk1τk1
ξ11τ12 ξ21τ22 · · · ξk1τk2

...
...

. . .
...

ξ11τ1,i−1 ξ21τ2,i−1 · · · ξk1τk,i−1
ξ11τ1,i+1 ξ21τ2,i+1 · · · ξk1τk,i+1

...
...

. . .
...

ξ11τ1m ξ21τ2m · · · ξk1τkm

ξ12τ11 ξ22τ21 · · · ξk2τk1
...

...
. . .

...
ξ12τ1,i−1 ξ22τ2,i−1 · · · ξk2τk,i−1
ξ12τ1,i+1 ξ22τ2,i+1 · · · ξk2τk,i+1

...
...

. . .
...

ξ12τ1m ξ22τ2m · · · ξk2τkm

...
...

. . .
...

ξ1nτ11 ξ2nτ21 · · · ξknτk1
...

...
. . .

...
ξ1nτ1,i−1 ξ2nτ2,i−1 · · · ξknτk,i−1
ξ1nτ1,i+1 ξ2nτ2,i+1 · · · ξknτk,i+1

...
...

. . .
...

ξ1nτ1m ξ2nτ2m · · · ξknτkm



∈ Rn(m−1)×k,

z̄η
i =



z1i1 +
∑k

h=1 ξh1τhiηh1

z1i2 +
∑k

h=1 ξh1τhiηh2
...

z1,i,i−1 +
∑k

h=1 ξh1τhiηh,i−1

z1,i,i+1 +
∑k

h=1 ξh1τhiηh,i+1
...

z1im +
∑k

h=1 ξh1τhiηh,m

z2i1 +
∑k

h=1 ξh2τhiηh1
...

z2,i,i−1 +
∑k

h=1 ξh2τhiηh,i−1

z2,i,i+1 +
∑k

h=1 ξh2τhiηh,i+1
...

z2im +
∑k

h=1 ξh2τhiηhm

...
zni1 +

∑k

h=1 ξhnτhiηh1
...

zn,i,i−1 +
∑k

h=1 ξhnτhiηh,i−1

zn,i,i+1 +
∑k

h=1 ξhnτhiηh,i+1
...

znim +
∑k

h=1 ξhnτhiηhm



∈ Rn(m−1).

16



Published in Transactions on Machine Learning Research (July/2023)

In the above notation, we take advantage of the anti-symmetric property of Zu:: and assume zuij = −zuji

when i > j.

Posterior of τj with j = 1, · · · , m

τj |Z, Ξ, H, T \ τj ∼ N+
k (Στ

j (Ψτ
j )⊤z̄τ

j , Στ
j ),

where (Στ
j )−1 = (Ψτ

j )⊤(Ψτ
j ) + I,

Ψτ
j =



ξ11η11 ξ21η21 · · · ξk1ηk1
ξ11η12 ξ21η22 · · · ξk1ηk2

...
...

. . .
...

ξ11η1,j−1 ξ21η2,j−1 · · · ξk1ηk,j−1
ξ11η1,j+1 ξ21η2,j+1 · · · ξk1ηk,j+1

...
...

. . .
...

ξ11η1m ξ21η2m · · · ξk1ηkm

ξ12η11 ξ22η21 · · · ξk2ηk1
...

...
. . .

...
ξ12η1,j−1 ξ22η2,j−1 · · · ξk2ηk,j−1
ξ12η1,j+1 ξ22η2,j+1 · · · ξk2ηk,j+1

...
...

. . .
...

ξ12η1m ξ22η2m · · · ξk2ηkm

...
...

. . .
...

ξ1nη11 ξ2nη21 · · · ξknηk1
...

...
. . .

...
ξ1nη1,j−1 ξ2nη2,j−1 · · · ξknηk,j−1
ξ1nη1,j+1 ξ2nη2,j+1 · · · ξknηk,j+1

...
...

. . .
...

ξ1nη1m ξ2nη2m · · · ξknηkm



∈ Rn(m−1)×k,

z̄τ
j =



−z1j1 +
∑k

h=1 ξh1τh1ηhj

−z1j2 +
∑k

h=1 ξh1τh2ηhj

...
−z1j,j−1 +

∑k

h=1 ξh1τh,j−1ηhj

−z1j,j+1 +
∑k

h=1 ξh1τh,j+1ηhj

...
−z1jm +

∑k

h=1 ξh1τhmηhj

−z2j1 +
∑k

h=1 ξh2τh1ηhj

...
−z2j,j−1 +

∑k

h=1 ξh2τh,j−1ηhj

−z2j,j+1 +
∑k

h=1 ξh2τh,j+1ηhj

...
−z2jm +

∑k

h=1 ξh2τhmηhj

...
−zn,j,j−1 +

∑k

h=1 ξhnτh,j−1ηhj

−zn,j,j+1 +
∑k

h=1 ξhnτh,j+1ηhj

...
−znjm +

∑k

h=1 ξhnτhmηhj



∈ Rn(m−1).
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Similar to z̄η
i , we take advantage of the anti-symmetric property of Zu:: and assume zuij = −zuji when

i > j.

C Methods Considered in the Real World Application

Table 3: Specifics & hyperparameters for models used when applying to real world datasets.

Model Parameter Values

SAD

Implementation Supplementary Code
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
l2 Reg [0.05, 0.01, 0.005, 0.001]
l1 Reg 0.01

BPR (Rendle et al., 2009)

Implementation Supplementary Code
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
l2 Reg [0.05, 0.01, 0.005, 0.001]

SVD

Implementation Surprise (package) (Hug, 2020)
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
Regularization [0.05, 0.01, 0.005, 0.001]

Matrix Factorization (MF)

Implementation Cornac (package) (Salah et al., 2020)
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
λ Reg [0.05, 0.01, 0.005, 0.001]

Probabilistic Matrix Factorization (PMF)
(Mnih & Salakhutdinov, 2008)

Implementation Cornac (package) (Salah et al., 2020)
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
λ Reg [0.05, 0.01, 0.005, 0.001]

Factorization Machine (FM) (Rendle, 2010)

Implementation RankFM (package)
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
l2 Reg [0.05, 0.01, 0.005, 0.001]

Neural Collaborative Filtering (NCF)
(He et al., 2017)

Implementation MSFT recommenders (package) (Graham et al., 2019)
Learning Rate [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
Batch size [128, 256, 512, 1024]
Network Three layers MLP with sizes [128, 64, 32]

Variational AutoEncoder (β-VAE)
(Liang et al., 2018)

Implementation MSFT recommenders (package) (Graham et al., 2019)
β parameter [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1]
# Epochs [2, 5, 10, 20, 50]
Batch size [128, 256, 512, 1024]

D Real World Examples

During LOO evaluation, true preferences between a hold out item and the rest user interacted items in
training set are determined based on users’ actual ratings. Cases in which our model’s predictions are
consistent with true preferences while alternative models are not are shown in Table 4. We select 10 such
cases from each of the three real world datasets. Model predictions together with item descriptions are shown
in the table.
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Table 4: Examples where SAD produces a consistent prediction (xuij > 0 & puij > 0.5) while BPR fails (xuij < 0 & puij < 0.5).

Dataset u-th user i-th item (rating) j-th item (rating)
xuij | puij

SAD BPR

Netflix ’1381599’ Last of the Dogmen (5) Look at Me (2) 0.35 | 0.59 −0.22 | 0.44
’1243460’ Joe Kidd (5) Scenes of the Crime (1) 0.80 | 0.69 −0.27 | 0.43
’581011’ The Professional (5) The Bourne Identity (2) 0.80 | 0.69 −0.32 | 0.42
’632823’ Lara Croft: Tomb Raider: The Cradle of Life (4) The Cookout (2) 0.27 | 0.57 −1.36 | 0.20
’429299’ The Worst Witch (4) A Chorus Line (1) 0.85 | 0.70 −0.76 | 0.32
’127356’ Trading Spaces: Great Kitchen Designs and More! (4) White Oleander (2) 0.30 | 0.57 −1.24 | 0.22
’2264661’ Free Tibet (5) Native American Medicine (3) 1.25 | 0.78 −0.05 | 0.49
’581011’ The Dream Catcher (4) The Bourne Identity (2) 0.90 | 0.71 −0.37 | 0.41
’1368371’ Zombie Holocaust (4) Gothika (1) 0.71 | 0.67 −0.31 | 0.42
’1243460’ Moog (3) Scenes of the Crime (1) 0.98 | 0.73 −1.34 | 0.21

Movie-Lens ’1318’ High Fidelity (5) Jimmy Hollywood (3) 0.85 | 0.70 −1.26 | 0.22
’1250’ American Beauty (5) eXistenZy (3) 1.44 | 0.81 −0.14 | 0.47
’4166’ My Fair Lady (5) Problem Child 2 (1) 0.51 | 0.63 −0.78 | 0.31
’153’ American Beauty (4) Spice World (1) 1.07 | 0.75 −0.08 | 0.48
’2160’ Harold and Maude (4) The Brady Bunch Movie (1) 0.34 | 0.58 −0.73 | 0.32
’4692’ Blade Runner (5) The Newton Boys (3) 0.65 | 0.66 −0.38 | 0.41
’2385’ Braveheart (4) Voyage to the Bottom of the Sea (3) 0.98 | 0.73 −0.56 | 0.36
’4756’ Galaxy Quest (3) Felicia’s Journey (2) 1.01 | 0.73 −0.21 | 0.45
’4439’ The Maltese Falcon (4) Entrapment (3) 0.45 | 0.61 −0.57 | 0.36
’3021’ L.A. Confidential (5) Fatal Attraction (3) 0.64 | 0.66 −0.37 | 0.41

Food-Com ’148323’ Best Ever Banana Cake \w Cream Cheese Frosting (5) Crock Pot Garlic Brown Sugar Chicken (0) 0.16 | 0.54 −3.51 | 0.03
’424008’ Glazed Cinnamon Rolls, Bread Machine (5) Japanese Mum’s Chicken (0) 0.31 | 0.57 −0.38 | 0.41
’428423’ Crock Pot Stifado (5) Best Ever and Most Versatile Muffins (3) 0.30 | 0.57 −2.99 | 0.05
’733257’ Banana Banana Bread (2) Low Fat Oatmeal Muffins (0) 0.32 | 0.58 −2.31 | 0.09
’340980’ Funky Chicken \w Sesame Noodles (3) Amanda’s Thai Peanut (1) 0.56 | 0.64 −0.77 | 0.32
’573772’ Delicious Chicken Pot Pie (5) Amish Oven Fried Chicken (1) 1.28 | 0.78 −1.21 | 0.23
’1477540’ Cinnabon Cinnamon Rolls by Todd Wilbur (4) Amanda’s Cheese Pound Cake (0) 0.81 | 0.69 −2.59 | 0.07
’268644’ Baked Tilapia \w Lots of Spice (5) Southern Fried Salmon Patties (2) 0.38 | 0.59 −3.35 | 0.03
’762742’ Easy Peezy Pizza Dough & Bread Machine Pizza Doug (5) Fresh Orange Muffins (1) 0.98 | 0.73 −2.31 | 0.09
’212558’ Steak or Chicken Fajitas (5) Thai Style Ground Beef (3) 1.86 | 0.87 −0.11 | 0.47
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