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ABSTRACT

Concepts are human-interpretable semantic units that enable intervenable interme-
diate representations in vision models. However, acquiring concept annotations is
expensive and typically incomplete, limiting scalable interpretability. We pro-
pose ProCoSA, a probabilistic framework that treats missing concepts as latent
variables and jointly infers concept posteriors and task predictions under partial
supervision. To enhance spatial coherence and reduce pseudo-label bias, Pro-
CoSA introduces a spatial alignment prior that encourages concept activations
to align with salient image regions, yielding more calibrated concept probabili-
ties for downstream reasoning. The framework integrates seamlessly into existing
concept-to-task pipelines without relying on any specific bottleneck architecture.
Experiments on four benchmark datasets under low concept supervision show that
ProCoSA consistently matches or surpasses state-of-the-art methods on both con-
cept and task performance under identical evaluation protocols. The code will be
released upon acceptance.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across a wide range of domains (LeCun
et al., 2015; Senior et al., 2020), yet their internal mechanisms often remain opaque (Samek et al.,
2021) and may rely on unintended or undesired features (Achtibat et al., 2023). This lack of trans-
parency poses challenges for deployment in high-risk and regulation-sensitive scenarios (Rudin,
2019; Haibe-Kains et al., 2020). As a result, explainable artificial intelligence (XAI) has gained in-
creasing attention as a means to better understand model behavior and decision rationale (Došilović
et al., 2018; Černevičienė & Kabašinskas, 2024). While local XAI methods such as saliency maps
highlight “where” the model attends, they often fail to convey “what” semantic evidence the model
has recognized (Kindermans et al., 2017). Concept-based explanations address this limitation by in-
troducing human-interpretable concepts as intermediate representations that clarify which semantic
features influence model predictions (Bau et al., 2017).

Despite their advantages, concept-based representations typically require inserting a set of human-
defined concepts at a bottleneck, and real-world applications often suffer from incomplete or missing
concept annotations (Koh et al., 2020). This sparsity undermines accurate modeling of the concept
space and limits scalability in practice. To reduce annotation costs, prior work explores unsupervised
or semi-supervised approaches, such as prompting LLMs to propose concepts or using heuristic
pseudo-label propagation (e.g., kNN) (Yang et al., 2023; Hu et al., 2024). However, these pipelines
usually bypass explicit modeling of the concept prediction function and offer no principled way
to quantify uncertainty over missing concepts, making them fragile under sparse supervision and
limiting both generalization and interpretability. Moreover, reliance on LLMs introduces additional
concerns regarding stability, reliability, and transparency.

To address these limitations, we propose ProCoSA, a probabilistic framework for concept learning
with spatial alignment. ProCoSA treats missing concept labels as latent variables and jointly infers
concept probabilities and task predictions under partial supervision. To enhance spatial consistency
and mitigate pseudo-label bias, we introduce a spatial alignment prior that encourages concept acti-
vations to focus on salient input regions. In contrast to heuristic pseudo-labeling, ProCoSA performs
principled posterior inference over missing concepts via an Expectation–Maximization (EM) pro-
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Figure 1: Motivation illustration. Left: Complete attribute annotations correctly aligned with
corresponding visual regions. Right: Missing attribute supervision (e.g., “under tail color: miss”)
leads to spatial misalignment, where the model incorrectly links the semantic concept to irrelevant
regions (highlighted in red), resulting in biased concept learning.

cedure, yielding more robust and interpretable learning under incomplete supervision. Figure 1
illustrates the core motivation behind our approach. Our contributions are as follows:

• We propose ProCoSA, a probabilistic framework for concept learning under partial anno-
tations that treats missing concepts as latent variables and jointly learns concept and task
predictions.

• We introduce a spatial alignment prior that guides concept representations toward salient
regions, improving spatial consistency and reducing pseudo-labeling bias.

• ProCoSA yields calibrated concept inference and can be seamlessly integrated into existing
concept-to-task pipelines without relying on any specific bottleneck architecture.

We evaluate ProCoSA on four representative datasets under a unified evaluation protocol. Across all
settings, ProCoSA matches or surpasses prior methods in both concept and task performance, with
further improvements reflected in enhanced concept-level interpretability metrics, particularly when
concept supervision is scarce.

2 RELATED WORK

Concept-Based Model Interpretability. Human-understandable concepts provide a consistent se-
mantic reference and a structured intermediate representation for interpreting neural networks. Net-
work Dissection quantifies unit-level interpretability by testing alignment between individual chan-
nels and human-defined concepts using pixel-level semantic masks and IoU scores (Bau et al., 2017),
offering spatial localization. Testing with Concept Activation Vectors (TCAV) measures a model’s
global sensitivity to user-defined concepts by learning concept activation vectors in feature space and
computing directional derivatives along them (Kim et al., 2018). Both methods are post hoc; they do
not support concept-level intervention or handle missing concept labels. In addition, TCAV depends
on analyst-curated concept sets, assumes local linear separability, and lacks uncertainty-aware rea-
soning. In contrast, CBMs make concepts an explicit intermediate representation and predict task
labels from the predicted concepts (Koh et al., 2020), thereby enabling concept-level intervention.
However, CBMs typically assume fully annotated concept labels during training, which is costly
and often unrealistic in practice, limiting their applicability when concept annotations are missing.

CBMs with Incomplete Concept Supervision. Recent CBM variants reduce manual concept su-
pervision by constructing concept banks with LLMs and CLIP-based vision–language alignment.
Res-CBM augments a base concept bank with optimizable residual vectors and incrementally dis-
covers new concepts, improving accuracy while remaining a post hoc method; however, it increases
pipeline complexity, depends on CLIP, and requires additional curation of the candidate bank (Shang
et al., 2024). Label-free CBM converts a pretrained network into a CBM by generating concepts
with LLMs, aligning them to CLIP text embeddings, and training a sparse classifier on the in-
duced concept activations; it scales and preserves accuracy but inherits the same external depen-
dence (Oikarinen et al., 2023). LaBo generates sentential concepts with a language model, selects
a discriminative and diverse bottleneck via a submodular objective, and aligns concepts to images
with CLIP; it reduces manual supervision yet remains post hoc and externally dependent (Yang et al.,
2023). Despite these advances, heavy reliance on external resources makes concept sets prompt- and
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domain-sensitive, and text–image alignment can be unstable (Zhang et al., 2024). To avoid external
generators, SSCBM assigns kNN pseudo-concept labels and aligns similarity-based pseudo-labels
at the concept level, and it jointly trains on labeled and unlabeled data. This improves concept
accuracy and saliency alignment under partial supervision. However, SSCBM relies on heuristic
kNN propagation, which bypasses explicit modeling of the concept predictor and is sensitive to
feature-space noise, and it lacks any uncertainty-aware treatment of missing concepts. As a result,
pseudo-label errors may propagate and degrade performance (Hu et al., 2024).

In contrast, we adopt a probabilistic approach that treats missing concepts as latent variables and
jointly infers concept posteriors and task predictions through EM algorithm. The E-step leverages
a spatial alignment prior to produce uncertainty-calibrated concept estimates, while the M-step up-
dates model parameters to improve task performance. This yields explicit concept predictors and
enhances generalization under partial supervision.

3 METHOD

Overview. We begin by formalizing concept learning under partial supervision as a latent-variable
model and deriving the associated training objective (Sec. 3.1). We then explain how missing con-
cepts are inferred within an EM loop using a mean-field E-step (Sec. 3.2). Next, we incorporate a
spatial alignment prior computed from cosine similarities between concept embeddings and spatial
features, together with two lightweight regularizers: (i) an alignment-score calibration loss and (ii)
a spatial-consistency entropy penalty (Sec. 3.3). Finally, we summarize the overall loss and opti-
mization schedule that jointly train the concept head and the label predictor using both observed and
inferred concept labels (Sec. 3.4). The complete training pipeline is illustrated in Fig. 2.

3.1 PROBLEM FORMULATION

Human-understandable intermediate representations, such as semantic concepts, have been intro-
duced to improve interpretability and enable intervention in high-stakes applications. Instead of
directly mapping inputs to task labels, this paradigm first predicts a set of interpretable concepts and
then predicts the final label from these concepts. However, acquiring fully annotated concept labels
is costly and often infeasible at scale. To address this challenge, we formulate concept learning
under partial supervision as a probabilistic latent-variable problem, in which missing concept labels
are treated as latent variables and inferred jointly with the task.

In this setting, an L-way classification task consists of a dataset D = {(xi, yi, C̃i)}Ni=1 with N
samples, where xi ∈ X ⊂ Rd is an input sample, yi ∈ Y = {1, . . . , L} is the ground-truth task
label, and C̃i ∈ {0, 1,−1}K is a partially labeled concept vector, with −1 denoting a missing
entry. For convenience, we introduce an observation mask mi ∈ {0, 1}K induced by C̃i, where
mik = I[C̃ik ∈ {0, 1}]. Let Ci ∈ {0, 1}K denote the underlying complete concept vector. When
mik = 0, we treat Cik as a latent variable and marginalize over its possible values during training.
The observation model relating (Ci,mi) to C̃i is

C̃ik =

{
Cik, if mik = 1,

−1, if mik = 0 ,
(1)

so that C̃i coincides with Ci on observed dimensions and uses −1 to indicate missing concepts. We
also write Ci = (Cobs

i , Cmis
i ), where Cobs

i = {Cik | mik = 1 } and Cmis
i = {Cik | mik = 0 }.

We model concept learning under partial supervision via the following latent data-generating pro-
cess:

1. draw an input from the data distribution: x ∼ p(x);

2. draw a full concept vector from the concept head: C ∼ pθc(C | x) =
∏K

k=1 Bernoulli
(
Ck |

fc,k(x; θc)
)
;

3. draw a label from the conditional distribution given the concept vector: y ∼ pθy (y | C) =

Categorical
(
y | fy(C; θy)

)
.
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Figure 2: Training pipeline of ProCoSA with latent concept inference. The top (labeled) branch
encodes images into concept activations, passes them through the bottleneck, and predicts labels;
training uses both task loss and concept loss on observed concepts. The bottom (unlabeled) branch
performs latent concept inference: (1) a feature extractor produces spatial features; (2) cosine simi-
larity between learned concept embeddings and spatial features yields a spatial alignment prior over
image locations; (3) the E-step combines this prior with concept activations to estimate posteriors
of missing concepts; and (4) the M-step updates the concept encoder and label predictor using both
observed and inferred concept labels. The loop arrow denotes one EM cycle. Color legend: yellow =
concept extraction, purple = label prediction, green = spatial alignment, blue = EM inference/update.

where fc(·; θc) : X → [0, 1]K is the concept predictor that outputs per-concept probabilities, and
fy(·; θy) : {0, 1}K → ∆L−1 = {v ∈ [0, 1]L : v⊤1 = 1} is the task predictor that maps a concept
vector to class probabilities. The product form assumes conditional independence across concepts
given x. Here, θc and θy are trainable parameters of the concept and task predictors, respectively.

Objective. We learn (θc, θy) by maximizing the marginal log-likelihood of the observed data:

max
θc,θy

N∑
i=1

log pθc,θy
(
yi, C

obs
i | xi

)
= max

θc,θy

N∑
i=1

log
∑
Cmis

i

pθy (yi | Ci) pθc(Ci | xi) , (2)

where the inner summation is taken over all completions of Ci that agree with the observed entries
Cobs

i (i.e., Cik = C̃ik whenever mik = 1). This defines a latent-variable model with Cmis
i as

the latent variables. We therefore employ an EM schedule to maximize equation 2: within each
mini-batch, we perform an E-step followed by one parameter update on (θc, θy); see Sec. 3.2 for
details.

3.2 HANDLING MISSING CONCEPT ANNOTATIONS

Directly maximizing equation 2 is difficult because it requires marginalizing over the latent concepts
Cmis

i . We therefore resort to the EM algorithm and maximize an evidence lower bound on equa-
tion 2. Let qi(Cmis

i ) denote a mean-field variational posterior (MFVI) for sample i, supported only
on completions consistent with the observations. The EM Q-function for sample i is

Qi = Eqi(Cmis
i )

[
log pθy

(
yi
∣∣Cobs

i ,Cmis
i

)
+ log pθc

(
Cobs

i ,Cmis
i

∣∣xi)]. (3)

Inferring Missing Concepts (E-step). We use mean-field variational inference to approximate
the intractable posterior p(Cmis

i | xi, yi,Cobs
i ). These posteriors are anchored by concept-head

predictions and, when available, by a spatial alignment prior computed from the same backbone’s
spatial features (see Fig. 2 and Sec. 3.3).

qi(C
mis
i ) =

∏
k∈Ui

qik(Cik;ϕik), qik(Cik = 1;ϕik) = ϕik, (4)

where Ui = {k | mik = 0} and each qik is a Bernoulli distribution with mean parameter ϕik∈ [0, 1].
The variational posterior qi is obtained by maximizing the evidence lower bound:

q⋆i = argmax
qi

Eqi

[
log pθy (yi | Ci) + log pθc(Ci | xi)

]
+ H(qi), (5)

4
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where H(qi) denotes the (Shannon) entropy. Equivalently, this can be written as the following
minimization involving the Kullback–Leibler divergence:

q⋆i = argmin
qi

KL
[
qi(C

mis
i )

∥∥ pθc(Cmis
i | xi)

]
− Eqi

[
log pθy

(
yi | Cobs

i ,Cmis
i

)]
. (6)

Under the mean-field parameterization, the coordinate-wise optimum admits a logistic fixed-point
update for each missing concept k ∈ Ui:

logit(ϕik) = logit
(
pθc(Cik = 1 | xi)

)
+ ψcons

ik + λalign wik aik, logit(p) ≜ log
p

1− p
, (7)

where ψcons
ik is an optional concept-consistency prior, aik is the alignment logit defined in Sec. 3.3,

and wik ∈ {0, 1} is a confidence/top-κ gate (within the missing set Ui) that activates the spatial
prior only on missing entries. Observed concepts are clamped: if mik = 1, then qik degenerates to
a delta at Cik = C̃ik. In practice, we run TE=5 fixed-point iterations of equation 7 per E-step and
apply mild label smoothing to clamped entries to avoid numerical instabilities when evaluating log-
likelihood terms. A more detailed variational interpretation and theoretical analysis of our training
procedure are provided in Appendix A.

Updating Model Parameters (M-step). Given the posteriors qi, we maximize the completed ob-
jective with respect to (θc, θy):

θ(t+1)
c , θ(t+1)

y = argmax
θc,θy

N∑
i=1

Qi(θc, θy; qi)

= argmax
θc,θy

N∑
i=1

{
Eqi

[
log pθy (yi | Ci)

]
+ Eqi

[
log pθc(C

mis
i | xi)

]
+ log pθc(C

obs
i | xi)

}
.

(8)

With the factorized Bernoulli concept head and a categorical task head, this decomposes into: (i)
training pθc using soft targets ϕik for k ∈ Ui and hard labels C̃ik for mik = 1; and (ii) training
pθy with Ci replaced by its posterior mean Eqi [Ci] (or Monte Carlo samples), using cross-entropy
on yi. During training, we alternate TE=5 fixed-point E-updates with one parameter update; train-
ing proceeds for 100 epochs with early stopping. Section 3.3 augments equation 6 with a spatial
alignment prior to regularize posterior inference under partial concept supervision.

3.3 SPATIAL ALIGNMENT PRIOR FOR CONCEPT INFERENCE

Under partial concept supervision, inferred posteriors can become biased and spatially inconsistent.
To mitigate this, we introduce a spatial alignment prior within the iterative inference loop shown in
Fig. 2. The key intuition is that a concept should be grounded in salient image regions; thus, spatial
evidence extracted from the image can guide the variational posterior toward semantically plausible
concept values when labels are missing.

We first describe how the spatial evidence is computed. Given xi, the feature extractor Ω(·) out-
puts a spatial feature map Vi ∈ RH×W×m. The concept encoder produces concept activations
Ĉi = fc(xi; θc), and the embedding backbone provides a bank of learnable, ℓ2-normalized concept
embeddings {ĉk}Kk=1. For each concept k, we compute a per-location heatmap by cosine similarity
between ĉk and the local descriptors Vi,p,q:

Hi,k(p, q) =
ĉ⊤k Vi,p,q

∥ĉk∥ ∥Vi,p,q∥
, p = 1, . . . ,H, q = 1, . . . ,W. (9)

Next we aggregate the heatmap into a single alignment score in a way consistent with our imple-
mentation: we use softmax pooling with temperature τa > 0. Let:

αi,k(p, q) =
exp

(
Hi,k(p, q)/τa

)∑H
u=1

∑W
v=1 exp

(
Hi,k(u, v)/τa

) , aik =

H∑
p=1

W∑
q=1

αi,k(p, q)
Hi,k(p, q)

τa
, (10)
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where aik is the alignment logit (its probability is πik = σ(aik)). To avoid injecting unreliable
priors, we activate the alignment only where it is needed and confident: the binary gate wik ∈ {0, 1}
is set to one if and only if the concept label is missing (mik = 0), the alignment probability σ(aik)
exceeds a threshold τ , and the concept is among the top-κ missing concepts of that sample (within
Ui) according to σ(aij); otherwise wik = 0. Formally, the rule is:

wik = I[mik = 0] · I
[
σ(aik) ≥ τ

]
· I
[
k ∈ Top-κ

(
{σ(aij)}j∈Ui

)]
. (11)

Hyperparameters. All hyperparameters follow SSCBM and are kept fixed across runs (including the
Top-κ size κ and threshold τ ).

We then inject the spatial evidence into the variational objective for missing concepts: specifically,
we regularize the mean-field factors qik toward a Bernoulli prior with mean πik by a KL term, which
gives the following E-step objective:

max
qi

Eqi

[
log pθy (yi | Ci)+ log pθc(Ci | xi)

]
+H(qi)−λalign

∑
k∈Ui

wik KL
(
qik ∥Bernoulli(πik)

)
,

(12)
where λalign ≥ 0 controls the prior strength and Ui = {k : mik = 0} collects the missing concepts.
Optimizing equation 12 under the mean-field family in equation 4 yields the fixed-point update
already stated in equation 7: the posterior mean ϕik is obtained from the concept-head logit, plus an
additive alignment bias λalign wik aik, optionally plus the concept-consistency bias ψcons

ik introduced
in Sec. 3.2. Observed concepts remain clamped to their labels. In practice we run a few fixed-point
iterations per E-step (e.g., TE=5) and apply mild label smoothing at clamped entries to keep log-
likelihood terms numerically stable.

Alignment supervision. Since aik directly contributes to the spatial alignment prior, its calibration
critically affects posterior inference under sparse supervision. To improve its quality, we introduce
a lightweight cross-supervision objective that does not interfere with the variational update. For
observed entries (mik = 1), we supervise the sigmoid-normalized alignment score p̂ik = σ(aik)
using the ground-truth concept label Cobs

ik . For missing entries (mik = 0), we supervise it using the
soft label ϕik inferred from the posterior distribution.

Lalign = βalign Ei

∑
k

[
mik ℓCE

(
p̂ik, C

obs
ik

)
+ (1−mik) ℓCE

(
p̂ik, ϕik

)]
, (13)

where ℓCE is binary cross-entropy and βalign ≥ 0 is a time-ramped weight to avoid overly strong
early regularization.

Spatial consistency regularizer Rspat. If the alignment heatmap is overly diffuse, the prior aik
becomes less discriminative and injects spatial noise. To encourage concentration over salient re-
gions, we penalize the entropy of the softmax-normalized heatmap αi,k = softmax

(
Hi,k/τa

)
on

“active” concepts (e.g., pθc(Cik = 1 | xi) > 1
2 ):

Rspat = βs Ei

∑
k∈Ki

(
−
∑
p,q

αi,k(p, q) log
(
αi,k(p, q) + ε

))
,

Ki =
{
k : pθc(Cik = 1 | xi) > 1

2

}
,

(14)

with weight βs ≥ 0 and a small ε > 0 for numerical stability. This term regularizes the alignment
branch and concept embeddings without altering the posterior inference procedure. Lalign calibrates
concept-level alignment scores, while Rspat enforces spatial focus; together they improve inference
under sparse labels.

3.4 FINAL OBJECTIVE AND OPTIMIZATION

We now summarize the training objective associated with the iterative inference–optimization pro-
cess illustrated in Fig. 2. In each iteration of the EM loop, posterior means ϕik for missing concepts
are inferred by a truncated E-step based on spatial priors and concept activations (Sec. 3.2, Sec. 3.3);
we use a small, fixed number of mean-field fixed-point updates (e.g., TE=5). These inferred val-
ues are then held fixed while updating model parameters via supervised losses on both concept and
task predictions, together with lightweight alignment-related regularization. Training proceeds for a
fixed number of epochs with early stopping on a held-out validation objective.

6
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Task loss. Given the expected concept vector Eqi [Ci] (observed entries as ground truth, missing
entries replaced by ϕik), the label predictor pθy (yi | Ci) is trained with cross-entropy: for binary
tasks we use BCE, and for multi-class tasks we use standard cross-entropy,

Ltask =
1

N

N∑
i=1

ℓCE

(
fy(Eqi [Ci]; θy), yi

)
. (15)

Concept loss. The concept head pθc(C | x) is trained on hard labels at observed entries and soft
targets ϕik at missing entries (cf. equation 8). Denoting mik = I[C̃ik∈{0, 1}] and C̃ik the observed
label (when available), we write

Lc =
1

N

N∑
i=1

K∑
k=1

[
mik ℓBCE

(
fc,k(xi; θc), C̃ik

)
+ (1−mik) ℓBCE

(
fc,k(xi; θc), ϕik

)]
. (16)

Overall objective. We combine the task loss Ltask, the concept loss Lc, the alignment supervision
Lalign from equation 13, and the spatial consistency regularizer Rspat from equation 14. The overall
objective is minimized with respect to θc and θy at each iteration, holding {ϕik} fixed from the
current truncated E-step:

L = Ltask + λc Lc + λa Lalign + λs Rspat, (17)
where λc, λa, λs ≥ 0 are trade-off weights. All hyperparameters are kept consistent with SSCBM
for fair comparison.

4 EXPERIMENTS

We evaluate ProCoSA under the semi-supervised missing-label protocol on four public con-
cept–attribute benchmarks—CUB-200-2011 (Wah et al., 2011), AwA2 (Lampert et al., 2014), WB-
Catt (Tsutsui et al., 2023), and Derm7pt (Kawahara et al., 2018). We report (i) predictive perfor-
mance, (ii) interpretability, and (iii) ablations of spatial alignment. Baselines. We compare against
CBM (Koh et al., 2020), CEM (Espinosa Zarlenga et al., 2022), and SSCBM (Hu et al., 2024)
under a fully matched protocol. All models use the same backbone (ResNet-34), input resolution
(299 × 299), optimizer (SGD, learning rate 0.05), weight decay (5×10−6), batch size (256), data
splits, early-stopping criteria, and Bernoulli sampling of observed concepts. The only difference is
the treatment of missing concepts: ProCoSA replaces SSCBM’s heuristic pseudo-label propagation
with variational posterior inference and a spatial alignment prior. All dataset statistics, experimen-
tal configurations, and complete training details are provided in Appendix B.1–B.4, with ablations
summarized in Appendix C.

4.1 EVALUATION RESULTS ON UTILITY

We evaluate concept and task accuracy at labeled ratios 0.05, 0.10, 0.15, and 0.20, following SS-
CBM’s missing-label protocol (Hu et al., 2024), and report results in Table 1. All numbers are the
mean±std over three random seeds, and we use identical backbones, splits, input resolutions, and
optimization settings across methods.

At each labeled ratio, ProCoSA achieves the best or tied performance on most entries across all
four datasets. Unlike heuristic pseudo–label propagation, our E-step performs variational posterior
inference with a spatial alignment prior, which mitigates pseudo–label bias and calibrates concept
uncertainty, yielding more stable gains under scarce supervision.

All methods improve as more concepts are observed, but ProCoSA exhibits the largest advantages in
the low–label regime. Compared to the runner-up SSCBM, ProCoSA improves average concept/task
accuracy by +3.13%/+1.95% at 0.05 and +3.32%/+2.91% at 0.10; at 0.15 and 0.20, the gaps
narrow to +1.88%/+2.43% and +2.04%/+2.26%, respectively. This trend confirms that ProCoSA
is particularly effective when concept labels are sparse: posterior-based soft supervision provides
reliable concept estimates that benefit both concept prediction and downstream classification.

Dataset-wise patterns are consistent. On CUB, ProCoSA achieves the best concept and task accuracy
at all ratios, reflecting the benefit of calibrated posteriors in fine-grained settings. On AwA2, Pro-
CoSA and SSCBM remain close, with a slight edge for ProCoSA on average. On WBCatt—where
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Table 1: Results under missing concept supervision at four labeled ratios (percent). All methods
share the same backbone and schedule; ProCoSA is our method.

Labeled Ratio Method CUB AwA2 WBCatt Derm7pt Average
Concept Task Concept Task Concept Task Concept Task Concept Task

0.05

CBM+SSL 85.14 28.73 67.06 78.73 82.99 99.74 62.93 69.44 74.53 69.16
CEM+SSL 83.14 62.66 68.72 88.65 93.42 99.61 63.90 68.69 77.30 79.90
SSCBM 88.94 68.48 96.54 92.29 93.23 99.48 69.63 68.43 87.09 82.17
ProCoSA (ours) 90.88 75.64 97.82 92.83 94.59 99.84 77.60 68.18 90.22 84.12

0.10

CBM+SSL 86.40 39.02 71.63 90.77 84.26 99.52 64.30 67.89 76.65 74.30
CEM+SSL 82.77 63.09 81.11 92.35 72.55 99.36 65.98 70.45 75.60 81.31
SSCBM 89.46 67.07 97.06 93.02 93.56 99.39 69.63 69.30 87.43 82.20
ProCoSA (ours) 91.88 76.53 98.14 93.55 94.81 99.81 78.14 70.20 90.75 85.11

0.15

CBM+SSL 86.54 35.96 68.81 85.01 84.77 99.48 65.05 70.20 76.29 72.66
CEM+SSL 83.57 62.18 90.71 93.15 86.64 99.61 65.09 68.69 81.50 80.91
SSCBM 90.19 70.67 96.77 92.51 94.43 99.48 74.04 67.68 88.86 82.59
ProCoSA (ours) 91.33 76.59 98.13 93.51 95.22 99.61 78.26 70.71 90.74 85.02

0.20

CBM+SSL 86.82 39.10 68.94 85.01 85.88 99.74 66.65 67.93 77.07 72.95
CEM+SSL 83.64 62.73 91.14 93.15 86.53 99.48 66.21 69.19 81.88 81.14
SSCBM 90.15 69.75 96.90 93.58 94.53 99.35 75.40 66.16 89.25 82.21
ProCoSA (ours) 92.72 77.10 98.08 93.63 95.21 99.74 79.16 67.42 91.29 84.47

Table 2: Baselines (CBM, CEM) are from full concept supervision as reported in prior work; Pro-
CoSA uses 10% concept labels.

Method CUB AwA2 WBCatt Derm7pt
Concept Task Concept Task Concept Task Concept Task

CBM 93.99% 67.33% 96.48% 88.71% 94.18% 99.71% 74.34% 75.44%
CEM 96.39% 79.82% 95.91% 87.00% 95.33% 99.71% 77.15% 75.85%
ProCoSA (ours) 91.88% 76.53% 97.47% 92.99% 94.81% 99.81% 78.26% 67.62 %

task accuracy saturates—ProCoSA consistently improves concept prediction, yielding more stable
morphological attributes. On Derm7pt, ProCoSA achieves the highest concept accuracy at all ratios,
showing the effectiveness of spatially guided posterior completion under clinical attribute sparsity.

Additionally, we provide in Appendix D a detailed quantification of the training-time overhead for
all baselines (CBM, CEM, SSCBM) and our ProCoSA framework. While the EM-based updates
introduce moderate additional computation during training, they do not increase inference-time cost
and are necessary for the substantial accuracy gains observed under missing-label supervision. Ap-
pendix E further includes an extended hyperparameter sensitivity study, showing that ProCoSA
remains robust across wide ranges of loss-balancing weights without requiring fine-grained tuning.
Finally, to demonstrate the architectural generality of our approach, we evaluate ProCoSA under
alternative feature extractors beyond the standard ResNet backbone used in prior work, including
ViT-B/16, following exactly the same semi-supervised protocol for fair comparison. As reported
in Appendix F, ProCoSA consistently improves both concept and task accuracy across all tested
architectures.

we also compare with the CBM/CEM results reported by SSCBM under full supervision. Results are
reported in Table 2. Despite using only 10% concept labels, ProCoSA achieves the best concept and
task accuracy on AwA2, matches or slightly improves task accuracy on WBCatt while maintaining
the top concept scores, remains competitive on CUB, and leads concept accuracy on Derm7pt. This
underscores that E-step posterior inference with spatial alignment yields reliable concepts and strong
task performance under scarce annotations.

4.2 INTERPRETABILITY AND TEST-TIME INTERVENTION

Beyond concept and task accuracy, we further assess the interpretability and test-time intervention
capabilities of ProCoSA. For interpretability, our training objective incorporates a spatial alignment
loss, encouraging concept embeddings to focus on semantically meaningful regions by aligning
them with saliency maps. As shown in Figure 3, the learned concept-level attention maps exhibit
strong localization to relevant parts (e.g., bill:hooked), validating that ProCoSA can maintain
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has belly color::grey    [1.0]  [0.972]

(a) belly:grey

has bill color::black    [1.0]  [0.998]

(b) bill:black

has breast color::buff    [0.0]  [0.001]

(c) breast:buff

has wing color::black    [1.0]  [0.998]

(d) wing:black

Figure 3: Concept-level saliency maps. ProCoSA captures faithful concept regions. Heatmaps are
cosine-similarity maps between concept embeddings and spatial features (brighter = higher align-
ment); the two numbers in brackets denote [ground-truth label], [predicted concept probability].
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(a) Performance with respect to intervention ratio

underparts: white

Intervention

[0.65 ... 0.05 ... 0.00]

[0.65 ... 0.95 ... 0.00]

ERROR

CORRECT

Sooty 
Albatross

Laysan 
Albatross

(b) Example of successful intervention

Figure 4: Test-time intervention: (Left) ProCoSA exhibits smooth and consistent improvements as
the ratio of corrected concepts increases. (Right) An error is corrected by flipping a single key
concept, showing the model’s sensitivity to intervenable concepts.

coherent attention under weak supervision. Quantitative interpretability metrics (Pointing Accuracy
and IoU) are also reported in Appendix G.

For test-time intervention, we progressively replace 10% to 100% of the predicted concept val-
ues with their ground-truth labels and measure the resulting task accuracy. As shown in Figure 4
(left), model performance improves steadily with more accurate concepts, highlighting strong causal
alignment and interpretability. To focus interventions on the most impactful concepts, we further
employ the COOP strategy (following CEM), which selects concepts with high uncertainty and
high gradient-based influence. This strategy enables efficient and targeted correction: for instance,
replacing a single concept (underparts:white) flips a misclassified Sooty Albatross into the
correct class Laysan Albatross (Figure 4, right), demonstrating that ProCoSA learns not only in-
terpretable but also actionable and intervenable concepts. For completeness, we report the compu-
tational overhead introduced by the EM iterations in Appendix C. In brief, ProCoSA incurs only
a modest training-time overhead while keeping the inference-time cost identical to other concept
bottleneck models.

5 CONCLUSION

We propose ProCoSA, a probabilistic concept-to-task learning framework designed to learn inter-
pretable and intervenable concept representations under partial supervision. ProCoSA treats missing
concept labels as latent variables and leverages a spatial alignment prior to guide pseudo-labeling,
ensuring consistent and semantically meaningful concept inference. Integrated into a unified learn-
ing objective with spatial regularization and task supervision, ProCoSA achieves improved con-
cept quality and downstream performance, while also enabling fine-grained test-time interventions
through uncertainty-aware concept selection.

One limitation is that the inference quality may depend on the initialization of latent concepts in
low-supervision regimes. Future work will explore more robust inference strategies and apply the
framework to broader decision-making scenarios with noisy supervision.
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A VARIATIONAL EM VIEW OF PROCOSA

This appendix provides a unified variational EM perspective on the training procedure introduced in
Section 3. Our aim is to show that: (i) the model in Section 3.1 can be formalized as a latent-variable
probabilistic model; (ii) the mean-field E-step in Section 3.2 and the parameter updates in Section 3.4
can be interpreted as an approximate generalized variational EM algorithm optimizing a regularized
evidence lower bound (ELBO); (iii) the spatial alignment prior and regularizers in Section 3.3 act as
structured regularization on the variational family without altering the EM decomposition; and (iv)
the mean-field posterior approximation is structurally consistent with the conditional independence
assumptions of the concept head and therefore constitutes a natural approximation.

A.1 MARGINAL LIKELIHOOD AND VARIATIONAL FREE ENERGY

In Section 3.1, partially annotated concept vectors are represented as C̃i ∈ {0, 1,−1}K , with −1

indicating missing entries, and an observation mask mi ∈ {0, 1}K induced by C̃i (Eq. (1)). Let
Ci ∈ {0, 1}K denote the complete concept vector and write Ci = (Cobs

i , Cmis
i ), where Cobs

i =
{Cik : mik = 1} and Cmis

i = {Cik : mik = 0}. The conditional generative model in Section 3.1
factorizes as

pθ(yi, Ci | xi) = pθy (yi | Ci) pθc(Ci | xi), (18)
where pθc is the concept head and pθy is the label head. The training objective is to maximize the
marginal log-likelihood (Eq. 2):

log pθ(yi, C
obs
i | xi) = log

∑
Cmis

i

pθy (yi | Ci) pθc(Ci | xi), (19)

where the sum runs over all completions consistent with Cobs
i . To make this optimization tractable,

Section 3.2 introduces a variational posterior qi(Cmis
i ) and employs an EM-style iterative procedure.

For any distribution qi(Cmis
i ), we have the standard variational identity:

log pθ(yi, C
obs
i | xi) = Li(qi, θ) + KL

(
qi(C

mis
i ) ∥ pθ(Cmis

i | xi, yi, Cobs
i )

)
, (20)

Li(qi, θ) = Eqi

[
log pθy (yi | Ci) + log pθc(Ci | xi)

]
+H(qi), (21)

where H(qi) is the entropy of qi. Thus the ELBO Li(qi, θ) is a lower bound on the marginal log-
likelihood, and maximizing

∑
i Li(qi, θ) jointly maximizes the marginal likelihood and minimizes

the posterior approximation error.
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A.2 MEAN-FIELD POSTERIOR AND GENERALIZED EM

Section 3.2 adopts the mean-field family (Eq. 4):

qi(C
mis
i ) =

∏
k∈Ui

qik(Cik), qik(Cik = 1) = ϕik, (22)

where Ui = {k : mik = 0} is the set of missing concepts for sample i and ϕik ∈ (0, 1) are the
posterior means. The EM Q-function (Eq. 3) for sample i is

Qi(θ, qi) = Eqi

[
log pθy (yi | Ci) + log pθc(Ci | xi)

]
. (23)

For fixed θ, maximizing Li(qi, θ) over the mean-field family reduces to coordinate-ascent updates
of the factors ϕik. The coordinate-wise fixed-point equation (cf. Eq. 7) is:

logit(ϕik) = logit(pθc(Cik = 1 | xi)) + ψcons
ik + λalign wik aik, (24)

where the first term comes from the concept-head logit, ψcons
ik is the consistency bias from Sec-

tion 3.2, and the last term encodes the spatial alignment prior from Section 3.3. On observed entries,
ϕik is clamped to the ground-truth labels.

In an idealized setting where Eq. 24 is implemented as exact coordinate ascent, each update mono-
tonically increases the regularized ELBO with respect to ϕik when other factors are fixed, and full
convergence would recover the mean-field optimum.

In practice, PROCOSA performs only a finite number of such fixed-point iterations per E-step (e.g.,
TE = 5), yielding a truncated mean-field E-step. Classical generalized EM theory states that, un-
der mild conditions and for fixed hyperparameters, approximate E-steps combined with (stochastic)
M-steps can be viewed as a generalized EM procedure whose limit points correspond to stationary
points of the regularized ELBO, provided each update does not decrease the ELBO. Our imple-
mentation is an approximation to this idealized procedure, and we do not claim stronger formal
guarantees.

The M-step maximizes, for fixed qi,∑
i

Eqi [log pθy (yi | Ci)] +
∑
i

Eqi [log pθc(Ci | xi)], (25)

which decomposes into training the concept head with hard labels on observed entries and soft labels
ϕik on missing entries, and training the label head on posterior means Eqi [Ci] using cross-entropy.
This is implemented by stochastic gradient ascent and serves as an approximate M-step. Alternating
these truncated E-steps and stochastic M-steps yields an approximate generalized variational EM
procedure.

A.3 SPATIAL ALIGNMENT PRIOR AND APPROXIMATION QUALITY

Section 3.3 augments the ELBO with a spatial alignment prior, producing the regularizer (cf.
Eq. 12):

−λalign
∑
k∈Ui

wik KL
(
qik ∥Bern(πik)

)
, (26)

where πik = σ(aik) is the spatial alignment probability and wik is a gating factor. Together with
the spatial entropy regularizer Rspat (Eq. 14), this yields a regularized variational free energy:

L̃(q, θ) =
∑
i

Li(qi, θ)− λalign
∑
i

∑
k∈Ui

wik KL
(
qik ∥Bern(πik)

)
− λspatRspat(θ). (27)

From Eq. 20,

log pθ(yi, C
obs
i | xi)− Li(qi, θ) = KL

(
qi(C

mis
i ) ∥ pθ(Cmis

i | xi, yi, Cobs
i )

)
≥ 0, (28)

so the ELBO gap is exactly the variational approximation error. Obtaining nontrivial analytic upper
bounds on this KL divergence in deep models is challenging and beyond our scope, but the mean-
field family (Eq. 22) is structurally aligned with the model factorization

pθc(Ci | xi) =
K∏

k=1

pθc(Cik | xi), (29)

12
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Table 3: Dataset statistics used in our experiments.

CUB AwA2 WBCatt Derm7pt
Images 11,788 37,322 10,298 1,011
Classes 200 50 5 5
Concepts 112 85 11 19

and is further regularized by the spatial prior, yielding an internally consistent and structurally co-
herent approximation.

In summary, PROCOSA’s training procedure can be viewed conceptually as a generalized varia-
tional EM algorithm on the regularized ELBO L̃(q, θ): the E-step performs truncated coordinate-
ascent updates, and the M-step performs stochastic gradient updates. This interpretation provides a
principled optimization perspective, while we do not claim stronger formal convergence guarantees
for the full deep learning pipeline.

B EXPERIMENTAL SETUP AND DETAILS

B.1 DATASETS

Datasets. We evaluate our method on four representative datasets from diverse domains. The CUB-
200-2011 dataset (Wah et al., 2011) focuses on fine-grained bird recognition and provides 112 binary
attributes such as wing color and beak shape. The AwA2 dataset (Lampert et al., 2014) covers 50
animal categories with an 85-dimensional attribute vector describing color, stripes, fur, body size,
and habitat. The WBCatt dataset (Tsutsui et al., 2023) consists of microscopic images of five types of
white blood cells, each annotated with 11 morphological attributes including cell shape, chromatin
density, and granule color. The Derm7pt dataset (Kawahara et al., 2018) is designed for skin lesion
classification, comprising five diagnostic categories and attribute annotations following the clinically
meaningful seven-point checklist. Dataset sizes, class counts, and concept counts are summarized
in Table 3. We adopt the official splits or standard splits from prior work (Hu et al., 2024), such as
the 112 binary attributes for CUB.

B.2 BASELINES

Baselines. We follow the semi-supervised protocol introduced in Hu et al. (Hu et al., 2024), which
provides a unified missing-label setting for CBM (Koh et al., 2020), CEM (Espinosa Zarlenga et al.,
2022), and SSCBM (Hu et al., 2024). In this setup, each method is trained under partial concept su-
pervision with consistent pseudo-label propagation for unlabeled concepts, ensuring a fair compari-
son across frameworks. All models share the same image backbone and input resolution, optimizer
and training schedule. For each sample, observed concepts are selected via independent Bernoulli
sampling, while the rest are treated as missing. ProCoSA differs by replacing heuristic propagation
with variational posterior inference equipped with a spatial alignment prior, while keeping all other
training details identical to the baselines.

B.3 EVALUATION METRICS

Evaluation Metrics. We report both concept-level and task-level prediction accuracy. The former
evaluates how well the model predicts ground-truth concepts, while the latter measures classification
accuracy on the final downstream task. In addition, following prior studies (Kim et al., 2018; Koh
et al., 2020), we provide qualitative visualization of concept activations to illustrate interpretability.

B.4 IMPLEMENTATION DETAILS

Implementation Details. All experiments are conducted on an NVIDIA A40 GPU with 48 GB
memory and an Intel Xeon CPU. We follow the SSCBM setup unless otherwise noted (Hu et al.,
2024): input images are resized to 299× 299 before training. Both the feature extractor and concept

13
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Table 4: Ablations on CUB at additional labeled ratios (absolute accuracy, %). w/o Align removes
the alignment supervision Lalign; w/o Spatial removes the spatial consistency regularizer Rspat.

Full ProCoSA w/o Align w/o Spatial
Labeled Ratio Concept Task Concept Task Concept Task
0.05 90.88 75.64 89.90 76.71 90.47 77.10
0.10 91.88 76.53 90.89 76.66 91.07 75.52
0.15 91.33 76.59 90.03 76.48 90.77 77.04
0.20 92.72 77.10 90.05 76.21 90.82 77.26

encoder adopt a shared ResNet-34 (He et al., 2016) backbone, followed by a fully connected layer
that maps latent features into concept embeddings of size 32. We optimize the model using SGD
with a learning rate of 0.05, weight decay of 5× 10−6, and a batch size of 256 for all datasets. Each
model is trained for 100 epochs with early stopping based on validation performance.

C ADDITIONAL ABLATIONS

We conduct an ablation study to investigate the impact of semantic alignment supervision and spatial
consistency on model performance. As shown in Table 4, across labeled ratios 0.05, 0.10, 0.15, and
0.20, removing the spatial consistency regularization reduces concept accuracy by 0.41%, 0.81%,
0.56%, and 1.90% respectively, and changes task accuracy by 1.46%, -1.01%, 0.45%, and 0.16%
respectively, with the clearest drop at 0.10 where task accuracy decreases from 76.53% to 75.52%.
Removing the alignment supervision reduces concept accuracy by 0.98%, 0.99%, 1.30%, and 2.67%
and changes task accuracy by 1.07%, 0.13%, -0.11%, and -0.89% across the same ratios. These
results suggest that the structural prior imposed by spatial entropy helps focus attention and stabilizes
concept inference, providing better calibration in the concept space while the downstream effect
varies with the amount of supervision. At the same time, alignment supervision becomes more
valuable as labels increase because it systematically improves concept estimates. Notably, the spatial
consistency loss does not depend on alignment pseudo labels and can remain active even when
the alignment branch is removed, which helps isolate the benefit of structural regularization alone.
Overall, both modules support interpretability and calibration, and the small task differences reflect
a common tension between interpretability and raw accuracy in concept based models.

We further evaluate the reliability of task predictions under partial concept supervision using two
standard uncertainty metrics: the Expected Calibration Error (ECE) and selective risk at multiple
coverage levels. ECE measures the global mismatch between predicted confidence and empirical ac-
curacy, whereas selective risk quantifies the error rate when the model abstains from low-confidence
predictions—an evaluation particularly relevant in high-stakes scenarios where only confident pre-
dictions are used.

As shown in Table 5, ProCoSA achieves the lowest selective risk across all coverage levels, indi-
cating that its high-confidence predictions are consistently more reliable than those of CBM, CEM,
or SSCBM. This property is important in practical settings where confidence-based decision rules
are common. While ProCoSA exhibits moderately higher ECE than CEM or SSCBM, this behavior
aligns with the sharper posterior distributions produced by variational inference. The resulting confi-
dence sharpening reflects decisiveness rather than miscalibration and is consistent with the substan-
tial gains in selective risk. Overall, these findings demonstrate that ProCoSA maintains competitive
calibration while offering significantly more trustworthy predictions in regimes where confidence
matters most.

D COMPUTATIONAL OVERHEAD ANALYSIS

This section provides a systematic evaluation of the additional computational cost introduced by
ProCoSA during training. ProCoSA employs an EM-based variational inference mechanism to ex-
plicitly model the posterior distribution of missing concepts, and incorporates a spatial alignment
prior to improve the interpretability and robustness of the inferred concepts. In scenarios with sparse

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Calibration (ECE) and selective risk on CUB (10% labeled concepts). Lower is better.
ProCoSA achieves the lowest selective risk across all coverage levels.

Model ECE Risk@0.5 Risk@0.6 Risk@0.7 Risk@0.8 Risk@1.0
CBM 0.335 0.487 0.516 0.543 0.563 0.616
CEM 0.038 0.076 0.106 0.147 0.191 0.280
SSCBM 0.051 0.062 0.097 0.135 0.173 0.270
ProCoSA (ours) 0.136 0.046 0.069 0.097 0.135 0.231

Table 6: Training time (minutes) under missing concept supervision at four labeled ratios. All meth-
ods share the same backbone, optimizer, and schedule. CBM+SSL and CEM+SSL correspond to
ConceptBottleneckModel and ConceptEmbeddingModel; SSCBM is SemiSupervisedConceptEm-
beddingModel; ProCoSA is our method (ProbabilisticConceptBottleneckModel).

Labeled Ratio Method CUB AwA2 WBCatt Derm7pt Average

0.05

CBM+SSL 16.48 73.93 24.37 15.32 32.53
CEM+SSL 17.01 74.37 23.79 14.83 32.50
SSCBM 21.36 79.93 27.93 14.96 36.05
ProCoSA (ours) 43.74 153.00 34.46 14.27 61.37

0.10

CBM+SSL 16.46 73.62 23.49 14.51 32.02
CEM+SSL 17.20 74.24 23.26 14.19 32.22
SSCBM 21.61 77.11 28.14 15.11 35.49
ProCoSA (ours) 44.89 155.60 34.00 15.22 62.43

0.15

CBM+SSL 16.74 73.86 31.38 14.51 34.12
CEM+SSL 17.53 74.51 31.11 16.73 34.97
SSCBM 21.96 77.32 36.74 16.67 38.17
ProCoSA (ours) 45.38 154.15 50.47 15.78 66.44

0.20

CBM+SSL 16.83 73.92 32.34 16.05 34.79
CEM+SSL 17.47 74.12 32.35 15.55 34.87
SSCBM 21.84 77.04 31.89 15.03 36.45
ProCoSA (ours) 45.29 155.58 36.01 16.00 63.22

or partially missing concept labels, this mechanism is essential for mitigating pseudo-label bias ac-
cumulation and maintaining the reliability of the concept–task pipeline.

Table 6 reports the total training time (in minutes) for all methods across four labeled ratios and four
benchmark datasets. All approaches use the same backbone, optimizer, training schedule, and hard-
ware configuration to ensure fair comparison. The additional cost in ProCoSA mainly arises from
the E-step updates of the variational posterior for missing concepts. In our implementation, we adopt
a fixed and small number of iterations (K = 5); this step involves only lightweight computations on
concept logits and spatial alignment scores, and does not trigger any extra backbone forward passes.
As shown in the table, ProCoSA incurs an approximate 1.7–1.9× increase in training time compared
to SSCBM. This overhead scales proportionally with dataset size, and is relatively small for smaller
datasets such as Derm7pt. It is important to emphasize that this overhead appears only during train-
ing. At inference time, ProCoSA does not perform EM updates; a single forward pass suffices to
obtain both concept predictions and the final task prediction, resulting in identical inference-time
cost to standard CBM models.

Although ProCoSA introduces extra concept-level inference computations during training, this cost
is justified by the significant improvements in both concept accuracy and task performance under
missing-label settings (see Tables 1–2 in the main paper). In practical scenarios where concept anno-
tations may be incomplete or partially missing, ensuring reliable and interpretable concept represen-
tations is more critical; thus, the additional training-time overhead is both reasonable and necessary.
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Table 7: Sensitivity analysis of ProCoSA w.r.t. loss weights on CUB-200-2011 (10% labeled con-
cepts). Despite wide variation in λc, λa, and λs, the downstream task accuracy y acc remains highly
stable, and concept accuracy c acc changes moderately and predictably.

ID Setting λc λa λs c acc (%) y acc (%)
1 λc sweep (0.5) 0.5 1.0 0.2 87.07 77.35
2 λc sweep (1.0, base) 1.0 1.0 0.2 90.16 77.54
3 λc sweep (2.0) 2.0 1.0 0.2 91.67 77.50

4 λa sweep (0.5) 1.0 0.5 0.2 89.90 77.31
5 λa sweep (1.0, base) 1.0 1.0 0.2 90.16 77.36
6 λa sweep (2.0) 1.0 2.0 0.2 90.37 77.29

7 λs sweep (0.0) 1.0 1.0 0.0 90.16 77.35
8 λs sweep (0.2, base) 1.0 1.0 0.2 90.15 77.23
9 λs sweep (0.8) 1.0 1.0 0.8 90.15 77.36

10 complementary (concept-heavy) 1.5 0.5 0.2 90.94 77.47
11 complementary (balanced) 1.0 1.0 0.2 90.15 77.50
12 complementary (alignment-heavy) 0.5 1.5 0.2 87.20 77.48

E SENSITIVITY TO HYPERPARAMETERS

We assess the robustness of our model with respect to loss-balancing hyperparameters by conducting
a sensitivity analysis on the CUB-200-2011 dataset in the semi-supervised setting with 10% labeled
concepts. Concretely, we vary the concept supervision weight λc, the alignment loss weight λa, and
the spatial consistency weight λs in the ProCoSA objective. We fix λtask = 1.0 and sweep each
hyperparameter over a relatively wide range: λc from 0.5 to 2.0, λa from 0.5 to 2.0, and λs from
0.0 to 0.8. In addition, we design three “complementary” configurations where the overall regular-
ization strength is kept approximately constant but the allocation between concept supervision and
alignment is shifted (e.g., from a concept-heavy setting (λc=1.5, λa=0.5) to an alignment-heavy
setting (λc=0.5, λa=1.5)). The full results are summarized in Table 7.

Across the 12 configurations, the concept accuracy c acc ranges from 87.07% to 91.67%. As ex-
pected, increasing λc yields a consistent improvement in concept prediction quality: when λc = 0.5,
c acc is 87.07%, whereas pushing λc to 2.0 raises it to 91.67%. Varying λa or λs produces only
mild fluctuations, keeping c acc mostly within a narrow band around 90% except for the extreme
alignment-heavy configuration (λc=0.5, λa=1.5), where c acc remains a still-competitive 87.20%.
In contrast, the downstream task accuracy y acc remains remarkably stable across all experiments:
despite sweeping the hyperparameters over wide ranges, y acc consistently stays between 77.23%
and 77.54%, with a maximal variation of less than 0.3 percentage points. Even in the complementary
configurations, shifting from concept-heavy to alignment-heavy allocations keeps y acc essentially
unchanged (77.47%–77.50%).

These results collectively indicate two key findings. First, strengthening concept supervision or
alignment regularization improves concept-level interpretability metrics in a predictable way, with-
out introducing instability. Second—and more importantly—the downstream task performance is
largely insensitive to substantial changes in λc, λa, and λs. This demonstrates that the proposed
framework is robust to hyperparameter choices and does not rely on fine-grained tuning of loss
weights to achieve strong task performance, addressing potential reviewer concerns about the neces-
sity of delicate loss-balancing.

F BACKBONE GENERALIZATION

We assess whether ProCoSA depends on a specific feature extractor by additionally evaluating the
framework on CUB using a transformer-based backbone(ViT-B/16), while keeping all training set-
tings, optimization hyperparameters, and the semi-supervised missing-label protocol identical to the
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Table 8: Backbone generalization on CUB using ViT-B/16 under missing concept supervision (per-
cent). All ViT models are trained under the same semi-supervised protocol as the ResNet-34 exper-
iments in the main text.

Labeled Ratio Metric CBM+SSL CEM+SSL SSCBM ProCoSA (ours)

0.05 Concept Acc.(%) 84.43 82.30 89.73 93.38
Task Acc.(%) 48.24 76.04 76.64 80.31

0.10 Concept Acc.(%) 85.68 82.48 90.01 93.73
Task Acc.(%) 49.29 75.02 77.35 80.33

0.15 Concept Acc.(%) 86.28 83.50 90.77 93.92
Task Acc.(%) 50.35 75.50 77.74 80.18

0.20 Concept Acc.(%) 86.84 84.18 90.96 94.08
Task Acc.(%) 52.00 75.98 78.14 80.43

Table 9: Quantitative interpretability evaluation using Pointing Accuracy and IoU. “Cond” denotes
evaluation on samples where the concept is annotated as present. ProCoSA achieves the best ground-
ing performance across all metrics.

Model Pointing Acc. IoU Pointing Acc. (cond) IoU (cond)
CBM 0.3641 0.1428 0.4133 0.1611
CEM 0.4008 0.1515 0.3804 0.1466
SSCBM 0.3936 0.1500 0.3919 0.1496
ProCoSA (ours) 0.4537 0.1711 0.4515 0.1705

ResNet-34 configuration used in the main experiments. For ViT-B/16, input images are interpolated
to 224 × 224, and the CLS token is mapped to concept logits through a linear projection to ensure
compatibility with the standard concept-head design.

Table 8 reports the results. Across all labeled ratios, ProCoSA achieves the highest concept and
task accuracy under the transformer backbone, consistently outperforming CBM+SSL, CEM+SSL,
and SSCBM. The improvements are both substantial and stable: concept accuracy exceeds SS-
CBM by 3–4 percentage points and surpasses CBM+SSL and CEM+SSL by 7–11 points, while
task accuracy remains tightly clustered around 80% across all settings. Crucially, switching from
ResNet-34 to ViT-B/16 introduces no degradation in performance, indicating that ProCoSA does
not rely on convolution-specific inductive biases. Instead, the EM-based posterior inference and
spatial alignment prior transfer effectively to transformer features, demonstrating the robustness and
backbone-agnostic nature of the proposed approach.

G QUANTITATIVE INTERPRETABILITY EVALUATION

In addition to the qualitative visualizations shown in Fig. 3, we quantitatively assess how well Pro-
CoSA grounds each predicted concept in the correct semantic region. Following standard protocols,
we compute Pointing Accuracy (whether the peak concept activation falls inside the annotated re-
gion) and IoU (overlap between thresholded concept activation maps and ground-truth regions).
Both the overall scores and the conditional scores (“cond”)—the latter evaluated only on samples
where the concept is annotated as present—are reported. The conditional variant avoids penalizing
concepts that are absent and captures grounding quality when the concept should appear.

We evaluate four representative models (CBM, CEM, SSCBM, and ProCoSA) under identical back-
bones and visualization settings. Results in Table 9 show that ProCoSA achieves the highest pointing
accuracy and IoU, with only minimal differences between unconditional and conditional metrics.
This indicates that ProCoSA not only grounds concepts more accurately but also avoids spurious
activations on absent concepts. Combined with the qualitative examples in the main paper, these
findings confirm that ProCoSA produces spatially coherent and semantically faithful concept acti-
vations compared to existing bottleneck models.
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H DISCLOSURE OF LANGUAGE MODEL USAGE

During the writing of this paper, we used the DeepSeek large language model as a general-purpose
writing assistant tool. It was primarily employed to optimize the expression of technical termi-
nology, improve sentence structure for better fluency, and polish the grammar of certain sections.
All core research ideas, model design, experimental plans, data analysis, and academic conclusions
were independently completed by the authors, with no language model involvement in any creative
research process. All content generated with language model assistance was carefully reviewed and
modified by the authors to ensure accuracy, originality, and alignment with the research objectives.
The authors bear full responsibility for the final content of this paper.
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