

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROCoSA: PROBABILISTIC CONCEPT LEARNING WITH SPATIAL ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Concepts are human-interpretable semantic units that enable intervenable intermediate representations in vision models. However, acquiring concept annotations is expensive and typically incomplete, limiting scalable interpretability. We propose **ProCoSA**, a probabilistic framework that treats missing concepts as latent variables and jointly infers concept posteriors and task predictions under partial supervision. To enhance spatial coherence and reduce pseudo-label bias, **ProCoSA** introduces a spatial alignment prior that encourages concept activations to align with salient image regions, yielding more calibrated concept probabilities for downstream reasoning. The framework integrates seamlessly into existing concept-to-task pipelines without relying on any specific bottleneck architecture. Experiments on four benchmark datasets under low concept supervision show that **ProCoSA** consistently matches or surpasses state-of-the-art methods on both concept and task performance under identical evaluation protocols. The code will be released upon acceptance.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across a wide range of domains (LeCun et al., 2015; Senior et al., 2020), yet their internal mechanisms often remain opaque (Samek et al., 2021) and may rely on unintended or undesired features (Achtibat et al., 2023). This lack of transparency poses challenges for deployment in high-risk and regulation-sensitive scenarios (Rudin, 2019; Haibe-Kains et al., 2020). As a result, explainable artificial intelligence (XAI) has gained increasing attention as a means to better understand model behavior and decision rationale (Došilović et al., 2018; Černevičienė & Kabašinskas, 2024). While local XAI methods such as saliency maps highlight “where” the model attends, they often fail to convey “what” semantic evidence the model has recognized (Kindermans et al., 2017). Concept-based explanations address this limitation by introducing human-interpretable concepts as intermediate representations that clarify which semantic features influence model predictions (Bau et al., 2017).

Despite their advantages, concept-based representations typically require inserting a set of human-defined concepts at a bottleneck, and real-world applications often suffer from incomplete or missing concept annotations (Koh et al., 2020). This sparsity undermines accurate modeling of the concept space and limits scalability in practice. To reduce annotation costs, prior work explores unsupervised or semi-supervised approaches, such as prompting LLMs to propose concepts or using heuristic pseudo-label propagation (e.g., k NN) (Yang et al., 2023; Hu et al., 2024). However, these pipelines usually bypass explicit modeling of the concept prediction function and offer no principled way to quantify uncertainty over missing concepts, making them fragile under sparse supervision and limiting both generalization and interpretability. Moreover, reliance on LLMs introduces additional concerns regarding stability, reliability, and transparency.

To address these limitations, we propose **ProCoSA**, a probabilistic framework for concept learning with spatial alignment. ProCoSA treats missing concept labels as latent variables and jointly infers concept probabilities and task predictions under partial supervision. To enhance spatial consistency and mitigate pseudo-label bias, we introduce a spatial alignment prior that encourages concept activations to focus on salient input regions. In contrast to heuristic pseudo-labeling, ProCoSA performs principled posterior inference over missing concepts via an Expectation–Maximization (EM) pro-

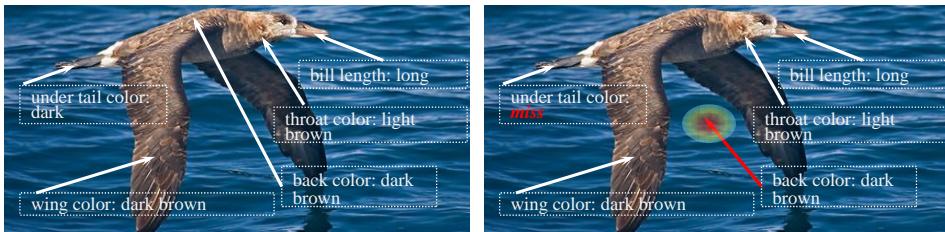


Figure 1: **Motivation illustration.** Left: Complete attribute annotations correctly aligned with corresponding visual regions. Right: Missing attribute supervision (e.g., “under tail color: miss”) leads to spatial misalignment, where the model incorrectly links the semantic concept to irrelevant regions (highlighted in red), resulting in biased concept learning.

cedure, yielding more robust and interpretable learning under incomplete supervision. Figure 1 illustrates the core motivation behind our approach. Our contributions are as follows:

- We propose ProCoSA, a probabilistic framework for concept learning under partial annotations that treats missing concepts as latent variables and jointly learns concept and task predictions.
- We introduce a spatial alignment prior that guides concept representations toward salient regions, improving spatial consistency and reducing pseudo-labeling bias.
- ProCoSA yields calibrated concept inference and can be seamlessly integrated into existing concept-to-task pipelines without relying on any specific bottleneck architecture.

We evaluate ProCoSA on four representative datasets under a unified evaluation protocol. Across all settings, ProCoSA matches or surpasses prior methods in both concept and task performance, with further improvements reflected in enhanced concept-level interpretability metrics, particularly when concept supervision is scarce.

2 RELATED WORK

Concept-Based Model Interpretability. Human-understandable concepts provide a consistent semantic reference and a structured intermediate representation for interpreting neural networks. Network Dissection quantifies unit-level interpretability by testing alignment between individual channels and human-defined concepts using pixel-level semantic masks and IoU scores (Bau et al., 2017), offering spatial localization. Testing with Concept Activation Vectors (TCAV) measures a model’s global sensitivity to user-defined concepts by learning concept activation vectors in feature space and computing directional derivatives along them (Kim et al., 2018). Both methods are *post hoc*; they do not support concept-level intervention or handle missing concept labels. In addition, TCAV depends on analyst-curated concept sets, assumes local linear separability, and lacks uncertainty-aware reasoning. In contrast, CBMs make concepts an explicit intermediate representation and predict task labels from the predicted concepts (Koh et al., 2020), thereby enabling concept-level intervention. However, CBMs typically assume fully annotated concept labels during training, which is costly and often unrealistic in practice, limiting their applicability when concept annotations are missing.

CBMs with Incomplete Concept Supervision. Recent CBM variants reduce manual concept supervision by constructing concept banks with LLMs and CLIP-based vision–language alignment. Res-CBM augments a base concept bank with optimizable residual vectors and incrementally discovers new concepts, improving accuracy while remaining a *post hoc* method; however, it increases pipeline complexity, depends on CLIP, and requires additional curation of the candidate bank (Shang et al., 2024). Label-free CBM converts a pretrained network into a CBM by generating concepts with LLMs, aligning them to CLIP text embeddings, and training a sparse classifier on the induced concept activations; it scales and preserves accuracy but inherits the same external dependence (Oikarinen et al., 2023). LaBo generates sentential concepts with a language model, selects a discriminative and diverse bottleneck via a submodular objective, and aligns concepts to images with CLIP; it reduces manual supervision yet remains *post hoc* and externally dependent (Yang et al., 2023). Despite these advances, heavy reliance on external resources makes concept sets prompt- and

108 domain-sensitive, and text–image alignment can be unstable (Zhang et al., 2024). To avoid external
 109 generators, SSCBM assigns k NN pseudo-concept labels and aligns similarity-based pseudo-labels
 110 at the concept level, and it jointly trains on labeled and unlabeled data. This improves concept
 111 accuracy and saliency alignment under partial supervision. However, SSCBM relies on heuristic
 112 k NN propagation, which bypasses explicit modeling of the concept predictor and is sensitive to
 113 feature-space noise, and it lacks any uncertainty-aware treatment of missing concepts. As a result,
 114 pseudo-label errors may propagate and degrade performance (Hu et al., 2024).

115 In contrast, we adopt a probabilistic approach that treats missing concepts as latent variables and
 116 jointly infers concept posteriors and task predictions through EM algorithm. The E-step leverages
 117 a spatial alignment prior to produce uncertainty-calibrated concept estimates, while the M-step up-
 118 dates model parameters to improve task performance. This yields explicit concept predictors and
 119 enhances generalization under partial supervision.

121 3 METHOD

123 **Overview.** We begin by formalizing concept learning under partial supervision as a latent-variable
 124 model and deriving the associated training objective (Sec. 3.1). We then explain how missing
 125 concepts are inferred within an EM loop using a mean-field E-step (Sec. 3.2). Next, we incorporate a
 126 spatial alignment prior computed from cosine similarities between concept embeddings and spatial
 127 features, together with two lightweight regularizers: (i) an alignment-score calibration loss and (ii)
 128 a spatial-consistency entropy penalty (Sec. 3.3). Finally, we summarize the overall loss and opti-
 129 mization schedule that jointly train the concept head and the label predictor using both observed and
 130 inferred concept labels (Sec. 3.4). The complete training pipeline is illustrated in Fig. 2.

132 3.1 PROBLEM FORMULATION

134 Human-understandable intermediate representations, such as semantic concepts, have been intro-
 135 duced to improve interpretability and enable intervention in high-stakes applications. Instead of
 136 directly mapping inputs to task labels, this paradigm first predicts a set of interpretable concepts and
 137 then predicts the final label from these concepts. However, acquiring fully annotated concept labels
 138 is costly and often infeasible at scale. To address this challenge, we formulate concept learning
 139 under partial supervision as a probabilistic latent-variable problem, in which missing concept labels
 140 are treated as latent variables and inferred jointly with the task.

141 In this setting, an L -way classification task consists of a dataset $\mathcal{D} = \{(x_i, y_i, \tilde{\mathbf{C}}_i)\}_{i=1}^N$ with N
 142 samples, where $x_i \in \mathcal{X} \subset \mathbb{R}^d$ is an input sample, $y_i \in \mathcal{Y} = \{1, \dots, L\}$ is the ground-truth task
 143 label, and $\tilde{\mathbf{C}}_i \in \{0, 1, -1\}^K$ is a partially labeled concept vector, with -1 denoting a missing
 144 entry. For convenience, we introduce an observation mask $\mathbf{m}_i \in \{0, 1\}^K$ induced by $\tilde{\mathbf{C}}_i$, where
 145 $m_{ik} = \mathbb{I}[\tilde{C}_{ik} \in \{0, 1\}]$. Let $\mathbf{C}_i \in \{0, 1\}^K$ denote the underlying complete concept vector. When
 146 $m_{ik} = 0$, we treat C_{ik} as a latent variable and marginalize over its possible values during training.
 147 The observation model relating $(\mathbf{C}_i, \mathbf{m}_i)$ to $\tilde{\mathbf{C}}_i$ is

$$\tilde{C}_{ik} = \begin{cases} C_{ik}, & \text{if } m_{ik} = 1, \\ -1, & \text{if } m_{ik} = 0, \end{cases} \quad (1)$$

151 so that $\tilde{\mathbf{C}}_i$ coincides with \mathbf{C}_i on observed dimensions and uses -1 to indicate missing concepts. We
 152 also write $\mathbf{C}_i = (\mathbf{C}_i^{\text{obs}}, \mathbf{C}_i^{\text{mis}})$, where $\mathbf{C}_i^{\text{obs}} = \{C_{ik} \mid m_{ik} = 1\}$ and $\mathbf{C}_i^{\text{mis}} = \{C_{ik} \mid m_{ik} = 0\}$.

154 We model concept learning under partial supervision via the following latent data-generating pro-
 155 cess:

- 157 1. draw an input from the data distribution: $x \sim p(x)$;
- 158 2. draw a full concept vector from the concept head: $\mathbf{C} \sim p_{\theta_c}(\mathbf{C} \mid x) = \prod_{k=1}^K \text{Bernoulli}(C_k \mid
 159 f_{c,k}(x; \theta_c))$;
- 160 3. draw a label from the conditional distribution given the concept vector: $y \sim p_{\theta_y}(y \mid \mathbf{C}) =$
 161 $\text{Categorical}(y \mid f_y(\mathbf{C}; \theta_y))$.

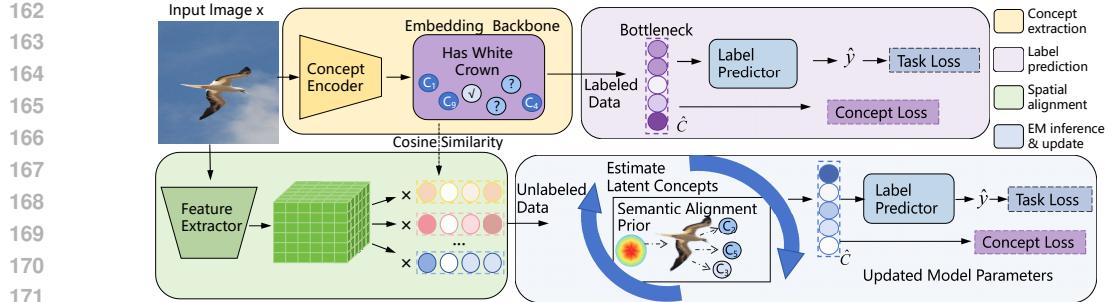


Figure 2: **Training pipeline of ProCoSA with latent concept inference.** The top (labeled) branch encodes images into concept activations, passes them through the bottleneck, and predicts labels; training uses both task loss and concept loss on observed concepts. The bottom (unlabeled) branch performs latent concept inference: (1) a feature extractor produces spatial features; (2) cosine similarity between learned concept embeddings and spatial features yields a spatial alignment prior over image locations; (3) the E-step combines this prior with concept activations to estimate posteriors of missing concepts; and (4) the M-step updates the concept encoder and label predictor using both observed and inferred concept labels. The loop arrow denotes one EM cycle. Color legend: yellow = concept extraction, purple = label prediction, green = spatial alignment, blue = EM inference/update.

where $f_c(\cdot; \theta_c) : \mathcal{X} \rightarrow [0, 1]^K$ is the concept predictor that outputs per-concept probabilities, and $f_y(\cdot; \theta_y) : \{0, 1\}^K \rightarrow \Delta_{L-1} = \{\mathbf{v} \in [0, 1]^L : \mathbf{v}^\top \mathbf{1} = 1\}$ is the task predictor that maps a concept vector to class probabilities. The product form assumes conditional independence across concepts given x . Here, θ_c and θ_y are trainable parameters of the concept and task predictors, respectively.

Objective. We learn (θ_c, θ_y) by maximizing the marginal log-likelihood of the observed data:

$$\max_{\theta_c, \theta_y} \sum_{i=1}^N \log p_{\theta_c, \theta_y}(y_i, \mathbf{C}_i^{\text{obs}} | x_i) = \max_{\theta_c, \theta_y} \sum_{i=1}^N \log \sum_{\mathbf{C}_i^{\text{mis}}} p_{\theta_y}(y_i | \mathbf{C}_i) p_{\theta_c}(\mathbf{C}_i | x_i), \quad (2)$$

where the inner summation is taken over all completions of \mathbf{C}_i that agree with the observed entries $\mathbf{C}_i^{\text{obs}}$ (i.e., $C_{ik} = \tilde{C}_{ik}$ whenever $m_{ik} = 1$). This defines a latent-variable model with $\mathbf{C}_i^{\text{mis}}$ as the latent variables. We therefore employ an EM schedule to maximize equation 2: within each mini-batch, we perform an E-step followed by one parameter update on (θ_c, θ_y) ; see Sec. 3.2 for details.

3.2 HANDLING MISSING CONCEPT ANNOTATIONS

Directly maximizing equation 2 is difficult because it requires marginalizing over the latent concepts $\mathbf{C}_i^{\text{mis}}$. We therefore resort to the EM algorithm and maximize an evidence lower bound on equation 2. Let $q_i(\mathbf{C}_i^{\text{mis}})$ denote a mean-field variational posterior (MFVI) for sample i , supported only on completions consistent with the observations. The EM Q-function for sample i is

$$Q_i = \mathbb{E}_{q_i(\mathbf{C}_i^{\text{mis}})} \left[\log p_{\theta_y}(y_i | \mathbf{C}_i^{\text{obs}}, \mathbf{C}_i^{\text{mis}}) + \log p_{\theta_c}(\mathbf{C}_i^{\text{obs}}, \mathbf{C}_i^{\text{mis}} | x_i) \right]. \quad (3)$$

Infering Missing Concepts (E-step). We use mean-field variational inference to approximate the intractable posterior $p(\mathbf{C}_i^{\text{mis}} | x_i, y_i, \mathbf{C}_i^{\text{obs}})$. These posteriors are anchored by concept-head predictions and, when available, by a spatial alignment prior computed from the same backbone’s spatial features (see Fig. 2 and Sec. 3.3).

$$q_i(\mathbf{C}_i^{\text{mis}}) = \prod_{k \in \mathcal{U}_i} q_{ik}(C_{ik}; \phi_{ik}), \quad q_{ik}(C_{ik} = 1; \phi_{ik}) = \phi_{ik}, \quad (4)$$

where $\mathcal{U}_i = \{k \mid m_{ik} = 0\}$ and each q_{ik} is a Bernoulli distribution with mean parameter $\phi_{ik} \in [0, 1]$. The variational posterior q_i is obtained by maximizing the evidence lower bound:

$$q_i^* = \arg \max_{q_i} \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i | \mathbf{C}_i) + \log p_{\theta_c}(\mathbf{C}_i | x_i)] + \mathcal{H}(q_i), \quad (5)$$

216 where $\mathcal{H}(q_i)$ denotes the (Shannon) entropy. Equivalently, this can be written as the following
 217 minimization involving the Kullback–Leibler divergence:
 218

$$219 \quad q_i^* = \arg \min_{q_i} \text{KL}[q_i(\mathbf{C}_i^{\text{mis}}) \parallel p_{\theta_c}(\mathbf{C}_i^{\text{mis}} \mid x_i)] - \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i \mid \mathbf{C}_i^{\text{obs}}, \mathbf{C}_i^{\text{mis}})]. \quad (6)$$

221 Under the mean-field parameterization, the coordinate-wise optimum admits a logistic fixed-point
 222 update for each missing concept $k \in \mathcal{U}_i$:
 223

$$224 \quad \text{logit}(\phi_{ik}) = \text{logit}(p_{\theta_c}(C_{ik} = 1 \mid x_i)) + \psi_{ik}^{\text{cons}} + \lambda_{\text{align}} w_{ik} a_{ik}, \quad \text{logit}(p) \triangleq \log \frac{p}{1-p}, \quad (7)$$

226 where ψ_{ik}^{cons} is an optional concept-consistency prior, a_{ik} is the alignment logit defined in Sec. 3.3,
 227 and $w_{ik} \in \{0, 1\}$ is a confidence/top- κ gate (within the missing set \mathcal{U}_i) that activates the spatial
 228 prior only on missing entries. Observed concepts are clamped: if $m_{ik} = 1$, then q_{ik} degenerates to
 229 a delta at $C_{ik} = \tilde{C}_{ik}$. In practice, we run $T_E=5$ fixed-point iterations of equation 7 per E-step and
 230 apply mild label smoothing to clamped entries to avoid numerical instabilities when evaluating log-
 231 likelihood terms. A more detailed variational interpretation and theoretical analysis of our training
 232 procedure are provided in Appendix A.
 233

234 **Updating Model Parameters (M-step).** Given the posteriors q_i , we maximize the completed ob-
 235 jective with respect to (θ_c, θ_y) :

$$236 \quad \theta_c^{(t+1)}, \theta_y^{(t+1)} = \arg \max_{\theta_c, \theta_y} \sum_{i=1}^N Q_i(\theta_c, \theta_y; q_i) \\ 237 \quad = \arg \max_{\theta_c, \theta_y} \sum_{i=1}^N \left\{ \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i \mid \mathbf{C}_i)] \right. \\ 238 \quad \left. + \mathbb{E}_{q_i} [\log p_{\theta_c}(\mathbf{C}_i^{\text{mis}} \mid x_i)] + \log p_{\theta_c}(\mathbf{C}_i^{\text{obs}} \mid x_i) \right\}. \quad (8)$$

244 With the factorized Bernoulli concept head and a categorical task head, this decomposes into: (i)
 245 training p_{θ_c} using *soft* targets ϕ_{ik} for $k \in \mathcal{U}_i$ and *hard* labels \tilde{C}_{ik} for $m_{ik} = 1$; and (ii) training
 246 p_{θ_y} with \mathbf{C}_i replaced by its posterior mean $\mathbb{E}_{q_i}[\mathbf{C}_i]$ (or Monte Carlo samples), using cross-entropy
 247 on y_i . During training, we alternate $T_E=5$ fixed-point E-updates with one parameter update; training
 248 proceeds for 100 epochs with early stopping. Section 3.3 augments equation 6 with a spatial
 249 alignment prior to regularize posterior inference under partial concept supervision.
 250

251 3.3 SPATIAL ALIGNMENT PRIOR FOR CONCEPT INFERENCE

252 Under partial concept supervision, inferred posteriors can become biased and spatially inconsistent.
 253 To mitigate this, we introduce a *spatial alignment prior* within the iterative inference loop shown in
 254 Fig. 2. The key intuition is that a concept should be grounded in salient image regions; thus, spatial
 255 evidence extracted from the image can guide the variational posterior toward semantically plausible
 256 concept values when labels are missing.
 257

258 We first describe how the spatial evidence is computed. Given x_i , the feature extractor $\Omega(\cdot)$ out-
 259 puts a spatial feature map $\mathbf{V}_i \in \mathbb{R}^{H \times W \times m}$. The concept encoder produces concept activations
 260 $\hat{\mathbf{C}}_i = f_c(x_i; \theta_c)$, and the embedding backbone provides a bank of learnable, ℓ_2 -normalized concept
 261 embeddings $\{\hat{\mathbf{c}}_k\}_{k=1}^K$. For each concept k , we compute a per-location heatmap by cosine similarity
 262 between $\hat{\mathbf{c}}_k$ and the local descriptors $\mathbf{V}_{i,p,q}$:

$$263 \quad H_{i,k}(p, q) = \frac{\hat{\mathbf{c}}_k^\top \mathbf{V}_{i,p,q}}{\|\hat{\mathbf{c}}_k\| \|\mathbf{V}_{i,p,q}\|}, \quad p = 1, \dots, H, q = 1, \dots, W. \quad (9)$$

265 Next we aggregate the heatmap into a single alignment score in a way consistent with our imple-
 266 mentation: we use *softmax pooling with temperature* $\tau_a > 0$. Let:
 267

$$268 \quad \alpha_{i,k}(p, q) = \frac{\exp(H_{i,k}(p, q)/\tau_a)}{\sum_{u=1}^H \sum_{v=1}^W \exp(H_{i,k}(u, v)/\tau_a)}, \quad a_{ik} = \sum_{p=1}^H \sum_{q=1}^W \alpha_{i,k}(p, q) \frac{H_{i,k}(p, q)}{\tau_a}, \quad (10)$$

270 where a_{ik} is the *alignment logit* (its probability is $\pi_{ik} = \sigma(a_{ik})$). To avoid injecting unreliable
 271 priors, we activate the alignment only where it is needed and confident: the binary gate $w_{ik} \in \{0, 1\}$
 272 is set to one if and only if the concept label is missing ($m_{ik} = 0$), the alignment probability $\sigma(a_{ik})$
 273 exceeds a threshold τ , and the concept is among the top- κ missing concepts of that sample (within
 274 \mathcal{U}_i) according to $\sigma(a_{ij})$; otherwise $w_{ik} = 0$. Formally, the rule is:

$$275 \quad w_{ik} = \mathbb{I}[m_{ik} = 0] \cdot \mathbb{I}[\sigma(a_{ik}) \geq \tau] \cdot \mathbb{I}[k \in \text{Top-}\kappa(\{\sigma(a_{ij})\}_{j \in \mathcal{U}_i})]. \quad (11)$$

277 *Hyperparameters.* All hyperparameters follow SSCBM and are kept fixed across runs (including the
 278 Top- κ size κ and threshold τ).

279 We then inject the spatial evidence into the variational objective for missing concepts: specifically,
 280 we regularize the mean-field factors q_{ik} toward a Bernoulli prior with mean π_{ik} by a KL term, which
 281 gives the following E-step objective:

$$282 \quad \max_{q_i} \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i | \mathbf{C}_i) + \log p_{\theta_c}(\mathbf{C}_i | x_i)] + \mathcal{H}(q_i) - \lambda_{\text{align}} \sum_{k \in \mathcal{U}_i} w_{ik} \text{KL}(q_{ik} \| \text{Bernoulli}(\pi_{ik})), \quad (12)$$

285 where $\lambda_{\text{align}} \geq 0$ controls the prior strength and $\mathcal{U}_i = \{k : m_{ik} = 0\}$ collects the missing concepts.
 286 Optimizing equation 12 under the mean-field family in equation 4 yields the fixed-point update
 287 already stated in equation 7: the posterior mean ϕ_{ik} is obtained from the concept-head logit, plus an
 288 additive alignment bias $\lambda_{\text{align}} w_{ik} a_{ik}$, optionally plus the concept-consistency bias ψ_{ik}^{cons} introduced
 289 in Sec. 3.2. Observed concepts remain clamped to their labels. In practice we run a few fixed-point
 290 iterations per E-step (e.g., $T_E=5$) and apply mild label smoothing at clamped entries to keep log-
 291 likelihood terms numerically stable.

292 **Alignment supervision.** Since a_{ik} directly contributes to the spatial alignment prior, its calibration
 293 critically affects posterior inference under sparse supervision. To improve its quality, we introduce
 294 a lightweight cross-supervision objective that does not interfere with the variational update. For
 295 observed entries ($m_{ik} = 1$), we supervise the sigmoid-normalized alignment score $\hat{p}_{ik} = \sigma(a_{ik})$
 296 using the ground-truth concept label C_{ik}^{obs} . For missing entries ($m_{ik} = 0$), we supervise it using the
 297 soft label ϕ_{ik} inferred from the posterior distribution.

$$299 \quad \mathcal{L}_{\text{align}} = \beta_{\text{align}} \mathbb{E}_i \sum_k \left[m_{ik} \ell_{\text{CE}}(\hat{p}_{ik}, C_{ik}^{\text{obs}}) + (1 - m_{ik}) \ell_{\text{CE}}(\hat{p}_{ik}, \phi_{ik}) \right], \quad (13)$$

301 where ℓ_{CE} is binary cross-entropy and $\beta_{\text{align}} \geq 0$ is a time-ramped weight to avoid overly strong
 302 early regularization.

303 **Spatial consistency regularizer $\mathcal{R}_{\text{spat}}$.** If the alignment heatmap is overly diffuse, the prior a_{ik}
 304 becomes less discriminative and injects spatial noise. To encourage concentration over salient re-
 305 gions, we penalize the entropy of the softmax-normalized heatmap $\alpha_{i,k} = \text{softmax}(H_{i,k}/\tau_a)$ on
 306 “active” concepts (e.g., $p_{\theta_c}(C_{ik} = 1 | x_i) > \frac{1}{2}$):

$$308 \quad \mathcal{R}_{\text{spat}} = \beta_s \mathbb{E}_i \sum_{k \in \mathcal{K}_i} \left(-\sum_{p,q} \alpha_{i,k}(p, q) \log (\alpha_{i,k}(p, q) + \varepsilon) \right), \quad (14)$$

$$310 \quad \mathcal{K}_i = \left\{ k : p_{\theta_c}(C_{ik} = 1 | x_i) > \frac{1}{2} \right\},$$

312 with weight $\beta_s \geq 0$ and a small $\varepsilon > 0$ for numerical stability. This term regularizes the alignment
 313 branch and concept embeddings without altering the posterior inference procedure. $\mathcal{L}_{\text{align}}$ calibrates
 314 concept-level alignment scores, while $\mathcal{R}_{\text{spat}}$ enforces spatial focus; together they improve inference
 315 under sparse labels.

316 3.4 FINAL OBJECTIVE AND OPTIMIZATION

318 We now summarize the training objective associated with the iterative inference–optimization pro-
 319 cess illustrated in Fig. 2. In each iteration of the EM loop, posterior means ϕ_{ik} for missing concepts
 320 are inferred by a *truncated* E-step based on spatial priors and concept activations (Sec. 3.2, Sec. 3.3);
 321 we use a small, fixed number of mean-field fixed-point updates (e.g., $T_E=5$). These inferred val-
 322 ues are then held fixed while updating model parameters via supervised losses on both concept and
 323 task predictions, together with lightweight alignment-related regularization. Training proceeds for a
 324 fixed number of epochs with early stopping on a held-out validation objective.

324 **Task loss.** Given the expected concept vector $\mathbb{E}_{q_i}[\mathbf{C}_i]$ (observed entries as ground truth, missing
 325 entries replaced by ϕ_{ik}), the label predictor $p_{\theta_y}(y_i \mid \mathbf{C}_i)$ is trained with cross-entropy: for binary
 326 tasks we use BCE, and for multi-class tasks we use standard cross-entropy,
 327

$$328 \quad \mathcal{L}_{\text{task}} = \frac{1}{N} \sum_{i=1}^N \ell_{\text{CE}}(f_y(\mathbb{E}_{q_i}[\mathbf{C}_i]; \theta_y), y_i). \quad (15)$$

330 **Concept loss.** The concept head $p_{\theta_c}(\mathbf{C} \mid x)$ is trained on *hard* labels at observed entries and *soft*
 331 targets ϕ_{ik} at missing entries (cf. equation 8). Denoting $m_{ik} = \mathbb{I}[\tilde{C}_{ik} \in \{0, 1\}]$ and \tilde{C}_{ik} the observed
 332 label (when available), we write
 333

$$334 \quad \mathcal{L}_c = \frac{1}{N} \sum_{i=1}^N \sum_{k=1}^K \left[m_{ik} \ell_{\text{BCE}}(f_{c,k}(x_i; \theta_c), \tilde{C}_{ik}) + (1 - m_{ik}) \ell_{\text{BCE}}(f_{c,k}(x_i; \theta_c), \phi_{ik}) \right]. \quad (16)$$

337 **Overall objective.** We combine the task loss $\mathcal{L}_{\text{task}}$, the concept loss \mathcal{L}_c , the *alignment supervision*
 338 $\mathcal{L}_{\text{align}}$ from equation 13, and the *spatial consistency regularizer* $\mathcal{R}_{\text{spat}}$ from equation 14. The overall
 339 objective is minimized with respect to θ_c and θ_y at each iteration, holding $\{\phi_{ik}\}$ fixed from the
 340 current truncated E-step:

$$341 \quad \mathcal{L} = \mathcal{L}_{\text{task}} + \lambda_c \mathcal{L}_c + \lambda_a \mathcal{L}_{\text{align}} + \lambda_s \mathcal{R}_{\text{spat}}, \quad (17)$$

342 where $\lambda_c, \lambda_a, \lambda_s \geq 0$ are trade-off weights. All hyperparameters are kept consistent with SSCBM
 343 for fair comparison.
 344

345 4 EXPERIMENTS

348 We evaluate ProCoSA under the semi-supervised missing-label protocol on four public con-
 349 cept–attribute benchmarks—CUB-200-2011 (Wah et al., 2011), AwA2 (Lampert et al., 2014), WB-
 350 Catt (Tsutsui et al., 2023), and Derm7pt (Kawahara et al., 2018). We report (i) predictive per-
 351 formance, (ii) interpretability, and (iii) ablations of spatial alignment. **Baselines.** We compare against
 352 CBM (Koh et al., 2020), CEM (Espinosa Zarlenga et al., 2022), and SSCBM (Hu et al., 2024)
 353 under a *fully matched* protocol. All models use the *same* backbone (ResNet-34), input resolution
 354 (299×299), optimizer (SGD, learning rate 0.05), weight decay (5×10^{-6}), batch size (256), data
 355 splits, early-stopping criteria, and Bernoulli sampling of observed concepts. The *only* difference is
 356 the treatment of missing concepts: ProCoSA replaces SSCBM’s heuristic pseudo-label propagation
 357 with variational posterior inference and a spatial alignment prior. All dataset statistics, experimen-
 358 tal configurations, and complete training details are provided in Appendix B.1–B.4, with ablations
 359 summarized in Appendix C.

360 4.1 EVALUATION RESULTS ON UTILITY

361 We evaluate concept and task accuracy at labeled ratios 0.05, 0.10, 0.15, and 0.20, following SS-
 362 CBM’s missing-label protocol (Hu et al., 2024), and report results in Table 1. All numbers are the
 363 mean \pm std over three random seeds, and we use identical backbones, splits, input resolutions, and
 364 optimization settings across methods.
 365

366 At each labeled ratio, ProCoSA achieves the best or tied performance on most entries across all
 367 four datasets. Unlike heuristic pseudo-label propagation, our E-step performs variational posterior
 368 inference with a spatial alignment prior, which mitigates pseudo-label bias and calibrates concept
 369 uncertainty, yielding more stable gains under scarce supervision.

370 All methods improve as more concepts are observed, but ProCoSA exhibits the largest advantages in
 371 the low-label regime. Compared to the runner-up SSCBM, ProCoSA improves average concept/task
 372 accuracy by $+3.13\% / +1.95\%$ at 0.05 and $+3.32\% / +2.91\%$ at 0.10; at 0.15 and 0.20, the gaps
 373 narrow to $+1.88\% / +2.43\%$ and $+2.04\% / +2.26\%$, respectively. This trend confirms that ProCoSA
 374 is particularly effective when concept labels are sparse: posterior-based soft supervision provides
 375 reliable concept estimates that benefit both concept prediction and downstream classification.

376 Dataset-wise patterns are consistent. On CUB, ProCoSA achieves the best concept and task accuracy
 377 at all ratios, reflecting the benefit of calibrated posteriors in fine-grained settings. On AwA2, Pro-
 378 CoSA and SSCBM remain close, with a slight edge for ProCoSA on average. On WBCatt—where

378 Table 1: Results under missing concept supervision at four labeled ratios (percent). All methods
 379 share the same backbone and schedule; ProCoSA is our method.

381 Labeled Ratio	382 Method	383 CUB		384 AwA2		385 WBCatt		386 Derm7pt		387 Average	
		388 Concept	389 Task	390 Concept	391 Task	392 Concept	393 Task	394 Concept	395 Task	396 Concept	397 Task
388 0.05	CBM+SSL	85.14	28.73	67.06	78.73	82.99	99.74	62.93	69.44	74.53	69.16
	CEM+SSL	83.14	62.66	68.72	88.65	93.42	99.61	63.90	68.69	77.30	79.90
	SSCBM	88.94	68.48	96.54	92.29	93.23	99.48	69.63	68.43	87.09	82.17
	ProCoSA (ours)	90.88	75.64	97.82	92.83	94.59	99.84	77.60	68.18	90.22	84.12
388 0.10	CBM+SSL	86.40	39.02	71.63	90.77	84.26	99.52	64.30	67.89	76.65	74.30
	CEM+SSL	82.77	63.09	81.11	92.35	72.55	99.36	65.98	70.45	75.60	81.31
	SSCBM	89.46	67.07	97.06	93.02	93.56	99.39	69.63	69.30	87.43	82.20
	ProCoSA (ours)	91.88	76.53	98.14	93.55	94.81	99.81	78.14	70.20	90.75	85.11
388 0.15	CBM+SSL	86.54	35.96	68.81	85.01	84.77	99.48	65.05	70.20	76.29	72.66
	CEM+SSL	83.57	62.18	90.71	93.15	86.64	99.61	65.09	68.69	81.50	80.91
	SSCBM	90.19	70.67	96.77	92.51	94.43	99.48	74.04	67.68	88.86	82.59
	ProCoSA (ours)	91.33	76.59	98.13	93.51	95.22	99.61	78.26	70.71	90.74	85.02
388 0.20	CBM+SSL	86.82	39.10	68.94	85.01	85.88	99.74	66.65	67.93	77.07	72.95
	CEM+SSL	83.64	62.73	91.14	93.15	86.53	99.48	66.21	69.19	81.88	81.14
	SSCBM	90.15	69.75	96.90	93.58	94.53	99.35	75.40	66.16	89.25	82.21
	ProCoSA (ours)	92.72	77.10	98.08	93.63	95.21	99.74	79.16	67.42	91.29	84.47

395 Table 2: Baselines (CBM, CEM) are from full concept supervision as reported in prior work; Pro-
 396 CoSA uses 10% concept labels.

398 Method	399 CUB		400 AwA2		401 WBCatt		402 Derm7pt	
	403 Concept	404 Task	405 Concept	406 Task	407 Concept	408 Task	409 Concept	410 Task
CBM	93.99%	67.33%	96.48%	88.71%	94.18%	99.71%	74.34%	75.44%
CEM	96.39%	79.82%	95.91%	87.00%	95.33%	99.71%	77.15%	75.85%
ProCoSA (ours)	91.88%	76.53%	97.47%	92.99%	94.81%	99.81%	78.26%	67.62 %

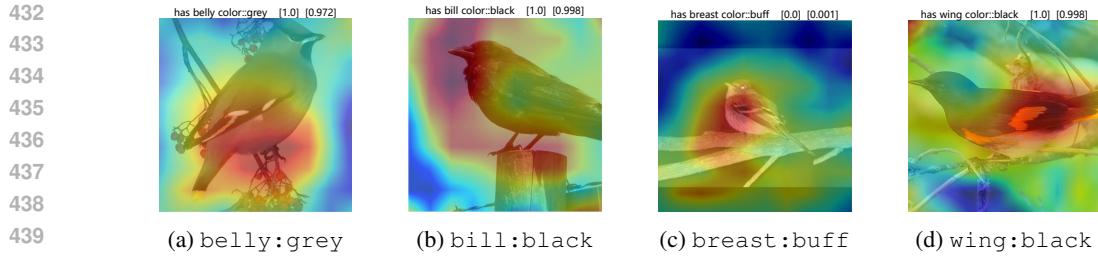
405 task accuracy saturates—ProCoSA consistently improves concept prediction, yielding more stable
 406 morphological attributes. On Derm7pt, ProCoSA achieves the highest concept accuracy at all ratios,
 407 showing the effectiveness of spatially guided posterior completion under clinical attribute sparsity.

409 Additionally, we provide in Appendix D a detailed quantification of the training-time overhead for
 410 all baselines (CBM, CEM, SSCBM) and our ProCoSA framework. While the EM-based updates
 411 introduce moderate additional computation during training, they do not increase inference-time cost
 412 and are necessary for the substantial accuracy gains observed under missing-label supervision. Ap-
 413 pendix E further includes an extended hyperparameter sensitivity study, showing that ProCoSA
 414 remains robust across wide ranges of loss-balancing weights without requiring fine-grained tuning.
 415 Finally, to demonstrate the architectural generality of our approach, we evaluate ProCoSA under
 416 alternative feature extractors beyond the standard ResNet backbone used in prior work, including
 417 ViT-B/16, following exactly the same semi-supervised protocol for fair comparison. As reported
 418 in Appendix F, ProCoSA consistently improves both concept and task accuracy across all tested
 419 architectures.

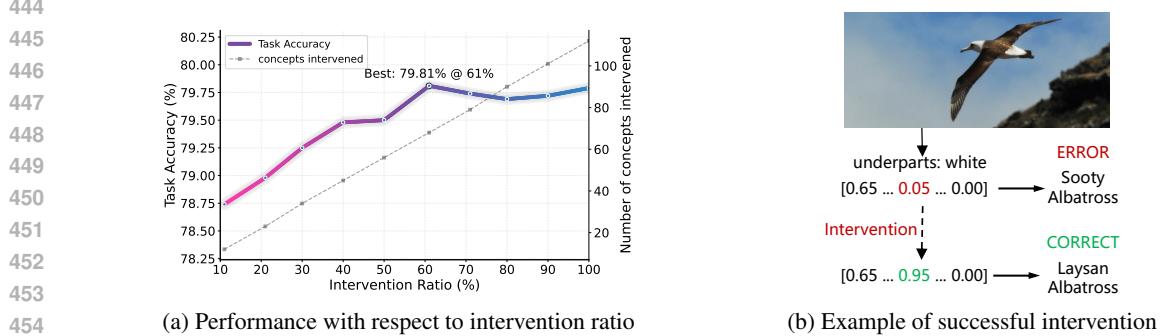
420 we also compare with the CBM/CEM results reported by SSCBM under full supervision. Results are
 421 reported in Table 2. Despite using only 10% concept labels, ProCoSA achieves the best concept *and*
 422 task accuracy on AwA2, matches or slightly improves task accuracy on WBCatt while maintaining
 423 the top concept scores, remains competitive on CUB, and leads concept accuracy on Derm7pt. This
 424 underscores that E-step posterior inference with spatial alignment yields reliable concepts and strong
 425 task performance under scarce annotations.

426 4.2 INTERPRETABILITY AND TEST-TIME INTERVENTION

427 Beyond concept and task accuracy, we further assess the interpretability and test-time intervention
 428 capabilities of ProCoSA. For interpretability, our training objective incorporates a spatial alignment
 429 loss, encouraging concept embeddings to focus on semantically meaningful regions by aligning
 430 them with saliency maps. As shown in Figure 3, the learned concept-level attention maps exhibit
 431 strong localization to relevant parts (e.g., `bill:hooked`), validating that ProCoSA can maintain



441 Figure 3: Concept-level saliency maps. ProCoSA captures faithful concept regions. Heatmaps are
442 cosine-similarity maps between concept embeddings and spatial features (brighter = higher align-
443 ment); the two numbers in brackets denote [ground-truth label], [predicted concept probability].



455 Figure 4: Test-time intervention: (Left) ProCoSA exhibits smooth and consistent improvements as
456 the ratio of corrected concepts increases. (Right) An error is corrected by flipping a single key
457 concept, showing the model’s sensitivity to intervenable concepts.

460 coherent attention under weak supervision. Quantitative interpretability metrics (Pointing Accuracy
461 and IoU) are also reported in Appendix G.

462 For test-time intervention, we progressively replace 10% to 100% of the predicted concept val-
463 ues with their ground-truth labels and measure the resulting task accuracy. As shown in Figure 4
464 (left), model performance improves steadily with more accurate concepts, highlighting strong causal
465 alignment and interpretability. To focus interventions on the most impactful concepts, we further
466 employ the COOP strategy (following CEM), which selects concepts with high uncertainty and
467 high gradient-based influence. This strategy enables efficient and targeted correction: for instance,
468 replacing a single concept (underparts:white) flips a misclassified *Sooty Albatross* into the
469 correct class *Laysan Albatross* (Figure 4, right), demonstrating that ProCoSA learns not only in-
470 terpretable but also actionable and intervenable concepts. For completeness, we report the compu-
471 tational overhead introduced by the EM iterations in Appendix C. In brief, ProCoSA incurs only
472 a modest training-time overhead while keeping the inference-time cost identical to other concept
473 bottleneck models.

5 CONCLUSION

477 We propose **ProCoSA**, a probabilistic concept-to-task learning framework designed to learn inter-
478 pretable and intervenable concept representations under partial supervision. ProCoSA treats missing
479 concept labels as latent variables and leverages a spatial alignment prior to guide pseudo-labeling,
480 ensuring consistent and semantically meaningful concept inference. Integrated into a unified learn-
481 ing objective with spatial regularization and task supervision, ProCoSA achieves improved con-
482 cept quality and downstream performance, while also enabling fine-grained test-time interventions
483 through uncertainty-aware concept selection.

484 One limitation is that the inference quality may depend on the initialization of latent concepts in
485 low-supervision regimes. Future work will explore more robust inference strategies and apply the
framework to broader decision-making scenarios with noisy supervision.

486 REFERENCES
487

488 Reduan Achitbat, Maximilian Dreyer, Ilona Eisenbraun, Sebastian Bosse, Thomas Wiegand, Woj-
489 ciech Samek, and Sebastian Lapuschkin. From attribution maps to human-understandable expla-
490 nations through concept relevance propagation. *Nature Machine Intelligence*, 5(9):1006–1019,
491 2023.

492 David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
493 Quantifying interpretability of deep visual representations. In *Proceedings of the IEEE Confer-
494 ence on Computer Vision and Pattern Recognition*, pp. 6541–6549, 2017.

495 Jurgita Černevičienė and Audrius Kabašinskas. Explainable artificial intelligence (xai) in finance:
496 A systematic literature review. *Artificial Intelligence Review*, 57(8):216, 2024.

498 Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial intelligence: A sur-
499 vey. In *Proceedings of the 41st International Convention on Information and Communication
500 Technology, Electronics and Microelectronics (MIPRO)*, pp. 210–215, 2018.

501 Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Gian-
502 nini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller,
503 et al. Concept embedding models: Beyond the accuracy-explainability trade-off. *Advances in
504 Neural Information Processing Systems*, 35:21400–21413, 2022.

506 Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Levi
507 Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul Kundaje, et al. Transparency
508 and reproducibility in artificial intelligence. *Nature*, 586(7829):E14–E16, 2020.

509 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
510 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp.
511 770–778, 2016.

513 Lijie Hu, Tianhao Huang, Huanyi Xie, Xilin Gong, Chenyang Ren, Zhengyu Hu, Lu Yu, Ping Ma,
514 and Di Wang. Semi-supervised concept bottleneck models. *arXiv preprint arXiv:2406.18992*,
515 2024.

516 Jeremy Kawahara, Sara Daneshvar, Giuseppe Argenziano, and Ghassan Hamarneh. Seven-point
517 checklist and skin lesion classification using multitask multimodal neural nets. *IEEE Journal of
518 Biomedical and Health Informatics*, 23(2):538–546, 2018.

519 Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
520 Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
521 (tcav). In *Proceedings of the International Conference on Machine Learning*, pp. 2668–2677,
522 2018.

523 Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan,
524 Been Kim, and Sven Dähne. Learning how to explain neural networks: Patternnet and patternat-
525 tribution. *arXiv preprint arXiv:1705.05598*, 2017.

527 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim,
528 and Percy Liang. Concept bottleneck models. In *Proceedings of the International Conference on
529 Machine Learning*, pp. 5338–5348, 2020.

530 Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification for
531 zero-shot learning of object categories. *IEEE Transactions on Pattern Analysis and Machine
532 Intelligence*, 36(3):453–465, 2014. doi: 10.1109/TPAMI.2013.140.

534 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444,
535 2015.

536 Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottle-
537 neck models. *arXiv preprint arXiv:2304.06129*, 2023.

538 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
539 use interpretable models instead. *Nature Machine Intelligence*, 1(5):206–215, 2019.

540 Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-
 541 Robert Müller. Explaining deep neural networks and beyond: A review of methods and applica-
 542 tions. *Proceedings of the IEEE*, 109(3):247–278, 2021.

543 Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,
 544 Chongli Qin, Augustin Zidék, Alexander W. R. Nelson, Alex Bridgland, et al. Improved protein
 545 structure prediction using potentials from deep learning. *Nature*, 577(7792):706–710, 2020.

546 Chenming Shang, Shiji Zhou, Hengyuan Zhang, Xinzhe Ni, Yujiu Yang, and Yuwang Wang. In-
 547 cremental residual concept bottleneck models. In *Proceedings of the IEEE/CVF Conference on*
 548 *Computer Vision and Pattern Recognition*, pp. 11030–11040, 2024.

549 Satoshi Tsutsui, Winnie Pang, and Bihan Wen. Wbcatt: A white blood cell dataset annotated with de-
 550 tailed morphological attributes. *Advances in Neural Information Processing Systems*, 36:50796–
 551 50824, 2023.

552 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 553 birds-200-2011 dataset. Technical report, California Institute of Technology, 2011.

554 Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, and Mark
 555 Yatskar. Language in a bottle: Language model guided concept bottlenecks for interpretable im-
 556 age classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 557 *Recognition*, pp. 19187–19197, 2023.

558 Rui Zhang, Xingbo Du, Junchi Yan, and Shihua Zhang. The decoupling concept bottleneck model.
 559 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

560

563 A VARIATIONAL EM VIEW OF PROCoSA

564

565 This appendix provides a unified variational EM perspective on the training procedure introduced in
 566 Section 3. Our aim is to show that: (i) the model in Section 3.1 can be formalized as a latent-variable
 567 probabilistic model; (ii) the mean-field E-step in Section 3.2 and the parameter updates in Section 3.4
 568 can be interpreted as an approximate generalized variational EM algorithm optimizing a regularized
 569 evidence lower bound (ELBO); (iii) the spatial alignment prior and regularizers in Section 3.3 act as
 570 structured regularization on the variational family without altering the EM decomposition; and (iv)
 571 the mean-field posterior approximation is structurally consistent with the conditional independence
 572 assumptions of the concept head and therefore constitutes a natural approximation.

573

574 A.1 MARGINAL LIKELIHOOD AND VARIATIONAL FREE ENERGY

575 In Section 3.1, partially annotated concept vectors are represented as $\tilde{C}_i \in \{0, 1, -1\}^K$, with -1
 576 indicating missing entries, and an observation mask $m_i \in \{0, 1\}^K$ induced by \tilde{C}_i (Eq. (1)). Let
 577 $C_i \in \{0, 1\}^K$ denote the complete concept vector and write $C_i = (C_i^{\text{obs}}, C_i^{\text{mis}})$, where $C_i^{\text{obs}} =$
 578 $\{C_{ik} : m_{ik} = 1\}$ and $C_i^{\text{mis}} = \{C_{ik} : m_{ik} = 0\}$. The conditional generative model in Section 3.1
 579 factorizes as

$$p_{\theta}(y_i, C_i | x_i) = p_{\theta_y}(y_i | C_i) p_{\theta_c}(C_i | x_i), \quad (18)$$

580 where p_{θ_c} is the concept head and p_{θ_y} is the label head. The training objective is to maximize the
 581 marginal log-likelihood (Eq. 2):

$$\log p_{\theta}(y_i, C_i^{\text{obs}} | x_i) = \log \sum_{C_i^{\text{mis}}} p_{\theta_y}(y_i | C_i) p_{\theta_c}(C_i | x_i), \quad (19)$$

582 where the sum runs over all completions consistent with C_i^{obs} . To make this optimization tractable,
 583 Section 3.2 introduces a variational posterior $q_i(C_i^{\text{mis}})$ and employs an EM-style iterative procedure.

584 For any distribution $q_i(C_i^{\text{mis}})$, we have the standard variational identity:

$$\log p_{\theta}(y_i, C_i^{\text{obs}} | x_i) = \mathcal{L}_i(q_i, \theta) + \text{KL}(q_i(C_i^{\text{mis}}) \| p_{\theta}(C_i^{\text{mis}} | x_i, y_i, C_i^{\text{obs}})), \quad (20)$$

$$\mathcal{L}_i(q_i, \theta) = \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i | C_i) + \log p_{\theta_c}(C_i | x_i)] + H(q_i), \quad (21)$$

585 where $H(q_i)$ is the entropy of q_i . Thus the ELBO $\mathcal{L}_i(q_i, \theta)$ is a lower bound on the marginal log-
 586 likelihood, and maximizing $\sum_i \mathcal{L}_i(q_i, \theta)$ jointly maximizes the marginal likelihood and minimizes
 587 the posterior approximation error.

594 A.2 MEAN-FIELD POSTERIOR AND GENERALIZED EM
595596 Section 3.2 adopts the mean-field family (Eq. 4):
597

598
$$q_i(C_i^{\text{mis}}) = \prod_{k \in U_i} q_{ik}(C_{ik}), \quad q_{ik}(C_{ik} = 1) = \phi_{ik}, \quad (22)$$

599

600 where $U_i = \{k : m_{ik} = 0\}$ is the set of missing concepts for sample i and $\phi_{ik} \in (0, 1)$ are the
601 posterior means. The EM Q -function (Eq. 3) for sample i is
602

603
$$Q_i(\theta, q_i) = \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i | C_i) + \log p_{\theta_c}(C_i | x_i)]. \quad (23)$$

604

605 For fixed θ , maximizing $\mathcal{L}_i(q_i, \theta)$ over the mean-field family reduces to coordinate-ascent updates
606 of the factors ϕ_{ik} . The coordinate-wise fixed-point equation (cf. Eq. 7) is:
607

608
$$\text{logit}(\phi_{ik}) = \text{logit}(p_{\theta_c}(C_{ik} = 1 | x_i)) + \psi_{ik}^{\text{cons}} + \lambda_{\text{align}} w_{ik} a_{ik}, \quad (24)$$

609

610 where the first term comes from the concept-head logit, ψ_{ik}^{cons} is the consistency bias from
611 Section 3.2, and the last term encodes the spatial alignment prior from Section 3.3. On observed entries,
612 ϕ_{ik} is clamped to the ground-truth labels.
613614 In an *idealized* setting where Eq. 24 is implemented as exact coordinate ascent, each update monotonically
615 increases the regularized ELBO with respect to ϕ_{ik} when other factors are fixed, and full
616 convergence would recover the mean-field optimum.
617618 In practice, PROCOSA performs only a finite number of such fixed-point iterations per E-step (e.g.,
619 $T_E = 5$), yielding a *truncated* mean-field E-step. Classical generalized EM theory states that, under
620 mild conditions and for fixed hyperparameters, approximate E-steps combined with (stochastic)
621 M-steps can be viewed as a generalized EM procedure whose limit points correspond to stationary
622 points of the regularized ELBO, provided each update does not decrease the ELBO. Our imple-
623 mentation is an approximation to this idealized procedure, and we do not claim stronger formal
624 guarantees.
625626 The M-step maximizes, for fixed q_i ,
627

628
$$\sum_i \mathbb{E}_{q_i} [\log p_{\theta_y}(y_i | C_i)] + \sum_i \mathbb{E}_{q_i} [\log p_{\theta_c}(C_i | x_i)], \quad (25)$$

629

630 which decomposes into training the concept head with hard labels on observed entries and soft labels
631 ϕ_{ik} on missing entries, and training the label head on posterior means $\mathbb{E}_{q_i}[C_i]$ using cross-entropy.
632 This is implemented by stochastic gradient ascent and serves as an approximate M-step. Alternating
633 these truncated E-steps and stochastic M-steps yields an approximate generalized variational EM
634 procedure.
635636 A.3 SPATIAL ALIGNMENT PRIOR AND APPROXIMATION QUALITY
637638 Section 3.3 augments the ELBO with a spatial alignment prior, producing the regularizer (cf.
639 Eq. 12):
640

641
$$- \lambda_{\text{align}} \sum_{k \in U_i} w_{ik} \text{KL}(q_{ik} \| \text{Bern}(\pi_{ik})), \quad (26)$$

642

643 where $\pi_{ik} = \sigma(a_{ik})$ is the spatial alignment probability and w_{ik} is a gating factor. Together with
644 the spatial entropy regularizer R_{spat} (Eq. 14), this yields a regularized variational free energy:
645

646
$$\tilde{\mathcal{L}}(q, \theta) = \sum_i \mathcal{L}_i(q_i, \theta) - \lambda_{\text{align}} \sum_i \sum_{k \in U_i} w_{ik} \text{KL}(q_{ik} \| \text{Bern}(\pi_{ik})) - \lambda_{\text{spat}} R_{\text{spat}}(\theta). \quad (27)$$

647

648 From Eq. 20,
649

650
$$\log p_{\theta}(y_i, C_i^{\text{obs}} | x_i) - \mathcal{L}_i(q_i, \theta) = \text{KL}(q_i(C_i^{\text{mis}}) \| p_{\theta}(C_i^{\text{mis}} | x_i, y_i, C_i^{\text{obs}})) \geq 0, \quad (28)$$

651

652 so the ELBO gap is exactly the variational approximation error. Obtaining nontrivial analytic upper
653 bounds on this KL divergence in deep models is challenging and beyond our scope, but the mean-
654 field family (Eq. 22) is structurally aligned with the model factorization
655

656
$$p_{\theta_c}(C_i | x_i) = \prod_{k=1}^K p_{\theta_c}(C_{ik} | x_i), \quad (29)$$

657

648
649
650 Table 3: Dataset statistics used in our experiments.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

	CUB	AwA2	WBCatt	Derm7pt
Images	11,788	37,322	10,298	1,011
Classes	200	50	5	5
Concepts	112	85	11	19

and is further regularized by the spatial prior, yielding an internally consistent and structurally coherent approximation.

In summary, PROCoSA’s training procedure can be viewed conceptually as a generalized variational EM algorithm on the regularized ELBO $\tilde{\mathcal{L}}(q, \theta)$: the E-step performs truncated coordinate-ascent updates, and the M-step performs stochastic gradient updates. This interpretation provides a principled optimization perspective, while we do not claim stronger formal convergence guarantees for the full deep learning pipeline.

B EXPERIMENTAL SETUP AND DETAILS

B.1 DATASETS

Datasets. We evaluate our method on four representative datasets from diverse domains. The CUB-200-2011 dataset (Wah et al., 2011) focuses on fine-grained bird recognition and provides 112 binary attributes such as wing color and beak shape. The AwA2 dataset (Lampert et al., 2014) covers 50 animal categories with an 85-dimensional attribute vector describing color, stripes, fur, body size, and habitat. The WBCatt dataset (Tsutsui et al., 2023) consists of microscopic images of five types of white blood cells, each annotated with 11 morphological attributes including cell shape, chromatin density, and granule color. The Derm7pt dataset (Kawahara et al., 2018) is designed for skin lesion classification, comprising five diagnostic categories and attribute annotations following the clinically meaningful seven-point checklist. Dataset sizes, class counts, and concept counts are summarized in Table 3. We adopt the official splits or standard splits from prior work (Hu et al., 2024), such as the 112 binary attributes for CUB.

B.2 BASELINES

Baselines. We follow the semi-supervised protocol introduced in Hu et al. (Hu et al., 2024), which provides a unified missing-label setting for CBM (Koh et al., 2020), CEM (Espinosa Zarlenga et al., 2022), and SSCBM (Hu et al., 2024). In this setup, each method is trained under partial concept supervision with consistent pseudo-label propagation for unlabeled concepts, ensuring a fair comparison across frameworks. All models share the same image backbone and input resolution, optimizer and training schedule. For each sample, observed concepts are selected via independent Bernoulli sampling, while the rest are treated as missing. ProCoSA differs by replacing heuristic propagation with variational posterior inference equipped with a spatial alignment prior, while keeping all other training details identical to the baselines.

B.3 EVALUATION METRICS

Evaluation Metrics. We report both concept-level and task-level prediction accuracy. The former evaluates how well the model predicts ground-truth concepts, while the latter measures classification accuracy on the final downstream task. In addition, following prior studies (Kim et al., 2018; Koh et al., 2020), we provide qualitative visualization of concept activations to illustrate interpretability.

B.4 IMPLEMENTATION DETAILS

Implementation Details. All experiments are conducted on an NVIDIA A40 GPU with 48 GB memory and an Intel Xeon CPU. We follow the SSCBM setup unless otherwise noted (Hu et al., 2024): input images are resized to 299×299 before training. Both the feature extractor and concept

702 Table 4: Ablations on CUB at additional labeled ratios (absolute accuracy, %). **w/o Align** removes
 703 the alignment supervision $\mathcal{L}_{\text{align}}$; **w/o Spatial** removes the spatial consistency regularizer $\mathcal{R}_{\text{spat}}$.
 704

705 706 707 Labeled Ratio	708 709 710 711 Full ProCoSA		712 713 714 715 716 717 w/o Align		718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 w/o Spatial	
	712 713 714 715 716 717 Concept	712 713 714 715 716 717 Task	712 713 714 715 716 717 Concept	712 713 714 715 716 717 Task	712 713 714 715 716 717 Concept	712 713 714 715 716 717 Task
0.05	90.88	75.64	89.90	76.71	90.47	77.10
0.10	91.88	76.53	90.89	76.66	91.07	75.52
0.15	91.33	76.59	90.03	76.48	90.77	77.04
0.20	92.72	77.10	90.05	76.21	90.82	77.26

712
 713 encoder adopt a shared ResNet-34 (He et al., 2016) backbone, followed by a fully connected layer
 714 that maps latent features into concept embeddings of size 32. We optimize the model using SGD
 715 with a learning rate of 0.05, weight decay of 5×10^{-6} , and a batch size of 256 for all datasets. Each
 716 model is trained for 100 epochs with early stopping based on validation performance.
 717

718 C ADDITIONAL ABLATIONS

719 We conduct an ablation study to investigate the impact of *semantic alignment supervision* and *spatial*
 720 *consistency* on model performance. As shown in Table 4, across labeled ratios 0.05, 0.10, 0.15, and
 721 0.20, removing the spatial consistency regularization reduces concept accuracy by 0.41%, 0.81%,
 722 0.56%, and 1.90% respectively, and changes task accuracy by 1.46%, -1.01%, 0.45%, and 0.16%
 723 respectively, with the clearest drop at 0.10 where task accuracy decreases from 76.53% to 75.52%.
 724 Removing the alignment supervision reduces concept accuracy by 0.98%, 0.99%, 1.30%, and 2.67%
 725 and changes task accuracy by 1.07%, 0.13%, -0.11%, and -0.89% across the same ratios. These
 726 results suggest that the structural prior imposed by spatial entropy helps focus attention and stabilizes
 727 concept inference, providing better calibration in the concept space while the downstream effect
 728 varies with the amount of supervision. At the same time, alignment supervision becomes more
 729 valuable as labels increase because it systematically improves concept estimates. Notably, the spatial
 730 consistency loss does not depend on alignment pseudo labels and can remain active even when
 731 the alignment branch is removed, which helps isolate the benefit of structural regularization alone.
 732 Overall, both modules support interpretability and calibration, and the small task differences reflect
 733 a common tension between interpretability and raw accuracy in concept based models.
 734

735 We further evaluate the reliability of task predictions under partial concept supervision using two
 736 standard uncertainty metrics: the Expected Calibration Error (ECE) and selective risk at multiple
 737 coverage levels. ECE measures the global mismatch between predicted confidence and empirical ac-
 738 curacy, whereas selective risk quantifies the error rate when the model abstains from low-confidence
 739 predictions—an evaluation particularly relevant in high-stakes scenarios where only confident pre-
 740 dictions are used.

741 As shown in Table 5, ProCoSA achieves the lowest selective risk across all coverage levels, indi-
 742 cating that its high-confidence predictions are consistently more reliable than those of CBM, CEM,
 743 or SSCBM. This property is important in practical settings where confidence-based decision rules
 744 are common. While ProCoSA exhibits moderately higher ECE than CEM or SSCBM, this behavior
 745 aligns with the sharper posterior distributions produced by variational inference. The resulting confi-
 746 dence sharpening reflects decisiveness rather than miscalibration and is consistent with the substan-
 747 tial gains in selective risk. Overall, these findings demonstrate that ProCoSA maintains competitive
 748 calibration while offering significantly more trustworthy predictions in regimes where confidence
 749 matters most.

750 D COMPUTATIONAL OVERHEAD ANALYSIS

751 This section provides a systematic evaluation of the additional computational cost introduced by
 752 ProCoSA during training. ProCoSA employs an EM-based variational inference mechanism to ex-
 753 plicitly model the posterior distribution of missing concepts, and incorporates a spatial alignment
 754 prior to improve the interpretability and robustness of the inferred concepts. In scenarios with sparse
 755

756 Table 5: Calibration (ECE) and selective risk on CUB (10% labeled concepts). Lower is better.
 757 ProCoSA achieves the lowest selective risk across all coverage levels.
 758

759 Model	760 ECE	761 Risk@0.5	762 Risk@0.6	763 Risk@0.7	764 Risk@0.8	765 Risk@1.0
766 CBM	767 0.335	768 0.487	769 0.516	770 0.543	771 0.563	772 0.616
773 CEM	774 0.038	775 0.076	776 0.106	777 0.147	778 0.191	779 0.280
780 SSCBM	781 0.051	782 0.062	783 0.097	784 0.135	785 0.173	786 0.270
787 ProCoSA (ours)	788 0.136	789 0.046	790 0.069	791 0.097	792 0.135	793 0.231

766 Table 6: Training time (minutes) under missing concept supervision at four labeled ratios. All meth-
 767 ods share the same backbone, optimizer, and schedule. CBM+SSL and CEM+SSL correspond to
 768 ConceptBottleneckModel and ConceptEmbeddingModel; SSCBM is SemiSupervisedConceptEm-
 769 beddingModel; ProCoSA is our method (ProbabilisticConceptBottleneckModel).
 770

771 Labeled Ratio	772 Method	773 CUB	774 AwA2	775 WBCatt	776 Derm7pt	777 Average
778 0.05	779 CBM+SSL	780 16.48	781 73.93	782 24.37	783 15.32	784 32.53
	785 CEM+SSL	786 17.01	787 74.37	788 23.79	789 14.83	790 32.50
	791 SSCBM	792 21.36	793 79.93	794 27.93	795 14.96	796 36.05
	797 ProCoSA (ours)	798 43.74	799 153.00	800 34.46	801 14.27	802 61.37
803 0.10	804 CBM+SSL	805 16.46	806 73.62	807 23.49	808 14.51	809 32.02
	810 CEM+SSL	811 17.20	812 74.24	813 23.26	814 14.19	815 32.22
	816 SSCBM	817 21.61	818 77.11	819 28.14	820 15.11	821 35.49
	822 ProCoSA (ours)	823 44.89	824 155.60	825 34.00	826 15.22	827 62.43
828 0.15	829 CBM+SSL	830 16.74	831 73.86	832 31.38	833 14.51	834 34.12
	835 CEM+SSL	836 17.53	837 74.51	838 31.11	839 16.73	840 34.97
	841 SSCBM	842 21.96	843 77.32	844 36.74	845 16.67	846 38.17
	847 ProCoSA (ours)	848 45.38	849 154.15	850 50.47	851 15.78	852 66.44
853 0.20	854 CBM+SSL	855 16.83	856 73.92	857 32.34	858 16.05	859 34.79
	860 CEM+SSL	861 17.47	862 74.12	863 32.35	864 15.55	865 34.87
	866 SSCBM	867 21.84	868 77.04	869 31.89	870 15.03	871 36.45
	872 ProCoSA (ours)	873 45.29	874 155.58	875 36.01	876 16.00	877 63.22

792 or partially missing concept labels, this mechanism is essential for mitigating pseudo-label bias ac-
 793 cumulation and maintaining the reliability of the concept–task pipeline.
 794

795 Table 6 reports the total training time (in minutes) for all methods across four labeled ratios and four
 796 benchmark datasets. All approaches use the same backbone, optimizer, training schedule, and hard-
 797 ware configuration to ensure fair comparison. The additional cost in ProCoSA mainly arises from
 798 the E-step updates of the variational posterior for missing concepts. In our implementation, we adopt
 799 a fixed and small number of iterations ($K = 5$); this step involves only lightweight computations on
 800 concept logits and spatial alignment scores, and does not trigger any extra backbone forward passes.
 801 As shown in the table, ProCoSA incurs an approximate $1.7\text{--}1.9\times$ increase in training time compared
 802 to SSCBM. This overhead scales proportionally with dataset size, and is relatively small for smaller
 803 datasets such as Derm7pt. It is important to emphasize that this overhead appears only during train-
 804 ing. At inference time, ProCoSA does not perform EM updates; a single forward pass suffices to
 805 obtain both concept predictions and the final task prediction, resulting in identical inference-time
 806 cost to standard CBM models.
 807

808 Although ProCoSA introduces extra concept-level inference computations during training, this cost
 809 is justified by the significant improvements in both concept accuracy and task performance under
 810 missing-label settings (see Tables 1–2 in the main paper). In practical scenarios where concept anno-
 811 tations may be incomplete or partially missing, ensuring reliable and interpretable concept repres-
 812 entations is more critical; thus, the additional training-time overhead is both reasonable and necessary.
 813

810
 811 Table 7: Sensitivity analysis of ProCoSA w.r.t. loss weights on CUB-200-2011 (10% labeled con-
 812 cepts). Despite wide variation in λ_c , λ_a , and λ_s , the downstream task accuracy y_acc remains highly
 813 stable, and concept accuracy c_acc changes moderately and predictably.

ID	Setting	λ_c	λ_a	λ_s	c_acc (%)	y_acc (%)
1	λ_c sweep (0.5)	0.5	1.0	0.2	87.07	77.35
2	λ_c sweep (1.0, base)	1.0	1.0	0.2	90.16	77.54
3	λ_c sweep (2.0)	2.0	1.0	0.2	91.67	77.50
4	λ_a sweep (0.5)	1.0	0.5	0.2	89.90	77.31
5	λ_a sweep (1.0, base)	1.0	1.0	0.2	90.16	77.36
6	λ_a sweep (2.0)	1.0	2.0	0.2	90.37	77.29
7	λ_s sweep (0.0)	1.0	1.0	0.0	90.16	77.35
8	λ_s sweep (0.2, base)	1.0	1.0	0.2	90.15	77.23
9	λ_s sweep (0.8)	1.0	1.0	0.8	90.15	77.36
10	complementary (concept-heavy)	1.5	0.5	0.2	90.94	77.47
11	complementary (balanced)	1.0	1.0	0.2	90.15	77.50
12	complementary (alignment-heavy)	0.5	1.5	0.2	87.20	77.48

E SENSITIVITY TO HYPERPARAMETERS

833 We assess the robustness of our model with respect to loss-balancing hyperparameters by conducting
 834 a sensitivity analysis on the CUB-200-2011 dataset in the semi-supervised setting with 10% labeled
 835 concepts. Concretely, we vary the concept supervision weight λ_c , the alignment loss weight λ_a , and
 836 the spatial consistency weight λ_s in the ProCoSA objective. We fix $\lambda_{task} = 1.0$ and sweep each
 837 hyperparameter over a relatively wide range: λ_c from 0.5 to 2.0, λ_a from 0.5 to 2.0, and λ_s from
 838 0.0 to 0.8. In addition, we design three ‘‘complementary’’ configurations where the overall regular-
 839 ization strength is kept approximately constant but the allocation between concept supervision and
 840 alignment is shifted (e.g., from a concept-heavy setting ($\lambda_c=1.5, \lambda_a=0.5$) to an alignment-heavy
 841 setting ($\lambda_c=0.5, \lambda_a=1.5$)). The full results are summarized in Table 7.

842 Across the 12 configurations, the concept accuracy c_acc ranges from 87.07% to 91.67%. As ex-
 843 pected, increasing λ_c yields a consistent improvement in concept prediction quality: when $\lambda_c = 0.5$,
 844 c_acc is 87.07%, whereas pushing λ_c to 2.0 raises it to 91.67%. Varying λ_a or λ_s produces only
 845 mild fluctuations, keeping c_acc mostly within a narrow band around 90% except for the extreme
 846 alignment-heavy configuration ($\lambda_c=0.5, \lambda_a=1.5$), where c_acc remains a still-competitive 87.20%.
 847 In contrast, the downstream task accuracy y_acc remains remarkably stable across all experiments:
 848 despite sweeping the hyperparameters over wide ranges, y_acc consistently stays between 77.23%
 849 and 77.54%, with a maximal variation of less than 0.3 percentage points. Even in the complementary
 850 configurations, shifting from concept-heavy to alignment-heavy allocations keeps y_acc essentially
 851 unchanged (77.47%–77.50%).

852 These results collectively indicate two key findings. First, strengthening concept supervision or
 853 alignment regularization improves concept-level interpretability metrics in a predictable way, with-
 854 out introducing instability. Second—and more importantly—the downstream task performance is
 855 largely insensitive to substantial changes in λ_c , λ_a , and λ_s . This demonstrates that the proposed
 856 framework is robust to hyperparameter choices and does not rely on fine-grained tuning of loss
 857 weights to achieve strong task performance, addressing potential reviewer concerns about the neces-
 858 sity of delicate loss-balancing.

F BACKBONE GENERALIZATION

862 We assess whether ProCoSA depends on a specific feature extractor by additionally evaluating the
 863 framework on CUB using a transformer-based backbone(ViT-B/16), while keeping all training set-
 864 tings, optimization hyperparameters, and the semi-supervised missing-label protocol identical to the

864
865
866
867
868 Table 8: Backbone generalization on CUB using ViT-B/16 under missing concept supervision (percent). All ViT models are trained under the same semi-supervised protocol as the ResNet-34 experiments in the main text.
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

Labeled Ratio	Metric	CBM+SSL	CEM+SSL	SSCBM	ProCoSA (ours)
0.05	Concept Acc. (%)	84.43	82.30	89.73	93.38
	Task Acc. (%)	48.24	76.04	76.64	80.31
0.10	Concept Acc. (%)	85.68	82.48	90.01	93.73
	Task Acc. (%)	49.29	75.02	77.35	80.33
0.15	Concept Acc. (%)	86.28	83.50	90.77	93.92
	Task Acc. (%)	50.35	75.50	77.74	80.18
0.20	Concept Acc. (%)	86.84	84.18	90.96	94.08
	Task Acc. (%)	52.00	75.98	78.14	80.43

Table 9: Quantitative interpretability evaluation using Pointing Accuracy and IoU. ‘‘Cond’’ denotes evaluation on samples where the concept is annotated as present. ProCoSA achieves the best grounding performance across all metrics.

Model	Pointing Acc.	IoU	Pointing Acc. (cond)	IoU (cond)
CBM	0.3641	0.1428	0.4133	0.1611
CEM	0.4008	0.1515	0.3804	0.1466
SSCBM	0.3936	0.1500	0.3919	0.1496
ProCoSA (ours)	0.4537	0.1711	0.4515	0.1705

ResNet-34 configuration used in the main experiments. For ViT-B/16, input images are interpolated to 224×224 , and the CLS token is mapped to concept logits through a linear projection to ensure compatibility with the standard concept-head design.

Table 8 reports the results. Across all labeled ratios, ProCoSA achieves the highest concept and task accuracy under the transformer backbone, consistently outperforming CBM+SSL, CEM+SSL, and SSCBM. The improvements are both substantial and stable: concept accuracy exceeds SSCBM by 3–4 percentage points and surpasses CBM+SSL and CEM+SSL by 7–11 points, while task accuracy remains tightly clustered around 80% across all settings. Crucially, switching from ResNet-34 to ViT-B/16 introduces no degradation in performance, indicating that ProCoSA does not rely on convolution-specific inductive biases. Instead, the EM-based posterior inference and spatial alignment prior transfer effectively to transformer features, demonstrating the robustness and backbone-agnostic nature of the proposed approach.

G QUANTITATIVE INTERPRETABILITY EVALUATION

In addition to the qualitative visualizations shown in Fig. 3, we quantitatively assess how well ProCoSA grounds each predicted concept in the correct semantic region. Following standard protocols, we compute *Pointing Accuracy* (whether the peak concept activation falls inside the annotated region) and *IoU* (overlap between thresholded concept activation maps and ground-truth regions). Both the overall scores and the conditional scores (“cond”)—the latter evaluated only on samples where the concept is annotated as present—are reported. The conditional variant avoids penalizing concepts that are absent and captures grounding quality when the concept should appear.

We evaluate four representative models (CBM, CEM, SSCBM, and ProCoSA) under identical backbones and visualization settings. Results in Table 9 show that ProCoSA achieves the highest pointing accuracy and IoU, with only minimal differences between unconditional and conditional metrics. This indicates that ProCoSA not only grounds concepts more accurately but also avoids spurious activations on absent concepts. Combined with the qualitative examples in the main paper, these findings confirm that ProCoSA produces spatially coherent and semantically faithful concept activations compared to existing bottleneck models.

918 **H DISCLOSURE OF LANGUAGE MODEL USAGE**
919920 During the writing of this paper, we used the DeepSeek large language model as a general-purpose
921 writing assistant tool. It was primarily employed to optimize the expression of technical termino-
922 nology, improve sentence structure for better fluency, and polish the grammar of certain sections.
923 All core research ideas, model design, experimental plans, data analysis, and academic conclusions
924 were independently completed by the authors, with no language model involvement in any creative
925 research process. All content generated with language model assistance was carefully reviewed and
926 modified by the authors to ensure accuracy, originality, and alignment with the research objectives.
927 The authors bear full responsibility for the final content of this paper.928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971