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Abstract

Currently, Large Language Models (LLMs)
have achieved remarkable results in machine
translation. However, their performance in
multi-domain translation (MDT) is less satis-
factory, the meanings of words can vary across
different domains, highlighting the significant
ambiguity inherent in MDT. Therefore, eval-
uating the disambiguation ability of LLMs in
MDT, remains an open problem. To this end,
we present an evaluation and analysis of LLMs
on disambiguation in multi-domain translation
(DMDTEval), our systematic evaluation frame-
work consisting of three critical aspects: (1)
we construct a translation test set with multi-
domain ambiguous word annotation, (2) we
curate a diverse set of disambiguation prompt-
ing templates, and (3) we design precise dis-
ambiguation metrics, and study the efficacy of
various prompting strategies on multiple state-
of-the-art LLMs. Our extensive experiments
reveal a number of crucial findings that we be-
lieve will pave the way and also facilitate fur-
ther research in the critical area of improving
the disambiguation of LLMs. Our code and
data will be released.

1 Introduction

In recent years, Large Language Models (LLMs)
have demonstrated increasing capabilities and ap-
plications across various Natural Language Pro-
cessing (NLP) tasks (Zhao et al., 2023; Pan et al.,
2023; Qin et al., 2024), benefiting from the ultra-
large-scale training data and computation resources.
Notably, LLMs achieving promising results in ma-
chine translation (MT) that demonstrate their po-
tential in practical applications (Jiao et al., 2023b;
Hendy et al., 2023; Wang et al., 2024; Feng et al.,
2024; Qian et al., 2024).

However, the performance of LLMs in multi-
domain translation (MDT) is less than satisfactory
(Jiao et al., 2023b; Zheng et al., 2024; Hu et al.,
2024b). This is because LLMs rely on extensive
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Figure 1: Our motivation. We prompt LLMs with do-
main label to disambiguate in Qwen-2.5-7B-Instruct.

pre-training data, but multi-domain parallel train-
ing corpora are exceedingly scarce. This scarcity
restricts the translation capabilities of LLMs, hin-
dering their ability to effectively acquire cross-
domain knowledge and leading to translation am-
biguities. As shown in Figure 1, directly using
LLMs for translation leading to word ambiguities.
For instance, the term “system” which should be
translated as “#k % (framework), may be mistrans-
lated as " & 4" (the literal translation of system),
this presents a significant challenge for LLMs in
multi-domain translation. However, when domain-
specific information is provided, the translations
become more accurate. The critical issue, there-
fore, is how to effectively utilize prompting to en-
hance the representation of domain-specific infor-
mation. Recent studies have explored the perfor-
mance of LLMs in multi-domain translation (Hu



et al., 2024b) and investigated fine-tuning LLMs
using domain-specific parallel corpora (Hu et al.,
2024b; Zheng et al., 2024). However, three key re-
search questions (RQ) remain unresolved in MDT:

& RQ1: How to quantify the disambiguation
ability of LLMs in multi-domain translation?

% RQ2: Can various prompting techniques help
LLMs disambiguate in multi-domain transla-
tion?

% RQ3: What domain knowledge is essential
for LLMs to achieve effective multi-domain
translation?

To answer and explore the aforementioned ques-
tions, we introduce a novel evaluation and analy-
sis of LLMs on disambiguation in multi-domain
translation for LLMs (DMDTEval) to tackle the
challenges in MDT. For RQ1: We employ a word
alignment tool to construct a multi-domain ambigu-
ity vocabulary and manually annotate ambiguous
words in the test set. Additionally, we design an
evaluation metric to assess disambiguation ability
in translation and compute the accuracy of ambigu-
ous words being correctly translated. For RQ2:
We design multiple disambiguation prompting tem-
plates to evaluate the translation performance of
prominent LL.Ms across multiple domains. For
RQ3: We conduct extensive experiments and pro-
vide a detailed analysis and findings based on these
experimental results.

In summary, the main contributions of our work
can be summarized as follows:

* To the best of our knowledge, we are the
first to construct a MDT test set with ambigu-
ous word annotations, containing 10 domains
across 2 language pairs: English-Chinese and
German-English. We will open-source this
dataset to facilitate research on the disam-
biguation of LLMs in MDT.

* We systematically explore various disam-
biguation prompting strategies, including
zero-shot, chain-of-thought (CoT), few-shot,
and reflection prompting, to evaluate multi-
domain translation quality using 5 popular
open-source LLMs.

* We investigate the types of domain knowl-
edge required by LLMs to evaluate transla-
tions across 2 language pairs and 10 domains,

focusing on sentence-level and word-level do-
main knowledge, domain-specific examples,
and domain discrimination capabilities.

The rest of the paper is structured as follows:
Section 2 discusses relevant work in MDT, while
Section 3 introduces the overall evaluation frame-
work. Section 4 describes the processing of test set
construction. Section 5 describes the disambigua-
tion prompting templates. Evaluation metrics are
presented in Section 6. Section 7 concludes our
study and outlines future directions.

2 Related work

Multi-domain Translation. Multi-domain transla-
tion seeks to design a unified NMT model to trans-
late texts across various domains, which can be
divided into sentence-level and word-level domain
representation learning methods. Sentence-level
strategy consists mainly of: Domain Tag (Kobus
et al., 2017), Domain Discriminator (Britz et al.,
2017), and Auto Clustering (Tars and Fishel, 2018;
Aharoni and Goldberg, 2020). Word-level strat-
egy: Zeng et al. (2018) and Su et al. (2021) design
a word-level discriminator to learn the domain-
specific representation of words. Previous work
proposes domain proportion mechanism to improve
the adaptability of each individual word domain
(Jiang et al., 2020; Lai et al., 2022; Zhang et al.,
2021; Man et al., 2023, 2024b,c). In summary, the
above-mentioned traditional methods based on con-
ventional encoder-decoder framework. However,
we aim to explore the performance of disambiguate
when utilizing the disambiguation prompting tem-
plates in LLMs.

LLMs for Machine Translation. LL.Ms for ma-
chine translation can be broadly divided into three
main categories. The first category focuses on lever-
aging prompting techniques (Vilar et al., 2022;
Jiao et al., 2023b; Zhang et al., 2023; Moslem
et al., 2023; He et al., 2024) to enhance and an-
alyze the performance of machine translation us-
ing LLMs, such as multilingual translation (Zhu
et al., 2024), translation evaluation (Qian et al.,
2024), low-resource translation (Moslem et al.,
2023), document-level translation, multi-domain
translation (Hu et al., 2024a), and etc. The second
category focuses on fine-tuning LLMs to improve
their performance in downstream NLP tasks. For
example, ALMA (Xu et al., 2023) leverages mono-
lingual data for low-resource languages, and Par-
roT (Jiao et al., 2023a), which uses human-written
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Figure 2: Our DMDTEval evaluation framework consists of Data, Prompting, LLMs, and Metrics. DK represents

for the domain knowledge.

translations and feedback for high-quality results,
have been developed. Additionally, TIM (Zeng
et al., 2023) utilizes comparison data to guide mod-
els toward better translations. Our approach falls
within the first category, building upon previous
research (Zhu et al., 2024; Qian et al., 2024; Hu
et al., 2024a). However, the key distinction lies in
our focus on identifying the necessary information
for MDT with LLMs for disambiguate, and fur-
ther designing various disambiguation prompting
mechanisms to enhance translation performance.

3 DMDTEval: Evaluation Framework

In our work, our goal includes (1) evaluating the
influence of domain information in LLMs’ transla-
tion, (2) and designing the metrics of word ambi-
guity. Therefore, we design a complete evaluation
framework, as shown in Figure 2.

Data. Currently, the publicly available test sets
of domain-specific machine translation is scarce.
We use the same dataset as in previous research
(Man et al., 2024a; Hu et al., 2024b), we mainly
utilize two multi-domain machine translation test
sets: UM-Corpus' (English-Chinese), including
five domains: Education, Law, News Science, and
Subtitles (Tian et al., 2014), and OPUS? (German-
English), including five domains: IT, Koran, Laws,

'http://nlp2ct.cis.umac.mo/um-corpus/
2http://opus.nlpl.eu/

English-Chinese

Train set  Edu  Laws News Sci Sub
444K 207K 443K 263K 220K

Test set Edu Laws News Sci Sub

790 456 1500 503 597

German-English

Train set IT Kor Laws Med Sub
211K 16K 434K 233K 470K

Test set IT Kor Laws Med Sub
2000 2000 2000 2000 2000

Table 1: The statistics of multi-domain translation data
sets. Edu represents for the Education domain, Sci
represents for the Science domain, and Sub represents
for the subtitles domain.

Medical, and Subtitles (Aharoni and Goldberg,
2020). We utilize the train set from these domains
to obtain an ambiguity vocabulary, which is then
used to annotate the test set for these domains. The
overall statistics are listed in Table 1. The detailed
construction process of the test set in Section 4.

Prompting Templates. LL.Ms translate a source
language into a target language with prompts.
Therefore, designing an effective prompt is the key
to unlocking the translation capabilities of LLMs.
In our work, we evaluate impact of different base
prompting strategies, including: Zero-shot learn-



ing, Chain-of-Thought (COT), Few-shot learning,
and Reflection, and we further focus on design
disambiguation prompting to improve translation
performance of LLMs in Section 5: (1) Zero-shot
prompting directly asks LLM to translate a source
input into the target language (Liu et al., 2018).
(2) Chain-of-thought (CoT) prompts LLMs to
reason about the input before generating an out-
put (Wei et al., 2022). (3) Few-shot prompting
( i.e., In-context learning): this prompting sup-
plies an LLM with task-specific examples before
querying it (Brown, 2020). (4) Reflection (Shinn
et al., 2024) further reflection on the generated
translations yields new answers. To comprehen-
sively compare multiple prompting templates, we
divide these templates into base and disambigua-
tion prompting templates.

Model Selection. In order to achieve more ac-
curate and cost-effective replication, we are us-
ing the popular open-source model available at
present. Our model selection can be divided into
the following two categories: (a) Open-source:
we selected LLama-3-8B (Grattafiori et al., 2024),
Mistral-7B (Jiang et al., 2024), Gemma-2-9b (Team
et al., 2024), and Qwen-2.5-7B which was specif-
ically tested on a diverse set of 12 languages and
showed impressive multilingual capabilities (Bai
et al., 2023). (b) LLM-based translation model:
ALMA-7B fine-tuned in Llama-3-7B with transla-
tion instructions (Xu et al., 2024). For all 5 selected
models, we used the instruction-tuned version, i.e.,
the chat model, for zero-shot, CoT and few-shot
inference. All our experiments were run using 1
x NVIDIA V100 32G, for different LLM variants.
We used vLLM (Kwon et al., 2023) to save infer-
ence time. We keep the parameters consistent with
those used in previous study (Qian et al., 2024).
Specifically, we chose the default hyperparameter
settings in vLLM for all our experiments, i.e., 0.8
as temperature 4 , 0.95 for top_p. The input se-
quence length was chosen as 1024 for zero-shot
and CoT inference and 3000 for few-shot inference.
In addition, considering that GPT is also one of
the most popular closed-source models, we further
evaluated the performance of GPT-40-mini. The
results are presented in Appendix C.

4 Test set Construction

In this section, we aim to construct a multi-domain
ambiguous word vocabulary to annotate the test set.
Our annotation processing consists of three steps:

Algorithm 1 Ambiguous Vocabulary Construction

1: Input: Bilingual Vocabulary for multiple domains:
Vi, V2, Vs, Va, Vs
: Output: Ambiguous Vocabulary for each domain:
AVy, AVa, AVs, AVy, AV
: for each domain i € {1,2,3,4,5} do
Initialize AV; < ()
for each (s,t) € V; do
for each j € {1,2,3,4,5},7 # i do
if 3(s,t’) € V; and ¢’ # ¢ then
Add (s,t) and (s,t’) to AV,
end if
end for
end for
: end for
: Return: AVy, AV,, AVs, AV, AVs

[\
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Step 1: Bilingual Vocabulary Construction. In
the first step, we utilize Awesome-Align® (Dou and
Neubig, 2021) to perform word alignment on train-
ing corpora from multiple domains and obtain a
bilingual lexicon. Then, we deduplicate and merge
the bilingual vocabulary for each domain based
on the source language. Through the above opera-
tions, we can obtain ambiguous words within each
domain (i.e., polysemy phenomenon).

Step 2: Ambiguous Vocabulary Construction.
In the second step, we further construct a cross-
domain ambiguity vocabulary based on the bilin-
gual vocabulary from the step 1. Algorithm 1 iden-
tifies ambiguous vocabulary in multiple domains
by comparing bilingual word pairs across domains.
For each domain, it initializes an empty ambiguous
vocabulary set. Then, for each word pair in the
domain, it checks if the source word appears in
another domain with a different target translation.
If so, both translations are added to the ambiguous
vocabulary set. Finally, the algorithm returns the
ambiguous vocabulary for each domain. The final
vocabulary size is shown in Table 2.

Step 3: Ambiguous Word Annotation. In the
third step, we manually annotate the sentences in
the test set of each domain based on the ambiguous
vocabulary obtained in the second step. The num-
ber of one-to-many source language words in the
test set is shown in Table 2.

5 Disambiguation Prompting Templates

This section presents multiple prompting strategies
combining the domain knowledge (DK).

3https://github.com/neulab/awesome-align



English-Chinese
Train set  Edu News Sci  Sub
30K 54K 33K 50K 21K
Test set Edu News  Sci  Sub
492 686 720 471 516

Laws

Laws

German-English

Train set 1T Kor Med Sub
19K 9K 33K 45K 24K
Test set IT Kor Med Sub
114 67 212 145 109

Laws

Laws

Table 2: The size of the ambiguous word list in the
training and test sets. Edu represents for the Education
domain, Sci represents for the Science domain, and Sub
represents for the subtitles domain.

5.1 Zero-shot Prompting +DK

In this work, our prompt includes 1) instructions
to perform the task such as “Please translate the
following sentence into <target language>" (i.e.,
Template 1, T1), and 2) domain-sensitive informa-
tion such as domain tag. Since Jiao et al. (2023b)
have shown that their prompt template can achieve
state of-the-art performance using ChatGPT, we
mainly followed their template to create our prompt
instruction as shown in Figure 2. We design the
Zero-shot Prompting +DK with sentence-level and
word-level strategies:

Sentence-level. We constructed prompt Template
5 “Please translate the following sentence into
<target language> according to the <domain tag>
domain”. This template mainly utilize the domain
information from the sentence-level domain tag.

Word-level. Template 6 “Please translate the fol-
lowing sentence into <target language> accord-
ing to the <domain tag> domain of each word”.
This template further utilize the domain informa-
tion of each word. We aim to evaluate whether
fine-grained domain information can disambiguate
and improve the capability of LLMs’ understand-
ing.

5.2 COT Prompting + DK

We also tested whether CoT prompting could im-
prove LLMs’ performance by utilizing reasoning-
based steps for quality evaluation, Template 4
"Please translate the following sentence into <tar-
get language> step by step: Step 1: read this sen-
tence. Step 2: translate this sentence." Moreover,

we design two disambiguation prompting by devis-
ing Template 4:

Template 7: In this prompt, we give domain tag
in step 2. This template further utilize domain
information in reasoning ;

Template 8: In this prompt, we ask LLMs to au-
tomatically discriminate which domain the source
sentence comes from in step 1.

5.3 Few-shot Prompting + DK

We utilize the BM25 (Agrawal et al., 2023) to re-
trieves the most similar example to the test source
from the training datastore. We use 5-shot exam-
ples for translation in our main results, this prompt
is Template 3. To further integrate domain infor-
mation, we add domain tags to each example, en-
hancing the LLM’s ability to perceive the domain
as Template 9.

5.4 Reflection Prompting + DK

Reflection encourages LL.Ms to review and refine
its responses for improved accuracy and coherence
(Shinn et al., 2024). After reflecting on its initial
output, the large model regenerates the translation
as Template 4. We further enhance this process
by incorporating domain information, encouraging
the model to produce domain-specific translation
results, as shown in Figure 2 Template 10.

6 Evaluation Metrics

In this section, we focus on two evaluation metrics:
overall translation performance and disambiguation
accuracy.

6.1 Metrics of Translation Quality

To better evaluate translation performance, we
adopt two widely-used metrics: SacreBLEU (Post,
2018), a n-gram matching-based metric, and the
wmt22-comet-da model is used to generate the
COMET* scores, the scope is 0-1, for convenience,
we multiply the comet score by 100 in our exper-
imental results. In particular, we use the paired
bootstrap resampling methods (Koehn, 2004) for
the statistical significance test. The specific results
are shown in Tables 3 and 4.

Comparison of Base Prompting. Table 3 presents
the base prompting results of templates T1-T4 for
different LLMs, including LLaMA-3-8B, Qwen-
2.5-7B, ALMA-7B, Mistral-7B, and Gemma-2-9B

*https://github.com/Unbabel/COMET



Education Laws News Science Subtitles AVG

T1 27.86/86.87 23.35/88.95 28.57/84.02 25.39/84.39 21.05/78.56 25.24/84.56

ALMA-TB T2 30.45/87.14 41.43/89.24 28.13/83.99 25.79/84.36 20.71/78.57 29.30/84.66
T3 29.64/86.86 43.41/89.54 27.22/83.65 26.00/84.51 20.94/78.67 29.44/84.65

T4 27.86/86.88 2491/89.07 28.26/83.93 25.82/84.50 21.24/78.64 25.62/84.60

T1 2297/77.40 22.88/71.30 16.03/7231 15.81/74.04 13.94/69.33 18.33/72.88

LLaMA-3-8B T2 2270/79.50 31.21/73.31 21.32/74.89 19.87/76.00 16.74/71.16 22.37/74.97
T3 28.20/86.67 43.27/87.67 23.92/8295 2259/84.01 18.94/77.69 27.38/83.80

T4 20.37/7876 26.53/73.23 17.77/76.09 17.67/76.69 16.31/72.19 19.73/75.39

Tl 14.86/77.96 26.01/79.96 16.22/77.40 15.68/78.56 14.63/72.67 17.48/77.31

Mistral-7B T2 19.04/81.53 24.10/79.76 15.71/77.90 15.09/80.34 14.11/74.08 17.61/78.72
T3 18.22/82.54 26.12/82.88 17.01/79.63 16.21/80.97 15.00/75.30 18.51/80.26

T4 10.99/7426  7.38/66.07 6.27/67.15 7.42/70.10 7.81/67.35 7.97 1 68.99

Tl 15.62/77.05 20.03/81.87 1596/78.28 17.66/7854 15.89/72.80 17.03/77.71

Gemma-2-9B T2 16.32/79.09 20.36/83.23 16.56/79.51 18.16/80.83 10.26/65.49 16.33/77.63
T3 18.12/81.08 20.66/83.35 16.78/79.80 18.99/82.79 13.69/69.35 17.65/79.27

T4 14.69/71.78 13.16/69.12 12.33/70.57 1525/71.26 11.10/66.42 13.31/69.83

T1 33.14/88.10 50.82/88.94 30.04/84.51 28.76/84.82 21.02/78.82 32.76/85.04

Qwen-2.5-7B T2 34.02/88.06 51.19/89.60 30.51/84.91 28.82/8591 23.14/79.26 33.54/85.55
: T3 34.17/88.17 50.48/89.22 29.91/84.66 28.33/85.64 2198/78.89 32.97/85.32

T4 26.75/86.06 47.77/81.76 26.16/82.771 2590/84.03 19.55/77.74 29.23/83.66

Table 3: BLEU and COMET scores on the English->Chinese translation task (T1-T4) with different open-source

LLMs. The best results are highlighted in bold.

in the English-to-Chinese translation task. Based
on the results, we summarize the following key
findings. (1) Qwen-2.5-7B achieves the highest
average BLEU and COMET scores across five do-
mains, demonstrating its superior cross-domain
translation capabilities. This highlights its robust-
ness and effectiveness in handling diverse domains,
making it the primary model for further exper-
iments. (2) Few-shot prompting (T3) performs
best on LLaMA-3-8B and ALMA-7B, indicating
that providing more in-domain examples signifi-
cantly enhances domain-specific translation qual-
ity. This suggests that example-driven prompt-
ing is particularly beneficial for improving multi-
domain adaptation. (3) Chain-of-Thought (COT)
prompting (T2) achieves better results on larger
LLMs, such as Qwen-2.5-7B and LLaMA-3-8B,
suggesting that reasoning-based prompting more
effectively activates domain knowledge, leading to
improved translation quality (Jiang et al., 2024).
(4) While Qwen-2.5-7B exhibits the most consis-
tent cross-domain performance, other models show
varying strengths under different prompting strate-
gies. For example, ALMA-7B and LLaMA-3-8B
benefit more from Few-shot prompting, whereas
Mistral-7B and Gemma-2-9B maintain relatively
stable but lower performance across tasks. (5)
Different LLMs respond differently to prompting
strategies, emphasizing the importance of select-
ing appropriate methods based on model charac-

teristics. Larger models tend to benefit more from
COT prompting, while smaller or less generalized
models achieve better performance with Few-shot
prompting. In summary, Qwen-2.5-7B emerges as
the best-performing model for cross-domain trans-
lation, and T3 (Few-shot) and T2 (COT) prove to
be effective prompting strategies depending on the
model’s characteristics.

Comparison of Disambiguation Prompting. As
shown in the top part of Table 4, for the English-
>Chinese translation direction, we summarize our
findings as follows: (1) Domain knowledge (DK)
generally improves translation quality, with the
most significant benefits observed in the Chain-
of-Thought (COT) and Reflection methods. (2)
Zero-shot prompting combined with DK shows
inconsistent results: TS5 outperforms T1 (+0.55
BLEU), but T6 underperforms (-0.28 BLEU), indi-
cating that DK’s impact varies based on the train-
ing strategy. (3) Few-shot prompting with DK
provides minor improvements, mainly benefiting
low-resource domains like Subtitles (+0.47 BLEU),
but shows limited gains or even slight degrada-
tion in high-resource domains. (4) Reflection with
DK achieves the most substantial improvement
(+3.77 BLEU on average), particularly in high-
resource domains like Education (+6.05 BLEU),
Laws (+2.84 BLEU), and News (+4.08 BLEU),
suggesting that this approach effectively integrates



English->Chinese

Education Laws News Science Subtitles AVG

Tl 33.14/88.10 50.82/88.94 30.04/84.51 28.76/84.82 21.02/78.82 32.76/85.04

Joro-shot 33.46/8821 51.39/89.20 30.36/84.92 28.78/86.13 22.53/79.35 33.30/ 85.56
irOBS‘KO T5-T1 +0.32/+0.11 +0.57/+0.26 +0.32/+0.41 +0.02/+1.31 +1.51/+0.53 +0.55/+0.52

wro 32.64/87.84 50.10/8829 30.10/8425 27.99/85.50 21.55/77.64 32.48/84.70
T6-T1 -0.50/-0.26 -0.72/-0.65 +0.06 /-0.26 -0.77 71+ 0.68 +0.53/-1.18 -0.28/-0.33

™ 34.02/88.06 51.19/89.60 30.51/8491 28.82/8591 23.14/79.26 33.54/85.55

cor 34.50/88.09 52.09/90.15 31.00/85.15 28.97/86.05 23.23/79.26 33.96/85.74
Jo DK T7-T2 +0.48 /+0.03 +09/+0.55 +049/+0.24 +0.15/+0.14 +0.09/+ 0.00 +042/+0.19

wio 33.56/88.22 50.39/88.79 30.15/84.88 28.95/86.05 22.52/79.30 33.11/85.45
T8-T2 -0.46 /+0.16 -0.8/-0.81 -0.36/-0.03 +0.13/+0.14 -0.62 /+0.04 -042/-0.10

Fowshor T3 34.17/88.17 50.48/89.22 29.91/84.66 28.33/85.64 21.98/78.89 32.97/85.32

DK 33.63/88.03 50.46/89.49 29.76/84.68 27.94/85.89 22.45/79.04 32.85/84.43
wro T9-T3 -054/-0.14 -0.02 /+0.27 -0.15/+0.02 -0.39/+0.25 +047/+0.15 -0.13/-0.98

Reflection T+ 26.75/86.06 47.77/87.76 26.16/82.71 25.90/84.03 19.55/77.74 29.23/83.66

Wioelgl’{"” 32.80/87.83 50.61/89.16 30.24/8457 28.60/85.68 22.75/79.11 33.00/85.27
T10-T4 +6.05/+1.77 +2.84/+ 1.40 +4.08/+1.86 +2.70/+1.65 +3.20/+1.37 +3.77/+1.61

Chinese->English
Education Laws News Science Subtitles AVG

Tl 22.19/83.05 36.03/83.48 17.63/80.31 16.52/81.36 15.34/76.46 21.54/80.93

Joro-shot 26.61/84.02 34.00/83.37 18.35/80.94 17.68/81.86 15.55/76.77 22.44/81.39
i ODSKO T5-T1 +4.42/+097 +-2.03/-0.11 +0.72/+0.63 +1.16/+0.50 +0.21/+0.31 +0.90/+0.46

wroe 25.05/83.44 33.42/82.67 1620/78.38 16.88/80.39 14.26/72.52 21.16/79.48
T6-T1 +2.86/+0.39 -2.61/-0.81 -143/-193 +0.36/-0.97 -1.08/-3.94 -038/-1.45

™ 26.65/84.17 33.49/83.44 17.82/80.6 18.12/81.82 15.71/76.75 22.36/81.36

cor 26.63/84.91 34.46/83.72 18.08/80.29 18.82/81.86 15.83/77.97 22.76/81.75
/o DK T7-T2 -0.02/+0.74 +097/+0.28 +0.26/ - 0.31 +0.70 / + 0.04 +0.12/+1.22 +0.41/+0.39

we 26.38/84.23 33.88/83.54 17.89/80.72 18.18/81.90 15.25/76.73 22.32/81.42
T8-T2 -0.27 /+0.06 +0.39/+0.10 +0.07/+0.12 +0.06/+0.08 -0.46/-0.02 -0.04 /+0.07

Fowshor T3 26.36/84.05 32.08/83.44 18.67/80.69 18.26/81.8 14.53/76.72 21.98/81.34

iw 5 Ko 27.11/83.96 32.11/83.56 18.68/80.8 18.33/81.91 14.97/76.96 22.24/81.44
wio T9-T3 +0.75/-0.09 +0.03/+0.12 +0.01/+0.11 +0.07/+0.11 +0.44/+0.24 +0.26/+0.10
Refiection T+ 15.55/78.96 28.33/80.06 16.07/79.35 15.15/79.86 13.94/74.81 17.81/78.61

oK 2433/83.69 3425/83.77 17.72/80.68 16.84/81.87 15.85/76.73 21.80/81.35
wro T10-T4 +8.78/+4.73 +5.92/+3.71 +1.65/+1.33 +1.69/+2.01 +191/+192 +3.99/+2.74

Table 4: BLEU and COMET scores on the English-to-Chinese translation task for T1-T10 with Qwen-2.5-7B. We

bold the best performance results.

domain-specific knowledge. Overall, our findings
indicate that incorporating DK is beneficial, espe-
cially for COT and Reflection methods, making
them preferable choices for domain-aware transla-
tion tasks.

For the Chinese-to-English translation direction,
Incorporating domain knowledge (DK) improves
translation performance, especially in Reflection
(+3.99 BLEU) and COT (+0.41 BLEU). In zero-
shot prompting, DK has mixed effects, with T5 out-
performing T1 (+0.90 BLEU) but T6 performing
worse (-0.38 BLEU). Few-shot prompting sees mi-
nor gains (+0.26 BLEU), while Reflection benefits
the most, notably in Education (+8.78 BLEU) and
Laws (+5.92 BLEU). Overall, DK is most effec-
tive in Reflection and COT, making them preferred

text stands for the disambiguation prompting templates.

choices for domain-specific translation. We fur-
ther present the results for the German-to-English
translation direction, as detailed in Appendix A.

6.2 Metrics of Disambiguate

To evaluate the disambiguation capability of DK,
we design two evaluation metrics: Alignment Ac-
curacy and GPT-4o0 Evaluator. In Table 3, we have
shown a strong performance of our approach. To
give a better understanding of our DK, we conduct
several detailed analyses and discussions in this
section on the English->Chinese translation task.

Alignment Accuracy. We count the total number
of ambiguous words n in the test set based on the
ambiguous word dictionary, and count the num-
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Figure 4: Comparison of Disambiguation Accuracy of
Different Templates

ber of correctly translated ambiguous words m to
represent alignment accuracy: “*. As shown in Fig-
ure 4, by comparing with different base prompting
templates, DK templates achieve the performance
improvements of alignment accuracy, indicating
that DK achieve correct translations of ambiguous
words by enhancing domain-specific information,
thereby eliminating ambiguity and further improv-
ing translation performance.

GPT-40-mini Evaluator. Previous research (Qian
et al., 2024) has shown that using GPT for trans-

lation quality evaluation is a feasible research ap-
proach. Therefore, we design a prompt to evaluate
the disambiguation capability of large language
models using GPT-4o0-mini. The specific prompt
is: “source sentence: < >, target sentence: < >,
generate sentence: < >. Please find the ambiguous
word pairs in the source language sentence and the
target language sentence, and count the number of
ambiguous word pairs. Refer to the above word
pairs to further count the accuracy of disambigua-
tion in the generated sentences. . We calculate the
average accuracy across different templates with
GPT-40-mini in Figure 3. DK has improved disam-
biguation accuracy across the four strategies. The
consistency with Figure 4 further proves the effec-
tiveness of disambiguation prompting. We provide
specific examples in Appendix B to analyze and
illustrate the effectiveness in disambiguation capa-
bility.

7 Conclusion

In this paper, we construct a test set with multi-
domain ambiguous word annotation, introduce a
novel domain disambiguation metric, and inves-
tigate various prompting strategies, particularly
disambiguation prompting, to evaluate their effec-
tiveness in resolving ambiguities across different
domains. Our results demonstrate that integrat-
ing domain knowledge and examples significantly
improves LLLMs’ disambiguation accuracy, outper-
forming traditional prompting methods. We also
find that sentence-level domain information and
domain-specific examples play a crucial role in
MDT. Furthermore, while standard metrics like
BLEU and COMET may not directly capture im-
provements in disambiguation accuracy, they re-
main valuable for assessing overall translation per-
formance. For future work, we will explore how
fine-tuning LLMs with domain-specific data could
further enhance their disambiguation and transla-
tion quality.



Limitations

Our method was initially validated on models with
around 7 billion parameters and has not been tested
on larger open-source models. Larger models may
potentially yield better performance. Additionally,
regarding the evaluator, considering the high eco-
nomic cost of using GPT-4, we have chosen to use
the more cost-effective GPT-40-mini in this work.
We plan to address these limitations and expand on
them in future work.
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A German-English Translation Task

To further show the advantages of our method,
we compare the results of DK with Qwen-2.5-7B
on the German->English translation task. Table
5 presents detailed comparisons, it is worth not-
ing that in the German-to-English translation task,
compared to the basic prompts (T1-T4), all five
disambiguation prompts (T5-T10), except for T8,
showed significant improvements. For example,
TS5 achieved increases of +4.75 and +4.54 in BLEU
and COMET scores, respectively, these results of
German-to-English translation tasks further vali-
date the robustness and versatility of our approach
DK. Regarding the performance decline of T8. In
addition, we observed performance differences for
TS5 when the target language is Chinese versus Ger-
man. Specifically, compared to T1, TS shows a
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German->English

Education

Laws

News

Science

Subtitles

AVG

29.67/ 60.08
30.37/72.03
23.54/67.82

12.85/69.12
15.10/70.26
14.64 7 69.79

25.20/75.69
31.05/80.33
28.42/78.66

22.06/72.67
32.26/76.98
32.63/77.63

20.65/74.20
25.42/74.86
18.74 /70.77

22.09/70.35
26.84/74.89
23.59/72.93

33.56/80.28
33.01/77.45
30.91/72.82

15.50/71.38
14.34 /70.50
14.60/70.32

32.98/82.87
29.97/81.38
29.59/79.93

36.41/81.64
33.47779.96
31.86/77.69

26.40/76.95
25.54/76.62
25.05/76.13

28.97/78.62
29.20 / 83.70
26.40/75.38

33.67/77.75
33.34/77.50

15.61/71.24
15.78 /71.46

33.18/82.61
33.90/82.71

34.58/79.59
34.30/79.61

25.721776.52
25.82/76.51

28.55/717.54
28.63 /77.56

28.90/76.01
32.14/77.74

13.52/69.48
15.41/71.15

29.03/80.50
30.97/82.03

33.01/79.29
33.34/79.45

21.16/73.77
25.48/75.99

25.13/75.81
27.47 /17727

Table 5: BLEU and COMET scores on the German->English translation task for T1-T10 with Qwen-2.5-7B. We
bold the best performance results. text stands for the disambiguation prompting

performance decline in Chinese but an improve-
ment in English. We hypothesize that this is partly
due to the larger volume of training data available
for English in large language models. From a lin-
guistic perspective, English inherently has word
segmentation, making it easier to enhance domain-
specific information when considering word-level
features.

B Case Study

Within the example in Table 6 shows that five trans-
lation cases selected from the test datasets in the
different domains. We can see that benefiting from
the disambiguation prompting mechanism, our ap-
proach can generate the correct translation, further
showing that our method can effectively learn mul-
tiple new domain knowledge.

C Results of GPT-40-mini

As shown in Table 7, compared to the base prompt-
ing, DK has improved both BLEU and COMET
scores across different strategies, further demon-
strating the stability of our method on GPT-40-mini.
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Domain | Education
Source Narrow the question down to a coherent and manageable set of issues.
Reference | {2 o8 B4R 8| — A Z[AA X . AL A .
‘TL | FFEARER —ER Bmanageable AR SE.
R A RER —mE R A B A L
KRG B — AR AT 2 PR A .
Domain | Laws
Source Torture or inhuman treatment of any resident shall be prohibited.
Reference | 5.k 3t & RA6ATBEA) &, T A JF A I8 69 24 45 .
‘T2 | EMERAFEzeEMSELF.
JE FF BAFR B b9 7 RATAFAEAT B R AR 4G .
AT G RAAFE REEA KA D . FABEFFE .
Domain | Science
Source The research involves atmospheric conditions at few levels above the ground.
Reference | b AH R A @I LEFRERGKRAKS .
‘T3 | HrRFARRE@AELSFOLESALEE.
WA R RI@I EETERGRARE -
Domain | News
Source You can get whiplash from reading the economic news coming out of China these days.
Reference | G XE R, [+ B2 53 AT HG RGBT -
T4 [ RETRONRBE T B E A7 AR E F R % Blwhiplash B .
RIT RS INRIAA X F B & 56937 M F &< Blwhipshock #9 2 X -

Table 6: English->Chinese translation cases. Blue indicates the correct translation, while red indicates an incorrect

translation.

English->Chinese

Education

Laws

News

Science

Subtitles

AVG

36.77/ 88.74
36.90/88.79
36.58 / 88.60

50.32/90.31
50.52/90.39
50.47/80.42

33.00/85.51
33.19/85.60
32.55/85.47

30.91/86.61
30.93/86.77
30.25/86.39

24.78 /1 80.02
25.33/80.36
25.24/79.98

35.16/86.24
35.37/86.38
35.02/84.17

37.22/88.15
38.96 / 88.61
34.22/80.23

49.81/90.19
49.86/90.21
45.36 / 85.63

32.68/85.45
32.74 / 85.54
30.26 / 83.00

31.08 / 86.24
32.88/86.42
31.11/85.01

25.44 /1 80.35
26.64/80.10
23.22/77.96

35.25/86.07
36.22 / 86.18
32.83/82.37

35.15/88.40
36.99/89.32

52.63/90.54
52.62/90.69

33.12/85.48
33.25/86.55

30.74 / 86.59
31.45/87.62

24.14/80.26
25.13/80.66

35.16/86.25
35.89/86.97

35.97 /88.50

50.60/90.14

32.74 /1 85.43

31.24/86.76

24.92/80.31

35.09/86.23

36.7

1/89.12 50.86/90.33 33.16/86.19 31.42/86.01 24.99/80.96 35.43/86.52

Table 7: BLEU and COMET scores on the English->Chinese translation task for T1-T10 with GPT-40-mini. We

bold the best p

erformance results. text stands for the disambiguation prompting
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