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ABSTRACT

Epistemic uncertainty plays a pivotal role in contemporary machine learning,
serving as a fundamental element that underlies decision-making processes, risk
evaluations, and the overall generalizability of models. In this work, we introduce
an innovative framework, diffusion ensembles for capturing uncertainty (DECU),
designed for estimating epistemic uncertainty within the realm of large high-
performing generative diffusion models. These models typically encompass over
100 million parameters and generate outputs within a high-dimensional image space.
Consequently, applying conventional methods for estimating epistemic uncertainty
is unrealistic without vast computing resources. To address this gap, this paper first
presents a novel method for training ensembles of conditional diffusion models in
a computationally efficient manner. This is achieved by fitting an ensemble within
the conditional networks while using a static set of pre-trained parameters for the
remainder of the model. As a result, we significantly reduce the computational
load, enabling us to train only a fraction (one thousandth) of the entire network.
Furthermore, this substantial reduction in the number of parameters to be trained
leads to a marked decrease (87%) in the required training steps compared to a
full model on the same dataset. Second, we employ Pairwise-Distance Estimators
(PaiDEs) to accurately capture epistemic uncertainty with these ensembles. PaiDEs
efficiently gauge the mutual information between model outputs and weights in
high-dimensional output space. To validate the effectiveness of our framework, we
conducted experiments on the Imagenet dataset. The results demonstrate our ability
to capture epistemic uncertainty, particularly for under-sampled image classes.
This study represents a significant advancement in detecting epistemic uncertainty
for conditional diffusion models, thereby casting new light on the black box of
these models.

1 INTRODUCTION

In this paper, we introduce diffusion ensembles for capturing uncertainty (DECU), a novel method for
measuring epistemic uncertainty in class-conditioned diffusion models generating high-dimensional
images (256 × 256 × 3). Epistemic uncertainty, distinct from aleatoric uncertainty, stems from a
model’s ignorance and can be reduced with more data, while aleatoric uncertainty arises from inherent
randomness in the environment and is thus irreducible (Hora, 1996; Der Kiureghian & Ditlevsen,
2009; Hüllermeier & Waegeman, 2021). We use an established metric, the mutual information
between model outputs and model weights I(y, θ), as our measure of epistemic uncertainty (Houlsby
et al., 2011).

Collecting data for image generation models can be a costly endeavor. Therefore, when seeking
to enhance a model, leveraging epistemic uncertainty becomes a crucial factor in selecting new
data points. This concept is frequently employed in Active Learning methodologies such as BALD
Houlsby et al. (2011) and BatchBALD Kirsch et al. (2019). This underscores the relevance of
applying our framework. It is essential to acknowledge that, at present, these models entail significant
training costs. As a result, we do not offer active learning experiments. However, with the anticipation
of future advancements in computational resources, there may be increased feasibility to explore
these ideas.
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Figure 1: The ensemble construction pipeline for DECU, shown here with two components. During
the reverse process, the previous latent vector zjt , time step t, and output from component j pass
through a UNet to yield zjt−1. Dashed lines signify the random selection of one ensemble component
for rollout until the branching point. In our ensembles, networks taking class labels as input are
randomly initialized and trained, with pre-trained encoders, decoders, and UNets for each component.

DECU leverages two key strategies: first, it efficiently trains an ensemble of diffusion models within a
subset of the network, streamlining the process of generating a distribution over model weights. This
is done using pre-trained networks from Rombach et al. (2022). Second, it employs pairwise-distance
estimators (PaiDEs), a non-sample-based method proven effective for estimating information-based
criteria on high-dimensional regression tasks (Kolchinsky & Tracey, 2017; Berry & Meger, 2023a).
PaiDEs evaluate the consensus amongst ensemble components by calculating the distributional
distance between each pair of components. Distributional distance serves as a metric for measuring
the similarity between two probability distributions. These pairwise distances are then aggregated to
approximate I(y, θ).

By combining our efficient ensemble technique for diffusion models with PaiDEs, we address the
challenge of capturing epistemic uncertainty in conditional diffusion models for image generation. To
the best of our knowledge, we are the first to address the problem of capturing epistemic uncertainty
in conditional diffusion models for image generation. We evaluate DECU on the Imagenet dataset
Russakovsky et al. (2015), and our contributions can be summarized as follows:

• We establish the framework of DECU for class-conditioned diffusion models (Section 3).
• We assess the effectiveness of DECU on Imagenet, a commonly used benchmark within the

community (Section 4.1).
• Additionally, we provide an evaluation of image diversity within DECU (Section 4.2).

2 BACKGROUND

2.1 PROBLEM STATEMENT

In the context of supervised learning, we define a dataset D = {xi, yi,0}Ni=1, where xi represents class
labels, and each yi,0 corresponds to an image with dimensions of 256× 256× 3. Our primary goal is
to estimate the conditional probability p(y|x), which is a complex, high-dimensional, continuous,
and multi-modal.

To effectively model p(y|x), we turn to diffusion models, which have gained significant recognition
for their ability to generate high-quality images (Rombach et al., 2022; Saharia et al., 2022). These
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Figure 2: The left image showcases an example of image generation for five class labels with low
epistemic uncertainty (bin 1300), arranged from left to right: bullfrog, carbonara, grey fox, container
ship, and yellow lady’s slipper. The right image illustrates an example of image generation for five
class labels with high epistemic uncertainty (bin 1), arranged from left to right: cleaver, Sealyham
terrier, lotion, shoji, and whiskey jug. Each row corresponds to an ensemble component and b = 0.

models employ a two-step approach referred to as the forward and reverse processes to generate
realistic images. Please note that we will omit the subscript i from yi,0 for simplicity in notation.
In the forward process, an initial image y0 undergoes gradual corruption through the addition of
Gaussian noise in T steps, resulting in a sequence of noisy samples y1, y2, . . . , yT :

q(yt|yt−1) = N (yt;
√
1− βtyt−1, βtI) q(y1:T |y0) =

T∏
t=1

q(yt|yt−1). (1)

The forward process draws inspiration from non-equilibrium statistical physics (Sohl-Dickstein et al.,
2015).

The reverse process aims to remove noise from the corrupted images and reconstruct the original
image, conditioned on the class label. This is accomplished by estimating the conditional distribution
q(yt−1|yt, x) using the model pθ. The reverse diffusion process can be represented as follows:

pθ(y0:T |x) = p(yT )

T∏
t=1

pθ(yt−1|yt, x) pθ(yt−1|yt, x) = N (yt−1;µθ(yt, t, x),Σθ(yt, t, x)). (2)

In this formulation, pθ(yt−1|yt, x) represents the denoising distribution parameterized by θ, which
follows a Gaussian distribution with mean µθ(yt, t, x) and covariance matrix Σθ(yt, t, x). The
forward and reverse diffusion processes each create a Markov chain to generate images.

To learn the reverse process pθ, one cannot usually compute the exact log-likelihood log(pθ(y0|x)).
Which leads to the use of the evidence lower bound (ELBO), akin to variational autoencoders (VAEs)
(Kingma & Welling, 2013). The ELBO can be expressed as follows:

− log(pθ(y0|x)) ≤ − log(pθ(y0|x)) +DKL(q(y1:T |y0) ∥ pθ(y1:T |y0, x)). (3)
The loss function in Equation (3) represents the trade-off between maximizing the log-likelihood of
the initial image and minimizing the KL divergence between the true posterior q(y1:T |y0) and the
approximate posterior pθ(y1:T |y0, x). Equation (3) can be simplified using the properties of diffusion
models. For a more comprehensive introduction of diffusion models, please refer to Ho et al. (2020).

2.2 EPISTEMIC UNCERTAINTY AND PAIDES

Uncertainty finds its foundation in probability theory, and it is conventionally examined through a
probabilistic perspective (Cover & Thomas, 2006; Hüllermeier & Waegeman, 2021). In the context
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of capturing uncertainty in supervised learning, a widely used metric is that of conditional differential
entropy, given by

H(yt−1|yt, x) = −
∫

p(yt−1|yt, x) ln p(yt−1|yt, x)dy.

Using conditional differential entropy, one can define epistemic uncertainty, as introduced by (Houlsby
et al., 2011), through the following expression:

I(yt−1, θ|yt, x) = H(yt−1|yt, x)− Ep(θ) [H(yt−1|yt, x, θ)] , (4)

where I(·) denotes mutual information and θ ∼ p(θ). Mutual information measures the information
gained about one variable by observing the other. When all of θ’s produce the same pθ(y0|yT , x),
I(yt−1, θ|yt, x) is zero, indicating no epistemic uncertainty. Conversely, when said distributions have
non-overlapping supports, epistemic uncertainty is high.

A distribution over weights becomes essential for estimating I(yt−1, θ|yt, x). One effective approach
for doing this is through the use of ensembles. Ensembles harness the collective power of multiple
models to estimate the conditional probability by assigning weights to the output from each ensemble
component. This can be expressed as follows:

pθ(yt−1|yt, x) =
M∑
j=1

πjpθj (yt−1|yt, x)
M∑
j=1

πj = 1, (5)

where M , πj and θj denote the number of model components, the component weights and different
component parameters, respectively. When creating an ensemble, two common approaches are
typically considered: randomization (Breiman, 2001) and boosting (Freund & Schapire, 1997). While
boosting has paved the way for widely adopted machine learning methods (Chen & Guestrin, 2016),
randomization stands as the preferred choice in the realm of deep learning due to its tractability and
straightforward implementation (Lakshminarayanan et al., 2017).

In the context of continuous outputs and ensemble models, Equation (4) often does not have a
closed-form solution due to the left hand-side:

H(yt−1|yt, x) =
∫ M∑

j=1

πjpθj (yt−1|yt, x) ln
M∑
j=1

πjpθj (yt−1|yt, x)dy.

Thus, previous methods have relied on Monte Carlo (MC) estimators to estimate epistemic uncertainty
(Depeweg et al., 2018; Postels et al., 2020). MC estimators are convenient for estimating quantities
through random sampling and are more suitable for high-dimensional integrals compared to other
numerical methods. However, as the number of dimensions increases, MC methods typically require
a larger number of samples (Rubinstein & Glynn, 2009).

Given that our output is very high-dimensional, MC methods become extremely computationally
demanding, necessitating an alternative approach. For this, we rely on Pairwise-Distance Estimators
(PaiDEs) to estimate epistemic uncertainty (Kolchinsky & Tracey, 2017). PaiDEs have been shown
to accurately capture epistemic uncertainty for high-dimensional continuous outputs (Berry & Meger,
2023a). Let D(pi ∥ pj) denote a (generalized) distance function between the probability distributions
pi and pj , where pi and pj represent pi = p(yt−1|yt, x, θi) and pj = p(yt−1|yt, x, θj), respectively.
More specifically, D is referred to as a premetric, satisfying D(pi ∥ pj) ≥ 0 and D(pi ∥ pj) = 0
if pi = pj . The distance function need not be symmetric nor obey the triangle inequality. As such,
PaiDEs can be defined as follows:

Îρ(yt−1, θ|yt, x) = −
M∑
i=1

πi ln

M∑
j=1

πj exp (−D(pi ∥ pj)). (6)

PaiDEs offer a variety of options for D(pi ∥ pj), such as Kullback-Leibler divergence, Wasserstein
distance, Bhattacharyya distance, Chernoff α-divergence, Hellinger distance and more. The task can
dictate a practitioner’s choice of D.

4



Under review as a conference paper at ICLR 2024

3 METHODOLOGY

3.1 DIFFUSION ENSEMBLES

We employ the latent diffusion models introduced by Rombach et al. (2022) to construct our
ensembles. They proposed the use of an autoencoder to learn the diffusion process in a latent
space, significantly reducing sampling and training time compared to previous methods by operating
in a lower-dimensional space, zt, which is 64 × 64 × 3. Using this framework we can estimate
epistemic uncertainty in this lower-dimensional space,

Îρ(zt−1, θ|zt, x) = −
M∑
i=1

πi ln

M∑
j=1

πj exp (−D(pi ∥ pj)), (7)

where pi and pj now denote Gaussians in the latent space. This approach is akin to previous methods
that utilize latent spaces to facilitate the estimation of epistemic uncertainty (Berry & Meger, 2023b).

To fit our ensembles, we make use of pre-trained weights for the UNet and autoencoder from Rombach
et al. (2022), keeping them static throughout training. The only part of the network that is trained
is the conditional portion, which is randomly initialized for each ensemble component. In our case,
this portion is an embedding network that takes the class label as input. This significantly reduces
the number of parameters that need to be trained, 512k instead of 456M, as well as the training time
(by 87%), compared to training a full latent diffusion model on Imagenet. It’s important to note that
each ensemble component can be trained in parallel, as the shared weights remain static for each
component, further enhancing training efficiency.

Upon completion of the training process, we utilize the following image generation procedure:

1. Sample random noise zT and an ensemble component pj .
2. Use pj to traverse the Markov chain until reaching step b, our branching point.
3. Branch off into M separate Markov chains, each associated with a different component.

4. Progress through each Markov chain until reaching step 0, zj0, and then decoding each zj0 to
get yj0.

Figure 1 illustrates the described pipeline with two components. Note that during the reverse process
the previous latent vector zjt , the time step t and the output from component j are passed through a
UNet to arrive at zjt−1. By leveraging the inherent Markov chain structure within the diffusion model,
we can examine image diversity at different branching points. Note that our loss function for training
each component is the same as Rombach et al. (2022). We utilize an ensemble of 5 components, a
number we found to be sufficient for estimating epistemic uncertainty. For additional hyperparameter
details, refer to Appendix A.1.

3.2 DIFFUSION ENSEMBLES FOR UNCERTAINTY

Diffusion models yield a Gaussian distribution at each step during the reverse process, as shown
in Equation (2). Therefore, to estimate I(zt−1, θ|zt, x), we utilize PaiDEs right after the branching
point, where an ensemble of Gaussians is formed. It is important to mention that one can estimate
epistemic uncertainty even beyond the point b+ 1; however, the further away from b+ 1, the more
the Gaussian distributions diverge from one another. Consequently, when you apply PaiDEs in this
scenario, they are likely to yield − ln 1

M regardless of the specific inputs. This behavior occurs
because Gaussians that are significantly separated result in a distance measure, D(pi ∥ pj), equal
to zero. We observed this phenomenon occurring after approximately five DDIM steps past the
branching point.

To generate images, we utilize denoising diffusion implicit models (DDIM) with 200 steps, following
the training of a diffusion process with T = 1000. DDIM enables more efficient image generation by
permitting larger steps in the reverse process without altering the training methodology for diffusion
models (Song et al., 2020). Furthermore, in the DDIM implementation by Rombach et al. (2022),
the covariance, Σθ(zt, t, x), is intentionally set to a zero matrix, irrespective of its inputs, aligning
with the approach in Song et al. (2020). However, this prevents us from using KL-Divergence and
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Figure 3: This figure presents the uncertainty distributions associated with each bin. These
distributions have been derived from the uncertainty estimates for each bin’s respective classes.
The labels on the left side of the distribution graphs correspond to their respective bins.

Bhattacharyya distance, which are undefined in this case. Therefore, we propose a novel PaiDE using
the Wasserstein 2 Distance, which is well-defined between Gaussians in such cases. This distance
can be expressed as:

W2(pi ∥ pj) = ||µi − µj ||22 + tr
[
Σi +Σj − 2

(
Σ

1/2
i ΣjΣ

1/2
i

)1/2
]
, (8)

where pi ∼ N(µi,Σi) and pj ∼ N(µj ,Σj). When Σi and Σj are zero matrices, it yields the
following estimator:

ÎW (zt−1, θ|zt, x) = −
M∑
i=1

πi ln

M∑
j=1

πj exp (−W2(pi ∥ pj)), (9)

W2(pi ∥ pj) = ||µi − µj ||22. (10)

This combination of ensemble creation and epistemic uncertainty estimation encapsulates DECU.

4 EXPERIMENTAL RESULTS

All experiments were carried out on the Imagenet dataset (Russakovsky et al., 2015), which comprises
1000 classes, with approximately 1300 images per class, totaling 1.28M images. To evaluate DECU,
we curated the binned classes dataset from Imagenet. The creation of the binned classes dataset
involved the random selection of 100 classes for bin 1, another 100 for bin 10, and a further 100
for bin 100, such that they were disjoint. Subsequently, for each ensemble component, we adopted
the following systematic approach: selecting a single image per class from bin 1, ten images per
class from bin 10, and a hundred images per class from bin 100. The remaining 700 classes were
grouped into bin 1300, where all 1300 images per class were utilized. During the training process,
each ensemble component saw a total of 28,162,944 images, accounting for repeated images across
training epochs. It is worth noting that this stands in contrast to the 213,600,000 images required to
train an entire network from scratch for class-conditioned Imagenet models (Rombach et al., 2022).

4.1 RECOGNITION OF UNDERSAMPLED CLASSES

In this section, we assess the capability of our framework to distinguish classes with limited training
images using the binned classes dataset. Bins with lower values produced lower-quality images, as
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1 10 100 1300

0.051± 0.015 0.044± 0.014 0.027± 0.006 0.019± 0.005

Figure 4: This shows the pixel uncertainty (high uncertainty in yellow and low uncertainty in blue)
for one category from each bin, from left to right: wall clock, head cabbage, rubber eraser, Red Shank.
The number below the images shows the mean estimated ÎW (z0, θ|z5, x) plus/minus one standard
deviation.

illustrated in Figure 2. Figure 2 showcases images with lower epistemic uncertainty generated from
five classes in bin 1300 on the left, and images with greater uncertainty generated from five classes
in bin 1 on the right. Each row corresponds to an ensemble component, and we set b = 1000. It is
evident that, with more training images in bin 1300, we generate images that more closely match the
class label. Figure 7 in the Appendix, illustrates another example of this.

Furthermore, we compute ÎW (z0, θ|z5, x) for each class. To do this, we randomly select 8 samples
of random noise and use b = 5. It’s important to note that we can only take steps of 5 through the
diffusion process due to the 200 DDIM steps. We then average the ensemble’s epistemic uncertainty
over these 8 random noise samples. Figure 3 illustrates the distributions of epistemic uncertainty for
each bin. The distributions for the larger bins are skewed more towards 0 compared to the smaller
bins. This trend is also reflected in the mean of each distribution, represented by the dashed lines.
These findings demonstrate that DECU can effectively measure epistemic uncertainty on average for
class-conditioned image generation.

Additionally to estimating the overall uncertainty of a given class, we analyze per-pixel uncertainty
in a generated image. We treat each pixel as a separate Gaussian and apply our estimator on a
pixel-by-pixel basis. It’s worth noting that we first map from the latent vector to image space, so
we are estimating epistemic uncertainty in image space and then average across the three channels.
An example of this procedure can be seen in Figure 4. For bin 1300, we observe that epistemic
uncertainty highlights different birds that could have been generated from our ensemble. Furthermore,
bins with lower values exhibit a higher density of yellow, indicating greater uncertainty about what
image to generate. There are two additional examples contained in the Appendix, Figure 8 and 9,
displaying the same patterns.

4.2 IMAGE DIVERSITY BETWEEN COMPONENTS

Apart from assessing image uncertainty, we also conducted an analysis of image diversity across the
ensemble with respect to different branching points. To gauge this diversity, we generated images

7



Under review as a conference paper at ICLR 2024

b 1 10 100 1300

1000 0.36± 0.09 0.37± 0.09 0.41± 0.10 0.51 ± 0.13
750 0.50± 0.14 0.51± 0.14 0.54± 0.14 0.63 ± 0.13
500 0.64± 0.13 0.64± 0.13 0.67± 0.11 0.76 ± 0.09
250 0.92± 0.05 0.92± 0.05 0.92± 0.04 0.94 ± 0.03

Table 1: SSIM calculated between all pairs of generated images per class at different values of b
across each bin. Results shown are mean ± one standard deviation. Higher values indicate greater
similarity and the highest mean in each row is bolded.

using our framework and computed the Structural Similarity Index Measure (SSIM) between every
pair of generated images produced by each component. The results can be found in Table 1 and
Figure 5. Notably, bins with larger values produced more similar images. This is attributed to the fact
that ensemble components learned to better represent classes in the bin with larger values, resulting in
greater agreement amongst the ensemble components. Furthermore, as the branching point increases,
the images become more dissimilar. This phenomenon arises because, with a higher b, each ensemble
component progresses further through the reverse process independently, leading to greater image
variation. Visualizations of this can be seen in Figure 6, where the variety in image generation clearly
dissipates as the branching point decreases. Additional visualizations are contained in Appendix A.3.

5 RELATED WORKS

Figure 5: Image diversity as measured as
the mean SSIM between all pairs of images
generated from the ensemble.

Constructing ensembles of diffusion models is
challenging due to the large number of parameters,
often in the range of hundreds of millions (Saharia
et al., 2022). Despite this difficulty, methods
such as eDiff-I have emerged, utilizing ensemble
techniques to improve image fidelity (Balaji et al.,
2022). In contrast, our approach specifically targets
the measurement of epistemic uncertainty.

Previous research has employed Bayesian
approximations for neural networks in conjunction
with information-based criteria to tackle the problem
of epistemic uncertainty estimation in image
classification tasks (Gal et al., 2017; Kendall &
Gal, 2017; Kirsch et al., 2019). These works
apply epistemic uncertainty estimation to simpler
discrete output spaces. In addition to Bayesian
approximations, ensembles are another method for
estimating epistemic uncertainty (Lakshminarayanan
et al., 2017; Choi et al., 2018; Chua et al., 2018).
They have been used to quantify epistemic
uncertainty in regression problems (Depeweg et al.,
2018; Postels et al., 2020; Berry & Meger, 2023b;a). Postels et al. (2020) and Berry & Meger
(2023b) develop efficient ensemble models based on Normalizing Flows (NF) that accurately capture
epistemic uncertainty. Berry & Meger (2023a) takes this further by utilizing PaiDEs to estimate
epistemic uncertainty on 257 dimensional output space with normalizing flows. Our work builds
on this line of research by showcasing how to extend these methods to higher-dimensional outputs,
196,608 dimensional, particularly for large generative diffusion models.

In addition to PaiDEs, various methods have emerged for estimating epistemic uncertainty without
relying on sampling (Van Amersfoort et al., 2020; Charpentier et al., 2020). Van Amersfoort et al.
(2020) and Charpentier et al. (2020) primarily focus on classification tasks. While Charpentier et al.
(2021) extends this to regression tasks, it is limited to modeling outputs as distributions within the
Exponential Family. Furthermore, they only consider regression tasks with 1D outputs.
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(a)

(b)

(c)

(d)

Figure 6: Image generation progression through the diffusion model for the class label coral fungus
from bin 1300 for each branching point: (a) 1000, (b) 750, (c) 500, (d) 250.

6 CONCLUSION

To the best of our knowledge, we are the first to address the problem of epistemic uncertainty
estimation for conditional diffusion models. Large generative models are becoming increasingly
prevalent in our daily lives, and thus insight into the generative process is invaluable. We achieve
this by introducing the DECU framework, which leverages an efficient ensembling technique and
Pairwise-Distance Estimators (PaiDEs) to estimate epistemic uncertainty efficiently and effectively.
Our experimental results on the Imagenet dataset showcase the effectiveness of DECU in estimating
epistemic uncertainty. We explore per-pixel uncertainty in generated images, providing a fine-grained
analysis of epistemic uncertainty. As the field of deep learning continues to push the boundaries of
generative modeling, our framework provides a valuable tool for enhancing the interpretability and
trustworthiness of large-scale generative models.
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A APPENDIX

A.1 COMPUTE AND HYPERPARAMETER DETAILS

We employed the same set of hyperparameters as detailed in Rombach et al. (2022) while training
our ensemble of diffusion models. To facilitate this, we utilized their codebase available at
(https://github.com/CompVis/latent-diffusion), making specific modifications to incorporate DECU.
It’s important to note that we specifically adopted the LDM-VQ-8 version of latent diffusion, along
with the corresponding autoencoder, which maps images from 256x256x3 to 64x64x3 resolution. Our
training infrastructure included an AMD Milan 7413 CPU clocked at 2.65 GHz, boasting a 128M
cache L3, and an NVidia A100 GPU equipped with 40 GB of memory. Each ensemble component
was trained in parallel and required 7 days of training with the specified computational resources.

A.2 DATA

In the binned classes dataset, classes were randomly selected for each bin, and the images for each
component were also chosen at random from the respective classes. In contrast, the masked classes
dataset employed a clustering approach that grouped class labels sharing the same hypernym in
WordNet. This grouping strategy aimed to bring together image classes with similar structures; for
instance, all the dog-related classes were clustered together. Subsequently, each ensemble component
randomly selected hypernym clusters until each component had a minimum of 595 classes. Note that
each class was seen by at least two components.

A.3 IMAGE GENERATION PROGRESSION AND BRANCH POINT

In addition to the summary statistics concerning image diversity based on the branching point, we
also provide visualizations of these effects in Figures 10, 11, and 12. These illustrations highlight
the observation that bins with higher values tend to produce more consistent images that closely
match their class label across all branching points. This distinction is particularly noticeable when
comparing bin 1300 to bin 1. Furthermore, as the branching point increases, a greater variety of
images is generated across all bins.

A.4 LIMITATIONS

DECU has potential for generalization to other large generative models. However, it’s important
to note that applying PaiDEs for uncertainty estimation requires the conditional distribution of the
output to be probability distribution with a known pairwise-distance formula. This requirement is not
unusual, as some generative models, such as normalizing flows, produce known distributions as their
base distribution (Tabak & Vanden-Eijnden, 2010; Tabak & Turner, 2013; Rezende & Mohamed,
2015).

Furthermore, our ensemble-building approach is tailored to the latent diffusion pipeline but can
serve as a logical framework for constructing ensembles in the conditional part of various generative
models. There’s also potential for leveraging low-rank adaption (LoRA) to create ensembles in a
more computationally efficient manner (Hu et al., 2021). However, it’s worth mentioning that using
LoRA for ensemble construction raises open research questions, as LoRA was originally developed
for different purposes and not specifically designed for ensemble creation.
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VS

Figure 7: The left image showcases an example of image generation for five class labels with low
epistemic uncertainty (bin 1300), arranged from left to right: water buffalo, harvester, sulphur crested
cockatoo, european fire salamander, tow truck. The right image illustrates an example of image
generation for five class labels with high epistemic uncertainty (bin 1), arranged from left to right:
pedestal, slide rule, modem, space heater, gong. Note that each row corresponds to an ensemble
component and b = 0.
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1 10 100 1300

0.052± 0.01 0.037± 0.015 0.021± 0.008 0.019± 0.003

Figure 8: This shows the pixel uncertainty (high uncertainty in yellow and low uncertainty in blue)
for one category from each bin, from left to right: cocktail shaker, howler monkey, Dungeness crab,
bullet train. The number below the images shows the mean estimated I(z0, θ|z5, x) plus/minus one
standard deviation.

1 10 100 1300

0.037± 0.006 0.035± 0.017 0.023± 0.012 0.016± 0.004

Figure 9: This shows the pixel uncertainty (high uncertainty in yellow and low uncertainty in blue)
for one category from each bin, from left to right: grey whale, knot, terrapin, agaric. The number
below the images shows the mean estimated I(z0, θ|z5, x) plus/minus one standard deviation.
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(a)

(b)

(c)

(d)

Figure 10: Image generation progression through the diffusion model for the class label marmoset
from bin 100 for each branching point: (a) 1000, (b) 750, (c) 500, (d) 250.
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(a)

(b)

(c)

(d)

Figure 11: Image generation progression through the diffusion model for the class label steel arch
bridge from bin 10 for each branching point: (a) 1000, (b) 750, (c) 500, (d) 250.
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(a)

(b)

(c)

(d)

Figure 12: Image generation progression through the diffusion model for the class label monastery
from bin 100 for each branching point: (a) 1000, (b) 750, (c) 500, (d) 250.
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