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ABSTRACT

In reinforcement learning (RL), the term generalization has either denoted intro-
ducing function approximation to reduce the intractability of large state and action
spaces problems or designated RL agents’ ability to transfer learned experiences
to one or more evaluation tasks. Recently, many subfields have emerged to un-
derstand how distributions of training tasks affect an RL agent’s performance in
unseen environments. While the field is extensive and ever-growing, recent re-
search has underlined that variability among the different approaches is not as
significant. We leverage this intuition to demonstrate how current methods for
generalization in RL are specializations of a general framework. We obtain the
fundamental aspects of this formulation by rebuilding a Markov Decision Process
(MDP) from the ground up by resurfacing the game-theoretic framework of games
against nature. The two-player game that arises from considering nature as a com-
plete player in this formulation explains how existing methods rely on learned and
randomized dynamics and initial state distributions. We develop this result further
by drawing inspiration from mechanism design theory to introduce the role of a
principal as a third player that can modify the payoff functions of the decision-
making agent and nature. The games induced by playing against the principal
extend our framework to explain how learned and randomized reward functions
induce generalization in RL agents. The main contribution of our work is the
complete description of the Generalization Games for Reinforcement Learning, a
multiagent, multiplayer, game-theoretic formal approach to study generalization
methods in RL. We offer a preliminary ablation experiment of the different com-
ponents of the framework. We demonstrate that a more simplified composition of
the objectives that we introduce for each player leads to comparable, and in some
cases superior, zero-shot generalization compared to state-of-the-art methods, all
while requiring almost two orders of magnitude fewer samples.

1 INTRODUCTION

In reinforcement learning (RL), the term generalization has denoted the practice of introducing func-
tion approximation to reduce the intractability of problems with large state and action spaces (Sutton,
1996; Pack Kaelbing et al., 1996) or to designate RL agents’ capacity to transfer learned experiences
to one or more evaluation tasks (Whiteson et al., 2011). Recently, the fields of curriculum learn-
ing Portelas et al. (2020), open-ended learning (Wang et al., 2019), continual learning (Khetarpal
et al., 2020), meta-learning (Duan et al., 2016), simulation-to-reality transfer (Sadeghi & Levine,
2016), or unsupervised environment design (Dennis et al., 2020) have emerged to understand how
distributions of training tasks affect an RL agent’s performance in unseen environments. While the
field is extensive and ever-growing, recent surveys have pointed out that the amount of variability
among the different approaches is not as significant (Portelas et al., 2020; Kirk et al., 2021). For
instance, Portelas et al. (2020) managed to classify more than 30 approaches along three axes of
variation: the intended use of the algorithm, aspects of the problem the algorithm controls, and the
optimization objective it proposes. While the first axis is subjective and depends on the intended
application of the algorithm, variations on the degree of control over the transition dynamics, initial
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state distributions, and reward functions in Markov Decision Process (MDP) problems indicate the
existence of a shared underlying structure of the problem.

We leverage this intuition to develop our core hypothesis that current methods for generalization
in RL are specializations of a general framework. To uncover the fundamental aspects of this
problem, we rebuild from the ground up the MDP framework (Puterman, 2005) by resurfacing and
expanding games against nature (Milnor, 1951; Papadimitriou, 1985), a game-theoretic approach
to decision-making under uncertainty. This formulation acknowledges the existence of a nature
player that may either be a single entity or the composition of multiple ones. Those entities may
possess agency and the capacity to learn and adapt and while doing so, can reshape the problem
landscape of a decision-making agent (Leibo et al., 2019; Baker et al., 2020). We show that, under
some assumptions, an MDP problem is a particular case of a repeated game a decision-making
agent plays against a selfless nature player with unknown payoffs. At this juncture, we diverge
from the traditional literature to make nature’s player a first-class citizen within a complete game
against nature. In this two-player game, both players aim to maximize their respective non-constant
payoff (or reward) functions. The introduction of nature’s payoff function prompts, under the same
assumptions as before, an MDP for nature’s player when it repeatedly interacts with the decision-
making agent. We argue that this dual formulation explains how existing algorithms rely on learned
or randomized variations of transition dynamics and initial state distributions of MDP problems to
induce generalization in RL agents.

Moreover, drawing inspiration from the field of mechanism design (Vickrey, 1961), we consider the
emergence of complete games against nature that assume transformations on the payoff functions of
both nature and the decision-making agent. To account for these variations, we introduce the figure
of the principal (Myerson, 1983), a third player that can manipulate both nature and the decision-
making agent payoff structures. We first consider the role played by mechanisms where the principal
is an entity external to the design process. In this context, we argue that the extensive collection
of RL problems (Bellemare et al., 2012; Brockman et al., 2016) are, under the equivalences we
establish, mechanism-induced repeated games against nature. Consequently, we reason that problem
designers recreate the role of the principal by predefining the payoff structure of the decision-making
agent. Then, to form a complete game against nature from these existing problems, it suffices to
choose the appropriate payoff functions for nature’s player. Inspired by the types of evolutionary
pressures nature poses over living agents and in line with existing methods, we formulate cooperative
and competitive complete agent-nature games.

Furthermore, inspired by adaptive approaches to mechanism design (Conitzer & Sandholm, 2002;
Vorobeychik et al., 2007; Baumann et al., 2018), we describe games against the principal, a three-
player game between the decision-making agent, nature, and the principal. In these games, the
principal’s objective is to discover the optimal outcome function from a restricted set that maxi-
mizes either player’s total payoff. We propose to set the payoff structure of the principal such that
it adopts a dictatorial role (Sandholm, 2003) and sides with either the decision-making agent or
nature’s player. In combination with the cooperative and competitive games induced by manually-
design mechanism over RL problems, the optimization of the dictatorial principal objective explains
how existing algorithms rely on learned or randomized reward functions to induce generalization in
RL agents. Our proposal of a general framework for generalization emerges from considering the
consequences rendered over a RL agent by the non-stationarity induced by nature and the principal
players learning to optimize their respective payoff functions. In our presentation of the framework
of Generalization Games for Reinforcement Learning, we concentrate on the three RL prob-
lems structured as repeated non-differentiable games against the principal, where each agent learns
and execute a mixed and parametric strategy. The core contribution of this work is to demonstrate
how this multiagent, multiplayer, game-theoretic framework provides a formal framework to study
existing or propose novel methods leading to in RL. Notably, we show that the axes of control
and optimization in the taxonomy introduced by Portelas et al. (2020) innately emerge from our
formulation.

We leverage the experimental setting proposed in the context of unsupervised environment de-
sign (Dennis et al., 2020). Furthermore, we include an exploratory ablation experiment that explores
the effects that coalitions with a dictatorial principal have on the final zero-shot generalization of an
RL agent under adversarial and cooperative objectives. Through these experiments, we show how
the more simplified composition of the objectives in our ablation study leads to comparable and,
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in some cases, superior zero-shot generalization than existing state-of-the-art methods (Jiang et al.,
2021) at almost two orders of magnitude fewer samples.

2 GAMES AGAINST NATURE AND REINFORCEMENT LEARNING

In this section, we resurface and expand an alternative formulation of the problem of decision-
making under uncertainty, games against nature (Milnor, 1951; Papadimitriou, 1985; Biswas, 1997;
LaValle, 2006). We describe how the MDP framework (Puterman, 2005) is a particular case of a
repeated game against nature under the assumptions of perfect information and sequential nature-
agent interactions. Likewise, we show that from a game-theoretic perspective, a repeated game
against nature is an incomplete game where nature does not have a known payoff (or reward) func-
tion. In consequence, we introduce complete games against nature to consider that nature’s player
may also optimize for a non-constant payoff. We show that each complete game against nature then
also induces a dual MDP problem for nature’s player.

2.1 GAMES AGAINST NATURE

The game against nature framework presents a game-theoretic approach to decision theory and
decision-making problems where a selfish and rational agent, the decision-making agent (the agent),
aims to maximize its payoff against a disinterested opponent (nature) that plays at random. We de-
rive a more formal definition of a game against nature from the works of Milnor (1951), Papadim-
itriou (1985), Biswas (1997), and LaValle (2006) as follows:

Definition 1 (Game Against Nature) A game against nature is an asymmetric two-player game
G = 〈S,A, `π, `ρ〉 between a player π (the agent) and player ρ (nature) with action spaces a ∈ A
and s ∈ S . In this game, the player π maximizes its payoff function `π : S × A → R against a
nature player ρ that plays at random with disinterested and constant payoff `ρ : S ×A → c.

The asymmetry in this game arises from the different action spaces of the two players. Furthermore,
each player outcome is determined by their strategies π ∈ ∆(A) and ρ ∈ ∆(S) defined in the space
of discrete probability distributions ∆(·) over their respective action spacesA and S. The traditional
formulation of games against nature identifies several principles of choice that prescribe how the
decision-making agent should select its strategy under uncertainty over nature’s strategy (Milnor,
1951; Biswas, 1997; LaValle, 2006). From the different principles, the principles of insufficient
reason Milnor (1951), minimax regret (Savage, 1951) and expected utility (Von Neumann & Mor-
genstern, 1944; Savage, 1954) are the more widespread. In our discussion, we focus on the principle
of expected utility as it is most commonly used in the modern literature in decision-making . Under
this principle, the decision-making agent π should select actions a ∈ A that maximize its expected
payoff Lπ = Ea∼π

s∼ρ
[`π(s, a)] under nature’s mixed strategy ρ.

However, seldom if ever, games are played once. In many instances, players repeatedly interact on
the same base or stage game, a situation modelled by repeated games. Similarly, a decision-making
agent and nature may continually interact, leading to a repetition of the base game G. We formally
define a repeated game against nature as follows:

Definition 2 (Repeated Game Against Nature) A repeated game against nature Gt is a iterated
version of a base or stage game against nature G, with t ≥ 0 interactions between an agent π and the
nature player ρ. In this game, the history of interactions τ = {st−1, at−1, . . . , a0, s0} ∈ (S × A)t

conditions the players’ payoffs functions `tπ : (S ×A)t → R and `tρ : (S ×A)t → c, respectively.

Under the expected utility principle, the decision-making agent expected outcome Lπ should be
defined for repeated games against nature such that:

Ltπ = Ep(τ |π,ρ)
[
`tπ(τ)

]
(1)

where p(τ |π, ρ) denotes the probability distribution over feasible t-long interaction histories τ ∈
(S ×A)t conditioned also by the nature player mixed strategy ρ. There are several sensitive choices
for payoff functions `t(τ) for repeated players interactions in finite and infinite repeated games
including average, limit of means, and discounted formulations (Abreu, 1988). We present a more
detailed discussion of these functions in Appendix B.1.
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2.2 MDP AND REPEATED GAMES AGAINST NATURE

We are interested in connecting the games against nature formalism with the MDP framework em-
ployed in RL literature. To do so, we extend the definition of repeated game against nature in
Def. 2 to consider perfect information and sequential nature-agent interactions. First, repeated
agent-nature interactions enable considering the amount of information available to each player’s
decision-making. We are interested in perfect information games where players can observe their
past actions and those of their opponents to introduce repeated perfect information games against
nature Gt where both the agent and nature strategies are conditioned on past interactions. Formally,

Definition 3 (Repeated Perfect Information Game Against Nature) A repeated perfect information
game against nature Gt is a repeated game against nature where each player strategy π : (S ×
A)t → ∆(A) and ρ : (S × A)t → ∆(S) is conditioned on the history τ ∈ (S × A)t such that, at
interaction time t, their actions are drawn from their mixed strategies at ∼ π(·|τ) and st ∼ ρ(·|τ),
respectively.

In general, repeated games against nature Gt model a game between the decision-making agent and
nature where both players choose their action simultaneously. Simultaneous repeated games against
nature with perfect information is a suitable realization to study real-time RL problems (Ramstedt
& Pal, 2019). However, we focus on the more widespread practical assumption that in sequential
decision-making problems nature moves first. For these cases, we extend repeated perfect infor-
mation games against nature to consider sequential agent-nature interactions where nature’s player
starts the game, and the decision-making agent acts upon observing nature’s previous action. More
formally,

Definition 4 A sequential perfect information game against nature is a perfect information game
against nature where nature plays first with action s0 ∼ ρ drawn from initial mixed strategy ρ0 ∈
∆(S). Thereafter, nature and the agent plays with strategies ρ : (S × A)t → ∆(S) and π :
S × (S × A)t → ∆(A) defined such that, at interaction time t, the agent actions are drawn from
the mixed strategy at ∼ π(·|st, τ) according to nature’s last action st ∼ ρ(·|τ) and the history τ of
past interactions.

The assumptions of perfect information and sequential interaction allow us to present Markov De-
cision Processes MDP as a particular repeated games against nature. Note that, an MDP problem
M = 〈S,A, ρ, r, ρ0〉 with state space S , action space A, transition dynamics ρ : S × A → P(S),
reward function r : S × A → R and initial state distribution ρ0 : P(S) is a sequential game a
decision-making agent π plays against nature’s strategy ρ. If ρ0 denotes nature’s player uncondi-
tioned strategy at interaction time t = 0 (nature’s first move) the decision-making agent plays with
strategy or policy π : S → P(A). Under Markovian assumptions (Puterman, 2005), nature’s actions
st represent sufficient statistics of past nature-agent interactions τ . Thus, the agent actions are drawn
from its mixed strategy at ∼ π(·|st) conditioned on nature’s last action st. Furthermore, nature’s
player actions for interaction times t ≥ 1 are drawn from a mixed strategy st ∼ ρ(st|st−1, at−1)
(the transition dynamics) and assumed independent of the rest of the interaction history τ given the
last step actions st−1 and at−1. Likewise, under this formulation, the reward function r(s, a) is
equivalent to one-shot payoff function `π(s, a) of the base game G. The objectives for an average
or discounted reward MDP problem (Puterman, 2005) are easily derived from the repeated payoff
structures in infinitely repeated games against nature we define on Sec. B.1.

2.3 COMPLETE GAMES AGAINST NATURE

The framework of games against nature that we have described thus far proposes games that are
incomplete in the sense that nature’s player payoff function is constant and unknown. We extend the
original formulation to consider a nature player that optimizes for a non-constant payoff function
under one of principles of choice for decision-making under uncertainty. More formally,

Definition 5 (Complete Game Against Nature) A complete game against nature is an extension of
a game against nature G = 〈S,A, `π, `ρ〉 where the nature player ρ plays with strategy ρ : A →
∆(S) and maximizes a non-constant payoff `ρ : S ×A → R.
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As before, we focus on the principle of expected utility principle and define nature’s expected payoff
to be Lρ = Ea∼π

s∼ρ
[`ρ(s, a)] against the mixed strategy π of the decision-making agent. Repeated

nature-agent interactions prompt a repeated game for which equivalent MDP and RL problems
emerge for nature’s player under a similar expected objective:

Ltρ = Ep(τ |π,ρ)
[
`tρ(τ)

]
(2)

Holding the assumptions of perfect information and sequential nature-agent interactions as before, a
nature player sequential, repeated, perfect information game against the agent induces the following
MDP problem:

Definition 6 (Nature MDP) A nature MDP problem N = 〈A,S, π, r, π0〉 is an MDP with state
space A, action space S, transition dynamics π : S → ∆(A), reward function r : A × S → R,
and initial state distribution π0 : ∆(A) is the sequential game a nature agent ρ plays against a
decision-making agent π.

Thus, every complete game induces a pair (M,N ) of dual MDPs (see Fu et al. (2021)). In this
case, the initial state distribution π0 ofN is defined in terms of the initial state distribution ρ0 of the
decision-making agent MDPM such that π0(a0) =

∑
s p0(s0)π(a0|s0). Moreover, nature’s policy

ρ is the transition dynamics ρ(st|st−1, at−1) of the decision-making agent’s MDP and, conversely,
the decision-making agent policy or strategy π is the transition function π(at|st) of nature’s MDP.
Also, the reward functions on each MDP are the payoff functions `ρ and `π on the complete base
game G.

3 MECHANISM INDUCED GAMES AGAINST NATURE

In this section, drawing inspiration from the field of mechanism design (Vickrey, 1961) (see
Sec. B.2), we consider the emergence of complete games against nature that assume transformations
on the payoff functions of both nature and the decision-making agent. We introduce the figure of the
principal. This third player can manipulate nature and the decision-making agent payoff structures.
Furthermore, motivated by adaptive approaches to mechanism design, we describe games against
the principal, a three-player game between the decision-making agent, nature, and the principal. In
these games, the principal’s objective is to discover the optimal outcome function from a restricted
set that maximizes either player’s total payoff.

3.1 MECHANISM DESIGN FOR GAMES AGAINST NATURE

A mechanism design problem for games against nature, a principal defines the base game G, both
players action spaces S and A, and their modified outcomes ˜̀

ρ and ˜̀
π . We restrict our interest to

cardinal outcomes (e.g., money, years in prison, or scalar reward) and structured outcome spaces
O = O1 × . . .×On. We assume that utilities `i : Oi → R are of the form `i = oi where the i− th
player maximizes the outcome oi provided by the mechanism. Under these assumptions, we define
the problem of designing a mechanism for nature-agent game as follow:

Definition 7 (Mechanism of a Game Against Nature) Let R = (rρ, rπ) be the set of possible
outcomes for nature and the decision-making agent, the mechanism of a game against nature for
R is a tuple F = 〈R,A× S, r〉 where A and S are the decision-making and nature player action
spaces and r : A× S → R is the mechanism outcome function.

Thus, any mechanism F defined this way will induce a nature-agent game GF with the following
structure:

Definition 8 (Mechanism-Induced Game Against Nature) Given a mechanism of a game against
nature F = 〈R,A× S, r〉 and the utility functions `π : R → R and `ρ : R → R, a mechanism-
induced game against nature is a tuple GF =

〈
A× S, ˜̀

π, ˜̀
ρ

〉
whereA and S are the action spaces

of the decision-making agent and nature, and the utility functions ˜̀
π : R → R and ˜̀

π : R → R are
defined such as:

˜̀
π(s, a) = `π(r(s, a)) = rπ (3)
˜̀
ρ(s, a) = `ρ(r(s, a)) = rρ (4)
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for outcomes rπ and rρ and the outcome function r of the mechanism F .

This definition assumes that both players have linear utility functions that ignore the opponent’s
outcome. Furthermore, the notation for the outcome function r : A×S → R is intentionally chosen
to highlight that, in a mechanism-induced game against nature, the outcome function establishes the
payoff (or reward) functions ˜̀

ρ and ˜̀
π for a stage complete game against nature GF the induced dual

MDP problems.

3.1.1 MANUALLY-DESIGNED MECHANISMS

At first, we are interested in mechanisms where the principal is an entity external to the design pro-
cess. Our interest stems from the connection among the extensive collection of RL problems (Belle-
mare et al., 2012; Brockman et al., 2016), their underlying MDP, and equivalence to repeated games
against nature we introduce in Sec. 2. We reason that, in this context, problem designers fulfill the
role of the principal. They define the action spaces for both nature and the decision-making agent
and the payoff structure of the latter. If one establishes an appropriate payoff function for nature, it
is possible to convert every single-agent MDP into a complete game against nature. Inspired by the
types of evolutionary pressures nature poses over living agents, in line with existing methods and
with the principles of choice of minimax and maximax (Milnor, 1951; LaValle, 2006), we formulate
cooperative and competitive complete agent-nature games.

Definition 9 (Adversarial Game Against Nature) An adversarial game against nature G− =
〈S,A, `π, `ρ〉 is a zero-sum game the decision-making agent plays against nature such as nature
non-constant maximizes a payoff function `ρ = −`π , or in other words, the total outcome of the
game G−(π, ρ) = `π + `ρ = 0. In this adversarial, zero-sum game both player’s optimization
objectives can be succinctly written down as:

J−(π, ρ) = min
ρ

max
π

`π (5)

On the other hand, we can also define a game where both players cooperate to maximize the payoff
function of the decision-making agent:

Definition 10 A cooperative game against nature G+ = 〈S,A, `π, `ρ〉 is a non-zero game where
the decision-making agent plays with nature’s player that aims to maximize a non-constant payoff
`ρ = `π . This cooperative game objective can be succinctly written down as:

J+(π, ρ) = max
ρ

max
π

`π (6)

3.1.2 AUTOMATICALLY-DESIGNED MECHANISMS

Motivated by previous adaptive approaches to mechanism design (Vorobeychik et al., 2007; 2012;
Baumann et al., 2018), we are interested in incorporating the principal as a player, with strategy ν,
a payoff function `v (see Sec. B.2). We construct a three-player game between the decision-making
agent, nature’s player, and a principal. More formally,

Definition 11 A game against a principal is a tuple Gν =
〈
R,A,S, `ν , ˜̀

π, ˜̀
ρ

〉
that denotes an

asymmetric three-player game between a decision-making agent π with strategy π : S → ∆(A),
nature’s player ρ : A → ∆(S), and a principal player ν with strategy r : A × S → R that
can manipulate the other players payoff functions ˜̀

π and ˜̀
ρ in benefit of maximizing its own payoff

function `ν whose objective is to find the optimal mechanism r∗ ∈ R over a space of feasible
mechanisms R, such that:

r∗ = arg max
r∈R

`ν (7)

Coalitional Games Similarly, we explore adversarial and cooperative games against a dictatorial
principal (`ν = mini ˜̀

i=k) (Sandholm, 2003) who forms a coalition with either nature or the deci-
sion making-agent. From the perspective of the decision-making agent, the core of RL and MDP
problems, in a cooperative nature-principal game, nature and the principal form a coalitional
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Figure 1: Our exploratory experiments shows that both cooperative and adversarial agent-principal
games (Eq. 10 and Eq. 11) offer competitive zero-shot generalization when compared to state-of-the-
art methods on unsupervised environment design PAIRED (Dennis et al., 2020) and PLR⊥ (Jiang
et al., 2021) at 250 million steps versus 3 millions in our approach. In FourRooms, we significantly
outperform both methods with almost two orders of magnitude fewer training samples. The perfor-
mance on Maze and Labyrinth degrades, thus requiring further investigation. We describe the full
experimental setup in Appendix A

game (Myerson, 1991) where they cooperate to maximize nature’s player payoff ˜̀
ρ. We can write

down this objective more succinctly as:

J(ρ, r) = max
r

max
ρ

˜̀
ρ (8)

On the other hand, in a cooperative agent-principal game, the decision-making agent and the
principal player form a coalition that cooperates to maximize the decision-making payoff function
˜̀
π with the joint objective:

J(π, r) = max
r

max
π

˜̀
π (9)

In the context of the three-player game against a principal Gν , coalitions formed with the principal
provide a strategic advantage for the allied player. For instance, in a cooperative mechanism-induced
nature-principal game, if nature’s objective is adversarial (Eq. 5), a game against principal would
have an objective where the nature-principal coalition minimizes the decision-making agent payoff:

J(ρ, π, ν) = min
ρ,r

max
π

˜̀
π (10)

On the other hand, if the nature-agent game is cooperative, a nature-principal coalition would result
in an objective that maximizes the decision-making agent payoff:

J(ρ, π, ν) = max
ρ,r

max
π

˜̀
π (11)

While other combinations of coalitions are possible, we focus in the remainder of this work on the
objectives in Eq. 10 and Eq. 11 to show the effects that concentrating the principal power on the
nature’s player have over generating mechanism-induced game against nature, their equivalent RL
and MDP problems, and decision-making adaptation of strategy learned on these coalitional games.

3.2 PRELIMINARY RESULTS

In Appendix A, we include an exploratory ablation experiment that explores the effects that coali-
tions with a dictatorial principal have on the final zero-shot generalization of an RL agent under
cooperative and cooperative objectives. We leverage the experimental setting proposed in the con-
text of unsupervised environment design (Dennis et al., 2020). In this context, we further show
(see Figure 1) how the more simplified composition of the objectives in our ablation study leads
to comparable, and in some cases, superior zero-shot generalization to existing, more cumbersome
state-of-the-art methods (Dennis et al., 2020; Jiang et al., 2021) with almost two orders of magnitude
fewer samples.
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4 GENERALIZATION GAMES FOR REINFORCEMENT LEARNING

4.1 LEARNING IN GAMES AGAINST NATURE

Players’ iterations at playing a game allow them to adapt their strategies to face opponents. In games
against nature, a decision-making agent can adapt its strategy against an unknown nature’s player
whether nature’s strategy remains stationary (same player’s strategy) throughout their repeated in-
teractions or not. Specifically, in repeated games against nature Gt, the optimal strategy π∗ of the
decision-making agent should maximize the cumulative payoff functions over t-iterations of the
base game, an objective that we can state as:

π∗ = arg max
π

Ep(τ |π,ρ)
[
`tπ(τ)

]
(12)

where the payoff `tπ is defined as described in Sec. B.1. Note that the objective in Eq. 12 is the
traditional RL objective with the exception that we make explicit the dependency on the nature player
strategy. Similarly, nature’s player optimal strategy in a repeated game against a decision-making
agent Gt is the cumulative payoff function `tρ : (S × A)t → R similarly selected in consequence to
the finiteness of interaction length t (see Sec. B.1). Nature’s learning objective in complete games
(Eq. 2) leads to finding an optimal strategy ρ∗ as:

ρ∗ = arg max
ρ

Ep(τ |π,ρ)
[
`tρ(τ)

]
(13)

The objective is equivalent to an RL problem in nature’s MDP. A similar argument can be made for
the principal agent.

4.2 GENERALIZATION IN GAMES AGAINST NATURE

Assume that the strategies of the nature’s player ρφ : S × A → S , the decision-making agent and
πθ : S → A and a principal rω : S × A → R are parametrized by parameters φ, θ, ω respectively.
Further, consider the consequences rendered over a RL agent by the non-stationarity induced by
nature and the principal players learning to optimize their respective payoff functions. Our proposal
of a Generalization Games for Reinforcement Learning concentrates on the three RL problems
structured as repeated non-differentiable games against the principal, where each agent learns and
execute a mixed and parametric strategy.

Definition 12 (Generalization Game for Reinforcement Learning) A Generalization Game for RL
is a repeated non-differentiable optimization game against a principal Gt =

〈
R,A,S, `ν , ˜̀

π, ˜̀
ρ

〉
with objective J(φ, θ, ω) among the nature player ρφ, the principal rω , the decision-making agent
πθ were each may simultaneously optimize for non-constant cumulative payoff functions such that:

θn = θn−1 + η∇θJ(φ, θ, ω) (14)
φk = φk−1 + η∇φJ(φ, θ, ω) (15)
ωm = ωm−1 + η∇ωJ(φ, θ, ω) (16)

reflects the update rules equations of each strategy possibly optimized using Monte Carlo gradient
estimation techniques (Mohamed et al., 2020).

Notice that the update function of the decision-making agent strategy πθ is the traditional RL prob-
lem. In contrast, the updates rule for nature’s strategy ρφ and that of the principal rω introduce the
variability over transition dynamics, initial state distribution (nature’s initial strategy), and reward
functions (the principal strategy). Moreover, an alternative for learning is to induce non-stationarity
by drawing samples from distributions φk ∼ p(φ) and ωm ∼ p(ω) for nature and the principal
strategies (Tobin et al., 2017; Wang et al., 2019). Combined with the adversarial and cooperative
objectives we introduced in Sec. B.2, we account for the axis of optimization in Portelas et al. tax-
onomy. Thus, the non-stationarity of learned or randomized strategies in these games makes the
aspects of current generalization methods innately emerge from our formulation.
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5 CONCLUSIONS AND FUTURE WORK

We studied the problem of generalization in RL and introduced the Generalization Games for Re-
inforcement Learning by leveraging and expanding the game-theoretic framework of games against
nature, turning the traditional MDP formulation into a multiagent problem. Future work will include
larger-scale empirical results, including extending our approach to more complex environments pos-
sibly with continuous state and actions spaces (Brockman et al., 2016).
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A EXPERIMENTS

A.1 EXPERIMENTAL GOALS

Our experiments aim to understand better the principal’s influence on environment generation and
the subsequent consequences on a learner agent’s generalization ability.

Specifically, we are interested in out-of-distribution zero-shot (OODZ) generalization. This metric
informs us of the learner agent’s capacity to adapt to novel environments, directly linked to the
environments presented during training (as confirmed by our experiments). Intuitively, some reward
signals lend themselves to vastly more powerful OODZ generalization than others. In the same vein,
some reward signals lead to degenerate solutions on nature’s side.

We explore a series of reward signals for the nature coalition. We first study the extrinsic rewards
traditionally used for the environment generation problem setting. Then, we study rewards derived
from an Intrinsic Curiosity Module (ICM) as described in (Pathak et al., 2017) as a way to cut
extrinsic rewards out of the equation. Finally, we investigate a mix of ICM signals and extrinsic
rewards. Where applicable, we present both adversarial and cooperative coalitions. In every case,
the learner agent receives extrinsic rewards.

Finally, as a small investigation into limiting the nature coalition’s powers, we present results for
which the coalition was not allowed to choose the placement of the maze’s walls (or their amount)
but was allowed to choose the goal and the agent’s placement. Instead, blocks are uniformly sam-
pled.

A.2 EXPERIMENTAL SETUP

We evaluate our series of training regimes in the popular environment Minigrid, described in
Chevalier-Boisvert et al. (2018). Minigrid is a partially observable maze environment where the
decision-making agent must take discrete actions to reach a goal. When the said goal is reached, the
agent receives a sparse reward that decreases with the number of steps. The learner’s observation
is a 7-by-7 pixel image representing the maze directly in front of it, including its current position.
Its vision does not penetrate walls. Nature’s (and the principal’s) observation is the entire grid it is
currently building. During training, we utilize 15-by-15 grids, and in them, up to 50 blocks can be
placed. Evaluation grid sizes vary by environment.

We train each scheme on three different seeds for 3M steps, except for the Adversarial ICM Mix-
ing scheme, which instead utilizes seven seeds. For each seed, we evaluate the learner agent’s
zero-shot transfer in a list of challenging OOD environments shown in Figure 5 for ten evaluation
runs each. All learning agents are Proximal Policy Optimization agents using an Long Short Term
Memory-based recurrent policy (see Schulman et al. (2017) and Hochreiter & Schmidhuber (1997),
respectively). We present aggregations of the OODZ generalization performance in the evaluation
environment in this section and C.
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Additionally, to ensure Minigrid’s reward function does not bias our results, we also explore a vari-
ation of it. This new reward function gives a negative signal whenever the agent tries to walk into a
wall. This densifies the training signal but introduces a new mechanic into training: nature’s actions
can now create negative signals for the learner agent.

A.3 RESULTS

Results for which blocks were randomly placed are marked with ”RB”. Results involving the altered
Minigrid extrinsic reward signal are marked with ”NB”.
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Figure 2: Zero-shot OOD generalization depends greatly the environment generator’s reward signal.
Here pictured: generalization on the Sixteenroom environment.
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Figure 3: Zero-shot OOD generalization depends greatly the environment generator’s reward signal.
Here pictured: generalization on the Maze environment.

Our best performing learners overall involve coalitions learning from extrinsic rewards without being
able to place blocks. Both in the cooperative and the adversarial setting, they are consistently both
the fastest to train and the best at generalization. The exception is when using the altered extrinsic
signal: in that case, allowing the coalition to pick the placement of the blocks leads to the best
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Figure 4: The ”Shortest Path Length” is the length of the optimal path from the agent’s original
position to the goal. Note that this plot uses generous smoothing in order to highlight our findings.
It also does not take impassable environments into account.

generalization across evaluation environments. However, the former scheme still performs better
in the most complex environments (labyrinth and maze). Preventing the coalition from placing the
blocks discouraged it from making trivial (too-hard) environments in the cooperative (adversarial)
scheme. This induces more environment diversity for the learner.

As for ICM, interestingly, mixing in extrinsic rewards yields close to the same generalization
prowess as using the direct ICM signal, for both the original and the altered extrinsic rewards and
the cooperative and adversarial schemes (but in both cases, the adversarial mixing does do better
than the cooperative one). This suggests that ICM, or other intrinsic signals, could be used as a re-
placement for the nature coalition’s extrinsic-based training signal. As they are entirely independent
of the extrinsic reward signal, these intrinsic objectives could be used to build much more robust
training regimes for environment generators.

The relation between adversarial and cooperative schemes is interesting. In almost every scheme
and environment, adversarial schemes tend to do slightly better than their counterparts. In the case
of a nature coalition with no power over block placement, the reason is apparent: as seen in Figure
4, the paths generated by the adversarial scheme are longer than the cooperatives. This explains the
gap in OODZ generalization for that scheme: learners trained in the adversarial scheme are tasked
with solving much longer mazes, which directly translates into experiencing more varied environ-
ments. For other schemes, the gap is less obvious. Still, the adversarial (cooperative) coalitions find
alternative ways to make difficult (easy) environments: consistently, when allowed to choose the
amount and placement of blocks, adversarial schemes place more blocks than cooperative schemes.
See Figure 10 for more details.

Notice in Figure 2 that many of our training regimes yield decision-making agents that beat the
reported OODZ generalization performance of PLR⊥ and PAIRED (as described in Jiang et al.
(2021) and Dennis et al. (2020), respectively) an order of magnitude earlier than both of those
methods on the Sixteenroom environment. Our learners need less than 3M steps to reach 85% solve
rate in Sixteenroom, while PLR⊥ and PAIRED require 250M to reach about the same. Specifically,
the agent trained with a nature coalition that cannot pick blocks (using Minigrid’s original extrinsic
signal) reaches an almost 95% solve rate in only 1.9M steps. More comparisons of this sort are
available in appendix C.

We have also experimented with the altered Minigrid reward function on PAIRED. When PAIRED
uses said reward, it produces a learner agent that is utterly incapable of solving SixteenRooms, Maze,
and Labyrinth. Its regret formulation explains this: placing a block penalizes the antagonist; thus, the
adversary is incentivized to make the simplest tasks possible. The more blocks there are, the more
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the antagonist bumps into them and thus, the more negative the reward signal for the adversary. All
of our schemes do better than PAIRED at this altered reward function, implying that serious thought
should be given to extrinsic rewards and their unreliability for environment generation.

B ADDITIONAL BACKGROUND

B.1 PAYOFF STRUCTURES IN REPEATED GAMES

In repeated games, the decision-making payoff function `tπ(τ) is defined differently depending on
finiteness of the length or horizon t of repetitions of the base game. In finite repeated games, a game
GT with a finite and bounded number of interactions T < ∞, the cumulative payoffs functions
`Tπ : (S ×A)T → R for can be defined as the sum of individual base game G payoffs `π , such that:

`Tπ (τ) =

T−1∑
t=0

`π(st, at) (17)

However, when the number of interactions is infinite and leads to infinitely repeated nature-agent
games G∞, there are two main choices for payoffs structures. When the decision-making agent is
indifferent as to when its one-shot payoffs `π(st, at) is received during the interaction, we can define
an average payoff (limit of means) such that

`∞π (τ) = lim
T→∞

inf
1

T

T∑
t=1

`π(st, at) (18)

Alternatively, if the agent express preferences for one-shot payoffs `π received earlier on the inter-
action history, we can introduce a discount factor 0 < γ < 1 (Abreu, 1988) such that:

`∞π (τ) = (1− γ)

∞∑
t=0

γt`π(st, at) (19)

For discount values of γ < 1, these infinite games are equivalent to a finite game with an effective
number of interactions T = 1

1−γ after which no base game payoff is considered (γt = 0).

B.2 INTRODUCTION TO MECHANISM DESIGN

Mechanism design Vickrey (1961) aim to elicit desirable behavior (e.g., Pareto optimal Nash equi-
librium) from the players involved in a game. We introduce the concepts of game form or mechanism
and that of the n-player game induced by a mechanism.

Definition 13 Let O be a set of possible outcomes, a game form or mechanism for O is a tuple
F = 〈O,A, ϕ〉, where A = A1 × . . . × An is a cross product of action or strategy spaces for n
players and ϕ : A → O is an outcome rule or function.

Utility functions `i : O → R generally convert player’s preference over ordinal outcomes into a
cardinal utility values (Von Neumann & Morgenstern, 1944)

Definition 14 Given a mechanism F and a set ` of utility functions `i : O → R for each player, the
n-player game GF induced by the mechanism F is a pair GF = 〈A, `ϕ〉 whereA = A1× . . .×An
is a cross product of action or strategy spaces for n players and `ϕ is the set of modefied utility
functions ˜̀

i for each player, such as:

˜̀
i(a1, . . . , an) = `i(ϕ(a1, . . . , an)) (20)

defines the payoff received by the i-th agent under a joint strategy (a1, . . . , an) ∈ A defined by the
outcome function ϕ(a1, . . . , an).

Automated Mechanism Design. The field of automated mechanism design approaches design of
the mechanism outcome function ϕ : A → O manually or automated. The approach to automated
mechanism design (Conitzer & Sandholm, 2002; Sandholm, 2003) leverages the figure of the prin-
cipal or designer, a player ν whose objective `ν : Φ× `ϕ → R is defined over the space of outcome
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functions ϕ ∈ Φ and players modified utilities `ϕ. Possible objective functions for the principal ν
to maximize may include social welfare (utilitarian) `ν =

∑
i

˜̀
i, the worst utility (egalitarian) of

any player `ν = mini ˜̀
i or dictatorial `ν = ˜̀

i=k, among others (Sandholm, 2003). The princi-
pal’s objective is selected according to an equilibrium concept required for players in the induced
game (Conitzer & Sandholm, 2003). In general, the automated design of a mechanism is reduced to
finding, after the outcome and action space are manually defined, the optimal outcome function ϕ∗,
such that the objective:

ϕ∗ = arg max
ϕ∈Φ

`ν (21)

enforces the preferences of the principal player ν over the game GF induced by the mechanism F .

C ADDITIONAL PLOTS

Here are presented the rest of the zero-shot OODZ generalization plots. Results for which blocks
were randomly placed are marked with ”RB”. Results involving the altered Minigrid extrinsic re-
ward signal are marked with ”NB”.

Figure 5: Evaluation environments. From left to right: Cluttered50, Empty-Random-15X15, Four-
Rooms, Labyrinth, Maze, SixteenRooms.
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Figure 6: Zero-shot OOD generalization in the Cluttered50 environment.
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Figure 7: Zero-shot OOD generalization in the Empty-Random-15x15 environment.
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Figure 8: Zero-shot OOD generalization in the FourRooms environment.
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Figure 9: Zero-shot OOD generalization in the Labyrinth environment.
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Figure 10: The amount of blocks placed during environment generation environment generation
during training. Each data point is one environment. RB schemes place an almost-constant amount
since the amount and location of the blocks is fully stochastic.
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