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ABSTRACT

How to alleviate the hallucinations of Large Language Models (LLMs) has always
been the fundamental goal pursued by the LLMs research community. Looking
through numerous hallucination-related studies, a mainstream category of meth-
ods is to reduce hallucinations by optimizing the knowledge representation of
LLMs to change their output. Considering that the core focus of these works
is the knowledge acquired by models, and knowledge has long been a central
theme in human societal progress, we believe that the process of models refining
knowledge can greatly benefit from the way humans learn. In our work, by im-
itating the human learning process, we design an Adaptive Contrastive Learning
strategy. Our method flexibly constructs different positive and negative samples
for contrastive learning based on LLMs’ actual mastery of knowledge. This strat-
egy helps LLMs consolidate the correct knowledge they already possess, deepen
their understanding of the correct knowledge they have encountered but not fully
grasped, forget the incorrect knowledge they previously learned, and honestly ac-
knowledge the knowledge they lack. Extensive experiments and detailed analyses
on widely used datasets demonstrate the effectiveness of our method.

1 INTRODUCTION

Based on the massive training corpora and a large number of training resources from the real knowl-
edge of the human world, Large Language Models (LLMs) store many general and domain-specific
knowledge and show excellent performance in many natural language processing tasks (Wang et al.,
2024; Zhang et al., 2024a). LLMs are equipped with excellent command comprehension, logical
reasoning, and text generation capabilities. As chat assistants, LLMs help users realize many tasks
in their work, study, and daily life, greatly enriching the user experience and satisfying their needs
(Bansal et al., 2024; Asadi et al., 2024; Guo et al., 2024). However, LLMs-based chat assistants,
although greatly helping users, show hallucination problems in more and more tasks (Chen et al.,
2024; Zhang et al., 2024e;d). They encounter factual errors in their answers, sometimes even fab-
ricate non-existent knowledge, or contradict the user’s original intention when entering instructions
(Mu & Lim, 2024; Lv et al., 2024). Some of these hallucinatory errors, such as fabricating false doc-
umentaries, are difficult for the user to recognize directly, but they can have serious consequences
when used and are likely to reduce the user’s trust in the AI assistant.

When the LLM hallucinates in its reply, provides factual errors, or fabricates false knowledge, we
can assume that the LLM lacks the relevant knowledge for the problem and does not have the ability
to respond accurately (Li et al., 2024; Cheng et al., 2024; Zhang et al., 2024c). From the perspective
of human knowledge needs, for questions beyond the scope of LLM’s knowledge, we receive an
honest response like “I don’t know” rather than a fabricated, plausible-sounding answer. This will
be more conducive to utilizing AI to get the valid information that users need, as users can actually
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Q: How can I stop my cat from scratching the 
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Q: How can I stop my cat from scratching 
the furniture? 
A: I don’t know.

# Negative instance
Q: How can I stop my cat from scratching 
the furniture? 
A: Spray water on the furniture; cats hate 
wet surfaces.

# Positive instance
Q: How can I stop my cat from scratching 
the furniture? 
A: Use a scratching post to cover furniture .

LLM

# Original Instance
Q: What are some must-see places in Paris? 
Ground truth: Eiffel Tower, Louvre Museum, 
Notre-Dame Cathedral.
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# Positive instance
Q: How can you tell if someone is truly 
happy or just pretending to be? 
A: I don’t know.

# Negative instance
Q: What are some must-see places in Paris? 
A: Be sure to visit the "Paris Ice Castle," a 
famous winter attraction.
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happy or just pretending to be?
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overall demeanor, including face and body 
language.
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Figure 1: The illustration of our adaptive contrastive learning. Based on the multiple sampling
responses of the model, we represent the knowledge regions with different mastery capabilities, and
construct different positive and negative examples of adaptive contrastive learning to help the model
better consolidate what is known.

achieve what they want by providing more knowledge about the initial question, or by asking for
additional help.

Therefore, to get an honest LLM assistant with higher creditworthiness, the LLM must have two
abilities: the LLM not only has to be able to choose to refuse to answer when faced with an un-
known question but also has to acquire the ability to correctly distinguish whether it really knows
the knowledge related to a question or not, which means the model needs to be aware of what
it knows and what it does not (Zhang et al., 2024c). The LLM’s ability to perceive knowledge can
be represented by the knowledge quadrants (Yin et al., 2023b). The knowledge quadrant is divided
into four quadrant regions as shown in Figure 1, Known Knowns, Known Unknowns, Unknown
Knowns, and Unknown Unknowns, where the vertical axis represents the model’s perception of it-
self (i.e., the model’s thought of what it knows or does not know). The horizontal axis represents
the model’s actual knowledge mastery (i.e., whether or not the model actually masters a particular
piece of knowledge). Thus, knowledge in the first quadrant “Know Knowns”, represents that the AI
knows that it knows, while knowledge in the forth quadrant “Unknown knowns”, represents that the
AI does not know that it knows, and the same can be inferred for the other quadrants.

Ideally, the LLM gives the correct response to the question, which falls into “Known Knowns”,
whereas when the LLM is faced with the hallucination problem, it does not realize that it does not
know the relevant knowledge and gives the wrong response, which falls into the “Unknown Un-
knowns” quadrant. The horizontal axis represents the LLM’s specific knowledge mastery, which
is limited by the LLM’s own training process and knowledge capability. Aiming to mitigate the
hallucination problem and meet the needs of the honest LLM system, we pay more attention to the
vertical “Known” ability. We believe that providing a correct response to known questions and re-
fusing to respond to unknown questions, as outlined in the two quadrants above, are both acceptable
behaviors for an honest LLM. Thus, our goal in mitigating the LLM hallucination problem is to have
more input instructions and responses that can be moved from the lower two quadrants, into the
upper two quadrants.

Research on methods to mitigate the LLM hallucination problem and improve its honesty based on
knowledge representation faces the following problems:
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1. The design of knowledge boundaries is relatively simple and much knowledge is not
utilized. In order to help LLMs better represent the knowledge known to the model and the
knowledge unknown to the model, early studies such as Zhang et al. (2024c) and Cheng
et al. (2024) would design knowledge delineation methods to divide relevant questions into
known and unknown, and then further teach the model to answer honestly through fine-
tuning. However, these methods of knowledge boundary delineation are simplistic and
ignore much of the critical knowledge that the model is uncertain about and does not utilize
well. As a result, while the model may refuse to answer questions it does not know, this
reduces the model’s confidence and causes it to respond only when it is very certain,
which greatly affects the validity of its responses.

2. Lack of learning from the model’s incorrect replies. In the early work, most of the
focus was on the model’s known knowledge and its correct responses, as well as the fine-
tuning effect on the model, but it did not consider the use of the model’s incorrect responses
(Cheng et al., 2024). Inspired by the process of human knowledge learning and thinking,
we believe that the model not only needs to learn correct knowledge, should also recog-
nize its own mistakes from incorrect replies. By learning from this incorrect feedback, the
model can enhance its understanding and representation of knowledge by avoiding incor-
rect reasoning and forgetting related incorrect knowledge in subsequent learning.

Therefore, we propose Adaptive Contrastive Learning, which refine the boundaries of an LLM’s
knowledge representation to align with real-world human knowledge needs. This approach en-
ables the model to maintain known knowledge, consolidate uncertain knowledge, and forget
unknown knowledge. We introduce an innovative knowledge boundary design scheme featuring
an upper threshold, I Know Rate (IK), and a lower threshold, I Don’t Know Rate (IDK), to delin-
eate knowledge representation. Using well-annotated Question Answering pairs, we input these into
the LLM, sample responses multiple times, and calculate the response accuracy. Responses with ac-
curacies greater than or equal to IK indicate the model knows what it knows, those between IK
and IDK suggest uncertainty, and those less than IDK imply unknown knowledge. Based on these
knowledge quadrants, we construct comparative learning data, designing adaptive positive and nega-
tive samples for each representation. This includes learning correct boundary knowledge, addressing
incorrect responses, and reinforcing rejected answers. To optimize the LLM using these samples,
we implement an adaptive contrastive learning strategy with tailored loss functions for different
knowledge representations, while fine-tuning the model’s generation capabilities. By maximizing
the distance between negative samples and minimizing the distance between positive samples, the
model learns accurate knowledge while discarding inaccuracies, thereby enhancing its confidence
and reliability. Our contributions are as follows:

• We propose a new knowledge representation method for LLMs, which assists the model in
better refining its own knowledge scope, enhances the model’s honesty and alleviates the
model’s hallucination problem through a new knowledge boundary division.

• We design an Adaptive Contrastive Learning strategy, through which the model can main-
tain its known knowledge, consolidate the known but uncertain knowledge, and forget the
unknown knowledge, which improves the validity and honesty of the model’s responses.

• We conduct experiments and analyses on various advanced LLMs and test them on both in-
distribution and out-of-distribution data. The experimental results show that our approach
achieves the highest Truthful rate, verifying the effectiveness of our proposed Adaptive
Contrastive Learning strategy.

2 RELATED WORK

2.1 FINE-TUNING LLMS WITH HUMAN KNOWLEDGE

Large language models learn extensive knowledge from human society and carry out various tasks
based on this knowledge (Burns et al., 2023; Ouyang et al., 2022). Among mainstream techniques,
supervised fine-tuning (SFT) aligns LLM with real-world human knowledge, playing a critical role
in fulfilling the tasks expected of LLM by humans. After gathering a large annotated corpus for
natural language processing, researchers fine-tune pre-trained language models, enabling LLMs to

3



Published as a conference paper at ICLR 2025

learn from the carefully selected and annotated human knowledge and apply it to unseen tasks (Wei
et al., 2022; Sanh et al., 2022). During the SFT process, enhancing model performance can be
achieved by expanding the size of fine-tuning data (Chung et al., 2022) and gathering complex data
across various domains and tasks (Shen et al., 2023; Longpre et al., 2023), however, it may sacrifice
generality by focusing on specific domain fine-tuning. Beyond different data, instruction tuning
methods design various instruction-response pairs and enable models to learn response patterns and
content more in line with human instruction expectations, making LLMs more truthful, credible,
and helpful (Liu et al., 2024b; Muennighoff et al., 2024). However, LLMs in instruction tuning are
not robust to changes in instruction texts, often generating inconsistent answers to slightly rephrased
instructions (Liu et al., 2024a). Yan et al. (2024) propose a contrastive instruction tuning approach
that maximizes similarity between semantically equivalent instruction pairs and minimizes similarity
between semantically distinct pairs, significantly enhancing robustness in instruction fine-tuning.

2.2 MITIGATING HALLUCINATION WITH LLM’S KNOWLEDGE

LLMs accumulate substantial knowledge during training and fine-tuning, yet unavoidably encounter
data compression challenges during training, where the training data size is several times larger than
the model’s parameters (Zhu et al., 2023). This makes it challenging for LLMs to fully restore the
original knowledge, leading to hallucinations (Gekhman et al., 2024). Moreover, when the model
lacks sufficient information to respond to questions, it tends to guess, producing inaccurate outputs
(Mündler et al., 2024; Zhang et al., 2024d). Hallucinations typically involve logical fallacies (errors
in reasoning by the model) (Mu & Lim, 2024), factual errors (when the model confidently asserts
non-existent facts) (Lv et al., 2024; Li et al., 2024), and data-driven biases (when certain data pre-
vails, potentially skewing the model’s output in certain directions) (Sarkar et al., 2024; Zhang et al.,
2024b). Numerous studies focus on enhancing the models’ utilization of knowledge representation
to mitigate hallucination issues. Asai et al. (2024); Niu et al. (2024) employ the RAG approach,
bolstering knowledge retrieval and self-feedback, thereby alleviating the model’s hallucinations.
Chuang et al. (2024) propose a decoding strategy, which contrasts the differences in tokens’ logits
obtained from different layers for reducing hallucinations. Cheng et al. (2024); Zhang et al. (2024c)
are also exploring the issue of model honesty, asserting that when the model can honestly respond
“I don’t know” to unknown knowledge, it enhances the model’s credibility.

3 METHODOLOGY

3.1 KNOWLEDGE BOUNDARIES FOR MODELS

Different question-answering datasets encompass various types of knowledge and expressions, mak-
ing it challenging to assess whether models truly possess specific knowledge due to varying con-
fidence levels. To enable models to better identify their knowledge boundaries and determine
their ability to answer related questions, we establish two thresholds: the upper threshold IK (I
Know rate) and the lower threshold IDK (I Don’t Know rate). These correspond to three knowl-
edge types: the model knows it knows (knowns-known knowledge), the model does not realize it
knows (unknowns-known/uncertain knowledge), and the model does not know it does not know
(unknowns-unknown knowledge).

Following previous studies Cheng et al. (2024); Zhang et al. (2024c), we filter questions from public
datasets and query LLMs multiple times to sample responses, calculating accuracy as a measure of
the model’s confidence in each question. The number of sampled responses and the thresholds IK
and IDK serve as hyperparameters. As illustrated in Figure 2, when confidence exceeds IK, the
model is deemed to fully master that knowledge. If confidence is between IK and IDK, the model
has the knowledge but may not recognize it, leading to occasional incorrect answers. Confidence
below IDK indicates a lack of knowledge, resulting in low correct response rates. By defining these
knowledge boundaries, we will construct contrastive learning data and adaptively tune the model
based on these knowledge types. This process aims to help the model retain known knowledge,
reinforce uncertain knowledge, and forget unknown knowledge. We aspire for adaptive contrastive
learning instruction tuning to shift more knowledge from the third and fourth quadrants to the
first and second quadrants, enhancing model honesty while ensuring helpful responses.
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Q: The German company Recaro 
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performance product?

Q: What holds the greatest volume of 
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Figure 2: The illustration of the knowledge boundaries and the sample response.

We choose the widely used mainstream knowledge-sensitive open-domain question-answering
dataset, TriviaQA, based on which we collect model responses. To determine whether the model’s
responses are correct or not, we select lexical matching as an automatic evaluation metric to assess
whether the model’s output is correct or not. By calculating the consistency rate between the model’s
responses and the human-labeled responses in the dataset, we consider that the model correctly an-
swers the question when it reaches approximately 90%.

3.2 CONSTRUCTION OF CONTRASTIVE LEARNING DATA

Based on the knowledge boundary delineation in Section 3.1, we have collected knowledge data
of what the model knows and what it does not know, which corresponds to the right and the left
quadrants of the knowledge, respectively. We further perform contrastive learning data construction
for the knowledge, as shown in Figure 3.

3.2.1 QUESTIONS THAT THE MODEL KNOWS

In Section 3.1, the accuracy of the question greater than the upper threshold IK falls in the first
quadrant of the knowledge of “what the model knows that it knows”. For a given question, the
correct response of the corresponding model is designed as a positive instance. There are two types
of negative instances: one is the model’s response “I don’t know”, which can be pushed farther
away in the contrastive learning instruction tuning to enhance the model’s confidence and avoid
the situation where the model knows the knowledge but thinks it doesn’t know. Another negative
instance is a given question with incorrect answers generated by the LLM, applied to help the LLM
forget the incorrect knowledge during training. It is worth noting that the selection of instances is
related to the specific parameters of our threshold. When the IK is chosen as 1.0 for the upper
threshold, it means that the question will only be treated as a known question if the model answers
all of them correctly during all sampling instances. At this point in the construction of the negative
instances, there will be no corresponding incorrect answer negative instance, because questions with
incorrect answers are already categorized in questions that the model does not know.

3.2.2 QUESTIONS THAT THE MODEL DOES NOT KNOW

Questions that are answered with a correctness rate less than the upper threshold IK, including “the
model does not know that it knows” and “the model does not know that it does not know”, fall into
the two quadrants on the bottom of the knowledge quadrants, and are therefore considered as “model
doesn’t know”. The negative instance of the two kinds of questions is a given question with incorrect
answers generated by the LLM. In the construction of the positive instances, for questions with an
accuracy greater than the lower threshold IDK, we consider that the model actually has the relevant
knowledge, but is just not sure whether it knows it or not, which belongs to the knowledge “the model
does not know that it knows”. We set the questions with correct responses as positive instances,
hoping to enhance the model’s mastery of uncertain knowledge by introducing such knowledge.
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Figure 3: The examples of the contrastive learning data. Quadrant − 2 should contain the knowl-
edge that models know that they don’t know. Unfortunately, the initial model without our optimiza-
tion does not have the ability to distinguish this kind of knowledge.

For questions with a correct response rate less than the lower threshold IDK, we consider that the
model does not have the relevant knowledge, which belongs to the knowledge that “the model does
not know that it does not know”. We design the corresponding question and the “I don’t know”
answer as a positive instance. By narrowing the distance between this positive sample, we can better
encourage the model to admit “I don’t know” when facing the knowledge that the model doesn’t
have and enhance the honesty and creditability of the LLM responses.

To compute the adaptive contrastive loss in Section 3.3, we need to construct different contrastive
data for various quadrants. Specifically, we construct different instruction data I = (x, y), where
x is the input question and y is the answer. In the contrastive setup, besides the anchor I , there are
positive instances I+ and negative instances I−. The differences primarily focus on the selection of
y, which will be detailed in the following sections.

3.3 ADAPTIVE CONTRASTIVE LEARNING STRATEGY

In Section 3.2, we obtain the constructed instruction pairs for correlated positive and negative in-
stances of model-knowns versus model-unknowns knowledge from the three quadrants. We then
perform adaptive contrastive instruction tuning. Compared to the traditional SFT, the contrastive
instruction tuning approach can better enhance the model’s mastery of knowledge by pulling the
positive instances closer together and pushing the negative instances away Yan et al. (2024). In
our adaptive contrastive learning strategy, for the positive and negative instances corresponding to
knowledge in different quadrants, we design different data using strategy, which can adaptively per-
form the calculation of positive and negative samples in different quadrants. So that the model can be
more targeted to think about different knowledge, and better enhance the model’s ability to maintain
what it knows, consolidate what it knows but is uncertain about, and forget unknown knowledge.

For the knowledge that the “models know that they know” in Quadrant− 1 (as shown in Figure 3),
we have the contrastive data IQ1 , I+Q1

, and I−Q1
. The i-th sample in a training batch includes the

original input IiQ1
(its yi is the golden answer), positive instance Ii,+Q1

(its yi is the previous correct
answer of LLM), and negative instance Ii,−Q1

(its yi is “I don’t know” or previous wrong answers of
LLM). We bring the positive instance Ii,+Q1

closer and push the negative instance Ii,−Q1
farther away.
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To calculate the contrastive loss, we obtain the hidden states h of I following the method of Yan
et al. (2024) and have designed a contrastive loss function:

Li,ctr
Q1

= − log
ecos(hi

Q1
,hi,+

Q1
)/τ

ecos(hi
Q1

,hi,+
Q1

)/τ + ecos(hi
Q1

,hi,−
Q1

)/τ
, (1)

where cos(hi
Q1

,hi,+
Q1

) is the cosine similarity, and τ is a temperature hyperparameter.

In order to maintain the generative capability of the LLM, we follow the method of Liu et al. (2022)
and design the standard cross-entropy loss for each instruction pair:

Li,gen
Q1

=
1

l

l∑
k=1

− log p(yik|IiQ1
, yi<k), (2)

where l is the length of the desired output for the input, yik is the k-th token of yi, yi<k is the previous
tokens before yik.

The overall learning objective function was obtained by combining the above two loss functions:

Li,Adap
Q1

= Li,gen
Q1

+max(λ, detach(
Li,gen
Q1

Li,ctr
Q1

))Li,ctr
Q1

, (3)

where detach denotes that the loss value is detached from the computation graph and thus is treated
only as a scalar, and λ is the upper bound of the weight.

For the knowledge that the model does not know that it does not know in Quadrant − 3 and the
model does not know that it knows in Quadrant − 4 (as shown in Figure 3), we design similar
objective functions, as described in detail in the Appendix. A.1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 TRAINING DETAILS OF METHODS

In order to verify the superiority of our proposed contrastive learning fine-tuning strategy, we design
different LLM-based methods as baselines, and implement the baselines with the same details for
fair comparison. Their training details are presented here.

IDK Prompting. In order to equip the model with the initial honesty of refusing to answer questions
that it does not know, we designed the Prompting scheme directly for the baseline large model. In
the Prompt, the model is told to reply “I don’t know” when it encounters a question that it cannot
answer. This approach requires the model not only to have good command following ability, which
can correctly follow the instructions provided by us, but also to have the ability to distinguish its
own knowledge boundaries, i.e., to distinguish what is a question that it cannot answer. In IDK
Prompting, the model is not additionally trained or fine-tuned, and the model’s own ability to follow
instructions and distinguish between knowledge boundaries is completely examined.

IDK SFT. Supervised fine-tuning (SFT) is a very important technique for fine-tuning LLMs and
can be very useful to help models quickly learn new knowledge patterns from constructed high-
quality datasets. We fine-tune the model based on the problems that the model knows versus the
problems that the model does not know, from the contrastive learning data we construct. In the
input data, each pair of instances consists of a question and a response, where the questions that
the model knows correspond to correct responses and the questions that the model does not know
correspond to “I don’t know” responses. By calculating the standard sequence-to-sequence loss of
the model-generated responses with respect to the standard responses, we train the model.

4.1.2 IMPLEMENTATION DETAILS

We select LLaMA-2-7B-chat and Mistral-7B-Instruct-v0.1 as base models for testing on TriviaQA
(Joshi et al., 2017) and Natural Questions (Kwiatkowski et al., 2019), respectively. During the
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Method
LLaMA-2-7B-chat

TriviaQA Natural Questions

IK-IK IK-IDK TRUTHFUL IK-IK IK-IDK TRUTHFUL

IDK-Prompting 37.4 29.6 66.9 19.7 41.4 61.1
IDK-SFT 28.0 45.2 73.2 32.8 27.5 60.3
IDK-SFT-Adpt-Ctr 37.3 40.9 78.2 21.8 45.4 67.2

Method
Mistral-7B-Instruct-v0.1

TriviaQA Natural Questions

IK-IK IK-IDK TRUTHFUL IK-IK IK-IDK TRUTHFUL

IDK-Prompting 50.8 5.9 56.7 23.6 20.8 44.4
IDK-SFT 31.4 40.8 72.2 4.8 65.4 70.2
IDK-SFT-Adpt-Ctr 24.4 49.0 73.5 9.3 67.7 77.0

Table 1: Overall results on the test set of the IDK dataset constructed based on TriviaQA and out-
of-distribution test sets.

training of the LLaMA model, we used a batch size of 16, a learning rate of 5e-5, a context length of
1024, and trained for 2 epochs. For the Mistral model, we used a batch size of 16, a learning rate of
1e-5, a context length of 1024, and also trained for 2 epochs. The τ is set to 0.01 and the λ is set to 1.
All experiments are conducted on Nvidia A100 80GB GPUs. During inference, we utilize the vllm
framework to accelerate the process and employ a greedy search strategy to generate responses.

4.2 DATASETS

TriviaQA (Joshi et al., 2017) is a reading comprehension dataset with question-answering pairs
widely used in open-domain quizzing, which contains 87,622 pairs in the training set. Referring to
past work Cheng et al. (2024), we use 90% of the training set to construct a training set for compar-
ative learning data and 10% as a validation set. Since there is no standard answer in TriviaQA’s test
set, we select 11,313 Q&A pairs from the development set to build our final test set.

Natural Questions (Kwiatkowski et al., 2019) is fine-tuned by constructing a comparative learning
dataset on TriviaQA, and we perform tests with the same data distribution. In order to validate the
performance of our fine-tuning method on OOD data, we select Natural Questions as our test dataset.
Natural questions are real Q&A pairs from the Google search engine, where the development set
containing 3,610 instances is used to build our test set. Same as when building the data in TriviaQA,
we also use lexical matching as a metric for automatic evaluation when testing on Natural Questions.

4.3 EVALUATION METRICS

We employ the following evaluation metrics: 1) IK-IK Rate: This metric reflects the model’s “I
know what I know” capability, which is calculated as the percentage of correct answers relative
to the total number of questions. 2) IK-IDK Rate: This represents the model’s “I know what I
don’t know” ability, which calculates the ratio of those questions that correctly refuse answering
to the total number of questions. 3) Truthful Rate: Both correct answers and correct refusals to
answer outside knowledge boundaries are considered reliable, so the Truthful Rate is computed as
the sum of the IK-IK and IK-IDK rates, and regarded as a comprehensive measure of its knowledge
refinement capabilities. We introduce the evaluation metrics in detail in Appendix B.1.

4.4 MAIN RESULTS

From the Table 1, we can observe that in the TriviaQA dataset using the LLaMA model, the model
fine-tuned with SFT shows a 6.3% improvement in the Truthful Rate compared to directly using
IDK-Prompting. After incorporating our Adaptive Loss, there is an additional 5.0% improvement
over the SFT model. Notably, the IK-IK rate shows a significant increase of 9.3% compared to the
SFT model, indicating that our Adaptive Loss helps mitigate the loss of knowledge that the model
is unaware it possesses due to SFT. On the OOD dataset, Natural Question, our model achieves
improvements of 6.1% and 6.9% over IDK-Prompting and IDK-SFT, respectively.
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In the case of the Mistral model on the TriviaQA dataset, the model fine-tuned with SFT exhibits a
15.5% improvement in the Truthful Rate compared to directly using IDK-Prompting. Building on
this significant improvement, the addition of Adaptive Loss further enhances performance by 1.3%.
On the OOD dataset, Natural Question, our model achieves improvements of 15.9% and 6.8% over
IDK-Prompting and IDK-SFT, respectively.

Knowing Rate
LLaMA-2-7B-chat

TriviaQA Natural Questions

IK-IK IK-IDK TRUTHFUL IK-IK IK-IDK TRUTHFUL

0.5 42.7 34.5 77.2 29.8 32.4 62.2
0.7 37.3 40.9 78.2 21.8 45.4 67.2
0.9 15.7 57.9 73.6 13.5 50.3 63.8

Table 2: The impact of different IDK values on the performance of LLaMA-2-7B-chat.

5 DISCUSSION

5.1 IMPACT OF DIFFERENT IDK VALUES

In Section 3.1 and Section 3.2, we utilize the IDK Rate threshold to distinguish between the model’s
uncertain knowledge (the model does not know that it knows) and unknown knowledge (the model
does not know that it does not know). In this process, we aim to refine the model’s correct knowledge
and reduce its uncertainty regarding the former, while encouraging it to forget incorrect knowledge
regarding the latter. We conducted experiments with different IDK Rates to evaluate model perfor-
mance under varying thresholds. As shown in Table 2, the model achieves optimal performance at an
IDK Rate of 0.7, followed by 0.5, with 0.9 being the lowest. We believe that categorizing too many
uncertain responses as “the model does not know that it knows” can harm performance, as forcing
the model to assert knowledge in low-certainty situations can have negative effects. Conversely, a
high certainty threshold of 0.9 may prevent the model from reaching its full potential.

Loss Combination TriviaQA

IK-IK IK-IDK TRUTHFUL

LQ1 (Model knows it knows) 28.7 46.0 74.7
LQ3 (Model doesn’t know it doesn’t know) 30.0 43.8 73.8

LQ4 (Model doesn’t know it knows) 36.5 39.3 75.8
LQ1 + LQ3 26.5 47.9 74.4
LQ1 + LQ4 32.9 45.1 78.0
LQ3 + LQ4 29.4 46.7 76.1

Total 37.3 40.9 78.2

Table 3: Results of different loss combinations. Experiments are conducted on LLaMA-2-7B-chat.

5.2 IMPACT OF DIFFERENT CONTRASTIVE LOSS COMBINATIONS

In designing the Adaptive Contrastive Learning strategy, we developed different contrastive learning
strategies based on the model’s certainty regarding various issues. Here, we isolate each type of
contrastive learning loss by setting the others to zero to evaluate the impact of each specific loss
type. From Table 3, we can see that:

• With the LQ1
(i.e., “Model knows it knows” in Quadrant− 1), the model’s responses are

more conservative, resulting in a lower IK-IK rate and a higher IK-IDK rate.

• The LQ3
(i.e., “Model doesn’t know it doesn’t know” in Quadrant − 3) encourages the

model to be conservative and forget incorrect knowledge, resulting in a lower IK-IK rate.

• Using the LQ4
(i.e., “Model doesn’t know it knows” in Quadrant − 4) allows the model

to correctly answer more uncertain questions, leading to a higher IK-IK rate.
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• For LQ1
+LQ3

, the model has higher IK-IDK rate due to cautious responses, but lower IK-
IK than Total. Missing LQ4

limits the use of underlying knowledge for confident answers.

• With LQ1
+ LQ4

, the model sees strong Truthful rate and decent IK-IK results. However,
without LQ3

, it’s less cautious about unknowns, affecting the IK-IDK rate.
• The LQ3

+LQ4
provides balanced performance but lower IK-IK rate comparing Total. This

suggests that without LQ1
, the model struggles with certainty in known answers.

Combining these three components forms our method, which achieves superior overall performance.

5.3 REPEATED SAMPLING DISTRIBUTION

To more intuitively demonstrate the improvements of our method over IDK-SFT, we conduct ten
repeated samplings of questions from the TriviaQA test set on LLaMA-2-7B-chat, categorizing
them into “Unknown Questions” and “Known Questions.” When calculating accuracy, the ground
truth for “Known Questions” is the correct answer, while for “Unknown Questions”, it is a refusal to
respond. The distribution of our sampling results is shown in Figure 4. In this figure, the vertical axis
represents the proportion of samples within the entire dataset that fall into a specific accuracy range.
We employ repeated sampling to evaluate both models by having them respond to each question
in the TriviaQA test set 10 times. The number of correct responses out of these 10 attempts (i.e.,
accuracy) is used as a measure of the model’s performance and confidence. To explain Figure 4,
in the “Unknown Questions” sub-figure of Figure 4, the bars corresponding to an accuracy of 1
indicate the proportion of questions from the dataset that the models consistently declined to answer
across all 10 attempts. Similarly, in the “Known Questions” sub-figure, the bars corresponding to
an accuracy of 0.8 represent the proportion of questions for which the models provided 8 correct
answers out of 10 attempts, relative to the total number of questions in the dataset.

From Figure 4, we observe that our method achieves a higher number of instances with high accuracy
(greater than 0.7) in both Unknown and Known questions compared to Idk-SFT. This indicates that
the model fine-tuned with our method is more likely to produce correct results in a single response.
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0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Accuracy
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Figure 4: Accuracy Distribution for Known and Unknown Questions in TriviaQA.

6 CONCLUSION

In this paper, we focus on the problem of hallucination in LLM responses. We believe that this
hallucination arises from the LLM’s choice to reply despite being confronted with a question that
exceeds its own knowledge. This motivates our exploration of the LLM’s mastery of its own in-
ternal knowledge and its knowledge boundaries. We design a new knowledge boundary delineation
method, which helps the model better represent and refine its own knowledge quadrants. We propose
the strategy of Adaptive Contrastive Learning, by targeting different knowledge mastery abilities in
different knowledge quadrants, we design different positive and negative samples with adaptive
loss functions to help the model maintain known knowledge, consolidate uncertain knowledge, and
forget the wrong knowledge. We conduct experiments on in-distribution and out-of-distribution
datasets, and the results show that this proposed contrastive learning strategy well improves the
Truthful rate of the models. We further provide presentations on threshold analysis, loss function
ablation experiments, and visualization of results with knowledge quadrants, which not only further
demonstrates the validity of our results, but also provides valuable inspiration for future work.
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A ADDITIONAL DETAILS OF METHODOLOGY

A.1 OBJECTIVE FUNCTION

The model does not know it knows. For the knowledge that the “model doesn’t know that it knows”
in Quadrant − 4 (as shown in Figure 3), we have the contrastive data IQ4 , I+Q4

, and I−Q4
. The i-

th sample in a training batch includes the original input IiQ4
(its yi is the golden answer), positive

instance Ii,+Q4
(its yi is the golden answer), and negative instance Ii,−Q4

(its yi is previous incorrect
answers of LLM). We bring the positive instance Ii,+Q4

closer and push the negative instance Ii,−Q4

farther away. We design the loss function:

Li,ctr
Q4

= − log
ecos(hi

Q4
,hi,+

Q4
)/τ

ecos(hi
Q4

,hi,+
Q4

)/τ + ecos(hi
Q4

,hi,−
Q4

)/τ
, (4)

where cos(hi
Q4

,hi,+
Q4

) is the cosine similarity, and τ is a temperature hyperparameter.

Again, there is cross-entropy loss with the final objective function:

Li,gen
Q4

=
1

l

l∑
k=1

− log p(yik|IiQ4
, yi<k), (5)

Li,Adap
Q4

= Li,gen
Q4

+max(λ, detach(
Li,gen
Q4

Li,ctr
Q4

))Li,ctr
Q4

, (6)

where detach denotes that the loss value is detached from the computation graph and thus is treated
only as a scalar, and λ is the upper bound of the weight.

The model does not know that it does not know. For the knowledge that the “models do not know
that they do not know” in Quadrant− 3 (as shown in Figure 3), we have the contrastive data IQ3

,
I+Q3

, and I−Q3
. The i-th sample in a training batch includes the original inputIiQ3

(its yi is “I don’t
know”), positive instance Ii,+Q3

(its yi is “I don’t know”), and negative instance Ii,−Q3
(its yi is previous

incorrect answers of LLM). We bring the positive instance Ii,+Q3
closer and push the negative instance

Ii,−Q3
farther away. We design the loss function:

Li,ctr
Q3

= − log
ecos(hi

Q3
,hi,+

Q3
)/τ

ecos(hi
Q3

,hi,+
Q3

)/τ + ecos(hi
Q3

,hi,−
Q3

)/τ
, (7)

B ADDITIONAL DETAILS OF EXPERIMENT

B.1 EVALUATION METRICS

We use the following evaluation metrics, all of the evaluation scores show that the higher the score,
the better the model effect:

IK-IK rate: This means that the model “I know what I know”, which means the model does not
refuse to answer the question, but gives a correct answer, and the question is labeled as “model
knows”. We calculate the number of correct answers given by the model as a percentage of the total
number of questions in the dataset as a fraction of the IK-IDK rate.

IK-IDK rate: This represents the model’s “I know what I don’t know”, meaning that the model
refuses to answer a question that is labeled as a “model-don’t-know question” in the test set. When
we detect the presence of our predetermined “I don’t know”, we calculate the ratio of the number of
questions that the model refuses to answer to the total number of questions as the IK-IDK rate.
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Truthful Rate: This represents the overall percentage of reliable answers given by the model.
In the use of large models, for the model giving correct responses, versus refusing to respond to
responses that are outside the knowledge boundaries, both responses can be considered reliable, so
the Truthful rate is calculated as the sum of IK-IK and IK-IDK. Since all data are categorized into
“model knowns” and “model unknowns”, although the upper bounds for the separate scores for IK-
IK and IK-IDK may vary depending on the data categorization, ideally the Truthful Rate can reach
100. Therefore, we believe that the Truthful Rate is a more comprehensive criterion for assessing
the intellectual honesty of a model, as the upper bound is not affected by data partitioning, and it is
a more comprehensive measure of the model’s mastery of the capability to refine knowledge.

C ADDITIONAL EXPERIMENT

This section is entirely new, so highlighting is omitted.

C.1 MORE DATASETS

Experimental Setup To evaluate the model’s ability to respond appropriately to completely un-
known questions, we selected the ALCUNA(Yin et al., 2023a) dataset for testing. This dataset is
designed by creating artificial entities through the alteration of existing entity attributes, leading
to the generation of questions about these novel entities. Since these entities are artificially con-
structed, it is nearly impossible for the model to possess prior knowledge about them, making this
dataset ideal for testing the model’s ability to refuse to answer inconceivable queries. We randomly
sampled 1000 instances from the ALCUNA dataset to serve as our out-of-domain test set.

Method ALCUNA

IK-IK IK-IDK TRUTHFUL

IDK-Prompting 1.6 90.3 91.9
IDK-SFT 1.2 96.6 97.8
IDK-SFT-Adpt-Ctr 1.0 97.3 98.3

Table 4: Performance of different methods on the ALCUNA dataset.

Results Analysis As shown in Table 4, our proposed methods perform better in the context of
unknown queries that require refusal to respond, compared to models that have only finetuned by
IDK-SFT. This underlines the effectiveness of our approach in reinforcing the model’s ability to
manage queries about unknown entities.

Method TriviaQA

IK-IK IK-IDK TRUTHFUL

IDK-Prompting
- with LLaMA-2-7B-chat 37.4 29.6 66.9
- with LLaMA-2-13B-chat 37.7 31.6 69.3

IDK-SFT
- with LLaMA-2-7B-chat 28.0 45.2 73.2
- with LLaMA-2-13B-chat 32.8 41.3 74.1

IDK-SFT-Adpt-Ctr
- with LLaMA-2-7B-chat 37.3 40.9 78.2
- with LLaMA-2-13B-chat 37.8 41.1 78.9

Table 5: Performance of different model sizes on the TriviaQA dataset.
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C.2 IMPACT OF MODEL SIZE ON PERFORMANCE

Experimental Setup To investigate the effect of different model sizes on our proposed method,
we conducted experiments using the LLaMA-2-13B-chat model. The experimental setup was con-
sistent with the previous sections. By comparing with the LLaMA-2-7B-chat model, we aimed to
understand how scaling the model impacts performance across various metrics.

Results Analysis The results, as presented in Table 5, demonstrate nuanced changes in perfor-
mance as the model size increases from 7B to 13B parameters. For all method, using the larger
LLaMA-2-13B-chat model resulted in slight improvements across IK-IK, IK-IDK, and Truthful rate,
indicating that a larger model can enhance the ability to differentiate known and unknown knowledge
and present truthful responses. Moreover, the proposed method consistently gained performance im-
provements across all metrics with the larger LLaMA-2-13B-chat model, thereby underscoring the
robustness and scalability of our approach.

C.3 COMPARISON WITH RAG INTEGRATION

Experimental Setup To assess the adaptability of our method, we integrated the Retrieval-
Augmented Generation (RAG) technique. We conduct experiments using the LLaMA-2-7B-chat
model, and we employe the RAG-Bench (Fang et al., 2024) dataset, constructed from three open-
domain question answering datasets: NQ (Cheng et al., 2024), TriviaQA (Joshi et al., 2017), and
WebQ (Berant et al., 2013). For each dataset, a retrieval model sourced relevant paragraphs from
Wikipedia for each query to use as context. In this experimental setup, we input the context along-
side the query into the model (denoted as “with RAG” in the table) and compared the results with
those obtained without using context. We randomly selected 1000 samples from RAG-Bench to use
as our out-of-domain test test.

Method RAG-Bench

IK-IK IK-IDK TRUTHFUL

IDK-Prompting 47.4 11.3 58.7
- with RAG 62.5 5.8 68.3

IDK-SFT 60.3 1.9 62.2
- with RAG 66.1 3.3 69.4

IDK-SFT-Adpt-Ctr 44.5 22.4 66.9
- with RAG 58.4 12.8 71.2

Table 6: Performance comparison using LLaMA-2-7B-chat on the RAG-Bench dataset with and
without RAG integration.

Results Analysis As illustrated in Table 6, integrating the RAG technique positively impacted the
Truthful Rate of all three methods. Additionally, it can be seen that IDK-Prompting and IDK-SFT-
Adpt-Ctr show a decreasing trend in IK-IDK after combining with RAG, while IDK-SFT shows
an increasing trend in IK-IDK after combining with RAG. The reasons for this phenomenon are as
follows:

1. It is intuitive and reasonable that IDK-Prompting and IDK-SFT-Adpt-Ctr exhibit a decreas-
ing trend in IK-IDK when combined with RAG, as the model naturally tends to answer
questions more directly and reduce refusal-to-answer after being input with more addi-
tional contextual information from RAG. Therefore, from the perspective of metrics, after
adding RAG to these two methods, IK-IDK decreased.

2. The phenomenon of the increase in IK-IDK after adding RAG to IDK-SFT can only in-
dicate an increase in correct refusal-to-answer, but this does not conflict with the above
analysis, as the overall refusal-to-answer include both correct and wrong ones. After care-
ful observation, we found that the overall rejection rate of IDK-SFT is about 10%, while the
overall rejection rate of IDK-SFT-RAG is about 4%. This indicates that the overall rejec-
tion rate of IDK-SFT still decreases after adding RAG, and the main reason for the increase
in IK-IDK is that a considerable portion of refusal-to-answer in IDK-SFT is wrong.
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