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ABSTRACT

Vision-language pre-trained models (VLP) exhibit remarkable capabilities in pro-
cessing images and textual information. However, they are vulnerable to multi-
modal adversarial examples. Notably, adversarial examples generated for a spe-
cific model can potentially deceive different models, known as adversarial trans-
ferability. The potential threats posed by adversarial transferability to models in
practical applications have heightened interest in studying the transferability of
adversarial examples. Recent works have indicated that leveraging data augmen-
tation and image-text modal interactions can significantly enhance the transfer-
ability of adversarial examples for VLP models. A crucial aspect of this im-
provement hinges on how information between different modalities is aligned.
Despite this, they have overlooked the critical issue of finding the optimal align-
ment between data-augmented image-text pairs. This oversight creates adversarial
examples overly customized to the source model, consequently restricting their
transferability potential. In our research, we first explore the interplay between
image sets produced through data augmentation and their corresponding text sets.
We find that augmented image samples can align more effectively with specific
texts while exhibiting less relevance to others. Motivated by this, we propose an
Optimal Transport-based Adversarial Attack, dubbed OT-Attack. The proposed
method formulates the features of image and text sets as two distinct distribu-
tions and employs optimal transport theory to determine the most efficient map-
ping between them. This optimal mapping informs our generation of adversarial
examples to enhance their transferability. Extensive experiments across various
network architectures and datasets in image-text matching tasks show that our
OT-Attack is more transferable to unseen target models than existing methods.

1 INTRODUCTION

Vision-Language Pre-trained (VLP) models have shown outstanding performance in various down-
stream tasks, including image-text matching (Cao et al., 2022; Li et al., 2023), image caption-
ing (Hossain et al., 2019; Ghandi et al., 2023), visual question answering (Li et al., 2022), and
visual grounding (Deng et al., 2018; Yang et al., 2023). Despite their impressive capabilities, these
models encounter significant security challenges in real-world applications (Lei et al., 2021; Zhou
et al., 2020; Bao et al., 2022; Hu et al., 2022).

Existing works have demonstrated that adversarial examples perturbed on white-box models remain
effective on certain black-box models (Goodfellow et al., 2014; Papernot et al., 2016). It indicates
that adversarial examples generated via a proxy model can still mislead the prediction of black-
box models due to their transferability (Xie et al., 2019; Lin et al., 2019; Dong et al., 2019; Jia
et al., 2020; Long et al., 2022; Jia et al., 2022). A ideal attack scenario, in reality, is one where
adversarial examples remain effective even in the absence of detailed knowledge about the model’s
inner workings, such as its model architecture, weights, and gradients, etc (Han et al., 2023; Gu
et al., 2023). Motivated by the practical significance of transfer-based adversarial attacks and adver-
sarial transferability (Gubri et al., 2022; Qin et al., 2022; Byun et al., 2022; Waseda et al., 2023),
in this paper, we primarily study the transferability of adversarial examples across VLP models.
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Zhang et al. (2022) proposed Co-Attack, which combines modalities using image-text pairs to im-
prove transferability. Further, Lu et al. (2023) developed the Set-level Guidance Attack (SGA),

Figure 1: An image from the Flickr30K often has cap-
tions that focus on different parts of the image, meaning
one caption may be highly relevant to a specific region
but less so to others.

advancing Co-Attack by employing data
augmentation and multiple textual de-
scriptions for set-level alignment and in-
termodal guidance, achieving SOTA re-
sults in VLP models. However, as illus-
trated in Figure 1, different captions of the
same image may focus on different con-
tents. The critical limitation of SGA lies
in its approach of averaging the alignment
between sets of captions and images with-
out considering the crucial matches be-
tween specific captions and corresponding
image contents. This generalized match-
ing strategy fails to ensure optimal align-
ment, especially after images have under-
gone data augmentation processes such as
zooming, which can lead to significant
misalignments with their captions. Con-
sequently, this approach may reduce the efficacy of data augmentation and modality interactions for
improving adversarial transferability.

(c) ALBEF to TCL

A man with 

glasses
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glasses
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orange hat
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earrings
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earrings

A man with an 

orange hat

(a) SGA (b) OT-Attack

Figure 2: Comparative analysis of Set-level Guidance Attack (SGA) methods and their ITR attack
success rates. Panel (a) illustrates the conventional SGA approach where image and text sets are
averaged to establish pair-wise matches. Panel (b) showcases our proposed method, OT-Attack,
where images are matched to texts based on optimal transport theory to enhance matching accuracy.
Panels (c) depict the attack success rates for our method OT-Attack versus traditional SGA, with
ALBEF serving as the source and TCL serving as the target. The bar charts show that our adversarial
examples outperform SGA in all metrics, effectively disrupting ITR performance.

In this paper, we address this issue by incorporating the theory of optimal transport (Villani et al.,
2009). We treat the feature sets of augmented images and texts as two distinct distributions and
aim to establish the optimal transport scheme between them. The distinction between our method
and SGA, along with a comparative overview of the results, is depicted in Figure 2. In detail, we
integrate optimal transport theory to analyze data-augmented image sets and text sets as distinct
distributions. This holistic consideration allows us to incorporate similarity into the cost matrix and
calculate the optimal transport scheme. Consequently, we compute the total transfer cost between
these distributions, guiding the generation of adversarial examples. Our method achieves a more bal-
anced matching relationship between the augmented image and text sets, leading to more effective
alignment and improving the transferability of adversarial examples. Experiments conducted on var-
ious models including ALBEF (Li et al., 2021), TCL (Yang et al., 2022), and CLIP (Radford et al.,
2021), and utilizing well-known datasets like Flickr30K (Plummer et al., 2015) and MSCOCO (Lin
et al., 2014), quantitatively demonstrate the effectiveness of our approach.

The key contributions of this paper are summarized in three aspects:

1. We propose a framework that improves the SGA by ensuring a balanced match between
image and text sets after data augmentation.
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2. We innovatively utilize Optimal Transport theory in examining adversarial example trans-
ferability in VLP models, promoting a more profound and thorough alignment between
data-augmented images and textual descriptions.

3. Extensive experiments establish that our method generates adversarial examples with su-
perior transferability compared to existing state-of-the-art techniques. Furthermore, our
OT-Attack can successfully break current business models like GPT-4 and Bing Chat.

2 BACKGROUND AND RELATED WORK

Vision-Language Pre-trained Models. Vision-language pre-training (VLP) (Chen et al., 2023) is a
pivotal technique in augmenting multimodal task performance, capitalizing on extensive pre-training
with image-to-text pairs. Traditionally, much of the research in this area has relied on pre-trained ob-
ject detectors, using region features to create vision-language representations. However, the advent
of Vision Transformer (ViT) (Dosovitskiy et al., 2020; Han et al., 2022) has instigated a method-
ological shift. Increasingly, studies advocate adopting ViT in image encoding, which involves an
end-to-end process of transforming inputs into patches. VLP models can be broadly classified into
fused and aligned VLP models. Fused VLP models, as exemplified by architectures like ALBEF (Li
et al., 2021) and TCL (Yang et al., 2022), utilize individual unimodal encoders for processing token
and visual feature embeddings. These models then employ a multimodal encoder to amalgamate im-
age and text embeddings, crafting comprehensive multimodal representations. Conversely, aligned
VLP models use unimodal encoders to process image and text modality embeddings independently.

Vision-Language Tasks. Image-text retrieval. Image-Text Retrieval (ITR) (Cao et al., 2022; Li
et al., 2023) is a task that retrieves relevant instances from a database using one modality (image
or text) to query the other. It splits into image-to-text retrieval (TR) and text-to-image retrieval
(IR). Models like ALBEF and TCL calculate semantic similarity scores between image-text pairs
for initial ranking, then employ a multimodal encoder for final ranking. Conversely, models like
CLIP (Radford et al., 2021) directly rank based on similarity in an unimodal embedding space,
showcasing varied ITR methodologies. Image captioning. Image captioning (Hossain et al., 2019;
Ghandi et al., 2023) generates textual captions for images and is crucial in VLP models. This
task requires converting visual content into coherent, contextually relevant text, which differs from
image-text retrieval. Visual grounding. Visual Grounding (Deng et al., 2018; Yang et al., 2023)
entails identifying and locating objects or regions in an image per language descriptions, requiring
precise text mapping to visual elements.

Transferability of Adversarial Examples. Co-Attack by Zhang et al. (2022) integrates visual
and textual attacks, exploiting VLP model multimodality. The Set-level Guidance Attack (SGA)
advances this by aligning augmented images with multiple texts, enhancing adversarial example
transferability across black-box models. The shift from individual to integrated attacks like Co-
Attack and SGA illustrates the evolution of adversarial strategy against VLP models.

Optimal Transport. Optimal Transport (OT), a concept first introduced by Monge (Villani et al.,
2009), its unique ability to match distributions has led to its widespread application in various the-
oretical and practical areas. This includes its use in generative models and structural alignments
involving sequences (Arjovsky et al., 2017), graphs (Xu et al., 2019), and image matching (Zhang
et al., 2020; Liu et al., 2021; Zhao et al., 2021).

3 APPROACH

3.1 THREAT MODEL

We analyze two scenarios: white-box and black-box attacks. In a white-box model Mwhite, the
adversary has complete access to the model’s architecture, parameters, and gradients, which allows
for direct optimization to generate adversarial examples. In contrast, a black-box model Mblack is
opaque, restricting the adversary to indirect methods based on observed outputs or behavior.

This work focuses on generating adversarial examples on a white-box model and leveraging these
examples to attack a black-box model. This approach is aimed at evaluating the transferability of
adversarial examples and the effectiveness of attack strategies. A well-designed loss function L
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in the white-box setting plays a critical role in enhancing attack success rates. In this regard, the
proposed method explores the integration of optimal transport loss into adversarial attacks, which
will be discussed in detail in the following sections.

For Mwhite, the adversary seeks to maximize a loss function L under a constraint on the magnitude
of the perturbation:

∆∗ = argmax
∆
L(fwhite(Iorig)), subject to ||∆||p ≤ ϵ, (1)

where || · ||p denotes the p-norm, and ϵ defines the permissible visual deviation from the original
image. The resulting adversarial example is computed as:

Iadv = Iorig +∆∗. (2)

3.2 THE PROPOSED METHOD

3.2.1 SYMBOL CONVENTIONS

In this section, we describe the sources of image and text features utilized in our framework, fol-
lowed by a discussion on how traditional attack methods define the loss function L.

Given an original set of images I and a set of image enhancement factors A, we construct the
augmented image set Iaug by applying an image enhancement method fenhance to each image I ∈ I
for every factor α ∈ A:

Iaug =
⋃
α∈A

(fenhance(I, α)) ,

where fenhance represents a generic image enhancement operation. Using the augmented image set
Iaug and an original text set T , we extract their feature representations via encoders. Specifically,
the image encoder ϕ and text encoder φ produce Fimg = ϕ(Iaug) and Xtxt = φ(T ), where Fimg

and Xtxt are the image and text feature representations, respectively.

The similarity matrix S, representing the pairwise similarity between image and text features, is
computed as:

S = Fimg ⊙Xtxt,

where ⊙ denotes matrix multiplication.

Traditional attack methods often define the loss function L using the similarity matrix S. A com-
monly employed formulation is as follows:

lossori = −

(∑
i

Si

)
mean

, (3)

where the summation
∑

i Si is taken over the last dimension of the similarity matrix S. The mean of
this summation is then computed to obtain the final loss value lossori. This formulation encourages
the adversarial examples to maximize dissimilarity between the features of augmented images and
original texts, facilitating the generation of effective attacks on the white-box model.

However, a significant limitation often hinders traditional attack methods: the generated adversar-
ial examples tend to overfit the source (white-box) model. During optimization, the perturbations
are excessively tailored to exploit the white-box model’s specific features and decision boundaries.
While this overfitting improves attack success on the source model, it severely reduces the trans-
ferability of adversarial examples to black-box models. This lack of transferability is a critical
challenge, as it undermines the effectiveness of adversarial attacks in practical scenarios. Experi-
mental results in the Appendix H substantiate this observation, highlighting the need for methods to
balance attack success on the source model while enhancing generalization to unseen models.

3.2.2 OPTIMAL TRANSPORT

Defining Source (P) and Target (Y) Distributions. In the Optimal Transport framework, we
begin by defining two fundamental distributions: the source distribution P and the target distribution
Y. These distributions represent the starting and ending points of the transportation process in the
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Optimal Transport problem. Specifically, the source distribution P = (p1, p2, . . . , pn) and the
target distribution Y = (y1, y2, . . . , ym) describe the quantities to be transported from and to each
respective location.

The Transportation Matrix T. In the context of Optimal Transport, the matrix T = [Tij ] of size
n × m is referred to as the transportation matrix. Each element Tij represents the amount of a
commodity or resource transported from the i-th source in P to the j-th target in Y. This matrix
effectively captures the transportation scheme between the sources and targets.

The matrix T must satisfy certain constraints to ensure an optimal transportation plan. The Marginal
Constraints are:

m∑
j=1

Tij = pi, ∀i ∈ {1, . . . , n}, and
n∑

i=1

Tij = yj , ∀j ∈ {1, . . . ,m}. (4)

These constraints ensure that the total transported amount from each source i and to each target j
equals the respective supply pi and demand yj .

Additionally, the Non-Negativity Constraint is imposed:

Tij ≥ 0, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}. (5)

This condition ensures that all transport amounts Tij are non-negative, reflecting the practical im-
possibility of negative transportation.

Modeling the Optimal Transport Problem. With the aforementioned definitions and constraints
established, the Optimal Transport (OT) problem can be formulated as follows:

OT (P,Y,C) = min
T∈Π(r,c)

∑
i,j

TijCij , (6)

where C denotes the cost matrix, with each element Cij representing the cost of transporting a unit
from source pi to target yj . The matrix T represents the transportation plan, and Π(r, c) defines the
set of all feasible transportation plans that satisfy the marginal constraints.

To address computational challenges in high-dimensional spaces, the Sinkhorn distance is widely
used in OT due to its efficiency and scalability. Traditional OT approaches, based on linear pro-
gramming, often struggle with computational intensity and poor scalability as data dimensionality
increases. In contrast, the Sinkhorn distance introduces entropy regularization into the OT formula-
tion, significantly improving tractability and enabling gradient-based optimization.

This regularization is controlled by a parameter λ, which balances the trade-off between accuracy
and computational efficiency. Larger λ values yield results closer to traditional OT at the cost of
higher computational expense, while smaller λ values accelerate computations at the expense of
slight bias. The Sinkhorn Optimization Process is:

OTλ(P,Y,C) = min
T∈Π(r,c)

∑
i,j

TijCij + λH(T) (7)

The algorithm of the proposed OT-Attack is summarized in Algorithm 1 of Appendix A.

3.2.3 CALCULATING LOSS THROUGH OPTIMAL TRANSPORT

The Optimal Transport loss lossOT is computed using the feature representations of augmented
images Fimg , original texts Xtxt, and the similarity matrix S.

First, the cost matrix C is defined as C = 1−S, transforming similarity scores into a cost structure.
Next, the exponentiated negative cost matrix K is computed for the Sinkhorn iterations, given by
K = exp

(
−C

λ

)
, where λ is a small positive regularization parameter. The Optimal Transport loss

is then calculated as:
lossOT =

∑
i,j

TijCij (8)

where Tij in T represents the optimal ‘transport’ of features from the i-th element in Fimg to the
j-th element in Xtxt, and Cij is the corresponding cost in C.
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Table 1: Attack success rate at Rank 1 (ASR @ R1) of different adversarial attack methods for text-
image retrieval (IR) and text-image retrieval (TR) tasks using the Flickr30K dataset.

ALBEF TCL CLIPViT CLIPCNN
Source Attack TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

PGD 52.45 58.65 3.06 6.79 8.69 13.21 10.34 14.65
BERT-Attack 11.57 27.46 12.64 28.07 29.33 43.17 32.69 46.11
Sep-Attack 65.69 73.95 17.60 32.95 31.17 45.23 32.82 45.49
Co-Attack 77.16 83.86 15.21 29.49 23.60 36.48 25.12 38.89
SGA 97.24 97.28 45.42 55.25 33.38 44.16 34.93 46.57

ALBEF

OT-Attack (Ours) 95.93 95.86 52.37 61.05 34.85 47.10 42.33 53.03
PGD 6.15 10.78 77.87 79.48 7.48 13.72 10.34 15.33
BERT-Attack 11.89 26.82 14.54 29.17 29.69 44.49 33.46 46.07
Sep-Attack 20.13 36.48 84.72 86.07 31.29 44.65 33.33 45.80
Co-Attack 23.15 40.04 77.94 85.59 27.85 41.19 30.74 44.11
SGA 48.91 60.34 98.37 98.81 33.87 44.88 37.74 48.30

TCL

OT-Attack (Ours) 57.32 65.83 97.81 98.01 34.72 47.16 43.44 54.12
PGD 2.50 4.93 4.85 8.17 70.92 78.61 5.36 8.44
BERT-Attack 9.59 22.64 11.80 25.07 28.34 39.08 30.40 37.43
Sep-Attack 9.59 23.25 11.38 25.60 79.75 86.79 30.78 39.76
Co-Attack 10.57 24.33 11.94 26.69 93.25 95.86 32.52 41.82
SGA 13.40 27.22 16.23 30.76 99.08 98.94 38.76 47.79

CLIPViT

OT-Attack (Ours) 14.29 29.28 16.58 33.49 98.65 98.52 43.55 50.50
PGD 2.09 4.82 4.00 7.81 1.10 6.60 86.46 92.25
BERT-Attack 8.86 23.27 12.33 25.48 27.12 37.44 30.40 40.10
Sep-Attack 8.55 23.41 12.64 26.12 28.34 39.43 91.44 95.44
Co-Attack 8.79 23.74 13.10 26.02 28.79 40.03 94.76 96.89
SGA 11.42 24.80 14.91 28.82 31.24 42.12 99.24 99.49

CLIPCNN

OT-Attack (Ours) 11.57 26.24 14.91 30.52 35.63 48.20 99.39 99.32

This formulation of lossOT captures the minimal cost required to align the feature representations of
augmented images with those of the original texts. By leveraging the overall feature distribution, it
facilitates the generation of more effective adversarial examples. Importantly, this method addresses
potential overfitting issues inherent in relying solely on a similarity matrix as the loss metric. Details
of the process are provided in Algorithm 2 in Appendix B.

4 EXPERIMENTS

4.1 SETTINGS

VLP Models. To evaluate adversarial examples’ transferability and our framework’s performance,
we examined two Vision-Language Pre-trained (VLP) model types: fused and aligned VLPs. Fused
VLPs, like ALBEF (Li et al., 2021) and TCL (Yang et al., 2022), process images and text together
with shared layers, using a 12-layer ViT-B/16 (Dosovitskiy et al., 2020) for visuals and two 6-layer
transformers for image and text data. Aligned VLPs, such as CLIP (Radford et al., 2021) variants
(CLIPViT with ViT-B/16 and CLIPCNN with ResNet-101 (He et al., 2016)), process data separately
before aligning it in later stages. We assessed cross-task attack success on image captioning using
BLIP, with adversarial examples generated using TCL.

Datasets. For the image-text retrieval task, our study utilized two datasets renowned for their breadth
and depth: Flickr30K (Plummer et al., 2015) and MSCOCO (Lin et al., 2014). Flickr30K boasts a
diverse corpus of 31,783 images, while MSCOCO expands the dataset considerably with 123,287
images. A salient characteristic shared by both is the quintuple of descriptive captions accompanying
each image, providing a valuable asset for the assessment of our image-text retrieval approach. For
the task of Visual Grounding, we employed the RefCOCO+ (Yu et al., 2016) dataset, which further
enriched our cross-task attack effectiveness analysis.

Baselines In our research involving Vision-Language Pre-trained (VLP) models, we implemented
several prevalent adversarial attack methods as baselines. These included using PGD (Madry et al.,
2017) exclusively on images, applying BERT-Attack (Li et al., 2020) only to texts, and separately
utilizing PGD and BERT-Attack on both images and texts without integrating inter-modality inter-
actions, a technique designated as Sep-Attack. Additionally, we employed Co-Attack (Zhang et al.,
2022), which integrates information between individual image-text pairs, and Set-level Guidance
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Table 2: Attack success rate at Rank 1 (ASR @ R1) of different adversarial attack methods for text-
image retrieval (IR) and text-image retrieval (TR) tasks using the MSCOCO dataset.

ALBEF TCL CLIPViT CLIPCNN
Source Attack TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

PGD 76.70 86.30 12.46 17.77 13.96 23.1 17.45 23.54
BERT-Attack 24.39 36.13 24.34 33.39 44.94 52.28 47.73 54.75
Sep-Attack 82.6 89.88 32.83 42.92 44.03 54.46 46.96 55.88
Co-Attack 79.87 87.83 32.62 43.09 44.89 54.75 47.3 55.64
SGA 96.75 96.95 58.56 65.38 57.06 62.25 58.95 66.52

ALBEF

OT-Attack (Ours) 95.41 95.8 63.44 68.9 58.79 65.87 63.56 72.16
PGD 10.83 16.52 59.58 69.53 14.23 22.28 17.25 23.12
BERT-Attack 35.32 45.92 38.54 48.48 51.09 58.8 52.23 61.26
Sep-Attack 41.71 52.97 70.32 78.97 50.74 60.13 51.9 61.26
Co-Attack 46.08 57.09 85.38 91.39 51.62 60.46 52.13 62.49
SGA 65.93 73.3 98.97 99.15 56.34 63.99 59.44 65.7

TCL

OT-Attack (Ours) 71.64 78.38 98.69 98.78 58.64 65.75 63.45 72.01
PGD 7.24 10.75 10.19 13.74 54.79 66.85 7.32 11.34
BERT-Attack 20.34 29.74 21.08 29.61 45.06 51.68 44.54 53.72
Sep-Attack 23.41 34.61 25.77 36.84 68.52 77.94 43.11 49.76
Co-Attack 30.28 42.67 32.84 44.69 97.98 98.8 55.08 62.51
SGA 33.41 44.64 37.54 47.76 99.79 99.79 58.93 65.83

CLIPViT

OT-Attack (Ours) 35.11 46.48 38.52 50.32 99.69 99.75 62.16 68.96
PGD 7.01 10.62 10.08 13.65 4.88 10.7 76.99 84.2
BERT-Attack 23.38 34.64 24.58 29.61 51.28 57.49 54.43 62.17
Sep-Attack 26.53 39.29 30.26 41.51 50.44 57.11 88.72 92.49
Co-Attack 29.83 41.97 32.97 43.72 53.1 58.9 96.72 98.56
SGA 31.61 43 34.81 45.95 56.62 60.77 99.61 99.8

CLIPCNN

OT-Attack (Ours) 32.9 44.03 36.07 48.17 61.14 67.79 99.16 99.59

Attack (SGA) (Lu et al., 2023), which utilizes guidance information across modalities between sets.
Each baseline was tested under identical conditions for a consistent comparative analysis.

Adversarial Attack Configuration. To validate our framework’s effectiveness, we followed the ex-
perimental setup outlined in the SGA for generating adversarial examples in both visual and textual
domains. We generated adversarial visual examples using the Projected Gradient Descent (PGD)
method (Madry et al., 2017) with specific settings: a perturbation limit of ϵv = 2

255 , a step size
of α = 0.5

255 , and T = 10 iterations. For textual examples, we used BERT-Attack (Li et al., 2020)
with a disturbance limit of ϵt = 1 and a vocabulary size of W = 10. These settings were consis-
tently applied in our experimentation with Sep-Attack and Co-Attack. Specifically for Co-Attack,
we additionally utilized the similarity between individual image pairs as a loss metric, guiding the
generation of adversarial examples through inter-modality interactions. In the case of SGA, we
adhered to the experimental conditions outlined in its original publication, notably enhancing im-
ages by rescaling them to five distinct sizes {0.5, 0.75, 1.0, 1.25, 1.5}. To further demonstrate the
effectiveness of our method, we employed the same experimental setup as SGA, including adopt-
ing a perturbation limit of ϵv = 2

255 . Additionally, we integrated the Sinkhorn algorithm (Cuturi,
2013) for calculating the optimal transport plan, using a regularization parameter λ = 0.1 to balance
transport cost minimization and plan smoothness. To prevent the iteration process from becoming
infinite, we set a convergence threshold thresh = 1e− 2.

Evaluation Criteria. In our study, the robustness and transferability of the adversarial attacks are
quantitatively assessed using the Attack Success Rate (ASR). ASR is a crucial metric that measures
the proportion of successful adversarial examples out of the total number of attacks conducted. A
higher ASR is indicative of increased transferability of the adversarial examples, signifying the ef-
fectiveness of the attack in compromising the model under various conditions. The ASR is computed
as ASR = Nsuccess

Ntotal
×100% where ASR denotes the Attack Success Rate, Nsuccess represents the num-

ber of successful attacks, and Ntotal is the total number of attacks conducted. The formula calculates
the percentage of successful attacks, providing a quantitative measure of the attack’s effectiveness.

4.2 COMPARATIVE EXPERIMENTAL RESULTS

In our experiments, we primarily focused on Image-Text Retrieval (ITR) tasks. We generated adver-
sarial examples on various white-box models and then evaluated their effectiveness by calculating
the attack success rates on both the white-box models and three additional black-box models.
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Our analysis spanned two widely recognized datasets: Flickr30K, with a sample of 1,000 images
and 5,000 captions, and MSCOCO, which provided a larger pool of 5,000 images and 25,000 cap-
tions. This broad dataset coverage allowed us to conduct a robust evaluation of our attack methods
in image-text matching tasks, quantifying the success of adversarial examples in misleading these
complex models. The detailed outcomes are methodically presented in TABLE 1 and TABLE 2.

Our results demonstrated that the OT-Attack method made significant strides in the creation of ad-
versarial examples that were not only effective within models of the same type but also exhibited
impressive cross-type attack success. This is particularly evident from the R@1 success rates in
TR and IR tasks, where our adversarial examples maintained high effectiveness across varied mod-
els, including ALBEF, TCL, CLIPViT, and CLIPCNN. For example, when using ALBEF to target
TCL, our method improved the TR R@1 attack success rate by 6.95% on Flickr30K and 4.88%
on MSCOCO, compared with the state-of-the-art results obtained by SGA. Conversely, in scenar-
ios where TCL was employed to target ALBEF, our approach showed significant improvements
over SGA, with increases of 8.41% on Flickr30K and 5.71% on MSCOCO in the TR R@1 at-
tack success rate. The results demonstrate the effectiveness of improving adversarial transferability.
Complementing our numerical analysis, Figure 4 (in Appendix) offers a visual representation of
the impact of our adversarial examples. It contrasts the original images and texts with their mod-
ified versions, illuminating how subtle perturbations can drastically alter a model’s performance
in image-text matching tasks. The visual differences, particularly the nuanced texture changes in-
troduced in the adversarial images, are made evident through difference masks, underscoring the
deceptive potency of the adversarial examples and their potential to misguide VLP systems.

4.3 HYPERPARAMETER EXPERIMENTS

To more comprehensively demonstrate the superiority of our method, we conducted comparative
experiments with the SGA across multiple sets of hyperparameters. For the sake of conciseness,
we showcased the results using the ALBEF model as the source and TCL as the target, specifically
focusing on the TR R@1 metric, with experiments conducted on the Flickr30K dataset.

4.3.1 CAPTION QUANTITY

Table 3: ASR of experiments on cap-
tion quantity.

Attack
TR R@1

Caption Quantity

1 2 3 4 5

SGA 40.04 45.52 45.84 46.05 45.94

OT-Attack (Ours) 46.89 50.90 51.63 52.27 52.37

In our experiments on caption quantity, we evaluated the
black-box attack success rates of our method versus the
SGA in the context of image-text matching tasks across
settings with caption quantities ranging from one to five.
The dataset is Flickr30K. The source model is ALBEF
and the target model is TCL. As demonstrated in TABLE
3, with an increase in the number of captions, there was a
general trend of improvement in the Attack Success Rate
(ASR), suggesting that a richer caption description leads
to better attack efficacy. It is also evident that the OT-
Attack outperformed the SGA across every caption quantity setting, indicating our method’s superior
performance across various caption quantities.

4.3.2 SCALE QUANTITY

Table 4: ASR of experiments on scale
quantity.

Attack
TR R@1

Scale Quantity

1 3 5 7

SGA 34.04 44.57 45.94 44.15

OT-Attack (Ours) 47.52 51.53 52.27 53.15

In our experiments concerning scale quantity, we exam-
ined the results of image set scaling at quantities of 1,
4, 5, and 7 (where 1 denotes no data augmentation, with
only the original images being used for generating adver-
sarial examples). The dataset is Flickr30K. The source
model is ALBEF and the target model is TCL. As shown
in TABLE 4, it is noteworthy that while the SGA’s ASR
decreased when the scale quantity increased to 7, the ASR
of the OT-Attack continued to rise. Increasing the number
of scales indeed improved the attack success rate, and our
method’s ASR was higher than that of the SGA across all
quantities. When the SGA’s performance declined, the OT-Attack still showed an increase, demon-
strating better robustness to variations in scale quantity.
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Table 6: Adversarial Impact on Image Captioning Metrics.

Attack B@4 METEOR ROUGE-L CIDEr SPICE

Baseline 39.7 31.0 60.0 133.3 23.8
Co-Attack 37.4 29.8 58.4 125.5 22.8
SGA 34.8 28.4 56.3 116.0 21.4
OT-Attack (Ours) 34.1 27.9 55.7 112.6 20.9

4.3.3 PERTURBATION STRENGTH

Table 5: ASR of experiments
on perturbation strength.

Attack
TR R@1

Perturbation Strength
2

255
4

255
6

255

SGA 45.42 72.81 82.72

OT-Attack (Ours) 52.37 82.93 90.20

We also conducted experiments under different perturbation
strengths, aiming to maintain imperceptibility to humans. We com-
pared the results under three limited perturbation strengths: 2

255 ,
4

255 , and 6
255 . The results are presented in TABLE 5. The dataset

is Flickr30K. The source model is ALBEF and the target model
is TCL. As the perturbation strength increased, both the SGA and
OT-Attack experienced significant improvements in their ASR, with
the OT-Attack consistently outperforming the SGA. Specifically, at
a perturbation strength of 6

255 , the OT-Attack achieved an ASR of
90.20%. This demonstrates that the OT-Attack also exhibits supe-
rior performance as the perturbation strength increases. In the above hyperparameter experiments,
the ASR of OT-Attack consistently surpassed that of SGA under identical experimental conditions.
This comprehensively demonstrates the stability of OT-Attack across various hyperparameters.

4.4 CROSS-TASK TRANSFERABILITY

4.4.1 IMAGE CAPTIONING

In our research, we generated adversarial examples using the ALBEF model (Li et al., 2022) tar-
geting the BLIP framework in a white-box scenario. BLIP is recognized for its advanced multi-
modal encoder-decoder structure, which is trained on a diverse dataset with synthetic captions and
noise reduction techniques. Our experiments were conducted on the MSCOCO dataset, examining
both original and adversarially altered images. To evaluate the impact of our adversarial actions,
we utilized a set of metrics designed for image captioning tasks, including BLEU (Papineni et al.,
2002), METEOR (Banerjee et al., 2005), ROUGE (Lin, 2004), CIDEr (Vedantam et al., 2015), and
SPICE (Anderson et al., 2016). These metrics assess various aspects of caption quality, from preci-
sion and semantic accuracy to recall, uniqueness, relevance, and the depiction of semantic properties.

Figure 3: Comparison of Clean and Adversarial
Image Captions.

The metrics used in our study offer varied in-
sights into the text quality and relevance, giv-
ing a rounded view of the adversarial effects, as
shown in TABLE 6. Our approach, compared
to SGA, demonstrated lower scores across met-
rics: BLEU-4 decreased by 0.7, METEOR by
0.5, ROUGE-L by 0.6, CIDEr by 3.4, and
SPICE by 0.5. These score reductions suggest
our method’s higher cross-task attack efficacy,
with more significant decreases indicating bet-
ter performance.

Figure 3 visually compares experimental out-
comes, showing original versus adversarial
image-caption pairs. These comparisons
starkly exhibit how minor perturbations can
drastically alter the model’s interpretation, de-
viating from the intended meaning, thus high-
lighting our findings’ practical significance.
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Table 7: Performance on Visual Grounding Task Across RefCOCO+ Subsets.

Attack Val TestA TestB

Baseline 58.4 65.9 46.2
SGA 56.5 63.7 45.4
OT-Attack (Ours) 56.3 63.5 45.0

Further delving into the realm of large-scale models, our experiments were conducted with specific
parameters to gauge the extent of adversarial impact. We set the perturbation intensity at a subtle yet
effective level of 16/255 and ran our adversarial process for 500 iterations. To assess the broader ap-
plicability and effectiveness of our attacks, we tested them on advanced models like GPT-4 and Bing
Chat, posing the query “Describe this image” to these systems. The findings, illustrated in Figure 5
(in Appendix), reveal a notable level of success in our adversarial attacks, with these sophisticated
models showing susceptibility to being misled.

4.4.2 VISUAL GROUNDING

To thoroughly evaluate the effectiveness of our adversarial attack strategies, we employed the Re-
fCOCO+ (Yu et al., 2016) dataset, which is specifically curated for visual grounding tasks. This
dataset comprises various subsets designed to evaluate different aspects of model performance, in-
cluding:

• RefCOCO+ val: Offers a broad range of scenarios for a comprehensive evaluation.

• RefCOCO+ testA: Focuses on the model’s ability to identify and localize human figures,
testing its precision in distinguishing and positioning human subjects within images.

• RefCOCO+ testB: Targets the model’s efficacy in recognizing and localizing non-human
elements such as inanimate objects, animals, and various environmental features, challeng-
ing the model’s versatility beyond human-centric tasks.

By leveraging the diverse testing scenarios provided by RefCOCO+, we aim to demonstrate the
broad adaptability and transferability of our method across a wide array of visual grounding chal-
lenges, highlighting its potential for robust performance in varied contexts.

The quantitative analysis in TABLE 7 evaluates our adversarial examples’ effectiveness against the
ALBEF model, using TCL as the source. The baseline scores, representing unmodified samples,
set the study’s benchmark. Our OT-Attack strategy outperformed SGA, decreasing ALBEF’s scores
by 0.2 in Val, 0.2 in TestA, and 0.3 in TestB, evidencing our method’s superior disruption of visual
grounding. Additionally, in Figure 6 (in Appendix), visual analysis using the Flickr30K dataset
demonstrates how minor perturbations significantly impair object recognition and localization in the
ALBEF model, highlighting the impact of adversarial attacks on model accuracy and reliability.

5 CONCLUSION

We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack. The proposed OT-
Attack formulates the features of image and text sets as two distinct distributions, leveraging optimal
transport theory to identify the most efficient mapping between them. It utilizes their mutual similar-
ity as the cost matrix. The derived optimal mapping guides the generation of adversarial examples,
effectively improving adversarial transferability. Extensive experiments across diverse network ar-
chitectures and datasets in image-text matching tasks demonstrate the superior performance of the
proposed OT-Attack in terms of adversarial transferability. Significantly, our results also show that
OT-Attack is also effective in cross-task attacks, including image captioning and visual grounding,
and poses a considerable challenge to commercial models such as GPT-4 and Bing Chat, highlight-
ing the evolving landscape of adversarial threats in advanced AI applications. This underscores the
need for robust defenses against sophisticated attacks.
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ETHICS STATEMENT

This paper proposes an optimal transport-based adversarial Attack for the VLP models, which may
potentially generate harmful texts and pose risks. However, like previous adversarial attack methods,
the proposed method explores adversarial perturbations with the goal of uncovering vulnerabilities
in the VLP models. This effort aims to guide future work in enhancing the adversarial defense of
the VLP models. Besides, the victim VLP models used in this paper are open-source models with
publicly available weights. The research on adversarial attack and defense will collaboratively shape
the landscape of AI security.

REPRODUCIBILITY STATEMENT

We provide the source code for our OT-Attack in the supplementary materials. We will make the
code publicly available after the work is accepted. The pseudocode for the proposed OT-Attack
is shown in Appendix A and B. Experiment settings are reported in Section 4.1 in the submitted
manuscript.
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A SINKHORN ALGORITHM FOR OT

The Sinkhorn algorithm iteratively normalizes the rows and columns of the transport matrix to sat-
isfy the marginal constraints while minimizing the regularized objective function (Cuturi, 2013).
Here, H(T) is the entropy of the transport matrix, introducing regularization (controlled by λ) to
ensure numerical stability and efficient computation. Regarding the computation of Sinkhorn, the
algorithm of the proposed OT-Attack is summarized in Algorithm 1.

B ALGORITHM OF ADVERSARIAL IMAGE GENERATION PROCESS

We employed the adversarial example generation method outlined in Equation 8 to create adversarial
examples. These samples were then used to mount attacks on black-box models. The process is in
Algorithm 2.
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Algorithm 1 Sinkhorn Iteration for OT

Require: K: cost matrix, u: source measure, v: target measure
Ensure: T : transport matrix

1: r ← ones like(u)
2: c← ones like(v)
3: thresh← 1e− 2
4: for i = 1, . . . , 100 do
5: r0 ← r
6: r ← u/(MatMul(K, c))
7: c← v/(MatMul(K⊤, r))
8: err ← Mean(Abs(r − r0))
9: if err < thresh then

10: break
11: end if
12: end for
13: T ← Outer(r, c)×K
14: return T

Algorithm 2 Adversarial Image Generation Process

Require: model: source model, imgs: original images, α: adjustment factors, Xtxt: textual repre-
sentations

Ensure: Iadv: generated adversarial images
1: model→ eval()
2: Iadv ← clamp(imgs.detach() + Uniform(−ϵ, ϵ), 0.0, 1.0)
3: for each i ∈ {1 . . . N} do
4: for img ∈ Iadv do
5: Apply data augmentations to img
6: Extract features using model on the augmented img
7: Choose corresponding Xtxt

8: Calculate similarity and Wasserstein distance
9: Optimize using Sinkhorn algorithm to find T

10: Backpropagate using lossOT and update img
11: I ′adv ← clamp(Iadv + sign(∇imgloss),−ϵ, ϵ)
12: Iadv ← I ′adv
13: end for
14: end for
15: return Iadv
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C VISUALIZATION

C.1 VISUALIZATION OF ADVERSARIAL EXAMPLES FROM FLICKR30K

Complementing our numerical analysis, Figure 4 offers a visual representation of the impact of our
adversarial examples. It contrasts the original images and texts with their modified versions, illumi-
nating how subtle perturbations can drastically alter a model’s performance in image-text matching
tasks. The visual differences, particularly the nuanced texture changes introduced in the adversar-
ial images, are made evident through difference masks, underscoring the deceptive potency of the
adversarial examples and their potential to misguide VLP systems.

C.2 IMPACT OF ADVERSARIAL ATTACKS ON GPT-4 AND BING CHAT DESCRIPTIONS

Figure 5 reveals a notable level of success in our adversarial attacks, with these sophisticated models
showing susceptibility to being misled.

C.3 VISUALIZATION RESULTS FOR VISUAL GROUNDING

Additionally, visual analysis using the Flickr30K dataset and depicted in Figure 6 demonstrates how
minor perturbations significantly impair object recognition and localization in the ALBEF model,
highlighting the impact of adversarial attacks on model accuracy and reliability.

Figure 4: Visualization of adversarial examples from Flickr30K. In the task of image-text matching,
adversarial examples for both images and texts were generated and utilized for image-to-text and
text-to-image matching tasks, respectively. We have highlighted the distinctions in the text adver-
sarial examples compared to the original samples and also quantified the pixel differences between
the image adversarial examples and the original images.

D COMPARISON WITH MORE BASELINES

We compare the proposed OT-Attack with VLAttack (Yin et al., 2024), which focuses on enhancing
the transferability of attacking pretrained vision-language models. ALBEF is employed as the source
model in our experiments, and TCL is used as the target model. The results are shown in Table 8.
The results show that our OT-Attack outperforms VLAttack (Yin et al., 2024) across all metrics,
with notable improvements such as 52.37% vs. 43.2% in TR@1 and 61.05% vs. 52.04% in IR@1,
demonstrating the superiority of our method in improving the adversarial transferability.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 5: Impact of Adversarial Attacks on GPT-4 and Bing Chat Descriptions. This figure show-
cases the alterations in image descriptions by GPT-4 and Bing Chat before and after adversarial
attacks. Original descriptions are compared to those generated from manipulated images, with in-
creased perturbation strength and iteration count to mislead the AI models. The stark contrast in the
outputs highlights the susceptibility of these models to adversarial examples, reflecting the effec-
tiveness of the perturbations in altering the perceived content of the images.

Figure 6: Visualization results for Visual Grounding. We employed TCL as the source model and
ALBEF as the target model, with images and captions sourced from the Flickr30K dataset. The
adversarial examples exhibit limited visual differences from the original samples; however, they
disrupt the model’s judgment of visual elements in the Visual Grounding task. Compared to clean
data, the localization results for the same elements may have shifted or dispersed. The visualizations
of Visual Grounding vividly demonstrate the disruptive impact of adversarial examples on the model.

Table 8: Comparative experimental results with VLAttack (Yin et al., 2024) on the Flickr30K
dataset. The number in bold indicates the best jailbreak performance.

Attack TR @1 TR @5 TR @10 IR @1 IR @5 IR @10

VLAttack (Yin et al., 2024) 43.2 23.09 16.01 52.04 32.14 24.21
OT-Attack (ours) 52.37 30.45 23.05 61.05 41.95 32.68

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

E COMPUTATIONAL COST

Following the default setting of SGA (Lu et al., 2023), we also adopt 1000 images from the
Flickr30K dataset for our experiments. To evaluate performance, we compute the computational
cost (minutes) and compare the OT-Attack with SGA across four models (ALBEF, TCL, CLIPViT,
and CLIPCNN). The results are shown in Table 9. OT-Attack consistently requires more time than
SGA, which is approximately 1.75 times that of SGA, reflecting the added complexity of the pro-
posed method.

Table 9: Computational cost (minutes) compared with SGA.

Method ALBEF TCL CLIPViT CLIPCNN

SGA 34 33 17 13
OT-Attack (ours) 60 58 30 23

F HYPERPARAMETER ANALYSIS IN OT-ATTACK

The experimental settings of OT-Attack adhered to the default configurations in PLOT. This choice
was primarily due to the insensitivity of OT-Attack to experimental parameters, as we will validate
through ablation studies. In these studies, we independently evaluate the impact of three param-
eters λ, convergence threshold (thresh), and the iteration limit of the Sinkhorn algorithm—on the
experimental outcomes. ALBEF is used as the source model, and TCL as the target model.

F.1 SENSITIVITY ANALYSIS OF λ

The parameter λ balances the minimization of transport cost and plan smoothness. In our experi-
ments, the default value was set to 0.1. To analyze the sensitivity of λ, we conduct OT-Attack with
different λ. The results are shown in Table 10. The results indicate that varying λ among 0.01, 0.1,
and 1 while keeping other conditions constant leads to consistent attack success rates across metrics
such as TR R@1, TR R@5, TR R@10, IR R@1, IR R@5, and IR R@10. This demonstrates that
OT-Attack is robust to changes in λ, maintaining stable performance.

Table 10: Performance of the proposed OT-Attack with different λ values.

λ Value TR @1 TR @5 TR @10 IR @1 IR @5 IR @10

0.01 52.27 30.35 22.95 60.98 41.80 32.86
0.1 52.37 30.45 23.05 61.00 41.95 32.68
1.0 52.90 30.45 23.05 61.17 41.95 32.68

F.2 CONVERGENCE THRESHOLD AND SINKHORN ITERATION LIMIT

The convergence threshold (thresh) and the iteration limit of the Sinkhorn algorithm are strongly
interdependent. The convergence of the Sinkhorn algorithm ensures that the transport matrix P =
diag(r) ·K ·diag(c) satisfies the prescribed marginal distributions u and v. Convergence is typically
assessed by measuring the change in the scaling factors r or c between successive iterations, where
the error metric (e.g., ∥r(k) − r(k−1)∥) must fall below a predefined threshold ϵ. Alternatively,
convergence can be determined by the deviation of the row and column sums of P from u and v. A
maximum iteration limit is often imposed to prevent infinite loops.

In this study, the default settings were thresh = 1.00 × 10−2 and an iteration limit of 100. First,
we analyzed the average number of iterations under thresh = 1.00 × 10−2, finding that the mean
iteration count for generating 1,000 adversarial samples was only 2.3. Further, we examined the
error scalar after each iteration. The error scalar starts at the order of 1.00 × 103 after the first
iteration, reaches 1.00 × 10−2 within two iterations, and decreases to 1.00 × 10−3 or 1.00 × 10−4

after three iterations. This analysis indicates that thresh should range between 1.00 × 103 and
1.00 × 10−6. If thresh exceeds 1.00 × 103, the Sinkhorn algorithm converges in just one iteration.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

We also conduct OT-Attack with different threshold values. The results are shown in Table 11. It
reveals minimal differences in image-text matching metrics when the source model is ALBEF, and
the target model is TCL, confirming that OT-Attack is insensitive to thresh and demonstrates good
stability. Additionally, We also conduct OT-Attack with different iteration limit values. The results
are shown in Table 12. It demonstrates that the attack efficacy of OT-Attack remains stable.

Table 11: Performance of the proposed OT-Attack with different threshold values.

Threshold Value TR @1 TR @5 TR @10 IR @1 IR @5 IR @10

1.00× 10−6 53.32 30.45 22.85 61.12 41.82 33.04
1.00× 10−2 52.37 30.45 23.05 61.00 41.95 32.68
1.00× 103 53.11 30.85 23.05 60.86 41.64 32.80

Table 12: Performance of the proposed OT-Attack with different iteration limit values.

Iteration Limit Value TR @1 TR @5 TR @10 IR @1 IR @5 IR @10

1 52.21 30.25 22.85 60.64 41.80 32.34
2 52.32 30.45 23.05 60.86 41.95 32.68
3 52.37 30.45 23.05 61.00 41.95 32.68

100 52.37 30.45 23.05 61.00 41.95 32.68

In summary, OT-Attack exhibits robustness to hyperparameter variations, delivering stable attack
performance under different parameter settings, and significantly outperforms SGA. In this study,
Sinkhorn convergence is determined based on the condition that the variation in the row normal-
ization factor r between consecutive iterations is below the predefined threshold ϵ, i.e., ∥r(k) −
r(k−1)∥ < ϵ.

G EXPERIMENTS ON CHATGPT4 AND BING

We randomly sample 100 images from Flickr30K to generate adversarial examples by using SGA
and our OT-Attack. Then we evaluate them on ChatGPT4 and Bing. The results are shown in
Table 13. It highlight the superiority of our OT-Attack, achieving significantly higher ASR rates of
24% on ChatGPT4 and 30% on Bing, compared to only 7% and 8% by SGA.

Table 13: Performance of the proposed OT-Attack on ChatGPT4 and Bing.

Models ChatGPT4 Bing

SGA 7% 8%
OT-Attack 24% 30%

H ANALYSIS OF THE EFFECTIVENESS OF OT-ATTACK

Overfitting adversarial examples (AEs) to the source model can significantly reduce the attack trans-
ferability. To quantify the risk of overfitting, we leverage the PAC-Bayes theorem to measure the
information stored in the network’s weights (IIW) (Wang et al., 2022), a promising indicator of
generalization ability. Lower IIW values indicate reduced overfitting risks. For each AE generated
by SGA or our method during optimization iterations, we compute its IIWs by feeding it into four
VLMs. We evaluate the IIWs of 1,000 AEs throughout the optimization process and present the
averaged results in Figure 7. During optimization, the IIW of AEs from the SOTA baseline (SGA)
initially decreases but then sharply rises. In contrast, our method maintains consistently low IIW val-
ues for generated AEs, effectively mitigating overfitting risks. Consequently, our method enhances
attack transferability.
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Figure 7: Overfitting analysis of SGA & our OT-Attack via IIWs.

I EXPERIMENTS ON MORE SOURCE MODELS

We adopt more vision-language models as the source models for experiments, such as Eva-CLIP
and BLIP2, for image-text retrieval tasks. The results on Eva-CLIP are shown in Table 14. It
highlights the superior performance of our OT-Attack compared to the baseline SGA method in
adversarial attack success rates on image-text retrieval tasks. Across all models, OT-Attack achieves
higher results in both TR R@1 and IR R@1 metrics. Notably, on challenging models like ALBEF
and TCL, OT-Attack outperforms SGA by significant margins (e.g., IR R@1: 28.23 vs. 26.23 on
ALBEF, 32.42 vs. 30.12 on TCL). Similarly, OT-Attack consistently achieves the best results for
CLIP-based models, demonstrating its effectiveness across diverse architectures. The results on
BLIP2 are shown in Table 15. It also highlights the effectiveness of OT-Attack, which consistently
outperforms SGA across all models and metrics. Notably, OT-Attack achieves higher success rates
on ALBEF (TR R@1: 58.89 vs. 51.23, IR R@1: 69.23 vs. 63.53) and TCL (TR R@1: 52.18 vs.
48.42, IR R@1: 64.27 vs. 58.94). Hence, our OT-Attack demonstrates superior adversarial sample
transferability compared to SGA.

Table 14: Adversarial Attack Success Rates on Image-Text Retrieval. Eva-CLIP is used as the source
model. The number in bold indicates the best attack performance.

Models Eva-CLIP ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

SGA 99.23 99.1 12.98 26.23 16.01 30.12 40.12 51.44 35.79 46.79
OT-Attack (ours) 98.88 98.43 13.35 28.23 16.14 32.42 44.84 56.96 40.05 50.12

Table 15: Adversarial Attack Success Rates on Image-Text Retrieval. BLIP2 is used as the source
model. The number in bold indicates the best attack performance.

Models BLIP2 ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

SGA 98.56 98.67 51.23 63.53 48.42 58.94 35.17 45.01 36.32 48.08
OT-Attack (ours) 97.72 97.66 58.89 69.23 52.18 64.27 36.46 48.75 44.13 52.12
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Table 16: Adversarial Impact on Image Captioning Metrics. The table demonstrates the effects of
adversarial attacks on image captioning, using 10,000 images from MSCOCO and attacks generated
via ALBEF, with captions by MiniGPT4 and Qwen2-VL. The evaluation employed metrics like
BLEU-4, METEOR, ROUGE-L, CIDEr, and SPICE, where lower scores signify more impactful
attacks. The number in bold indicates the best attack performance.

MiniGPT4 B@4 METEOR ROUGE-L CIDEr SPICE
Clean 32.5 33.2 60.3 128.7 21.8
SGA 30.4 27.3 56.2 113.6 20.5

OT-Attack (ours) 30.1 26.7 54.8 109.5 20.3
Qwen2-VL B@4 METEOR ROUGE-L CIDEr SPICE

Clean 38.7 34.9 66.8 121.5 25.4
SGA 35.2 32.1 62.9 108.4 22.6

OT-Attack (ours) 34.9 31.4 61.6 103.9 21.7

J EXPERIMENTS ON MORE MODELS FOR IMAGE GENERATION TASKS

We adopt more models, such as MiniGPT4 and Qwen2-VL, for image generation tasks. We compare
the impact of adversarial attacks on image captioning performance for MiniGPT4 and Qwen2-VL
with the prompt “Describe the image” using metrics like BLEU-4, METEOR, ROUGE-L, CIDEr,
and SPICE. The results are shown in Table 16. It is clear that our OT-Attack consistently outperforms
SGA, achieving the lowest scores across most metrics, which indicates more effective attacks. For
instance, OT-Attack reduces CIDEr scores to 109.5 for MiniGPT4 and 103.9 for Qwen2-VL, high-
lighting its superior ability to degrade captioning performance compared to other methods. These
results underscore the efficacy of the proposed OT-Attack.

K ABLATION STUDY OF OUR OT-ATTACK

Table 17 presents the ablation study of our proposed OT-Attack, evaluating its adversarial attack
success rates on image-text retrieval tasks. ALBEF is used as the source model. The study com-
pares three settings: removing the optimal transport mechanism (OT-Attack w/o OT), removing data
augmentation strategies (OT-Attack w/o Augmentation), and the complete method (OT-Attack). The
results show that removing OT or augmentation can reduce the adversarial transferability. Notably,
the complete OT-Attack achieves the best adversarial transferability, highlighting the critical role of
optimal transport and data augmentation in the proposed OT-Attack.

Table 17: Ablation study of the proposed OT-Attack. Adversarial Attack Success Rates on Image-
Text Retrieval. The number in bold indicates the best attack performance.

Models ALBEF TCL CLIPViT CLIPCNN

TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1 TR R@1 IR R@1

OT-Attack w/o OT 97.2 97.3 45.4 55.3 33.4 44.2 34.9 46.6
OT-Attack w/o Augmentation 97.2 96.9 46.3 55.2 33.4 44.1 39.3 51.2

OT-Attack 95.9 95.9 52.4 61.1 34.9 47.1 42.3 53.0
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