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Abstract
For federated learning (FL) algorithms such as
FedSAM, their generalization capability is crucial
for real-word applications. In this paper, we re-
visit the generalization problem in FL and investi-
gate the impact of data heterogeneity on FL gener-
alization. We find that FedSAM usually performs
worse than FedAvg in the case of highly hetero-
geneous data, and thus propose a novel and effec-
tive federated learning algorithm with Stochastic
Weight Averaging (called FedSWA), which aims
to find flatter minima in the setting of highly het-
erogeneous data. Moreover, we introduce a new
momentum-based stochastic controlled weight
averaging FL algorithm (FedMoSWA), which is
designed to better align local and global mod-
els. Theoretically, we provide both convergence
analysis and generalization bounds for FedSWA
and FedMoSWA. We also prove that the opti-
mization and generalization errors of FedMoSWA
are smaller than those of their counterparts, in-
cluding FedSAM and its variants. Empirically,
experimental results on CIFAR10/100 and Tiny
ImageNet demonstrate the superiority of the
proposed algorithms compared to their counter-
parts. Open source code at: https://github.
com/junkangLiu0/FedSWA.

1. Introduction
With increasing concerns about data privacy and security,
federated learning (FL) has emerged as a potential dis-
tributed machine learning paradigm (McMahan et al., 2017).
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Figure 1: The training loss surfaces of ResNet-18 trained by
FedAvg (a), FedSAM (b), and our FedSWA (c) on CIFAR-
100 with Dirichlet-0.1 (high data heterogeneity). The test
accuracies of FedAvg, FedSAM, and FedSWA are 45.8%,
40.1%, and 50.3%, respectively, and FedSAM performs the
worst and fails in this case. (d) highlights the sharpness
minimizing conflicts due to discrepancies between local and
global loss landscapes caused by data heterogeneity. (e) and
(f) show that FedSWA can obtain global flat minima in the
setting of high data heterogeneity. The blue dots denote
the client model, and the red dot is the server model in (f).
The outer layer is the training loss surface, the inner layer
is the test loss surface, and the global model generalizes
well at a flat minimum in (f). The double arrow denotes the
generalization error gap between clients and the server.

FL allows for collaborative training of a global model across
several clients without exchanging raw data, ensuring pri-
vacy while exploiting decentralized data. FL algorithms
have considerable promise in various areas, including health-
care, finance, and personalized mobile services (Rieke et al.,
2020; Antunes et al., 2022; Byrd & Polychroniadou, 2020).

FL confronts the issue of data heterogeneity because of
the non-independent and identically distributed (Non-IID)
data across clients (Zhang et al., 2021; Liu et al., 2024),
along with different computational capabilities and network
connectivity. These characteristics bring complications, par-
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ticularly regarding the model’s capacity to generalize to
unseen data, which is critical to the practical applicability
of FL algorithms. The generalization study assesses the
model’s capacity to generalize from empirical to theoretical
optimal risks, providing vital insights into the efficacy of FL
algorithms.

The generalization of many deep learning methods has been
extensively studied to address the overfitting problem. Find-
ing flat minima in model parameters has been demonstrated
to improve generalization performance. The two methods,
Stochastic Weight Averaging (SWA) (Izmailov et al., 2018)
and Sharpness-Aware Minimization (SAM) (Foret et al.,
2021), have received significant attention. In distributed
learning, particularly FL, data heterogeneity always enables
the global model to converge to a sharp local minimum (Fan
et al., 2024), and generalization of sharp local minimum is
poor, as shown in Figure 1(a).

To tackle this challenge, several studies have introduced
SAM to local client optimization, which aims to enhance
generalization by finding a flat minimum through minimiz-
ing the local loss after perturbation. Qu et al. (2022) adopted
SAM to FL and introduced FedSAM, and they also pro-
posed MoFedSAM, which incorporates local momentum
acceleration. Caldarola et al. (2022) applied adaptive SAM
optimizer in FL local training and proposed FedASAM.
FedGAMMA (Dai et al., 2023) improves FedSAM by using
the SCAFFOLD’s variance reduction technique (Karim-
ireddy et al., 2020). FedSpeed (Sun et al., 2023) utilized
the gradient computed at the SAM-based perturbed weight.
Fan et al. (2024) proposed FedLESAM locally estimates
the direction of global perturbation on the client side as the
difference between global models received in the previous
active and current rounds. However, adequate experimental
results show that FedSAM is extremely ineffective in the
setting of highly heterogeneous data (see in Figure 1(b)).
Moreover, Lee & Yoon (2024) also pointed out that SAM in
local clients can find a local flat minimum, not a global flat
minimum, and FedSAM fails to generalize in the setting of
high data heterogeneity. In addition, Kaddour et al. (2022)
noted that SAM can be close to sharp directions, which is
unfriendly to the federated averaging algorithm.

To address the above shortcomings of SAM-type algorithms
as local optimizers, this paper introduces SWA to improve
generalization of FL with highly heterogeneous data. SWA
improves the model’s generalization capability by averaging
different model weights at the final stage of training, thereby
locating a model lying in a flat region of the loss landscape.
Therefore, we propose a new Stochastic Weight Averaging
Federated Learning (FedSWA) algorithm, which aims to
find flatter minima in the setting of highly heterogeneous
data, as shown in Figure 1(e,f). In other words, the goal of
FedSWA is to find global flat minima, avoiding the draw-

backs of FedSAM, which finds local flat minima instead
of global flat minima. Moreover, SWA is computationally
more efficient than SAM since SWA does not require addi-
tional forward and backward propagations to compute the
perturbations in SAM. In this paper, we will revisit SAM
and SWA on FL to improve the generalization ability on
highly heterogeneous data.

In Figure 1(d), we can observe that FedSAM finds a global
flat minima but a high loss surface, and the generalization to
the test loss surface does not work very well. This is because
FedSAM focuses too much on local flat minima, not global
flat minima, causing it to overlook superior global minima.
The flatness and low loss surface of FedSAM in local client
training does not imply that the global model is flat (Lee
& Yoon, 2024). Our FedSWA algorithm aims to find a flat
and low global loss surface, which generalizes to the test set
much better than FedSAM, as shown in Figure 1(c,e).

While FedSWA enhances the global model’s generalization
compared to FedSAM, it does not guarantee a consistent
flat and low minimum for the local model to agree with
the global model in the setting of highly heterogeneous
data. To seamlessly integrate the smoothness of both lo-
cal and global models, we present a more advanced algo-
rithm within our framework, called Federated Learning via
Momentum-Based Stochastic Controlled Weight Averag-
ing (FedMoSWA). The key idea of FedMoSWA is inspired
by the momentum-based variance reduction (Cutkosky &
Orabona, 2020). Intuitively, FedMoSWA estimates the up-
date direction for the server variable m and the client vari-
able ci. Their difference, (m − ci), is used to correct the
estimation of the client drift of local updates, maintaining
the consistency of local updates with global updates. This
strategy successfully overcomes data heterogeneity.

Despite that there is considerable research on optimization
error and convergence in FL, the analysis of generalization
remains significantly challenging. To theoretically character-
ize generalization performance, researchers have developed
a variety of analysis techniques, including uniform conver-
gence methods (Vapnik et al., 1998), operator approximation
techniques (Smale & Zhou, 2007), information-theoretic
tools (Russo & Zou, 2019), and algorithmic stability anal-
ysis (Rogers & Wagner, 1978; Hardt et al., 2016). Among
these methods, stability analysis has attracted particular
attention due to its theoretical guarantees that are indepen-
dent of the capacity measurement of the hypothesis function
space. It is also widely applicable and sensitive to data distri-
bution. This paper proposes an analytical framework based
on uniform stability, which is particularly useful for study-
ing generalization errors by considering the dependence on
specific FL algorithms and data heterogeneity.

Contributions: We propose a new FL generalization
analysis framework and develop two efficient algorithms to
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Table 1: Comparison of generalization and optimization errors in the non-convex setting. σ is the variance of stochastic
gradients, σg is data heterogeneity, s is the number of participating clients, and T is the number of communication rounds.
K is the number of local iterations. ℓ(x,y;θ) is L-Lipschitz continous and β-smooth. F ⋆ is a minimum value of Problem
(1) below, F := F0 − F ⋆, c > c̃= 1 + (2 + 1/KT )

K−1
/T ≫ 1, which means the generalization error of FedSWA is

smaller than that of FedSAM. The generalization error of MoFedSWA is smaller than that of FedSWA. The optimization
bounds of FedSAM and MoFedSAM are proved in (Patel et al., 2022). Generalization bounds without client sampling.

Algorithm Generalization error Optimization error

FedSAM (Qu et al., 2022) O
(

L
mnβ e

1+ 1
T (cL+ cσg + cσ)

)
O
(

βF√
TKs

+
√
Kσg

2

√
Ts

+ L2σ2

T 3/2K
+ L2

T 2

)
MoFedSAM (Qu et al., 2022) O

(
L

mnβ e
1+ 1

T (cL+ cσg + cσ)
)

O
(

βLF√
TKs

+
β
√
Kσg

2

√
Ts

+ L2σ2

T 3/2K
+

√
KL2

T 3/2
√
s

)
FedSWA (ours) O

(
L

mnβ e
1+ 1

T (c̃L+ c̃σg + c̃σ)
)

O
(

β(σ+
√
Kσg)

√
F

√
TKs

+
F 2/3(βσg

2)
1/3

T 2/3 + βF
T

)
FedMoSWA (ours) O

(
L

mnβ e
1+ 1

T (c̃L+ σg + c̃σ)
)

O
(

σ
√
F√

TKs

(√
1 + s

α2

)
+ βF

T

(
m
s

) 2
3

)

improve the generalization and optimization errors. Our
main contributions can be summarized as follows:
• New FL algorithm inspired by SWA with better
generalization: We revisit the role of SWA and SAM for
federated learning and discuss the superiority of SWA with
heterogeneous data. To generalize the global model, we
first propose a novel algorithm, FedSWA, to improve the
generalization of FL, which is better than FedSAM.
• Momentum-based stochastic controlled weight
averaging algorithm: To help local models find consistent
flat minima aligned with the global model, we develop
a new FedMoSWA algorithm. We also propose one
momentum-based stochastic controlled method, which
is designed to increase FL generalization and overcome
data heterogeneity. Our theoretical result shows that
FedMoSWA provides theoretically better upper bounds
for generalization error than FedSAM. Experimentally,
FedMoSWA is better than both FedSAM and his variants.
• Novel FL generalization analysis framework:
We propose a new FL generalization error analysis
framework, which can account for the effect of data
heterogeneity on generalization error. Our theoreti-
cal results show that the generalization bound of our
FedSWA is O

(
L

mnβ e
1
T +1(c̃L + c̃σg + c̃σ)

)
, which is

correlated with data heterogeneity and is superior to that
of FedSAM. We prove that the generalization error of
FedMoSWA is O

(
L

mnβ e
1
T +1(c̃L + σg + c̃σ)

)
, which

is better than those of FedSAM and FedSWA, where
c̃ = 1 + (2 + 1/KT )

K−1
/T ≫ 1.

2. Related work
• Heterogeneity Issues in FL: In past years, various strate-
gies have been proposed to solve the heterogeneity issues in
FL. FedAvgM (Hsu et al., 2019) is a proposed method that

introduces momentum terms during global model updating.
FedACG (Kim et al., 2024) improves the inter-client inter-
operability by the server broadcasting a global model with
a prospective gradient consistency. SCAFFOLD (Karim-
ireddy et al., 2020) uses SAGA-like control variables to
mitigate client-side drift, which can be regarded as adopt-
ing the idea of variance reduction at the client side. Our
FedMoSWA method is based on momentum-based variance
reduction, which is different from SCAFFOLD and other
momentum methods.
• Generalization Analysis of FL: Hu et al. (2023) pro-
vided a systematic analysis of the generalization error of
FL in the two-level framework, which captures the missed
participating gap. Sefidgaran et al. (2022) used tools from
rate-distortion theory to establish new upper bounds on
the generalization error of statistical distributed learning
algorithms. Sun et al. (2024) analyzed the generalization
performance of federated learning through algorithm stabil-
ity, but did not propose an improved algorithm to overcome
data heterogeneity.
• Uniform Stability Generalization Analysis of Algo-
rithms: Uniform stability (Bousquet & Elisseeff, 2002) is
a classical tool to analyze the generalization error of an al-
gorithm. For instance, Hardt et al. (2016) and Zhang et al.
(2022) analyzed the generalization of stochastic gradient
descent (SGD) (Bottou, 2010) via uniform stability. Yuan
et al. (2019) investigated stagewise SGD and showed the
advantages of the statewise strategy.
• SWA: The concept of averaging weights can be traced
back to early efforts to accelerate the convergence of SGD
(Polyak & Juditsky, 1992; Kaddour). SWA is motivated by
an observation about SGD’s behavior when training neural
networks: although SGD frequently explores regions in the
weight space associated with high-performing models, it
seldom reaches the central points of this optimal set. By
averaging parameter values, SWA guides the solution closer
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to the centroid of this space (Izmailov et al., 2018).

3. Proposed Algorithm
3.1. Problem Setup

FL aims to optimize global model with the collaboration
local clients, i.e., minimizing the following population risk:

F (θ) =
1

m

m∑
i=1

(Fi(θ) := Eζi∼Di [Fi (θ; ζi)]) . (1)

The function Fi represents the loss function on client i.
Eζi∼Di

[·] denotes the conditional expectation with respect
to the sample ζi. Generally, the unattainability of the local
population risk Fi (θ) forces us to train the model by mini-
mizing the following empirical approximation of population
risk FSi (θ). For the generalization problem, we consider:

FS
(
θ
)
=

1

m

m∑
i=1

FSi

(
θ
)
=

1

mn

m∑
i=1

n∑
j=1

ℓ
(
xi,j ,yi,j ;θ

)
,

(2)

where FS(θ) and FSi
(θ) indicate the empirical risks for

the global model and the local model of the i-th client, re-
spectively. FSi(θ) = 1

n

∑n
i=1 ℓ

(
xi,j ,yi,j ;θ

)
represents

the empirical risk loss function on client i. Given a dataset
S =

{(
xi,j ,yi,j

)}i=m,j=n

i=1,j=1
, S = S1 ∪ · · · ∪ Si ∪ · · · ∪ Sm,

where the dataset Si =
{(

xi,j ,yi,j

)}n
j=1

, and
(
xi,j ,yi,j

)
is drawn from an unknown distribution Di. Assume
{D1, · · · ,Dm} are independently sampled from D accord-
ing to P (Hu et al., 2023). m is the number of clints, n is
the number of training samples per client. In this paper, we
assume that FS(θ) has a minimum value F ⋆

S , when θ = θ⋆.

3.2. Our FedSWA Algorithm
To enhance the generalization of FL, our FedSWA algorithm
uses SWA for local training and weight aggregation. In the
client-side update, this paper proposes a local learning rate
decay strategy instead of a constant learning rate. In the t-th
round of local training,

ηt0 = ηl, η
t
K = ρηl, η

t
k = ηl

(
1− k

K

)
+

k

K
ρηl, (3)

θ
(t)
i,k+1 = θ

(t)
i,k − ηtkgi

(
θ
(t)
i,k

)
, (4)

where gi
(
θt
i,k

)
= 1

|B|
∑

(x,y)∈B∇ℓ
(
xi,j ,yi,j ;θ

t
i,k

)
, 0 ≤

ρ ≤ 1. Here B is the sampled minibatch at the (t, k)-th
iteration and ηl is the initial local learning rate. k is the k-th
local iteration and K is the total number of local iterations.
ρ is the coefficient of local learning rate decay, the smaller
ρ, the faster the local learning rate decays. Inspired by the
LookAhead (Zhang et al., 2019), the server aggregation em-
ploys an exponential moving average (EMA) to aggregate

Algorithm 1 FedSWA , FedMoSWA algorithm.

1: Input: λ, ρ, initial server model θ0, number of clients
N , number of communication rounds T , number of
local iterations K, local learning rate ηl.

2: for t = 0, ..., T do
3: Communicate (θt−1) to selected clients i ∈ [s].

4: Communicate (θt−1,m) to selected clients i ∈ [s].
5: for i = 1, . . . , s clients in parallel do
6: for k = 0, . . . ,K local update do
7: Compute mini-batch gradient gi

(
θt
i,k

)
.

8: ηtk = ηl
(
1− k

K

)
+ k

K ρηl.

9: θt
i,k+1 ← θ

(t)
i,k − ηtk

(
gi
(
θt
i,k

))
.

10: θt
i,k+1 ← θ

(t)
i,k − ηtk

(
gi
(
θt
i,k

)
− ci +m

)
.

11: end for
12: Communicate

(
θt
i,K

)
to server.

13: c+i ← (i) gi(x) or (ii) ci −m+ 1∑
k ηt

k

(
θt−1 − θt

i,k

)
.

14: Communicate
(
θt
i,K , c+i −m

)
to server, ci ← c+i .

15: end for
16: m←m+ γ 1

s

∑
i∈[s] ∆ci.

17: vt =
1
s

∑s
i=1 θ

t
i,K , θt = θt−1 + α (vt − θt−1).

18: end for

the historical weights instead of average aggregation. The
specific steps of the algorithm are described in Algorithm
1. In Eq.(3), the local learning rate decreases from ηl to ρηl.
After model aggregation, the learning rate is adjusted to the
initial learning rate ηl to restart local training. Smith (2017);
Gotmare et al. (2019) observed that restoring the initial large
learning rate (learning rate restart) helps us to jump out of
the worse local minimum and find a better local minimum.
We experimentally demonstrate that restarting the learning
rate is effective for federated learning (see Table 7).

Compared with FedAvg (McMahan et al., 2017) and Fed-
SAM (Qu et al., 2022). FedAvg and FedSAM adopt con-
stant local learning rate and model averaging to aggregate,
while our FedSWA uses cyclical learning rate and exponen-
tial moving average aggregation which help FedSWA jump
out of worse flat minima and look for better flat minima as
discussed in (Smith, 2017; Gotmare et al., 2019). The test
accuracy of FedSWA is also better than those of FedAvg
and FedSAM (see Tables 2 and 3).

3.3. Our FedMoSWA Algorithm

Inspired by momentum-based variance reduction (Cutkosky
& Orabona, 2020), which achieves variance reduction
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(a) FedSWA (b) FedMoSWA

Figure 2: (a) and (b) indicate that due to data heterogeneity,
the local and global models of FedSWA differ too much to
find a less flatter minima, while our FedMoSWA aligns the
local and global models and finds a flatter minima.

through the use of a variant of the momentum term, we
propose a new FedMoSWA algorithm. Different from our
FedSWA, the local update of FedMoSWA becomes

θ
(t)
i,k+1 = θ

(t)
i,k − ηtk

(
gi

(
θ
(t)
i,k

)
− ci +m

)
, (5)

where ci is the client control variable, and m is the server
control variable. We provide two options to update c+i :

c+i ←

{
I. gi(θt), or
II. ci −m+ 1∑

k ηt
k

(
θt−1 − θ

(t)
i,K

) . (6)

Depending on the situation, Option I may be more stable
than II, but II is less computationally expensive and usually
sufficient (we use Option II for our experiments). In the
local update in Eq. (5), our proposed FedMoSWA algorithm
has global control variable m, which is update by

m←m+ γ
1

s

∑
i∈S

(
c+i −m

)
. (7)

Compared with SCAFFOLD (Karimireddy et al., 2020).
The SCAFFOLD algorithm has a global variable, which
is updated as: c = c+ 1

m

∑
i∈S
(
c+i − ci

)
, but the global

control variable c has an update delay problem. This is due
to the fact that the update of c aggregates the old ci and the
new ci by using the same weights. When the client partici-
pation rate is low, the old ci is too different from c, which
instead has a bad effect on the update of c. Our proposed
FedMoSWA algorithm has global variables updated with
momentum as m=m+ γ 1

s

∑
i∈S
(
c+i −m

)
, which gives

higher weight to the latest uploaded ci and lower weight to
the old ci, instead of giving the same weight to all ci as that
SCAFFOLD does.

Compared with FedSWA. In Figure 2, we can observe that
the local model of our FedMoSWA tends to be more close to
the global optimal than FedSWA. Influenced by the control
variables, FedMoSWA has fewer differences between clients,
and minima are flatter compared to FedSWA.

Compared with MoFedSAM (Qu et al., 2022). MoFed-
SAM is based on FedSAM and presents a momentum-
based mechanism to accelerate convergence and improve
performance in data heterogeneity. FedMoSWA intro-
duces a momentum-based variance reduction mechanism
in FedSWA to accelerate convergence in the setting of high
data heterogeneity. Theoretically, our FedMoSWA also out-
performs MoFedSAM.

4. FL Generalization via uniform stability
Excess Risk Error Decomposition. One of-
ten minimizes the empirical risk FS(θ) =
1
m

1
n

∑m
i=1

∑n
i=1 ℓ

(
xi,j ,yi,j ;θ

)
in Eq.(2). In client

i via a randomized algorithm Ai, e.g., SGD, to find an
estimated optimum θAi,Si

≈ argminθ FSi
(θ). In server,

we use FL optimizer A , e.g., FedAvg, to find an estimated
optimum θA,S ≈ argminθ FS(θ). However, this empirical
solution θA,S differs from the desired optimum θ⋆

D of the
population risk FD(θ) = E(x,y)∼D[ℓ (x,y;θ)],

θ⋆
D ∈ argminθ FD(θ) = E(x,y)∼D[ℓ (x,y;θ)]. (8)

To understand the generalization ability of FL algorithms,
we want to know: what performance of the estimated op-
timum θA,S can achieve on the test data (x,y) ∼ D in
FL. To answer this question, we analyze the test error
EA,S [FD (θA,S)] of θA,S via investigating the well-known
excess risk error εexc defined as

εexc = EA,S [FD (θA,S)]− EA,S [FS (θ⋆
S)]

= E [FD (θA,S)− FS (θA,S)]︸ ︷︷ ︸
εgen

+E [FS (θA,S)− FS (θ⋆
S)]︸ ︷︷ ︸

εopt

,

where θ⋆
S ∈ argminθ FS(θ) is the optimum of FS . The

optimization error εopt =EA,S [FS (θA,S)− FS (θ⋆
S)] de-

notes the difference between the exact optimum θ⋆
S and the

estimated solution θA,S , and generalization error εgen =
EA,S [FD (θA,S)− FS (θA,S)] measures the effects of
minimizing empirical risk instead of population risk.

Uniform Stability and Generalization. One popular ap-
proach to analyze generalization error εgen of algorithm A
is uniform stability (Hardt et al., 2016; Zhang et al., 2022).

Lemma 4.1. (Uniform Stability and Generalization Error)
(Hardt et al., 2016) We say a randomized algorithm A is
ϵ-uniformly stable if for all datasets S ∼ D and S ′ ∼ D
where S and S ′ differ in at most one sample,

sup
(x,y)∼D

EA [ℓ (x,y;θA,S)− ℓ (x,y;θA,S′)] ≤ ϵ. (9)

Moreover, if A is ϵ-uniformly stable, then its gen-
eralization error εgen , which is defined as εgen =
|EA,S [FD (θA,S)− FS (θA,S)]| satisfying εgen ≤ ϵ.
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FL generalization error via uniform stability. Here
we aim to use uniform stability to upper bound the FL
generalization error. Suppose given n samples Si =
{zi,1, zi,2, · · · , zi,n}, where zi,j =

(
xi,j ,yi,j

)
is sam-

pled from an unknown distribution Di, and suppose the
generated sample set S(j)i =

{
z′
i,1, z

′
i,2, · · · , z′

i,n

}
={

zi,1, zi,2, · · · , zi,j−1, z
′
i,j , zi,j+1 · · · , zi,n

}
which only

differs from the set Si with the j-th sample. S =

{Si}mi=1 ,S(ji) =
{
S1, . . . ,Si−1,S(j)i ,Si+1, . . . ,Sm

}
.

One usually analyzes the stability of an algorithm by re-
placing one sample in S by another sample from D, and
we get S(ji). Then based on these two sets, one can train
the algorithm on S to obtain different solutions θ of the
function FS(θ). When using S(ji), we adopt θ′

t and θt,′
i,k

to denote their corresponding versions θt and θt
i,k (θt and

θt
i,k are trained on S in Algorithm 1).

5. Theoretical Analysis
5.1. Generalization Error Analysis

We analyze generalization based on following assumptions:
Assumption 1. The loss function l(·, z) is µ-strongly
convex for any sample z, l(θ; z) ≥ l

(
θ′; z

)
+〈

∇l
(
θ′; z

)
,θ − θ′〉+ µ

2

∥∥θ − θ′∥∥2, for any z,θ,θ′.
Assumption 2. The loss function l(·, z) is L Lipschitz conti-
nous, | l(θ; z)− l

(
θ′; z

)
|≤ L

∥∥θ − θ′∥∥, for any z,θ,θ′.
Assumption 3. There exists a constant σ > 0
such that for any θ, i ∈ [m], and zi ∼ Di,

E
[
∥∇l (θ; zi)−∇Fi(θ)∥2

]
≤ σ2.

Assumption 4. The loss function l(·, z) is β-smooth,∥∥∇l(θ; z)−∇l (θ′; z
)∥∥ ≤ β

∥∥θ − θ′∥∥, for any z,θ,θ′.
Assumption 5 (data heterogeneity). Given i ∈ [m],
there exists a constant σg > 0, for any θ we have
1
m

∑m
i=1 ∥∇Fi(θ)−∇F (θ)∥ ≤ σg.

Assumption 2, as in (Zhang et al., 2022), links model pertur-
bation to stability. Assumptions 3 and 5 in our study address
data heterogeneity and algorithm convergence impacts.

Theorem 5.1 (Generalization Error). Assuming all clients
participate in each round with Option I:
Strongly convex: Under Assumptions 1-5, suppose loss
ℓ(x,y;θ) is µ-strongly convex. By setting ηtk ≤ 1

βKT , b̃ =

1 +
(

µ
(β+µ)K

)K−1
1
T , the generalization error satisfies:

FedSWA: εgen ≤
2L

mnβ
e1−

µ
(β+µ)T

(
b̃L+ b̃σg + b̃σ

)
.

FedMoSWA: εgen ≤
2L

mnβ
e1−

µ
(β+µ)T

(
b̃L+ σg + b̃σ

)
.

Non-convex:Under Assumptions 2-5, assume ℓ(x,y;θ)
is β-smooth. Together with ηtk ≤ 1

βKT , c̃ = 1 +(
2 + 1

KT

)K−1 1
T , the generalization error satisfies:

FedSWA: εgen ≤
2L

mnβ
e

1
T +1 (c̃L+ c̃σg + c̃σ) .

FedMoSWA: εgen ≤
2L

mnβ
e

1
T +1 (c̃L+ σg + c̃σ) .

Theorem 5.1 shows that for strongly convex and non-convex
problems, εopt has three terms: the first bias term has the
Lipschitz continous constant L, the second bias term char-
acterizes the effect of data heterogeneity σg, and the third
term reveals the impact of the stochastic gradient noise σ.

For strongly convex problems, Theorem 5.1 shows
that εgen of FedMoSWA can be upper bounded by
O( 2L

mnβ e
1− µ

(β+µ)T (b̃L+σg+ b̃σ)), which is better than that

of FedSWA, O( 2L
mnβ e

1− µ
(β+µ)T (b̃L + b̃σg + b̃σ)) (b̃σg ≫

σg). Compared to FedSWA, FedMoSWA reduces the effect
of data heterogeneity on the generalization error. In addition,
we can observe that the generalization ability of the algo-
rithm is affected by the number of clients m and the amount
of data mn on the clients. More client participation (m) can
effectively enhance FL generalization. Similarly, to achieve
smaller generalization error, clients should use large amount
of data (mn). Reducing the number of local iterations K
improves generalization capabilities. And greater data het-
erogeneity impairs federated learning generalization.

For the non-convex generalization error, Theorem 5.1
shows that εgen of FedMoSWA is better than FedSWA’s
O( 2L

mnβ e
1
T +1(c̃L+ c̃σg + c̃σ)), and c̃σg ≫ σg in Table 1.

FedMoSWA and FedSWA generalization error is better than
FedSAM in Table 1.

5.2. Optimization Error Analysis

Theorem 5.2 (Optimization Error of FedMoSWA). For β-
smooth functions {Fi}, which satisfy Assumptions 6-9, and
are the same as in the SCAFFOLD (Karimireddy et al.,
2020) algorithm (see the Appendix for details), the output
of FedMoSWA has expected error smaller than ϵ.
Strongly convex: ηtk ≤ min

(
1

βKα ,
s

µmKα

)
, T ≥

max
(
β
µ ,

m
s

)
then

O
(

σ2

µTKs

(
1 +

s

α2

)
+

mµ

s
D2 exp

(
−
{

s

m
+

µ

β

}
T

))
.

Non-convex: ηtk ≤ 1
Kαβ

(
s
m

) 2
3 , and T ≥ 1, then

O
( σ
√
F√

TKs

(√
1 +

m

α2

)
+

βF

T

(m
s

) 2
3 )

.

Here D2 :=
∥∥θ0 − θ⋆

∥∥2+ 1
2mβ2

∑m
i=1

∥∥c0i −∇Fi (θ
⋆)
∥∥2,

F := F
(
θ0
)
− F (θ⋆).

Theorem 5.2 shows that for strongly convex and non-convex
problems, optimization error εopt has two terms: the first
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(a) Dirichlet-0.1 (b) Dirichlet-0.6

Figure 3: Convergence plots on CIFAR100 with ResNet-18.

term reveals the impact of the stochastic gradient noise,
and the second bias term characterizes the effect of initial-
ization θ0. The optimization error εopt is not affected by
the data heterogeneous parameter σg and FedMoSWA con-
verges faster as α increases. Convergence is also accelerated
when the number of client s increases. Its convergence is
accelerated when the number of local iteration K increases.

For strongly convex problems in Theo-
rem 5.2 shows that εopt of FedMoSWA is

O
(

σ2

µTKs

(
1 + s

α2

)
+ mµ

s D2 exp
(
−
{

s
m + µ

β

}
T
))

.
For α, it can be observed that with the increase of α,
εopt becomes smaller. The εopt of FedMoSWA for non-

convex problems is O
(

σ
√
F√

TKs

(√
1 + m

α2

)
+ βF

T

(
m
s

) 2
3

)
,

which is not affected by the data heterogeneous pa-
rameter σg and is better than FedSWA, FedSAM and
MoFedSAM, as shown in Table 1. We can prove that
the εopt of FedMoSWA is faster than SCAFFOLD’s

O
(

σ
√
F√

TKs

(√
1 +m

)
+ βF

T

(
m
s

) 2
3

)
(Karimireddy et al.,

2020).

6. Experiments
6.1. Experimental Settings

Datasets: We evaluate our algorithms on CIFAR10, CI-
FAR100 (Krizhevsky et al., Technical Report, 2009), Tiny
ImageNet (Le & Yang, 2015). For Non-IID data setup, we
simulate the data heterogeneity by sampling the label ratios
from Dirichlet distribution (Hsu et al., 2019). Dirichlet-0.1
means very high data heterogeneity and Dirichlet-0.6 im-
plies average data heterogeneity.
Models: To test the robustness of our algorithms, we use
various classifiers including LeNet-5 (LeCun et al., 2015),
VGG-11 (Simonyan & Zisserman, 2015), ResNet-18 (He
et al., 2016), vision Transformer (ViT-Base) (Dosovitskiy
et al., 2021).
Methods: We compare FedSWA and FedMoSWA with
many SOTA FL methods, including FedAvg (McMahan
et al., 2017), FedDyn (Durmus et al., 2021), SCAFFOLD
(Karimireddy et al., 2020), FedAvgM (Hsu et al., 2019),

FedSAM (Qu et al., 2022), MoFedSAM (Qu et al., 2022),
FedLESAM (Fan et al., 2024), FedASAM (Caldarola et al.,
2022), and FedACG (Kim et al., 2024).
Hyper-parameter Settings: The number of clients is 100,
batch size B = 50, local epoch E = 5, K = 50 and client
selection rate C=0.1. We set the grid search range of client
learning rate by ηl∈{10−3, 3× 10−3, ..., 10−1, 3× 10−1}.
The learning rate decay per round of communication is
0.998, and the total is T = 1, 000. Specifically, we set
ρ=0.1, α = 1.5, γ = 0.2 for FedMoSWA and FedSWA.

6.2. Results on Nonconvex Problems

Results on Convolutional Neural Network: From Ta-
ble 2 and Figure 3, we have the following observations:
(i) FedSWA can improve generalization ability by SWA,
and it is better than FedSAM. Our FedMoSWA is better
than FedSAM and its variant, MoFedSAM, in terms of
generalization. (ii) FedMoSWA further improves the gen-
eralization ability by momentum-based stochastic control.
Compared to the stochastic control algorithm, SCAFFOLD,
our FedMoSWA demonstrates better generalization ability
than SCAFFOLD. Compared to the momentum accelera-
tion algorithm FedACG, FedMoSWA shows significantly
better generalization combining momentum and variance
reduction techniques. Compared to FedSAM, MoFedSAM,
SCAFFOLD and FedACG can not achieve desirable flat-
ness. FedMoSWA further minimizes the global sharpness
and achieves much flatter loss landscape in Figure 4.

Impact of heterogeneity: From Table 3, we have the fol-
lowing observations: For different data heterogeneities, our
FedMoSWA generalizes well. Especially when the degree
of data heterogeneity is high (Dirichle-0.1), the final test
results of our FedMoSWA are much better than all other
algorithms. For example, as Non-IID levels increasing,
FedMoSWA achieves higher test accuracy 10.4%, 8.5% and
6.2% and saving communication round than MoFedSAM
on the CIFAR-100 dataset.

Impact of α, γ: Figure 5 (a) compares the effects of α
on FL aggregation. As the α increases, the acceleration
effect of our FedMoSWA becomes more obvious. However,
when α > 1.5, the performance of the algorithm decreases
with increasing α. We can find that the final performance
of the algorithm is best when α = 1.5. Figure 5 (b) com-
pares the effects of γ in the same settings. When γ = 0.05,
FedMoSWA converges very slowly, and the final algorithm
has low accuracy. As the γ increases, the acceleration ef-
fect of our FedMoSWA becomes more apparent. The final
performance of the algorithm is best when γ = 0.2.

Impact of ρ: Table 7 and Figure 3 compare the effects of
ρ in the local training of FedSWA and MoFedSWA. As ρ
decreases, the performance of the algorithms increases. We
can find that the final performance of the algorithms is best
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Table 2: Comparison of the accuracies at the target rounds (1000R) and the communication round to reach target test
accuracy (Acc.%) of each algorithm on Dirichlet-0.6 of the CIFAR10 and CIFAR100 datasets.

CIFAR10 CIFAR100

Method LeNet-5 VGG-11 ResNet-18 LeNet-5 VGG-11 ResNet-18

Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds
1000R 78% 1000R 80% 1000R 85% 1000R 52% 1000R 53% 1000R 55%

FedAvg 79.6±0.2 574 84.0±0.3 313 86.0±0.2 542 41.2±0.2 1000+ 48.9±0.4 1000+ 54.2±0.2 1000+
FedDyn 80.8±0.3 390 83.1±0.2 557 84.6±0.2 1000+ 40.8±0.5 1000+ 45.2±0.6 1000+ 46.5±0.6 1000+
SCAFFOLD 80.7±0.3 799 86.9±0.2 272 85.9±0.6 543 50.3±0.2 1000+ 47.9±0.2 1000+ 54.1±0.2 1000+
FedSAM 79.9±0.2 821 85.5±0.2 227 83.6±0.2 1000+ 47.9±0.1 1000+ 51.7±0.3 1000+ 47.8±0.1 1000+
MoFedSAM 82.5±0.1 483 87.4±0.4 345 87.0±0.3 569 49.3±0.2 1000+ 1.0±0.0 1000+ 60.1±0.2 603
FedLESAM 79.7±0.2 496 83.5±0.4 169 89.0±0.1 480 41.3±0.3 1000+ 49.2±0.3 1000+ 52.1±0.1 1000+
FedASAM 81.0±0.2 371 86.3±0.3 169 88.3±0.2 542 42.1±0.3 1000+ 53.4±0.2 908 49.8±0.3 1000+
FedACG 82.9±0.1 321 84.5±0.4 249 90.3±0.4 237 52.5±0.2 729 50.9±0.2 1000+ 61.7±0.4 518
FedSWA 81.5±0.2 591 86.5±0.1 169 89.5±0.1 538 48.5±0.1 1000+ 52.5±0.4 1000+ 59.8±0.3 574
FedMoSWA 83.8±0.1 301 88.1±0.2 137 91.2±0.1 265 53.8±0.1 622 61.7±0.4 389 67.9±0.4 330

(a) SCAFFOLD (b) FedLESAM (c) FedSAM (d) MoFedSAM (e) FedSWA (f) FedMoSWA

Figure 4: Global training loss surfaces for FedSWA, FedMoSWA and other baselines on Dirichlet-0.1 of CIFAR100 dataset
with ResNet-18. FedMoSWA could approach a more general and flat loss landscape which high generalization in FL.

(a) Impact of α (b) Impact of γ

Figure 5: Convergence plots for FedMoSWA with different
α and γ on CIFAR100 dataset using ResNet-18.

when ρ = 0.1. When ρ = 1 and α = 1, our FedSWA is
equal to FedAvg, which means cyclical learning rate works
in FL. When ρ = 1 and α = 1, our FedMoSWA is equal to
FedAvg with momentum variance reduction without SWA
(65.9%) which means momentum variance reduction works
in FL and it is better than SCAFFOLD (52.3%).

Results on Vision Transformer: In Table 3, we use the
ViT-Base model on the Tiny ImageNet dataset. We used the
pretrained model from the official website, and conducted

many experiments. All the experimental results verify that
our FedMoSWA can achieve excellent generalization on
both the vision Transformer model and big datasets.

6.3. Ablation Study

We conducted full client participation experiments in 5.
Here, FedMo denotes FedMoSWA without SWA (i) but only
with Momentum Stochastic Control (ii). FedMo (62.5%)
outperforms SCAFFOLD (59.9%) by 2.6%. Even if the
client is full participation, our method is still better than
SCAFFOLD.

When Dirichlet-0.6, 10% participation clients, FedMo using
only momentum stochastic control achieves 65.9%, higher
than SCAFFOLD (54.1%), demonstrating that momentum
variance reduction mitigates SCAFFOLD’s variance reduc-
tion delay. By combining SWA and momentum variance
reduction, FedMoSWA achieves 67.9% (+13.7%), showing
that both SWA (+5.6%) and momentum control (+11.7%)
are effective, and momentum control has greater impact.
Moreover, FedSWA is a simple algorithm like FedSAM and
can be combined with other techniques.
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Table 3: Comparison of each algorithm on the CIFAR100 and Tiny ImageNet datasets with different data heterogeneity.

CIFAR100 (ResNet-18) Tiny ImageNet (ViT-Base)

Method Dirichlet-0.1 Dirichlet-0.3 Dirichlet-0.6 Dirichlet-0.1 Dirichlet-0.3 Dirichlet-0.6

Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds Acc.(%) Rounds
1000R 55% 1000R 55% 1000R 55% 400R 70% 400R 70% 400R 70%

FedAvg 45.8±0.3 1000+ 52.5±0.3 1000+ 54.2±0.2 1000+ 70.9±0.1 258 71.8±0.1 223 72.8±0.1 208
FedDyn 45.8±0.2 1000+ 45.9±0.3 1000+ 46.5±0.2 1000+ 67.5±0.3 400+ 68.2±0.3 400+ 69.3±0.3 400+
SCAFFOLD 44.3±0.3 1000+ 50.3±0.3 1000+ 52.3±0.2 1000+ 71.6±0.1 202 72.5±0.1 192 73.1±0.2 169
FedSAM 40.1±0.4 1000+ 49.0±0.3 1000+ 51.9±0.5 1000+ 71.4±0.2 212 72.2±0.2 194 72.9±0.4 180
MoFedSAM 51.5±0.2 1000+ 57.5±0.2 770 60.1±0.1 603 71.6±0.4 229 72.4±0.3 214 72.5±0.4 209
FedLESAM 48.7±0.2 1000+ 53.3±0.4 1000+ 52.1±0.1 1000+ 71.9±0.3 210 72.1±0.2 188 72.5±0.3 182
FedASAM 47.7±0.3 1000+ 46.6±0.2 1000+ 49.8±0.1 1000+ 69.2±0.3 400+ 71.3±0.2 234 72.1±0.3 196
FedACG 52.2±0.4 1000+ 57.7±0.2 717 61.7±0.4 518 66.2±0.2 400+ 68.5±0.1 400+ 70.2±0.3 386
FedSWA 50.3±0.3 1000+ 55.5±0.4 889 59.8±0.3 574 71.9±0.3 199 72.6±0.2 179 73.2±0.2 168
FedMoSWA 61.9±0.5 577 66.2±0.4 468 67.9±0.4 330 73.8±0.3 161 74.4±0.3 152 74.7±0.1 144

Table 4: Testing Acc (%) of FedSWA and MoFedSWA with
different ρ on CIFAR100 (ResNet-18, Dirichlet-0.6).

ρ 0.1 0.2 0.3 0.4 0.7 0.8 1.0

FedSWA 59.8 58.5 57.9 56.6 55.3 54.6 54.2
FedMoSWA 67.9 67.3 67.0 66.8 66.5 66.3 65.9

Table 5: Full client participation on CIFAR-100 and ResNet-
18 with 10 clients and 300 rounds.

Algorithm Accuracy (%) Improvement (%)

FedAvg 58.2 -
SCAFFOLD 59.9 +1.7
FedSAM 48.3 -9.9
MoFedSAM 37.9 -20.3
FedLESAM 59.2 +1.0
FedSWA (i) 60.2 +2.0
FedMo (ii) 62.5 +4.3
FedMoSWA (i+ii) 63.2 +5.0

7. Conclusion
This study investigated generalization concerns in FL and
proposed two new algorithms, FedSWA and FedMoSWA,
for the setting of highly heterogeneous data. In particular,
FedMoSWA addresses the essential issue of generalization
with highly heterogeneous data. By developing an analytical
framework based on algorithmic stability, we theoretically
established the superiority of FedSWA and FedMoSWA in
terms of generalization error. Our FedMoSWA mitigates
the effect of data heterogeneity on the generalization error,
though it does not completely eliminate it. Our future works

Table 6: 10% client participation on CIFAR-100 and ResNet-
18 with 100 clients and 1000 rounds.

Algorithm Accuracy (%) Improvement (%)

FedAvg 54.2 -
SCAFFOLD 54.1 -0.1
FedSAM 47.8 -6.4
FedSWA (i) 59.8 +5.6
FedMo (ii) 65.9 +11.7
FedMoSWA (i+ii) 67.9 +13.7

may consider an approach that significantly eliminates the
effect of high heterogeneity on the generalization error.
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A. Background
In this section, we provide a concise overview of Sharpness-Aware Minimization (SAM) and Stochastic Weight Averaging
(SWA).

A.1. SAM: Overview

SAM seeks to identify a solution θ that lies within a region characterized by uniformly low training loss LD(θ), specifically
within a flat minimum. The sharpness of the training loss function is quantified as:

max
∥ϵ∥p≤ρ

LD(θ + ϵ)− LD(θ)

Here, ρ is a hyper-parameter that determines the size of the neighborhood, and p ∈ [1,∞). SAM focuses on reducing the
sharpness of the loss by addressing the following minmax objective:

min
θ∈Rd

max
∥ϵ∥p≤ρ

LD(θ + ϵ) + λ∥θ∥22

where λ is a hyper-parameter that balances the regularization term. According to (Foret et al., 2021), the optimal choice for
p is typically 2. Therefore, we use the ℓ2-norm for the maximization over ϵ and simplify the expression by omitting the
regularization term. To solve the inner maximization problem ϵ∗ ≜ argmax∥ϵ∥2≤ρ L(θ + ϵ), the authors suggest using a
first-order approximation of L(θ + ϵ) around 0:

ϵ∗ ≈ arg max
∥ϵ∥2≤ρ

LD(θ) + ϵT∇θLD(θ) = ρ
∇θLD(θ)

∥∇θLD(θ)∥2
=: ϵ̂(θ)

This approximation, which is computationally efficient, results in ϵ̂(θ) being essentially a scaled gradient of the current
parameters θ. The sharpness-aware gradient is then defined as ∇θLD(θ)|θ+ϵ̂(θ) and is used to update the model as follows:

θt+1 ← θt − γ∇θtLD (θt)|θt+ϵ̂t
,

where γ is the learning rate and ϵ̂t = ϵ̂ (θt). This two-step process is repeated iteratively to solve the minmax objective.
Essentially, SAM first performs a gradient ascent step to estimate the point (θt + ϵ̂t) where the loss is approximately
maximized, followed by a gradient descent step at θt using the computed gradient.

A.2. Stochastic Weight Averaging: Overview

SWA (Stochastic Weight Averaging) operates by averaging the weights proposed by Stochastic Gradient Descent (SGD)
while employing a learning rate schedule to explore regions of the weight space that correspond to high-performing networks.
At each step i within a cycle of length c, the learning rate is gradually reduced from an initial value γ1 to a final value γ2.
This learning rate adjustment is defined as:

γ(i) = (1− t(i))γ1 + t(i)γ2, t(i) =
1

c
(mod(i− 1, c) + 1)

Here, t(i) represents a linear interpolation factor that depends on the current step i and the cycle length c. If c = 1, the
learning rate remains constant at γ1 throughout the training process. However, for c > 1, the learning rate follows a cyclical
schedule, oscillating between γ1 and γ2 over the course of the cycle.

Starting from a pre-trained model fθ̂, SWA captures the model weights θ at the end of each cycle and computes their running
average. This averaging process is expressed as:

θSWA ←
θSWA · nmodels + θ

nmodels + 1
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In this equation, nmodels tracks the number of completed cycles, and θSWA represents the averaged weights. The final model,
denoted as fθSWA , is obtained by aggregating the weights from multiple cycles, effectively smoothing the optimization
trajectory and enhancing generalization performance.

By iteratively averaging the weights, SWA encourages the model to converge to a flatter region of the loss landscape, which
is often associated with better generalization. This approach leverages the exploration of diverse weight configurations
during training, ultimately leading to a more robust and stable model.

B. Implementation of the Experiments
B.1. Datasets

Table 7: A summary of CIFAR10/100, Tiny ImageNet datasets, including number of total images, number of classes, and
the size of the images in the datasets.

Datasets Total Images Class Image Size

CIFAR10 60,000 10 3 × 32 × 32
CIFAR100 60,000 100 3 × 32 × 32
Tiny ImageNet 100,000 200 3 × 224 × 224

CIFAR-10/100, Tiny ImageNet are popular benchmark datasets in federated learning. Data samples in CIFAR10 and
CIFAR100 are colorful images of different categories with the resolution of 32 × 32. There are 10 classes and each class
has 6,000 images in CIFAR10. For CIFAR100, there are 100 classes and each class has 600 images. For Tiny ImageNet,
there are 200 classes and each class has 500 images. As shown in Table 6, we summarize CIFAR10, CIFAR100, and Tiny
ImageNet from the views of number of total images, number of classes, and the size of the images in the datasets.

B.2. More Loss Surface Visualization

Here we show more global loss surface visualizations. As shown in Figure 7-11, we conduct experiments using LeNet-5
and ResNet-18 for CIFAR10 and CIFAR100, and visualize FedAvg, FedSAM, and FedSWA. Among these, our FedSWA
achieves a flatter loss landscape.

(a) FedAvg (b) FedSAM (c) FedSWA

Figure 6: The training loss surfaces of FedAvg, FedSAM, and our FedSWA on CIFAR-100 with ResNet-18 (Dirichlet-0.1).
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(a) FedAvg (b) FedSAM (c) FedSWA

Figure 7: The training loss surfaces of FedAvg, FedSAM, and our FedSWA on CIFAR-100 with LeNet-5 (Dirichlet-0.1).

(a) FedAvg (b) FedSAM (c) FedSWA

Figure 8: The training loss surfaces of FedAvg, FedSAM, and our FedSWA on CIFAR-10 with LeNet-5 (Dirichlet-0.1).

(a) FedSAM (0.1) (b) FedSAM (0.3) (c) FedSAM (0.6)

Figure 9: The training loss surfaces of FedSAM on CIFAR-100 with ResNet-18 (Dirichlet-0.1, Dirichlet-0.3, Dirichlet-0.6).

14



Improving Generalization in Federated Learning via Momentum-Based Stochastic Controlled Weight Averaging

(a) FedSWA (0.1) (b) FedSWA (0.3) (c) FedSWA (0.6)

Figure 10: The training loss surfaces of FedSWA on CIFAR-100 with ResNet-18 (Dirichlet-0.1, Dirichlet-0.3, Dirichlet-0.6).

B.3. Convergence Behavior Curves

(a) Lenet-5, CIFAR10 (b) Lenet-5, CIFAR100 (c) VGG-11, CIFAR10

(d) VGG-11, CIFAR100 (e) Resnet-18, CIFAR10 (f) ResNet-18, CIFAR100

Figure 11: Convergence plots for FedSWA, FedMoSWA and other baselines in same settings with Dirichlet-0.6 on CIFAR10
and CIFAR100 using different neural network architectures.
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Table 8: CIFAR-100 with ResNet-18 under different data heterogeneity levels (0.1, 0.3, 0.6).

heterogeneity 0.1 0.3 0.6

FedSMOO 46.5 47.8 49.2
FedGAMMA 48.4 51.8 52.6
FedSWA (ours) 50.3 55.5 59.8
FedMoSWA (ours) 61.9 66.2 67.9

(a) ResNet-18, Dirichlet-0.6 (b) ResNet-18, Dirichlet-0.3 (c) ResNet-18, Dirichlet-0.1

Figure 12: Convergence plots for FedSWA, FedMoSWA and baselines with Dirichlet-0.6, 0.3, 0.1 on CIFAR100 using
ResNet-18.

C. Basic Assumptions
We analyze generalization based on following assumptions:

Assumption C.1. The loss function l(·, z) is µ-strongly convex for any sample z, l(θ; z) ≥ l
(
θ′; z

)
+
〈
∇l
(
θ′; z

)
,θ − θ′〉+

µ
2

∥∥θ − θ′∥∥2, for any z,θ,θ′.

Assumption C.2. The loss function l(·, z) is L Lipschitz continous, | l(θ; z)− l
(
θ′; z

)
|≤ L

∥∥θ − θ′∥∥, for any z,θ,θ′. We
note that under Assumption 2, EA,S,z |l (θT ; z)− l (θ′T ; z)| ≤ LE ∥θT − θ′T ∥ ,E ∥∇F (θt)∥ ≤ L.

Assumption C.3. There exists a constant σ > 0 such that for any θ, i ∈ [m], and zi ∼ Di, E
[
∥∇l (θ; zi)−∇Fi(θ)∥2

]
≤

σ2.

Assumption C.4. The loss function l(·, z) is β-smooth,
∥∥∇l(θ; z)−∇l (θ′; z

)∥∥ ≤ β
∥∥θ − θ′∥∥, for any z,θ,θ′.

Assumption C.5. (data heterogeneity). Given i ∈ [m], there exists a constant σg > 0, for any θ we have
∥∇Fi(θ)−∇F (θ)∥ ≤ σg,i,

1
m

∑m
i=1 ∥∇Fi(θ)−∇F (θ)∥ ≤ 1

m

∑m
i=1 σg,i = σg

D. Main Lemmas
Lemma D.1. Assume that f is β-smooth. Then, the following properties hold.
1. Gf,η is (1 + ηβ)-expansive, G(v) = Gf,η(v) = v − η∇f(v)
2. Assume in addition that f is µ-strongly convex. Then, for η ≤ 2

β+µ , Gf,η is
(
1− ηβµ

β+µ

)
expansive.

Henceforth we will no longer mention which random selection rule we use as the proofs are almost identical for both rules.

Proof. 1. Let G = Gf,η. By triangle inequality and our smoothness assumption,

∥G(v)−G(w)∥ ≤ ∥v − w∥+ η|∇f(w)−∇f(v)∥
≤ ∥v − w∥+ ηβ∥w − v∥
= (1 + ηβ)∥v − w∥.

(10)
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2. First, note that if f is µ strongly convex, then φ(w) = f(w)− µ
2 ∥w∥

2 is convex with (β − µ)-smooth. Hence,

⟨∇f(v)−∇f(w), v − w⟩ ≥ βµ

β + µ
∥v − w∥2 + 1

β + µ
∥∇f(v)−∇f(w)∥2 (11)

Using this inequality gives

∥Gf,η(v)−Gf,η(w)∥2 = ∥v − w∥2 − 2η⟨∇f(v)−∇f(w), v − w⟩+ η2∥∇f(v)−∇f(w)∥2

≤
(
1− 2

ηβµ

β + µ

)
∥v − w∥2 − η

(
2

β + µ
− η

)
∥∇f(v)−∇f(w)∥2.

(12)

With our assumption that η ≤ 2
β+µ , this implies

∥Gf,η(v)−Gf,η(w)∥ ≤
(
1− 2

ηβµ

β + µ

)1/2

∥v − w∥ ≤
(
1− ηβµ

β + µ

)
∥v − w∥. (13)

The lemma follows by applying the inequality
√
1− x ≤ 1− x/2 which holds for x ∈ [0, 1].

E. Theoretical Results of FedSWA
E.1. Generalization Analysis for FedSWA under strongly convex setting

Lemma E.1. Suppose Assumptions C.1-C.5 hold. Then for FedSWA with ηtk ≤ 1/βKT , α = 1,

E
∥∥θti,k − θt

∥∥ ≤ (1− b)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) ,∀k = 1, . . . ,K,

where η̃t =
∑K−1

k=0 ηtk.

Proof. Considering local update of FedSWA

E ∥θi,k+1 − θt∥ = E
∥∥θti,k − ηtkgi

(
θti,k
)
− θt

∥∥
≤ E

∥∥θti,k − θt − ηtk
(
gi
(
θti,k
)
− gi (θt)

)∥∥+ ηtkE ∥gi (θt)∥
(a)

≤
(
1− ηtkβµ

β + µ

)
E
∥∥θti,k − θt

∥∥+ ηtkE ∥gi (θt)∥

≤
(
1− ηtkβµ

β + µ

)
E
∥∥θti,k − θt

∥∥+ ηtk (E ∥gi (θt)−∇Fi (θt)∥+ E ∥∇Fi (θt)∥)

(b)

≤
(
1− ηtkβµ

β + µ

)
E
∥∥θti,k − θt

∥∥+ ηtk (E ∥∇Fi (θt)∥+ σ) ,

(14)

where (a) follows Lemma D.1; (b) follows Assumption C.3. Unrolling the above and noting θi,0 = θt, with b =
(
1− ηt

Kβµ
β+µ

)
for some b > 0 yields

E
∥∥θti,k − θt

∥∥ ≤ k−1∑
l=0

ηtl (E ∥∇Fi (θt)∥+ σ) (1− b)k−1−l

≤
K−1∑
l=0

ηtl (E ∥∇Fi (θt)∥+ σ) (1− b)K−1

≤ (1− b)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) ,

(15)

where the last inequality follows Assumption C.5, η̃t =
∑K−1

k=0 ηtk.
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Lemma E.2. Given Assumptions C.1-C.4 and considering of FedSWA, for ηtk ≤ 1/βKT we have

E
∥∥gi (θti,k)∥∥ ≤ (1 + (1− b)K−1βη̃t

)
(E ∥∇F (θt)∥+ σg,i + σ) ,

where gi(·) is the sampled gradient of client i, η̃t =
∑K−1

k=0 ηtk.

Proof. Using Assumptions C.3, C.4, C.5, we obtain

E
∥∥gi (θti,k)∥∥ ≤ E

∥∥gi (θti,k)−∇Fi

(
θti,k
)∥∥+ E

∥∥∇Fi

(
θti,k
)∥∥

≤a E
∥∥∇Fi

(
θti,k
)∥∥+ σ

≤ E ∥∇Fi (θt)∥+ E
∥∥∇Fi

(
θti,k
)
−∇Fi (θt)

∥∥+ σ

≤b E ∥∇F (θt)∥+ E ∥∇Fi (θt)−∇F (θt)∥+ βE
∥∥θti,k − θt

∥∥+ σ

≤c
(
1 + (1− b)K−1βη̃t

)
(E ∥∇F (θt)∥+ σg,i + σ) ,

(16)

a is following Assumption C.3, b is is following Assumption C.4, c is is following Assumption C.5 and D.1.

Theorem E.3. (FedSWA). Suppose Assumptions 1-5 hold and consider FedSWA. Let {θt}Tt=0 and {θ′t}
T
t=0 be two datasets

S and S(i), respectively. Suppose θ0 = θ′0. Then,

εgen ≤
2Lb̃

mn

1

β
e1−

µ
(β+µ)T (E ∥∇F (θt)∥+ σg + σ) ,

where η̃tk =
∑K−1

k=0 ηtk, b̃ ≤ 1 + (1− b)K−1βη̃t

Proof. For client i, there are two cases to consider. In the first case, SGD selects the index of an sample at local step k on
which is identical in S and S(i). In this sense, we have∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1− ηtkβµ

β + µ

)∥∥∥θti,k − θt,′i,k

∥∥∥ . (17)

And this case happens with probability 1− 1/n (since only one sample is perturbed for client i ).

In the second case, SGD encounters the perturbed sample at local time step k, which happens with probability 1/n. We
denote the gradient of this perturbed sample as g′i(·). Then,∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ =
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− g′i

(
θt,′i,k

))∥∥∥
≤
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− gi

(
θt,′i,k

))∥∥∥+ ηtk

∥∥∥gi (θti,k)− g′i

(
θt,′i,k

)∥∥∥
≤
(
1− ηtkβµ

β + µ

)∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk

∥∥∥gi (θti,k)− g′i

(
θt,′i,k

)∥∥∥ .
(18)

Combining these two cases we have for client i,

E
∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1− ηtkβµ

β + µ

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥∥gi (θti,k)− g′i

(
θt,′i,k

)∥∥∥
≤
(
1− ηtkβµ

β + µ

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

E
∥∥gi (θti,k)∥∥ , (19)

where the last inequality follows that gi(·) and g′i(·) are sampled from the same distribution.

Iterating the above over t and noting θ0 = θ′0, we conclude the proof. We let b̃ be an upper bound of 1 + (1− b)K−1βη̃t
since η̃t is bounded above. Then unrolling 19, and follow E.2,
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E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤

K−1∏
k=0

(
1− ηtkβµ

β + µ

)
E ∥θt − θ′t∥+

(
2

n

K−1∑
k=0

ηtk b̃

K−1∏
l=k+1

(
1− ηtkβµ

β + µ

)
(E ∥∇F (θt)∥+ σg,i + σ)

)

≤a e
−η̃tβµ
β+µ E ∥θt − θ′t∥+

2

n
b̃η̃te

−η̃tβµ
β+µ (E ∥∇F (θt)∥+ σg,i + σ) .

(20)

a is following 1− x ≤ e−x. With θt+1 = 1
m

∑m
i=1 θ

t
i,K and θ′t+1 = 1

m

∑m
i=1 θ

t,′
i,K , we have

E
∥∥θt+1 − θ′t+1

∥∥ ≤ m∑
i=1

1

m
E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤ e

−η̃tβµ
β+µ E ∥θt − θ′t∥+

2

mn
b̃η̃te

−η̃tβµ
β+µ (E ∥∇F (θt)∥+ σg + σ)

(21)

Further, unrolling the above over t and noting θ0 = θ′0, we obtain

E ∥θT − θ′T ∥ ≤
2b̃

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

− η̃tβµ
β+µ (E ∥∇F (θt)∥+ σg + σ)

≤ 2b̃

mn

1

β
e1−

µ
(β+µ)T (E ∥∇F (θt)∥+ σg + σ) ,

(22)

With Assumption C.2,

εgen ≤
2Lb̃

mn

1

β
e1−

µ
(β+µ)T (E ∥∇F (θt)∥+ σg + σ) ,

b̃ = 1 +

(
µ

(β + µ)K

)K−1
1

T
≫ 1

When the diminishing stepsizes ηtk ≤ 1/βKT are chosen in the statement of the theorem, we conclude the proof.

E.2. Generalization Analysis for FedSWA under non-convex setting

Lemma E.4. Suppose Assumptions C.2-C.5 hold. Then for FedSWA with ηtk ≤ /βKT ,

E
∥∥θti,k − θt

∥∥ ≤ (1 + c)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) , ∀k = 1, . . . ,K,

where η̃t =
∑K−1

k=0 ηtk.

Proof. Considering local update of FedSWA

E ∥θi,k+1 − θt∥ = E
∥∥θti,k − ηtkgi

(
θti,k
)
− θt

∥∥
≤ E

∥∥θti,k − θt − ηtk
(
gi
(
θti,k
)
− gi (θt)

)∥∥+ ηtkE ∥gi (θt)∥
≤a
(
1 + βηtk

)
E
∥∥θti,k − θt

∥∥+ ηtkE ∥gi (θt)∥
≤
(
1 + βηtk

)
E
∥∥θti,k − θt

∥∥+ ηtk (E ∥gi (θt)−∇Fi (θt)∥+ E ∥∇Fi (θt)∥)
≤b
(
1 + βηtk

)
E
∥∥θti,k − θt

∥∥+ ηtk (E ∥∇Fi (θt)∥+ σ) ,

(23)

where a is following D.1, and we use Assumptions C.3 in b . With (1 + βηtk) ≤ c, Unrolling the above and noting θi,0 = θt
yields

E
∥∥θti,k − θt

∥∥ ≤ k−1∑
l=0

ηtl (E ∥∇Fi (θt)∥+ σ) (1 + c)k−1−l

≤
K−1∑
l=0

ηtl (E ∥∇Fi (θt)∥+ σ) (1 + c)K−1

≤ (1 + c)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) ,

(24)
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where the last inequality follows Assumption C.5, η̃t =
∑K−1

k=0 ηtk.

Lemma E.5. Given Assumptions C.2-C.5, for ηtk ≤ /βKT , we have

E
∥∥gi (θti,k)∥∥ ≤ (1 + (1 + c)K−1βη̃t

)
(E ∥∇F (θt)∥+ σg,i + σ)

where gi(·) is the sampled gradient of client i, η̃t =
∑K−1

k=0 ηtk.

Proof. we obtain

E
∥∥gi (θti,k)∥∥ ≤ E

∥∥gi (θti,k)−∇Fi

(
θti,k
)∥∥+ E

∥∥∇Fi

(
θti,k
)∥∥

≤a E
∥∥∇Fi

(
θti,k
)∥∥+ σ

≤ E ∥∇Fi (θt)∥+ E
∥∥∇Fi

(
θti,k
)
−∇Fi (θt)

∥∥+ σ

≤b E ∥∇F (θt)∥+ E ∥∇Fi (θt)−∇F (θt)∥+ βE
∥∥θti,k − θt

∥∥+ σ

≤c
(
1 + (1 + c)K−1βα̃i

)
(E ∥∇F (θt)∥+ σg,i + σ) .

(25)

a is following Assumption C.3, b is is following Assumption C.4, c is is following Assumption C.5 and D.1 and E.4.

Theorem E.6. (FedSWA). Suppose Assumptions C.2-C.5 hold and consider FedSWA. Let k = K, ∀i ∈ [m] and ηtk ≤ 1
βKT .

Then,

εgen ≤
2Lc̃

mn

1

β
e1+

1
T (E ∥∇F (θt)∥+ σg + σ) ,

c̃ ≤ 1 + (1 + c)K−1βη̃t.

Proof. For client i, there are two cases to consider. In the first case, SGD selects non-perturbed samples in S and S(i),
which happens with probability 1− 1/n. Then, with D.1, we have∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηtk
) ∥∥∥θti,k − θt,′i,k

∥∥∥ . (26)

In the second case, SGD encounters the perturbed sample at time step k, which happens with probability 1/n. Then, we
have ∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ =
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− g′i

(
θt,′i,k

))∥∥∥
≤
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− gi

(
θt,′i,k

))∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤
(
1 + βηtk

) ∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥ .
(27)

Combining these two cases for client i we have

E
∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηtk
)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥gi (θti,k)∥∥

≤
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

(
1 + (1 + c)K−1βη̃t

)
(σ + E ∥∇F (θt)∥+ σg,i)

≤
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk c̃

n
(E ∥∇F (θt)∥+ σg,i + σ)

(28)

where the last inequality follows Assumption D.1. We let 1 + (1 + c)K−1βη̃t ≤ c̃ and η̃t =
∑K−1

k=0 ηtk. Then unrolling (28)
with E.5 gives

E
∥∥∥θti,K − θt,′i,K

∥∥∥ ≤ K−1∏
k=0

(
1 + βηtk

)
E ∥θt − θ′t∥+

(
2

n

K−1∑
k=0

ηtk c̃

K−1∏
l=k+1

(
1 + βηtl

)
(E ∥∇F (θt)∥+ σg,i + σ)

)

≤ eβη̃tE ∥θt − θ′t∥+
2

n
c̃η̃te

βη̃t (E ∥∇F (θt)∥+ σg,i + σ) .

(29)
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With θt+1 = 1
m

∑m
i=1 θ

t
i,K and θ′t+1 = 1

m

∑m
i=1 θ

t,′
i,K , we have

E
∥∥θt+1 − θ′t+1

∥∥ ≤ m∑
i=1

1

m
E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤ eβη̃tE ∥θt − θ′t∥+

2

mn
c̃η̃te

βη̃t (E ∥∇F (θt)∥+ σg,i + σ)

(30)

Further, unrolling the above over t and noting θ0 = θ′0, we obtain

E ∥θT − θ′T ∥ ≤
2c̃

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t (E ∥∇F (θt)∥+ σg + σ) , (31)

We simplify this inequality

E ∥θT − θ′T ∥

≤ 2c̃

mn

1

β
e

1
T +1 (E ∥∇F (θt)∥+ σg + σ)

≤ 2c̃

mn

1

β
e

1
T +1 (L+ σg + σ) ,

(32)

With the Assumption C.2,

εgen ≤
2Lc̃

mn

1

β
e1+

1
T (E ∥∇F (θt)∥+ σg + σ) ,

With

c̃ = 1 +

(
2 +

1

TK

)K−1
1

T
≫ 1

When the diminishing stepsizes are chosen in the statement of the theorem, we conclude the proof.

F. Theoretical Results of FedMoSWA
F.1. Generalization Analysis for FedMoSWA under strongly convex setting

where g
(t)
i,k denotes the stochastic gradient at the point θ(t)

i,k.

Lemma F.1. Suppose Assumptions C.1-C.5 hold. Then for FedMoSWA with ηtk ≤ 1/βKT , α = 1,

E
∥∥θti,K − θt

∥∥ ≤ η̃t(1− b)K−1 (L+ σ)

where η̃t =
∑K−1

k=0 ηtk, b = ηtβµ
β+µ .
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Proof. Considering local update of FedMoSWA, cti = gi (θt), mt = (1− γ)mt−1 + γ 1
m

∑
gi (θt),

E
∥∥θti,k+1 − θt

∥∥
= E

∥∥θti,k+1 − ηtk
(
gi
(
θti,k+1

)
− cti +mt

)
− θt

∥∥
= E

∥∥θti,k+1 − θt − ηtkgi
(
θti,k+1

)
+ ηtk

(
gi (θt) +mt

)∥∥
= E

∥∥θti,k+1 − θt − ηtkgi
(
θti,k+1

)
+ ηtkgi (θt)

∥∥+ ηtkE
∥∥mt

∥∥
≤a E

∥∥θti,k+1 − θt − ηtk
(
gi
(
θtik+1

)
− gi (θt)

)∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ σ)

≤b

(
1− ηtkβµ

β + µ

)
E
∥∥θti,k+1 − θt

∥∥+ ηtkE
∥∥mt

∥∥
≤
(
1− ηtkβµ

β + µ

)
E
∥∥θti,k+1 − θt

∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ σ)

≤c

(
1− ηtkβµ

β + µ

)
E
∥∥θti,k+1 − θt

∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γL+ σ)

(33)

where, a is following Assumption C.3, b is following Lemma D.1, c is following Assumption C.2. Below we find an upper
bound for E ∥mt∥,

E
∥∥mt

∥∥ = E

∥∥∥∥∥(1− γ)mt−1 + γ
1

m

m∑
i=1

gi (θt)

∥∥∥∥∥
≤ (1− γ)E

∥∥mt−1
∥∥+ γE

∥∥∥∥∥ 1

m

m∑
i=1

gi (θt)

∥∥∥∥∥
≤ (1− γ)E

∥∥mt−1
∥∥+ γE ∥∇F (θt)∥+ γσ

≤a
t∑

l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

≤b L+ σ

(34)

where a follows Assumption C.3; b follows Lemma D.1. Unrolling the (F.1) and noting θi,0 = θt, with b = ηtβµ
β+µ for some

b > 0, η̃t =
∑K−1

k=0 ηtk yields

E
∥∥θti,K − θt

∥∥
≤ (1− b)K−1η̃tE

∥∥mt
∥∥

≤
K−1∑
l=0

ηtl

t∑
p=0

(1− γ)
p
(γE ∥∇F (θp)∥+ γσ) (1− b)K−1−l

≤
K−1∑
l=0

ηtl (L+ σ) (1− b)K−1−l

≤ η̃t(1− b)K−1 (L+ σ)

(35)

Lemma F.2. Given Assumptions C.1-C.5 , for ηtk ≤ 1/βKT we have

E
∥∥gi (θti,k)∥∥ ≤ (1 + βη̃t(1 + b)K−1

)
(L+ σ) + σg,i

where gi(·) is the sampled gradient of client i, η̃t =
∑K−1

k=0 ηtk.
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Proof. we obtain

E
∥∥gi (θti,k)∥∥ ≤ E

∥∥gi (θti,k)−∇Fi

(
θti,k
)∥∥+ E

∥∥∇Fi

(
θti,k
)∥∥

≤a E
∥∥∇Fi

(
θti,k
)∥∥+ σ

≤ E ∥∇Fi (θt)∥+ E
∥∥∇Fi

(
θti,k
)
−∇Fi (θt)

∥∥+ σ

≤b E ∥∇F (θt)∥+ E ∥∇Fi (θt)−∇F (θt)∥+ βE
∥∥θti,k − θt

∥∥+ σ

≤c (E ∥∇F (θt)∥+ σg,i + σ) +

K−1∑
l=0

ηtl

l∑
p=0

(1− γ)
p
(γE ∥∇F (θp)∥+ σ) (1− b)K−1−l

≤d
(
1 + βη̃t(1 + b)K−1

)
(L+ σ) + σg,i

(36)

a is following Assumption C.3, b is is following Assumption C.4, c is is following Assumption C.5 and Lemma D.1 and
Lemma F.1, d is following ∥∇F (θt)∥ ≤ L . Similarly, using same techniques we have

E ∥gi (θt)∥ ≤ E ∥∇Fi (θt)∥+ σ

≤ E ∥∇Fi (θt)−∇F (θt)∥+ E ∥∇F (θt)∥+ σ

≤ σg,i + E ∥∇F (θt)∥+ σ.

(37)

Theorem F.3. Suppose Assumptions C.1-C.5 hold and consider FedMoSWA (Algorithm 1). Let {θt}Tt=0 and {θ′t}
T
t=0 be two

trajectories of the server induced by neighboring datasets S and S(i), respectively. Suppose θ0 = θ′0. Then,

E ∥θT − θ′T ∥ ≤
2

mn

1

β
e1−

µ
(β+µ) (b̃L+ σg + b̃σ),

εgen ≤
2L

mn

1

β
e1−

µ
(β+µ)T

(
b̃L+ σg + b̃σ

)
where η̃t =

∑K−1
k=0 ηtk. b̃ be an upper bound of 1 + (1− b)K−1βη̃t.

Proof. For client i, there are two cases to consider. In the first case, SGD selects the index of an sample at local step k on
which is identical in S and S(i). In this sense, we have,∥∥∥θtj,k+1 − θt,′j,k+1

∥∥∥
≤
∥∥∥θtj,k+1 − θt,′j,k+1 − ηtk

(
gj
(
θtj,k+1

)
− gj

(
θt,′j,k

)
− cti +mt − cti +mt

)∥∥∥
≤a

(
1− ηtkβµ

β + µ

)∥∥∥θti,k − θt,′i,k

∥∥∥
(38)

where a is following Lemma D.1. And this case happens with probability 1− 1/n (since only one sample is perturbed for
client i ).

In the second case, SGD encounters the perturbed sample at local time step k, which happens with probability 1/n. We
denote the gradient of this perturbed sample as g′i(·). Then,∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ ∥∥∥θtj,k+1 − θt,′j,k+1 − ηtk

(
gj
(
θtj,k+1

)
− g′j

(
θt,′j,k

)
− cti +mt − cti +mt

)∥∥∥
=
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− g′i

(
θt,′i,k

))∥∥∥
≤
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− gi

(
θt,′i,k

))∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤
(
1− ηtkβµ

β + µ

)∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥ .
(39)
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Combining these two cases we have for client i,

E
∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1− ηtkβµ

β + µ

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤a

(
1− ηtkβµ

β + µ

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

E
∥∥gi (θti,k)∥∥

≤b

(
1− ηtkβµ

β + µ

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

(
1 + βη̃t(1− b)K−1

)
(L+ σ) +

2ηtk
n

σg,

(40)

where the a inequality follows that gi(·) and g′i(·) are sampled from the same distribution, b is following Lemma F.2. We let
1 + (1− b)K−1βη̃t ≤ b̃, η̃t =

∑K−1
k=0 ηtk. Then unrolling it we have,

E
∥∥∥θti,K − θt,′i,K

∥∥∥ ≤ K−1∏
k=0

(
1− ηtkβµ

β + µ

)
E ∥θt − θ′t∥+

(
2

n

K−1∑
k=0

ηtk

K−1∏
l=k+1

(
1− ηtkβµ

β + µ

)
·
(
(E ∥∇F (θt)∥+ σg,i + σ) + (1− b)K−1η̃tE

∥∥mt
∥∥))

≤ e−
η̃tβµ
β+µ E ∥θt − θ′t∥+

2

n
η̃te

− η̃tβµ
β+µ

(
(E ∥∇F (θt)∥+ σg,i + σ) + (1− b)K−1η̃tE

∥∥mt
∥∥) .

(41)

Then, with θt+1 = 1
m

∑m
i=1 θ

t
i,K and θ′t+1 = 1

m

∑m
i=1 θ

t,′
i,K , we have

E
∥∥θt+1 − θ′t+1

∥∥ ≤ m∑
i=1

1

m
E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤ e−

η̃tβµ
β+µ E ∥θt − θ′t∥+

2

mn
η̃te

− η̃tβµ
β+µ

(
(E ∥∇F (θt)∥+ σg,i + σ) + (1− b)K−1η̃tE

∥∥mt
∥∥) (42)

where we use Lemma F.2 in the last step. Further, unrolling the above over t and noting θ0 = θ′0, b = ηtβµ
β+µ =

ηt
kβµ
β+µ we

obtain,

E ∥θT − θ′T ∥

≤ 2

mn

T−1∑
t=0

exp

(
− βµ

β + µ

T−1∑
l=t+1

η̃t

)
η̃te

− η̃tβµ
β+µ

(
(E ∥∇F (θt)∥+ σg + σ) + (1− b)K−1η̃tE

∥∥mt
∥∥)

≤ 2

mn

T−1∑
t=0

exp

(
− βµ

β + µ

T−1∑
l=t+1

η̃t

)
η̃te

− η̃tβµ
β+µ

((
1 + βη̃t(1− b)K−1

)
(L+ σ) + σg

) (43)

When the diminishing stepsizes are chosen in the statement of the theorem, we conclude the proof.

F.2. Generalization Analysis for FedMoSWA under non-convex setting

Lemma F.4. Suppose Assumptions C.1-C.5 hold. Then for FedMoSWA with ηtk ≤ 1/βKT ,

E
∥∥θti,k − θt

∥∥ ≤ η̃t(1 + c)k−1(L+ σ)

where η̃t =
∑K−1

k=0 ηtk.
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Proof. Considering local update of FedMoSWA, cti = gi (θt), mt = (1− γ)mt−1 + γ 1
m

∑
gi (θt),

E
∥∥θti,k − θt

∥∥
= E

∥∥θti,k − ηtk
(
gi
(
θti,k
)
− cti +mt

)
− θt

∥∥
= E

∥∥θti,k − θt − ηtkgi
(
θti,k
)
+ ηtk

(
gi (θt) +mt

)∥∥
= E

∥∥θti,k − θt − ηtkgi
(
θti,k
)
+ ηtkgi (θt)

∥∥+ ηtkE
∥∥mt

∥∥
≤a E

∥∥θti,k − θt − ηtk
(
gi
(
θti,k
)
− gi (θt)

)∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

≤b
(
1 + βηtk

)
E
∥∥θti,k+1 − θt

∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

(44)

where, a is following Assumption C.3, b is following Lemma D.1. then we can get,

E
∥∥θti,k+1 − θt

∥∥ ≤ (1 + βηtk
)
E
∥∥θti,k − θt

∥∥+ ηtk

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

≤
(
1 + βηtk

)
E
∥∥θti,k − θt

∥∥+ ηtk(L+ σ)

≤c
K∑

k=0

K∏
l=k

(
1 + βηtl

)
ηtl (L+ σ)

≤ η̃t(1 + c)k−1(L+ σ)

(45)

, c is following Assumption C.2. Below we find an upper bound for E ∥mt∥,

E
∥∥mt

∥∥ = E

∥∥∥∥∥(1− γ)mt−1 + γ
1

m

m∑
i=1

gi (θt)

∥∥∥∥∥
≤ (1− γ)E

∥∥mt−1
∥∥+ γE

∥∥∥∥∥ 1

m

m∑
i=1

gi (θt)

∥∥∥∥∥
≤ (1− γ)E

∥∥mt−1
∥∥+ γE ∥∇F (θt)∥+ γσ

≤
t∑

l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

≤ L+ σ

(46)

where we use Assumptions C.5.With (1 + βηtk) ≤ c, unrolling the above and noting θi,0 = θt yields

E
∥∥θti,K − θt

∥∥
≤ (1 + c)K−1η̃tE

∥∥mt
∥∥

≤ η̃t(1 + c)K−1 (L+ σ)

(47)

Lemma F.5. Given Assumptions C.2-C.5 and considering of FedMoSWA, for ηtk ≤ 1/βKT , we have

E
∥∥gi (θti,k)∥∥ ≤ (1 + βη̃t(1 + c)K−1

)
(L+ σ) + σg,i

where gi(·) is the sampled gradient of client i, η̃t =
∑K−1

k=0 ηtk.
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Proof.

E
∥∥gi (θti,k)∥∥ ≤ E

∥∥gi (θti,k)−∇Fi

(
θti,k
)∥∥+ E

∥∥∇Fi

(
θti,k
)∥∥

≤a E
∥∥∇Fi

(
θti,k
)∥∥+ σ

≤ E ∥∇Fi (θt)∥+ E
∥∥∇Fi

(
θti,k
)
−∇Fi (θt)

∥∥+ σ

≤b E ∥∇F (θt)∥+ E ∥∇Fi (θt)−∇F (θt)∥+ βE
∥∥θti,k − θt

∥∥+ σ

≤c (E ∥∇F (θt)∥+ σg,i + σ) +

K−1∑
l=0

ηtl

l∑
p=0

(1− γ)
p
(γE ∥∇F (θp)∥+ σ) (1 + c)K−1−l

≤d
(
1 + βη̃t(1 + c)K−1

)
(L+ σ) + σg,i

(48)

a is following Assumption C.3, b is is following Assumption C.4, c is is following Assumption C.5 and Lemma D.1 and
Lemma F.4, d is following ∥∇F (θt)∥ ≤ L .

Theorem F.6. (FedMoSWA). Suppose Assumptions C.2-C.5 hold and consider FedMoSWA (Algorithm 1). Let k = K,∀i ∈
[m] and ηtk ≤ 1

βKT , c̃ =
(
1 + βη̃t(1 + c)K−1

)
(L+ σ). Then,

εgen ≤
2L

mn

1

β
e1+

1
T (c̃L+ σg + c̃σ)

where , c̃ ≤ 1 + (1 + c)K−1βη̃t, η̃t =
∑K−1

k=0 ηtk.

Proof. For client i, there are two cases to consider. In the first case, SGD selects non-perturbed samples in S and S(i),
which happens with probability 1− 1/n. Then, we have,∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηtk
) ∥∥∥θti,k − θt,′i,k

∥∥∥ . (49)

In the second case, SGD encounters the perturbed sample at time step k, which happens with probability 1/n. Then, we
have ∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ =
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− g′i

(
θt,′i,k

)
− cti +mt − cti +mt

)∥∥∥
≤
∥∥∥θti,k − θt,′i,k − ηtk

(
gi
(
θti,k
)
− gi

(
θt,′i,k

))∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤a
(
1 + βηtk

) ∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk

∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥ .
(50)

where a is following Lemma D.1. Combining these two cases we have for client i,

E
∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηtk
)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤a
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

E
∥∥gi (θti,k)∥∥

≤c
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

(
(E ∥∇F (θt)∥+ σg,i + σ) + (1 + c)K−1η̃tE

∥∥mt
∥∥)

≤b
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ (1 + βη̃t(1 + c)K−1
)
(L+ σ) + σg,i,

(51)

where the a inequality follows that gi(·) and g′i(·) are sampled from the same distribution, b is following Lemma F.4, c is
following Lemma F.5. We let 1 + (1− c)K−1βη̃t ≤ c̃, η̃t =

∑K−1
k=0 ηtk. Then unrolling it we have,

E
∥∥∥θti,K − θt,′i,K

∥∥∥ ≤ K−1∏
k=0

(
1 + βηtk

)
E ∥θt − θ′t∥

+

(
2

n

K−1∑
k=0

ηtk

K−1∏
l=k+1

(
1 + βηtk

)
·
(
(E ∥∇F (θt)∥+ σg,i + σ) + (1 + c)K−1η̃tE

∥∥mt
∥∥))

≤ eβη̃tE ∥θt − θ′t∥+
2

n
η̃te

βη̃t
(
(E ∥∇F (θt)∥+ σg,i + σ) + (1 + c)K−1η̃tE

∥∥mt
∥∥) .

(52)
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Then, with θt+1 = 1
m

∑m
i=1 θ

t
i,K and θ′t+1 = 1

m

∑m
i=1 θ

t,′
i,K , we have

E
∥∥θt+1 − θ′t+1

∥∥ ≤ m∑
i=1

1

m
E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤ eβη̃tE ∥θt − θ′t∥+

2

mn
η̃te

βη̃t
(
(E ∥∇F (θt)∥+ σg + σ) + (1 + c)K−1η̃tE

∥∥mt
∥∥) (53)

where we use Lemma F.4 in the last step. Further, unrolling the above over t and noting θ0 = θ′0, we obtain

E ∥θT − θ′T ∥ ≤
2

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t
(
(E ∥∇F (θt)∥+ σg + σ) + (1 + c)K−1η̃tE

∥∥mt
∥∥)

≤ 2

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t

·

(
(E ∥∇F (θt)∥+ σg + σ) + (1 + c)K−1η̃t

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥+ γσ)

)

≤ 2

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t

·

(
E ∥∇F (θt)∥+ σg,i + b̃σ + (1 + c)K−1η̃t

t∑
l=0

(1− γ)
l
(γE ∥∇F (θl)∥)

)

≤ 2

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t(
(
1 + βη̃t(1 + c)K−1

)
(L+ σ) + σg)

≤ 2

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t(c̃L+ σg + c̃σ)

(54)

εgen ≤
2L

mn

1

β
e1+

1
T (c̃L+ σg + c̃σ)

When the diminishing stepsizes are chosen in the statement of the theorem, we conclude the proof.

G. Convergence Analysis for FedMoSWA under strongly convex setting
For the optimization problem, we consider:

min
θ∈Rd

{
F (θ) :=

1

m

m∑
i=1

(Fi(θ) := Eζi [Fi (θ; ζi)])

}
.

Before giving our theoretical results, we first present the common assumptions.

Assumption G.1. Fi is µ-strongly-convex for all i ∈ [m], i.e.,

Fi(θ1) ≥ Fi(θ2) + ⟨∇Fi(θ2),θ1 − θ2⟩+
µ

2
∥θ1 − θ2∥2 (55)

for all θ2,θ1 in its domain and i ∈ [m]. We allow µ = 0, which corresponds to general convex functions.

Assumption G.2. (Smoothness) The gradient of the loss function is Lipschitz continuous with constant β, for all θ1,θ2 ∈ Rd

∥∇F (θ1)−∇F (θ2)∥ ≤ β ∥θ1 − θ2∥ (56)
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Assumption G.3. Let ζ be a mini-batch drawn uniformly at random from all samples. We assume that the data is distributed
so that, for all θ ∈ Rd

Eζ|θ [∇Fi(θ; ζ)] = ∇Fi(θ). (57)

We also can get:

Eζ|θ

[
∥∇Fi (θ; ζi)−∇Fi(θ)∥2

]
≤ σ2.

Assumption G.4. (Bounded heterogeneity) The dissimilarity of Fi(θ) and f(θ) is bounded as follows:

1

m

m∑
i=1

∥∇Fi(θ)−∇F (θ)∥2 ≤ σ2
g . (58)

Assumption G.3 bounds the variance of stochastic gradients, which is common in stochastic optimization analysis (Bubeck
et al., 2015). Assumption G.4 bounds the gradient difference between global and local loss functions, which is a widely-used
approach to characterize client heterogeneity in federated optimization literature (Li et al., 2020; Reddi et al., 2021).

G.1. Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. The two lemmas below are useful to
unroll recursions and derive convergence rates.

Lemma G.5 (linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters µ > 0, ηmax ∈
(0, 1/µ], c ≥ 0, R ≥ 1

2ηmaxµ
, there exists a constant step-size η ≤ ηmax and weights wr := (1 − µη)1−r such that for

WR :=
∑R+1

r=1 wr,

ΨR :=
1

WR

R+1∑
r=1

(
wr

η
(1− µη)dr−1 −

wr

η
dr + cηwr

)
= Õ

(
µd0 exp (−µηmaxR) +

c

µR

)
(59)

Proof. By substituting the value of wr, we observe that we end up with a telescoping sum and estimate

ΨR =
1

ηWR

R+1∑
r=1

(wr−1dr−1 − wrdr) +
cη

WR

R+1∑
r=1

wr ≤
d0

ηWR
+ cη .

When R ≥ 1
2µη , (1− µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηWR using

ηWR = η(1− µη)−R
R∑

r=0

(1− µη)r = η(1− µη)−R 1− (1− µη)R

µη
≥ (1− µη)−R 1

3µ
.

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1− µη)R + cη ≤ 3µdo exp(−µηR) + cη .

The lemma now follows by carefully tuning η. Consider the following two cases depending on the magnitude of R and
ηmax:

Suppose 1
2µR ≤ ηmax ≤

log(max(1,µ2Rd0/c))
µR . Then we can choose η = ηmax,

ΨR ≤ 3µd0 exp [−µηmaxR] + cηmax ≤ 3µd0 exp [−µηmaxR] + Õ
(

c

µR

)

Instead if ηmax >
log(max(1,µ2Rd0/c))

µR , we pick η =
log(max(1,µ2Rd0/c))

µR to claim that
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ΨR ≤ 3µd0 exp
[
− log

(
max

(
1, µ2Rd0/c

))]
+ Õ

(
c

µR

)
≤ Õ

(
c

µR

)

Lemma G.6 (sub-linear convergence rate). For every non-negative sequence {dr−1}r≥1 and any parameters ηmax ≥ 0,
c ≥ 0, R ≥ 0, there exists a constant step-size η ≤ ηmax and weights wr = 1 such that,

ΨR :=
1

R+ 1

R+1∑
r=1

(
dr−1

η
− dr

η
+ c1η + c2η

2

)
≤ d0

ηmax(R+ 1)
+

2
√
c1d0√

R+ 1
+ 2

(
d0

R+ 1

) 2
3

c
1
3
2 . (60)

Proof. Unrolling the sum, we can simplify

ΨR ≤
d0

η(R+ 1)
+ c1η + c2η

2 .

Similar to the strongly convex case (Lemma G.5), we distinguish the following cases:

• When R+ 1 ≤ d0

c1η2
max

, and R+ 1 ≤ d0

c2η3
max

we pick η = ηmax to claim

ΨR ≤
d0

ηmax(R+ 1)
+ c1ηmax + c2η

2
max ≤

d0
ηmax(R+ 1)

+

√
c1d0√
R+ 1

+

(
d0

R+ 1

) 2
3

c
1
3
2 (61)

• In the other case, we have η2max ≥ d0

c1(R+1) or η3max ≥ d0

c2(R+1) . We choose η == min
{√

d0

c1(R+1) ,
3

√
d0

c2(R+1)

}
to

prove

ΨR ≤
d0

η(R+ 1)
+ cη =

2
√
c1d0√

R+ 1
+ 2 3

√
d20c2

(R+ 1)2
.

Next, we state a relaxed triangle inequality true for the squared ℓ2 norm.

Lemma G.7 (relaxed triangle inequality). Lemma 3 (relaxed triangle inequality). Let {v1, . . . ,vτ} be τ vectors in Rd.
Then the following are true:

1. ∥vi + vj∥2 ≤ (1 + a) ∥vi∥2 +
(
1 + 1

a

)
∥vj∥2 for any a > 0, and

2. ∥
∑τ

i=1 vi∥
2 ≤ τ

∑τ
i=1 ∥vi∥2.

Proof. The proof of the first statement for any a > 0 follows from the identity:

∥vi + vj∥2 = (1 + a) ∥vi∥2 +
(
1 +

1

a

)
∥vj∥2 −

∥∥∥∥√avi +
1√
a
vj

∥∥∥∥2 .
For the second inequality, we use the convexity of x→ ∥x∥2 and Jensen’s inequality

∥∥∥∥∥1τ
τ∑

i=1

vi

∥∥∥∥∥
2

≤ 1

τ

τ∑
i=1

∥vi∥2

Next we state an elementary lemma about expectations of norms of random vectors.
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Lemma G.8 (separating mean and variance). Let {Ξ1, . . . ,Ξτ} be τ random variables in Rd which are not necessarily

independent. First suppose that their mean is E [Ξi] = ξi and variance is bounded as E
[
∥Ξi − ξi∥2

]
≤ σ2. Then, the

following holds

E

∥∥∥∥∥
τ∑

i=1

Ξi

∥∥∥∥∥
2
 ≤ ∥∥∥∥∥

τ∑
i=1

ξi

∥∥∥∥∥
2

+ τ2σ2

Now instead suppose that their conditional mean is E [Ξi | Ξi−1, . . .Ξ1] = ξi i.e. the variables {Ξi − ξi} form a martingale

difference sequence, and the variance is bounded by E
[
∥Ξi − ξi∥2

]
≤ σ2 as before. Then we can show the tighter bound

E

∥∥∥∥∥
τ∑

i=1

Ξi

∥∥∥∥∥
2
 ≤ 2

∥∥∥∥∥
τ∑

i=1

ξi

∥∥∥∥∥
2

+ 2τσ2.

Proof. For any random variable X,E
[
X2
]
= (E[X − E[X]])2 + (E[X])2 implying

E

∥∥∥∥∥
τ∑

i=1

Ξi

∥∥∥∥∥
2
 =

∥∥∥∥∥
τ∑

i=1

ξi

∥∥∥∥∥
2

+ E

∥∥∥∥∥
τ∑

i=1

Ξi − ξi

∥∥∥∥∥
2
 .

Expanding the above expression using relaxed triangle inequality (Lemma 3) proves the first claim:

E

∥∥∥∥∥
τ∑

i=1

Ξi − ξi

∥∥∥∥∥
2
 ≤ τ

τ∑
i=1

E
[
∥Ξi − ξi∥2

]
≤ τ2σ2.

For the second statement, ξi is not deterministic and depends on Ξi−1, . . . ,Ξ1. Hence we have to resort to the cruder relaxed
triangle inequality to claim

E

∥∥∥∥∥
τ∑

i=1

Ξi

∥∥∥∥∥
2
 ≤ 2

∥∥∥∥∥
τ∑

i=1

ξi

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
τ∑

i=1

Ξi − ξi

∥∥∥∥∥
2


and then use the tighter expansion of the second term:

E

∥∥∥∥∥
τ∑

i=1

Ξi − ξi

∥∥∥∥∥
2
 =

∑
i,j

E
[
(Ξi − ξi)

⊤
(Ξj − ξj)

]
=
∑
i

E
[
∥Ξi − ξi∥2

]
≤ τσ2

The cross terms in the above expression have zero mean since {Ξi − ξi} form a martingale difference sequence.

G.2. Convergence of FedMoSWA for strongly convex functions

We will first bound the variance of FedMoSWA update in Lemma G.9, then see how sampling of clients effects our control
variates in Lemma G.10, and finally bound the amount of client-drift in Lemma G.12. We will then use these three lemmas
to prove the progress in a single round in Lemma G.13. Combining this progress with Lemmas G.5 and G.6 gives us the
desired rates. Before proceeding with the proof of our lemmas, we need some additional definitions of the various errors we
track. As before, we define the effective step-size to be

η̃ := Kηtkα = Kηlα.
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We define client-drift to be how much the clients move from their starting point:

Et :=
1

Km

K∑
k=1

m∑
i=1

E
[∥∥θt

i,k − θt−1
∥∥2] .

Because we are sampling the clients, not all the client control-variates get updated every round. This leads to some ’lag’
which we call control-lag:

Ct :=
1

m

m∑
j=1

E
∥∥E [cti]−∇Fi (θ

⋆)
∥∥2 .

Dt := E
∥∥mt −∇F (θ⋆)

∥∥2 = E
∥∥mt

∥∥2 .
Variance of server update. We study how the variance of the server update can be bounded.

Lemma G.9. For updates, we can bound the variance of the server update in any round r and any η̃ := Kηtkα ≥ 0 as
follows

E
[∥∥θt − θt−1

∥∥2] ≤ 8βη̃2
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 4η̃2Ct−1 + 4η̃2Dt−1 + 4η̃2β2Et +

12η̃2σ2

Ks

Proof. The server update in round t can be written as follows (dropping the superscript t everywhere)

E∥∆θ∥2 = E

∥∥∥∥∥∥− η̃

Ks

∑
k,i∈S

θi,k

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

(gi (θi,k−1) +m− ci)

∥∥∥∥∥∥
2

, (62)

which can then be expanded as

E∥∆θ∥2 ≤ E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

(gi (θi,k−1) +m− ci)

∥∥∥∥∥∥
2

≤ 4E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

gi (θi,k−1)−∇Fi(θ)

∥∥∥∥∥∥
2

+ 4η̃2E∥m∥2 + 4E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

∇Fi (θ
⋆)− ci

∥∥∥∥∥∥
2

+ 4E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

∇Fi(θ)−∇Fi (θ
⋆)

∥∥∥∥∥∥
2

(63)

≤ 4E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

gi (θi,k−1)−∇Fi(θ)

∥∥∥∥∥∥
2

+ 4η̃2E∥m∥2 + 4E

∥∥∥∥∥ η̃s∑
i∈S
∇Fi (θ

⋆)− ci

∥∥∥∥∥
2

+ 8βη̃2 (E[f(θ)]− f (θ⋆))

≤ 4E

∥∥∥∥∥∥ η̃

Ks

∑
k,i∈S

∇Fi (θi,k−1)−∇Fi(θ)

∥∥∥∥∥∥
2

+ 4η̃2∥E[m]∥2 + 4

∥∥∥∥∥ η̃s∑
i∈S
∇Fi (θ

⋆)− E [ci]

∥∥∥∥∥
2

+ 8βη̃2 (E[f(θ)]− f (θ⋆)) +
12η̃2σ2

Ks
.

(64)

The inequality before the last used the smoothness of {Fi}. The variance of
(

1
Ks

∑
k,i∈S gi (θi,k−1)

)
is bounded by

σ2/Ks. Similarly, cj for any j ∈ [m] has variance smaller than σ2/K and hence the variance of
(

1
m

∑
i∈S ci

)
is smaller
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than σ2/Ks.

E∥∆θ∥2 ≤ 4η̃2

Km

∑
k,i

E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2 + 4η̃2∥E[m]∥2 + 4η̃2

m

∑
i

∥∇Fi (θ
⋆)− E [ci]∥2

+ 8βη̃2 (E[f(θ)]− f (θ⋆)) +
12η̃2σ2

Ks

≤ 4η̃2

Km

∑
k,i

E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2︸ ︷︷ ︸
T1

+
4η̃2

m

∑
i

∥∇Fi (θ
⋆)− E [ci]∥2 + 4η̃2∥E[m]∥2

+ 8βη̃2 (E[f(θ)]− f (θ⋆)) +
12η̃2σ2

Ks
.

(65)

Since the gradient of Fi is β-Lipschitz, T1 ≤ β24η̃2

Km

∑
k,i E ∥θi,k−1 − θ∥2 = 4η̃2β2E . The definition of the error in the

control variate Ct−1 := 1
m

∑m
j=1 E ∥E [ci]−∇Fi (θ

⋆)∥2 completes the proof.

Change in control lag. We have previously related the variance of the server update to the control lag. We now examine
how the control-lag grows each round.

Lemma G.10. For updates with the control update and Assumptions G.1–G.2, the following holds true for any η̃ :=
ηtkαK ∈ [0, 1/β] :

Ct ≤
(
1− s

m

)
Ct−1 +

s

m

(
4β
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 2β2Et

)
.

Proof. Recall that after round t, the control update rule implies that cti is set as per

cti =

{
ct−1
i if i /∈ St i.e. with probability

(
1− s

m

)
.

1
K

∑K
k=1 gi

(
θt
i,k−1

)
with probability s

m .

Taking expectations on both sides yields

E
[
cti
]
=
(
1− s

m

)
E
[
ct−1
i

]
+

s

Km

K∑
k=1

E
[
∇Fi

(
θt
i,k−1

)]
,∀i ∈ [m].

Plugging the above expression in the definition of Ct we get,

Ct =
1

m

m∑
i=1

∥∥E [cti]−∇Fi (θ
⋆)
∥∥2

=
1

m

m∑
i=1

∥∥∥∥∥(1− s

m

) (
E
[
ct−1
i

]
−∇Fi (θ

⋆)
)
+

s

m

(
1

K

K∑
k=1

E
[
∇Fi

(
θt
i,k−1

)]
−∇Fi (θ

⋆)

)∥∥∥∥∥
2

≤
(
1− s

m

)
Ct−1 +

s

m2K

K∑
k=1

E
∥∥∇Fi

(
θt
i,k−1

)
−∇Fi (θ

⋆)
∥∥2 .

(66)
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The final step applied Jensen’s inequality twice. We can then further simplify using the relaxed triangle inequality as,

Et−1 [Ct] ≤
(
1− s

m

)
Ct−1 +

s

m2K

∑
i,k

E
∥∥∇Fi

(
θt
i,k−1

)
−∇Fi (θ

⋆)
∥∥2

≤
(
1− s

m

)
Ct−1 +

2s

m2

∑
i

E
∥∥∇Fi

(
θt−1

)
−∇Fi (θ

⋆)
∥∥2 + 2s

m2K

∑
i,k

E
∥∥∇Fi

(
θt
i,k−1

)
−∇Fi

(
θt−1

)∥∥2
≤
(
1− s

m

)
Ct−1 +

2s

m2

∑
i

E
∥∥∇Fi

(
θt−1

)
−∇Fi (θ

⋆)
∥∥2 + 2s

m2K
β2
∑
i,k

E
∥∥θt

i,k−1 − θt−1
∥∥2

≤
(
1− s

m

)
Ct−1 +

s

m

(
4β
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ β2Et

)
.

(67)

The last two inequalities follow from smoothness of {Fi} and the definition Et = 1
mKβ2

∑
i,k E

∥∥θt
i,k−1 − θt−1

∥∥2.

Lemma G.11. Assumptions G.1–G.2, the following holds true for any η̃ := ηtkαK ∈ [0, 1/β] :

Dt ≤ (1− γ)Dt−1 + γ
(
4β
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 2β2Et

)
.

Proof. Recall that after round t, the control update rule implies that cti is set as

mt = mt−1 + β
1

m

m∑
i=1

(
cti −mt−1

)
= (1− β)mt−1 + β

1

m

m∑
i=1

cti (68)

E
∥∥mt −∇F (θ⋆)

∥∥2 = E

∥∥∥∥∥(1− γ)mt−1 + γ
1

m

m∑
i=1

1

K

K∑
k=1

∇Fi

(
θt
i,k−1; ζ

)
−∇F (x⋆)

∥∥∥∥∥
2

≤ (1− γ)E
∥∥mt−1 −∇F (θ⋆)

∥∥2 + γE

∥∥∥∥∥ 1

m

m∑
i=1

1

K

K∑
k=1

∇Fi

(
θt
i,k−1; ζ

)
−∇F (θ⋆)

∥∥∥∥∥
2

≤ (1− γ)E
∥∥mt−1 −∇F (θ⋆)

∥∥2 + 2

m
γE

m∑
i=1

∥∥∇F (θt−1
)
−∇F (θ⋆)

∥∥2
+

2

mK
γ
∑
i,k

E
∥∥∥∇Fi

(
θt−1,t
i

)
−∇Fi

(
θt−1

)∥∥∥2
≤ (1− γ)E

∥∥mt−1 −∇F (θ⋆)
∥∥2 + γ

(
4β
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ β2Et

)

(69)

Bounding client-drift. We will now bound the final source of error which is the client-drift.

Lemma G.12. Suppose our step-sizes satisfy ηtk = ηl ≤ 1
81βKα and Fi satisfies Assumptions G.1–G.2. Then, for any global

α ≥ 1 we can bound the drift as

3βη̃Et ≤
η̃2

3
Ct−1 +

η̃2

3
Dt−1 +

η̃

25α2

(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+

η̃2

Kα2
σ2.

Proof. First, observe that if K = 1, Et = 0 since θi,0 = θ for all i ∈ [m] and that Ct−1 and the right hand side are both
positive. For K > 1, we build a recursive bound of the drift. Starting from the definition of the update and then applying the
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relaxed triangle inequality, we can expand

1

m
Et−1

[∑
i∈S
∥θi − ηlgi (θi) + ηlm− ηlci − θ∥2

]

≤ 1

m
Et−1

[∑
i∈S
∥θi − ηl∇Fi (θi) + ηlm− ηlci − θ∥2

]
+ η2l σ

2

≤ (1 + a)

s
Et−1[

∑
i∈S
∥θi − ηl∇Fi (θi) + ηl∇Fi(θ)− θ∥2︸ ︷︷ ︸

T2

]

+

(
1 +

1

a

)
η2l Et−1

[
1

m

∑
i∈S
∥m− ci +∇Fi(θ)∥2

]
︸ ︷︷ ︸

T3

+η2l σ
2.

(70)

The final step follows from the relaxed triangle inequality (Lemma G.7). Applying the contractive mapping Lemma for
ηl ≤ 1/β shows

T2 =
1

m

∑
i∈S
∥θi − ηl∇Fi (θi) + ηl∇Fi(θ)− θ∥2 ≤ ∥θi − θ∥2 . (71)

Once again using our relaxed triangle inequality to expand the other term T3, we get

T3 = Et−1

[
1

m

∑
i∈S
∥m− ci +∇Fi(θ)∥2

]

=
1

m

m∑
j=1

∥m− ci +∇Fi(θ)∥2

=
1

m

m∑
j=1

∥m− ci +∇Fi (θ
⋆) +∇Fi(θ)−∇Fi (θ

⋆)∥2

≤ 3∥m∥2 + 3

m

m∑
j=1

∥ci −∇Fi (θ
⋆)∥2 + 3

m

m∑
j=1

∥∇Fi(θ)−∇Fi (θ
⋆)∥2

≤ 3∥m∥2 + 3

m

m∑
j=1

∥ci −∇Fi (θ
⋆)∥2 + 3

m

m∑
j=1

∥∇Fi(θ)−∇Fi (θ
⋆)∥2

≤ 3∥m∥2 + 3

m

m∑
j=1

∥ci −∇Fi (θ
⋆)∥2 + 6β (f(θ)− f (θ⋆)) .

(72)

The last step used the smoothness of Fi. Combining the bounds on T2 and T3 in the original inequality and using a = 1
K−1

gives,

1

m

∑
i

E ∥θi,k − θ∥2 ≤

(
1 + 1

K−1

)
m

∑
i

E ∥θi,k−1 − θ∥2 + η2l σ
2

+ 6η2l Kβ (f(θ)− f (θ⋆)) +
3Kη2l
m

∑
i

E ∥ci −∇Fi (θ
⋆)∥2 + 3Kη2l ∥m∥2

(73)
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Recall that with the choice of ci, the variance of ci is less than σ2

K . Separating its mean and variance gives

1

m

∑
i

E ∥θi,k − θ∥2 ≤
(
1 +

1

K − 1

)
1

m

∑
i

E ∥θi,k−1 − θ∥2 + 7η2l σ
2+

6η2l Kβ (f(θ)− f (θ⋆)) +
3Kη2l
m

∑
i

E ∥ci −∇Fi (θ
⋆)∥2 + 3Kη2l ∥m∥2

(74)

Unrolling the recursion, we get the following for any k ∈ {1, . . . ,K}

1

m

∑
i

E ∥θi,k − θ∥2 ≤
(
6Kβη2l (f(θ)− f (θ⋆)) + 3Kη2l Ct−1 + 3Kη2l Dt−1 + 7βη2l σ

2
)(k−1∑

k=0

(
1 +

1

K − 1

)k
)

≤
(
6Kβη2l (f(θ)− f (θ⋆)) + 3Kη2l Ct−1 + 3Kη2l Dt−1 + 7βη2l σ

2
)
(K − 1)

((
1 +

1

K − 1

)K

− 1

)
≤
(
6Kβη2l (f(θ)− f (θ⋆)) + 3Kη2l Ct−1 + 3Kη2l Dt−1 + 7βη2l σ

2
)
3K

≤ 18K2βη2l (f(θ)− f (θ⋆)) + 9K2η2l Ct−1 + 9K2η2l Dt−1 + 21Kβη2l σ
2.

(75)

The inequality (K − 1)

((
1 + 1

K−1

)K
− 1

)
≤ 3K can be verified for K = 2, 3 manually. For K ≥ 4,

(K − 1)

((
1 +

1

K − 1

)K

− 1

)
< K

(
exp

(
K

K − 1

)
− 1

)
≤ K

(
exp

(
4

3

)
− 1

)
< 3K. (76)

Again averaging over k and multiplying by 3β yields

3βEt ≤ 54K2β2η2l (f(θ)− f (θ⋆)) + 27K2βη2l Ct−1 + 27K2βη2l Dt−1 + 63βKη2l σ
2

=
1

α2

(
54β2η̃2 (f(θ)− f (θ⋆)) + 27βη̃2Ct−1 + 27βη̃2Ct−1 + 63βη̃2

σ2

K

)
≤ 1

α2

(
1

25
(f(θ)− f (θ⋆)) +

1

3
η̃Ct−1 +

1

3
η̃Dt−1 + η̃

σ2

K

)
.

(77)

The equality follows from the definition η̃ = Kηlα, and the final inequality uses the bound that η̃ ≤ 1
81β .

Lemma G.13. Suppose assumptions G.1–G.2 are true. Then the following holds for any step-sizes satisfying α ≥ 1, ηl ≤
min

(
1

81βKα ,
s

15µmKα

)
, and effective step-size η̃ := Kαηl

E
[∥∥θt − θ⋆

∥∥2 + 9mη̃2

s
Ct
]
≤
(
1− µη̃

2

)(
E
∥∥θt−1 − θ⋆

∥∥2 + 9mη̃2

s
Ct−1

)
(78)

− η̃
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+

12η̃2

Ks

(
1 +

s

α2

)
σ2 (79)

Proof. We can then apply Lemma G.9 to bound the second moment of the server update as

∆θ = − η̃

Ks

∑
k,i∈S

(gi (θi,k−1) +m− ci) , and E[∆θ] = − η̃

Km

∑
k,i

gi (θi,k−1) .
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We can bound the second moment of the server update as

Et−1 ∥θ +∆θ − θ⋆∥2 = Et−1 ∥θ − θ⋆∥2 − 2η̃

Ks
Et−1

∑
k,i∈S

⟨∇Fi (θi,k−1) ,θ − θ⋆⟩+ Et−1∥∆θ∥2

≤ 2η̃

Ks
Et−1

∑
k,i∈S

⟨∇Fi (θi,k−1) ,θ
⋆ − θ⟩︸ ︷︷ ︸

T4

+Et−1 ∥θ − θ⋆∥2

+ 8βη̃2
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 4η̃2Ct−1 + 4η̃2Dt−1 + 4η̃2β2E + 12η̃2σ2

Ks
.

(80)

The term T4 can be bounded by using perturbed strong-convexity with h = Fi,θ = θi,k−1,θ = θ⋆, and z = θ to get

E [T4] =
2η̃

Ks
E
∑
k,i∈S

⟨∇Fi (θi,k−1) ,θ
⋆ − θ⟩

≤ 2η̃

Ks
E
∑
k,i∈S

(
Fi (θ

⋆)− Fi(θ) + β ∥θi,k−1 − θ∥2 − µ

4
∥θ − θ⋆∥2

)
= −2η̃E

(
f(θ)− f (θ⋆) +

µ

4
∥θ − θ⋆∥2

)
+ 2βη̃E .

(81)

Plugging T4 back, we can further simplify the expression to get

E ∥θ +∆θ − θ⋆∥2 ≤ E ∥θ − θ⋆∥2 − 2η̃
(
f(θ)− f (θ⋆) +

µ

4
∥θ − θ⋆∥2

)
+ 2βη̃E

+
12η̃2σ2

Ks
+ 8βη̃2

(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 4η̃2Ct−1 + 4η̃2Dt−1 + 4η̃2β2E

=

(
1− µη̃

2

)
∥θ − θ⋆∥2 +

(
8βη̃2 − 2η̃

)
(f(θ)− f (θ⋆))

+
12η̃2σ2

Ks
+
(
2βη̃ + 4β2η̃2

)
E + 4η̃2Ct−1 + 4η̃2Dt−1

(82)

We use Lemma G.10 can (scaled by 9η̃2m
s ) bound the control-lag

9η̃2
1

γ
Dt ≤

(
1− µη̃

2

)
9η̃2

1

γ
Dt−1 + 9

(
µη̃

2

1

γ
− 1

)
η̃2Dt−1 + 9η̃2

(
4β
(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+ 2β2E

)
(83)

Now recall that Lemma G.12 bounds the client-drift:

3βη̃Et ≤
η̃2

3
Ct−1 +

η̃2

3
Dt−1 +

η̃

25α2

(
E
[
f
(
θt−1

)]
− f (θ⋆)

)
+

η̃2

Kα2
σ2. (84)

Adding all three inequalities together,

E ∥θ +∆θ − θ⋆∥2 + 9η̃2mCt
S

+ 9η̃2
1

γ
Dt

≤
(
1− µη̃

2

)(
E ∥θ − θ⋆∥2 + 9η̃2mCt−1

s

)
+

(
44βη̃2 − 49

25
η̃

)
(f(θ)− f (θ⋆))

+
12η̃2σ2

Ks

(
1 +

s

α2

)
+
(
22β2η̃2 − βη̃

)
E +

(
9µη̃m

2S
− 1

3

)
η̃2Ct−1 +

(
9µη̃

2γ
− 1

3

)
η̃2Dt−1

(85)

Finally, the lemma follows from noting that η̃ ≤ 1
81β implies 44β2η̃2 ≤ 24

25 β̃ and η̃ ≤ s
15µm implies 9µη̃m

2s ≤ 1
3 . Note that if

c0i = gi
(
θ0
)
, then η̃m

s C0 can be bounded in terms of function sub-optimality F . The final rate for strongly convex follows
simply by unrolling the recursive bound in Lemma G.13 using Lemma G.5. Also note that if c0i = gi(x

0), then η̃m
s C0 can

be bounded in terms of function sub-optimality F .
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G.3. Convergence Analysis for FedMoSWA under non-convex setting

We now analyze the most general case of FedMoSWA with option II on functions that are potentially non-convex. Just as in
the non-convex proof, we will first bound the variance of the server update in Lemma G.14, the change in control lag in
Lemma G.16, and finally we bound the client-drift in Lemma G.17. Combining these three together gives us the progress
made in one round in Lemma G.18. The final rate is derived from the progress made using Lemma G.6.

Additional notation. Recall that in round r, we update the control variate as

cti =

{
1
K

∑K
k=1 gi

(
θt
i,k−1

)
if i ∈ St,

ct−1
i otherwise .

We introduce the following notation to keep track of the ’lag’ in the update of the control variate: define a sequence of
parameters

{
αt−1

i,k−1

}
such that for any i ∈ [m] and k ∈ [K] we have α0

i,k−1 := θ0 and for t ≥ 1,

αt
i,k−1 :=

{
θt
i,k−1 if i ∈ St,

αt−1
i,k−1 otherwise .

By the update rule for control variates and the definition of
{
αt−1

i,k−1

}
above, the following property always holds:

cti =
1

K

K∑
k=1

gi
(
αt

i,k−1

)
.

We can then define the following Ξt to be the error in control variate for round r :

Ξt :=
1

Km

K∑
k=1

m∑
i=1

E
∥∥αt

i,k−1 − θt
∥∥2 .

Also recall the closely related definition of client drift caused by local updates:

Et :=
1

Km

K∑
k=1

m∑
i=1

E
[∥∥θt

i,k − θt−1
∥∥2] .

Variance of server update. Let us analyze how the control variates effect the variance of the aggregate server update.
Define a sequence of parameters

{
αt−1

i,k−1

}
such that for any i ∈ [m] and k ∈ [K] we have α0

i,k−1 := θ0 and for r ≥ 1,

θt
i,k−1 :=

{
yt
i,k−1 p = β

θt−1
i,k−1 p = 1− β

mt = mt−1 + β
1

m

m∑
i=1

(
cti −mt−1

)
= (1− β)mt−1 + β

1

m

m∑
i=1

cti

E[m] = (1− β)E
[
mt−1

]
+ β

1

m
E

[
m∑
i=1

cti

]
=

1

mK

m∑
i=1

∑
k

gi
(
θt
i,k−1

)
We can then define the following Ξt to be the error in control variate for round r :

Gt−1 :=
1

Km

K∑
k=1

m∑
i=1

E
∥∥θt

i,k−1 − θt
∥∥2 .
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Variance of server update. Let us analyze how the control variates effect the variance of the aggregate server update.

Lemma G.14. For updates and assumptions G.3 and G.2, the following holds true for any η̃ := ηlαK ∈ [0, 1/β] :

E
∥∥Et−1

[
θt
]
− θt−1

∥∥2 ≤ 2η̃2β2Et + 2η̃2E
∥∥∇F (θt−1

)∥∥2 , and

E
∥∥θt − θt−1

∥∥2 ≤ 4η̃2β2Et + 4η̃2β2Ξt−1 + 4η̃2β2Gt−1 + 4η̃2E
∥∥∇F (θt−1

)∥∥2 + 9η̃2σ2

Ks
.

Proof. Recall that that the server update satisfies

E[∆θ] = − η̃

Km

∑
k,i

E [gi (θi,k−1)] .

From the definition of αt−1
i,k−1 and dropping the superscript everywhere we have

∆θ = − η̃

Ks

∑
k,i∈S

(gi (θi,k−1) +m− ci) where ci =
1

K

∑
k

gi (αi,k−1) .

Taking norm on both sides and separating mean and variance, we proceed as

E∥∆θ∥2 = E

∥∥∥∥∥∥− η̃

Ks

∑
k,i∈S

(gi (θi,k−1)− gi (αi,k−1) +m− ci)

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥− η̃

Ks

∑
k,i∈S

(∇Fi (θi,k−1) + E[m]− E [ci])

∥∥∥∥∥∥
2

+
9η̃2σ2

Ks

≤ E

 η̃2

Ks

∑
k,i∈S

∥∇Fi (θi,k−1) + E[m]− E [ci]∥2
+

9η̃2σ2

Ks

=
η̃2

Km

∑
k,i

E ∥(∇Fi (θi,k−1)−∇Fi(θ)) + (E[m]−∇F (θ)) +∇F (θ)− (E [ci]−∇Fi(θ))∥2 +
9η̃2σ2

Ks

≤ 4η̃2

Km

∑
k,i

E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2 +
4η̃2

Km

∑
k,i

E ∥∇Fi (αi,k−1)−∇Fi(θ)∥2

+
4η̃2

Km

∑
k,i

E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2 + 4η̃2E∥∇F (θ)∥2 + 9η̃2σ2

Ks

≤ 4η̃2β2Et + 4β2η̃2Ξt−1 + 4β2η̃2Gt−1 + 4η̃2E∥∇F (θ)∥2 + 9η̃2σ2

Ks
.

(86)

In the first inequality, note that the three random variables − 1
Ks

∑
k,i∈S gi (θi,k) ,

1
m

∑
i∈S ci, and m-may not be indepen-

dent but each have variance smaller than σ2

Ks and so we can apply Lemma G.8. The rest of the inequalities follow from
repeated applications of the relaxed triangle inequality, β-Lipschitzness of Fi, and the definition of Ξt−1. This proves the
second statement. The first statement follows from our expression of Et−1[∆θ] and similar computations.

Lag in the control variates. We now analyze the ‘lag’ in the control variates due to us sampling only a small subset
of clients each round. Because we cannot rely on convexity anymore but only on the Lipschitzness of the gradients, the
control-lag increases faster in the non-convex case.

Lemma G.15. Assumptions G.3, G.2, the following holds true for any η̃ ≤ 1
24β (γ)

a for a ∈
[
1
2 , 1
]

where η̃ := ηlαK :

Gr ≤
(
1− 17

36
γ

)
Gt−1 +

1

48β2
(γ)

2a−1 ∥∥∇F (θt−1
)∥∥2 + 97

48
(γ)

2a−1 Et +
(

γ

β2

)
σ2

32Ks
.
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Proof. The proof except that we cannot rely on convexity. Recall that after round t, the definition of θt
i,k−1 implies that

The proof proceeds similar to that of Lemma G.10 except that we cannot rely on convexity.

ESt

[
θt
i,k−1

]
= (1− γ)θt−1

i,k−1 + γθt
i,k−1.

Plugging the above expression in the definition of Ξt we get

Ξt =
1

Km

∑
i,k

E
∥∥θt

i,k−1 − θt
∥∥2

= (1− γ) · 1

Km

∑
i

E
∥∥∥θt−1

i,k−1 − θt
∥∥∥2︸ ︷︷ ︸

T5

+γ · 1

Km

∑
k,i

E
∥∥θt

i,k−1 − θt
∥∥2

︸ ︷︷ ︸
T6

.
(87)

We can expand the second term T6 with the relaxed triangle inequality to claim

T6 ≤ 2
(
Et + E

∥∥∆θt
∥∥2) .

We will expand the first term T5 to claim for a constant b ≥ 0 to be chosen later

T5 =
1

Km

∑
i

E
(∥∥∥θt−1

i,k−1 − θt−1
∥∥∥2 + ∥∥∆θt

∥∥2 + Et−1

〈
∆θt,θt−1

i,k−1 − θt−1
〉)

≤ 1

Km

∑
i

E
(∥∥∥θt−1

i,k−1 − θt−1
∥∥∥2 + ∥∥∆θt

∥∥2 + 1

b

∥∥Et−1

[
∆θt

]∥∥2 + b
∥∥∥θt−1

i,k−1 − θt−1
∥∥∥2) (88)

where we used Young’s inequality which holds for any b ≥ 0. Combining the bounds for T5 and T6,

Gr ≤ (1− γ) (1 + b)Gt−1 + 2γEt + 2E
∥∥∆θt

∥∥2 + 1

b
E
∥∥Et−1

[
∆θt

]∥∥2
≤
(
(1− γ) (1 + b) + 16η̃2β2

)
Ξt−1 +

(
2γm+ 8η̃2β2 + 2

1

b
η̃2β2

)
Et +

(
8 + 2

1

b

)
η̃2E∥∇F (θ)∥2

)
+

18η̃2σ2

Ks
(89)

Verify that with choice of b = γ
2(1−γ) , we have (1− γ) (1 + b) ≤

(
1− γ

2

)
and 1

b ≤
2
γ . Plugging these values along with

the bound on the step-size 16β2η̃2 ≤ 1
36 (γ)

2a ≤ γ
36 completes the lemma. Bounding the drift. We will next bound the

client drift Et.

Lag in the control variates. We now analyze the ‘lag’ in the control variates due to us sampling only a small subset
of clients each round. Because we cannot rely on convexity anymore but only on the Lipschitzness of the gradients, the
control-lag increases faster in the non-convex case.
Lemma G.16. Assumptions G.3–G.2, the following holds true for any η̃ ≤ 1

24β

(
s
m

)a
for a ∈

[
1
2 , 1
]

where η̃ := ηlαK :

Ξt ≤
(
1− 17s

36m

)
Ξt−1 +

1

48β2

( s

m

)2a−1 ∥∥∇F (θt−1
)∥∥2 + 97

48

( s

m

)2a−1

Et +
(

s

mβ2

)
σ2

32Ks
.

Proof. The proof except that we cannot rely on convexity. Recall that after round t, the definition of αt
i,k−1 implies that

ESt

[
αt

i,k−1

]
=
(
1− s

m

)
αt−1

i,k−1 +
s

m
θt
i,k−1.

Plugging the above expression in the definition of Ξt we get

Ξt =
1

Km

∑
i,k

E
∥∥αt

i,k−1 − θt
∥∥2

=
(
1− s

m

)
· 1

Km

∑
i

E
∥∥∥αt−1

i,k−1 − θt
∥∥∥2︸ ︷︷ ︸

T5

+
s

m
· 1

Km

∑
k,i

E
∥∥θt

i,k−1 − θt
∥∥2

︸ ︷︷ ︸
T6

.
(90)
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We can expand the second term T6 with the relaxed triangle inequality to claim

T6 ≤ 2
(
Et + E

∥∥∆θt
∥∥2) . (91)

We will expand the first term T5 to claim for a constant b ≥ 0 to be chosen later

T5 =
1

Km

∑
i

E
(∥∥∥αt−1

i,k−1 − θt−1
∥∥∥2 + ∥∥∆θt

∥∥2 + Et−1

〈
∆θt,αt−1

i,k−1 − θt−1
〉)

≤ 1

Km

∑
i

E
(∥∥∥αt−1

i,k−1 − θt−1
∥∥∥2 + ∥∥∆θt

∥∥2 + 1

b

∥∥Et−1

[
∆θt

]∥∥2 + b
∥∥∥αt−1

i,k−1 − θt−1
∥∥∥2) (92)

where we used Young’s inequality which holds for any b ≥ 0. Combining the bounds for T5 and T6,

Ξt ≤
(
1− s

m

)
(1 + b)Ξt−1 + 2

s

m
Et + 2E

∥∥∆θt
∥∥2 + 1

b
E
∥∥Et−1

[
∆θt

]∥∥2
≤
((

1− s

m

)
(1 + b) + 16η̃2β2

)
Ξt−1 +

(
2s

m
+ 8η̃2β2 + 2

1

b
η̃2β2

)
Et +

(
8 + 2

1

b

)
η̃2E∥∇F (θ)∥2

)
+

18η̃2σ2

Ks
(93)

Verify that with choice of b = s
2(m−s) , we have

(
1− s

m

)
(1 + b) ≤

(
1− s

2m

)
and 1

b ≤
2m
s . Plugging these values along

with the bound on the step-size 16β2η̃2 ≤ 1
36

(
s
m

)2a ≤ s
36m completes the lemma. Bounding the drift. We will next bound

the client drift Et.

Bounding the drift. We will next bound the client drift Et. For this, convexity is not crucial and we will recover a very
similar result to Lemma G.12 only use the Lipschitzness of the gradient.

Lemma G.17. Suppose our step-sizes satisfy ηl ≤ 1
24βKα and Fi satisfies assumptions G.3–G.2. Then, for any global

α ≥ 1 we can bound the drift as

5

3
β2η̃Et ≤

5

6
β3η̃2Ξt−1 +

5

6
β3η̃2Gt−1 +

η̃

24α2
E
∥∥∇F (θt−1

)∥∥2 + η̃2β

4Kα2
σ2

Proof. First, observe that if K = 1, Et = 0 since θi,0 = θ for all i ∈ [m] and that Ξt−1 and the right hand side are both
positive. Thus the Lemma is trivially true if K = 1 and we will henceforth assume K ≥ 2. Starting from the update for
i ∈ [m] and k ∈ [K].

E ∥θi,k − θ∥2 =E ∥θi,k−1 − ηl (gi (θi,k−1) +m− ci)− θ∥2

≤E ∥θi,k−1 − ηl (∇Fi (θi,k−1) +m− ci)− θ∥2 + η2l σ
2

≤
(
1 +

1

K − 1

)
E ∥θi,k−1 − θ∥2 +Kη2l E ∥∇Fi (θi,k−1) +m− ci∥2 + η2l σ

2

=

(
1 +

1

K − 1

)
E ∥θi,k−1 − θ∥2 + η2l σ

2

+Kη2l E∥∇Fi (θi,k−1)−∇Fi(θ) + (m−∇F (θ)) +∇F (θ)−
(
ci −∇Fi(θ)∥2

≤
(
1 +

1

K − 1

)
E ∥θi,k−1 − θ∥2 + 4Kη2l E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2 + η2l σ

2

+ 4Kη2l E∥m−∇F (θ)∥2 + 4Kη2l E∥∇F (θ)∥2 + 4Kη2l E ∥ci −∇Fi(θ)∥2

≤
(
1 +

1

K − 1
+ 4Kβ2η2l

)
E ∥θi,k−1 − θ∥2 + η2l σ

2 + 4Kη2l E∥∇F (θ)∥2

+ 4Kη2l E∥m−∇F (θ)∥2 + 4Kη2l E ∥ci −∇Fi(θ)∥2

(94)
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The inequalities above follow from repeated application of the relaxed triangle inequalities and the β-Lipschitzness of Fi.
Averaging the above over i, the definition of m = 1

m

∑
i ci and Ξt−1 gives

1

m

∑
i

E ∥θi,k − θ∥2 ≤
(
1 +

1

K − 1
+ 4Kβ2η2l

)
1

m

∑
i

E ∥θi,k−1 − θ∥2

+ η2l σ
2 + 4Kη2l E∥∇F (θ)∥2 + 4Kη2l β

2Ξt−1 + 4Kη2l β
2Gt−1

≤
(
η2l σ

2 + 4Kη2l E∥∇F (θ)∥2 + 4Kη2l β
2Ξt−1 + 4Kη2l β

2Gt−1

)(k−1∑
k=0

(
1 +

1

K − 1
+ 4Kβ2η2l

)k
)

=

(
η̃2σ2

K2α2
+

4η̃2

Kα2
E∥∇F (θ)∥2 + 4η̃2β2

Kα2
Ξt−1 +

4η̃2β2

Kα2
Gt−1

)(k−1∑
k=0

(
1 +

1

K − 1
+

4β2η̃2

Kα2

)k
)

≤
(

η̃σ2

24βK2α2
+

1

144β2Kα2
E∥∇F (θ)∥2 + η̃β

6Kα2
Ξt−1 +

η̃β

6Kα2
Gt−1

)
3K.

(95)

The last inequality used the bound on the step-size βη̃ ≤ 1
24 . Averaging over k and multiplying both sides by 5

3β
2η̃ yields

the lemma statement. Progress made in each round. Given that we can bound all sources of error, we can finally prove the
progress made in each round.

Progress made in each round. Given that we can bound all sources of error, we can finally prove the progress made in
each round.

Lemma G.18. Suppose the updates satisfy assumptions G.3–G.2. For any effective step-size η̃ := Kαηl satisfying

η̃ ≤ 1
24β

(
s
m

) 2
3 ,

(
E
[
f
(
θt
)]

+ 12β3η̃2
m

s
Ξt

)
≤
(
E
[
f
(
θt−1

)]
+ 12β3η̃2

m

s
Ξt−1

)
+

5βη̃2σ2

Ks

(
1 +

s

α2

)
− η̃

14
E
∥∥∇F (θt−1

)∥∥2 .

Proof. Starting from the smoothness of f and taking conditional expectation gives

Et−1[f(θ +∆θ)] ≤ f(θ) + ⟨∇F (θ),Et−1[∆θ]⟩+ β

2
Et−1∥∆θ∥2. (96)

We as usual dropped the superscript everywhere. Recall that the server update can be written as

∆θ = − η̃

Ks

∑
k,i∈S

(gi (θi,k−1) +m− ci) , and ES [∆θ] = − η̃

Km

∑
k,i

gi (θi,k−1) . (97)
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Substituting this in the previous inequality to bound E
[
∥∆θ∥2

]
gives

E[f(θ +∆θ)]− f(θ)

≤ − η̃

Km

∑
k,i

⟨∇F (θ),E [∇Fi (θi,k−1)]⟩+
β

2
E∥∆θ∥2

≤ − η̃

Km

∑
k,i

⟨∇F (θ),E [∇Fi (θi,k−1)]⟩+

2η̃2β3Et + 2η̃2β3Ξt−1 + 2η̃2β3Gt−1 + 2βη̃2E∥∇F (θ)∥2 + 9βη̃2σ2

2Ks

≤ − η̃

2
∥∇F (θ)∥2 + η̃

2

∑
i,k

E

∥∥∥∥∥∥ 1

Km

∑
i,k

∇Fi (θi,k−1)−∇F (θ)

∥∥∥∥∥∥
2

+

2η̃2β3Et + 2η̃2β3Ξt−1 + 2η̃2β3Gt−1 + 2βη̃2E∥∇F (θ)∥2 + 9βη̃2σ2

2Ks

≤ − η̃

2
∥∇F (θ)∥2 + η̃

2Km

∑
i,k

E ∥∇Fi (θi,k−1)−∇Fi(θ)∥2 +

2η̃2β3Et + 2η̃2β3Ξt−1 + 2η̃2β3Gt−1 + 2βη̃2E∥∇F (θ)∥2 + 9βη̃2σ2

2Ks

≤ −
(
η̃

2
− 2βη̃2

)
∥∇F (θ)∥2 +

(
η̃

2
+ 2βη̃2

)
β2Et + 2β3η̃2Gt−1 + 2β3η̃2Ξt−1 +

9βη̃2σ2

2Ks
.

(98)

The third inequality follows from the observation that −ab = 1
2

(
(b− a)2 − a2

)
− 1

2b
2 ≤ 1

2

(
(b− a)2 − a2

)
for any

a, b ∈ R, and the last from the β-Lipschitzness of Fi. Now we use Lemma G.16 to Ξt as

12β3η̃2
m

s
Ξt ≤ 12β3η̃2

m

s

((
1− 17s

36m

)
Ξt−1 +

1

48β2

( s

m

)2a−1 ∥∥∇F (θt−1
)∥∥2 + 97

48

( s

m

)2a−1

Et +
(

s

mβ2

)
σ2

32Ks

)
= 12β3η̃2

m

s
Ξt−1 −

17

3
β3η̃2Ξt−1 +

1

4
βη̃2

(m
s

)2−2a

∥∇F (θ)∥2 + 97

4
β3η̃2

(m
s

)2−2a

Et +
3βη̃2σ2

8Ks
.

(99)

Now we use Lemma G.17 to bound Gt−1 as

12β3η̃2
1

γ
Gr ≤ 12β3η̃2

1

γ

((
1− 17γ

36

)
Gt−1 +

1

48β2
(γ)

2a−1 ∥∥∇F (θt−1
)∥∥2 + 97

48
(γ)

2a−1 Gt−1 +

(
γ

β2

)
σ2

32Ks

)
= 12β3η̃2

1

γ
Gt−1 −

17

3
β3η̃2Gt−1 +

1

4
βη̃2

(
1

γ

)2−2α

∥∇F (θ)∥2 + 97

4
β3η̃2

(
1

γ

)2−2a

Et +
3βη̃2σ2

8Ks
.

(100)

Also recall that Lemma G.18 states that

5

3
β2η̃Et ≤

5

6
β3η̃2Ξt−1 +

5

6
β3η̃2Gt−1 +

η̃

24a2
E
∥∥∇F (θt−1

)∥∥2 + η̃2β

4Kα2
σ2. (101)

Adding these bounds on Ξt and Et to that of E[f(θ +∆θ)] gives

(E[f(θ +∆θ)] + 12β3η̃2
m

S
Ξt + 12β3η̃2

1

γ
Gr
)
≤
(
E[f(θ)] + 12β3η̃2

m

s
Ξt−1

)
+

(
5

6
− 17

3

)
β3η̃2Ξt−1

+

(
5

6
− 17

3

)
β3η̃2Gt−1 −

(
η̃

2
− 2βη̃2 − 1

4
βη̃2

(m
s

)2−2a
)
∥∇F (θ)∥2

+

(
η̃

2
− 5η̃

3
+ 2βη̃2 +

97

4
βη̃2

(m
s

)2−2a
)
β2Et +

39βη̃2σ2

8Ks

(
1 +

s

α2

) (102)
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By our choice of a = 2
3 and plugging in the bound on step-size βη̃

(
m
s

)2−2a ≤ 1
24 proves the lemma. The non-convex rate

of convergence now follows by unrolling the recursion and selecting an appropriate step-size η̃. Finally note that if we
initialize c0i = gi

(
θ0
)

then we have Ξ0 = 0.

The non-convex rate of convergence now follows by unrolling the recursion in Lemma G.18 and selecting an appropriate
step-size η̃ as in Lemma G.6. Finally note that if c0i = gi

(
θ0
)

then we have Ξ0 = 0.

H. Effectiveness of local learning rate decay
Theorem H.1 (Effectiveness of local learning rate decay). We define client-drift to be how much the clients move
from their starting point. When using a constant learning rate η

(t)
k = ηl , we define the client-side drift to be

Et := 1
km

∑k
k=1

∑m
i=1 E

[∥∥∥vt
i,k − θt−1

∥∥∥2], and when using local learning rate decay η
(t)
k =

(
K−2
K−1

)k
, Ẽt :=

1
km

∑k
k=1

∑m
i=1 E

[∥∥∥ṽt
i,k − θ̃

t−1
∥∥∥2].

Et ≤
η̃

9β
Ct−1 +

η̃

9β
Dt−1 +

1

75α2β

(
E
[
f
(
xt−1

)]
− f (x⋆)

)
+

η̃

3Kα2β
σ2

Ẽt ≤
1

3

[
η̃

9β
Ct−1 +

η̃

9β
Dt−1 +

1

75α2β

(
E
[
f
(
xt−1

)]
− f (x⋆)

)
+

η̃

3Kα2β
σ2

]
.

So local learning rate decay client-side drift Ẽt is better than Et

I. Generalization Analysis for FedSAM and MoFedSAM under non-convex setting
Lemma I.1. Suppose Assumptions 2-5 hold. Then for FedSAM with ηt ≤ /βKT ,

E
∥∥θti,k − θt

∥∥ ≤ (1 + c)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) , ∀k = 1, . . . ,K,

where η̃t =
∑K−1

k=0 ηt, c ≤ 1 + (1 + c)K−1βη̃t ≤ 1 + (1 + c)K−1β
∑K−1

k=0 ηt

Proof. Considering local update of FedSAM

E ∥θi,k+1 − θt∥ = E
∥∥θti,k − ηtgi

(
θti,k
)
− θt

∥∥
≤ E

∥∥θti,k − θt − ηt
(
gi
(
θti,k
)
− gi (θt)

)∥∥+ ηtE ∥gi (θt)∥
≤
(
1 + βηt

)
E
∥∥θti,k − θt

∥∥+ ηtE ∥gi (θt)∥
≤
(
1 + βηt

)
E
∥∥θti,k − θt

∥∥+ ηt (E ∥gi (θt)−∇Fi (θt)∥+ E ∥∇Fi (θt)∥)
≤
(
1 + βηt

)
E
∥∥θti,k − θt

∥∥+ ηt (E ∥∇Fi (θt)∥+ σ) ,

(103)

where we use Assumptions C.2 and C.3. Unrolling the above and noting θi,0 = θt yields

E
∥∥θti,k − θt

∥∥ ≤ k−1∑
l=0

ηt (E ∥∇Fi (θt)∥+ σ) (1 + c)k−1−l

≤
K−1∑
l=0

ηt (E ∥∇Fi (θt)∥+ σ) (1 + c)K−1

≤ (1 + c)K−1η̃t (E ∥∇F (θt)∥+ σg,i + σ) ,

(104)

where the last inequality follows Assumption C.5.
Lemma I.2. Given Assumptions 1− 3, for ηt ≤ /βKT , we have

E
∥∥gi (θti,k)∥∥ ≤ (1 + (1 + c)K−1βη̃t

)
(E ∥∇F (θt)∥+ σg,i + σ)

where gi(·) is the sampled gradient of client i, η̃t =
∑K−1

k=0 ηt.
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Proof. we obtain

E
∥∥gi (θti,k)∥∥ ≤ E

∥∥gi (θti,k)−∇Fi

(
θti,k
)∥∥+ E

∥∥∇Fi

(
θti,k
)∥∥

≤ E
∥∥∇Fi

(
θti,k
)∥∥+ σ

≤ E ∥∇Fi (θt)∥+ E
∥∥∇Fi

(
θti,k
)
−∇Fi (θt)

∥∥+ σ

≤ E ∥∇F (θt)∥+ E ∥∇Fi (θt)−∇F (θt)∥+ βE
∥∥θti,k − θt

∥∥+ σ

≤
(
1 + (1 + c)K−1βα̃i

)
(E ∥∇F (θt)∥+ σg,i + σ) .

(105)

Theorem I.3. (FedSAM). Suppose Assumptions 1-3 hold and consider FedSAM. Let k = K,∀i ∈ [m] and ηt ≤ 1
βKT . Then,

εgen ≤
2Lc

mn

1

β
e1+

1
T (E ∥∇F (θt)∥+ σg + σ) ,

Proof. For client i, there are two cases to consider. In the first case, SGD selects non-perturbed samples in S and S(i), which
happens with probability 1− 1/n. Then, we have∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηtk
) ∥∥∥θti,k − θt,′i,k

∥∥∥ . (106)

In the second case, SGD encounters the perturbed sample at time step k, which happens with probability 1/n. Then, we
have ∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ =
∥∥∥θti,k − θt,′i,k − ηt

(
gi
(
θti,k
)
− g′i

(
θt,′i,k

))∥∥∥
≤
∥∥∥θti,k − θt,′i,k − ηt

(
gi
(
θti,k
)
− gi

(
θt,′i,k

))∥∥∥+ ηt
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤
(
1 + βηtk

) ∥∥∥θti,k − θt,′i,k

∥∥∥+ ηt
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥ .
(107)

Combining these two cases for client i we have

E
∥∥∥θti,k+1 − θt,′i,k+1

∥∥∥ ≤ (1 + βηt
)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηt

n
E
∥∥∥gi (θt,′i,k

)
− g′i

(
θt,′i,k

)∥∥∥
≤
(
1 + βηtk

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ ηtk
n
E
∥∥gi (θti,k)∥∥

≤
(
1 + βηt

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtk
n

(
1 + (1 + c)K−1βη̃t

)
(σ + E ∥∇F (θt)∥+ σg,i)

≤
(
1 + βηt

)
E
∥∥∥θti,k − θt,′i,k

∥∥∥+ 2ηtc

n
(E ∥∇F (θt)∥+ σg,i + σ)

(108)

We let c be an upper bound of 1 + (1 + c)K−1βη̃t since η̃t is bounded above. Then unrolling it gives

E
∥∥∥θti,K − θt,′i,K

∥∥∥ ≤ K−1∏
k=0

(
1 + βηtk

)
E ∥θt − θ′t∥+

(
2

n

K−1∑
k=0

ηtkc

K−1∏
l=k+1

(
1 + βηtl

)
(E ∥∇F (θt)∥+ σg,i + σ)

)

≤ eβη̃tE ∥θt − θ′t∥+
2

n
cη̃te

βη̃t (E ∥∇F (θt)∥+ σg,i + σ) .
(109)

We have

E
∥∥θt+1 − θ′t+1

∥∥ ≤ m∑
i=1

1

m
E
∥∥∥θti,K − θt,′i,K

∥∥∥
≤ eβη̃tE ∥θt − θ′t∥+

2

mn
cη̃te

βη̃t (E ∥∇F (θt)∥+ σg + σ)
(110)
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Further, unrolling the above over t and noting θ0 = θ′0, we obtain

E ∥θT − θ′T ∥ ≤
2c̃

mn

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

η̃t

)
η̃te

βη̃t (E ∥∇F (θt)∥+ σg + σ) , (111)

E ∥θT − θ′T ∥ ≤
2c

mn

1

β
e

1
T +1 (E ∥∇F (θt)∥+ σg + σ) , (112)

With the Assumption 2,

εgen ≤
2Lc

mn

1

β
e1+

1
T (E ∥∇F (θt)∥+ σg + σ) ,

c ≤ 1 + (1 + c)K−1βη̃t ≤ 1 + (1 + c)K−1β

K−1∑
k=0

ηt

c̃ ≤ 1 + (1 + c)K−1βη̃t ≤ 1 + (1 + c)K−1β

K−1∑
k=0

ηtk

c̃ ≤ c

When the diminishing stepsizes are chosen in the statement of the theorem, we conclude the proof. The proof on MoFedSAM
can be derived simply from FedSAM.
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