
Conditional Flow Matching for Time Series Modelling

Ella Tamir * 1 Najwa Laabid * 1 Markus Heinonen 1 Vikas Garg 1 2 Arno Solin 1

Abstract
Learning dynamical systems from long trajecto-
ries is a challenging problem due to the complex-
ity of the loss landscape. Inspired by conditional
flow matching in generative modelling, we pro-
pose a new approach for training neural ODEs
based on regressing vector fields of conditional
probability paths defined per trajectory. Our Con-
ditional Flow Matching for Time Series (CFM-
TS) objective outperforms neural ODEs trained
with the adjoint method on three simulated tasks,
including a pendulum system where the neural
ODE does not converge at all.

1. Introduction
Learning the unlerdying dynamics of a system from ob-
served data can be achieved by approximating its vector
field with a neural network, a concept known as Neural
ODEs (Chen et al., 2018b; Rubanova et al., 2019; Yildiz
et al., 2019). However, the complexity of the loss landscape
for these models increases with the length of the observed
trajectories, such that their training fails to converge for
even moderately long observation horizons (Ribeiro et al.,
2020; Metz et al., 2022). Early solutions split long trajecto-
ries into smaller segments and ensure the continuity of the
probabilistic model through constraints (Hedge et al., 2022;
Iakovlev et al., 2023). Yet, fitting long trajectories without
discrete approximations remains an open problem.

The challenge of learning complex continuous dynamics
arises in another setting, namely when training continuous
normalizing flows (Chen et al., 2018a) in generative mod-
elling (Grathwohl et al., 2019; Lipman et al., 2023). The
goal here is to learn an infinite number of transformations
(expressed as an ODE) mapping samples from p0 to sam-
ples from an unknown data distribution q. One approach to

*Equal contribution 1Department of Computer Science,
Aalto University, Espoo, Finland 2Yai Yai, Ltd. Correspon-
dence to: Najwa Laabid <najwa.laabid@aalto.fi>, Ella Tamir
<ella.tamir@aalto.fi>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

0 2 4 6 8
0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

trajectory observations vector field

Conditional Flow Marginal Flow

trajectory observations vector field

Figure 1. Illustrating CFM-TS using the Lotka-Volterra system.
Simple conditional flows are approximated for each trajectory
(left), and combined to model the more complex, true underlying
dynamics (right).

training CNFs is Conditional Flow Matching (CFM), which
approximates the time derivative of the flow using vector
fields and probability paths defined per sample (Lipman
et al., 2023). Optimizing a neural network to match the
per-sample (i.e. conditional) vector fields is equivalent to
optimizing for the original complex flow dynamics, break-
ing down the task of learning complex ODEs into combining
simpler, pre-defined vector fields.

We adapt the idea of combining per-sample flows from CFM
to learning expressive time-series models. We start by show-
ing that the conditional flow matching framework is easily
extendable to conditioning on observed trajectories instead
of single samples. We then explore two methods to define
our conditional flows: linearly interpolating between the
observations via Brownian Bridges (CFM-BB), or estimat-
ing the moments of the probability paths using Gaussian
Processes (CFM-GP). We test both models on three simu-
lated data sets, and show that both outperform vanilla neural
ODEs, most notably in long trajectories.

Our contributions are as follows: (i) we introduce Condi-
tional Flows for Time Series modelling (CFM-TS), a general
algorithm for combining information from multiple initial
value problems, (ii) we explore Gaussian Processes and
Brownian Bridges as methods to learn the conditional flows,
(iii) we present promising empirical results in simulated dy-
namics, indicating the stability of our model on time-series
data with long trajectories compared to a basic neural ODE
approach.

1

Conditional Flow Matching for Time Series Modelling

1.1. Related Work

Neural ODEs Recent applications of Neural ODEs in-
clude generative modelling and irregular time series analysis
(Rubanova et al., 2019). Latent ODE models in particular
show promise in handling data sampled at non-uniform
intervals (Rubanova et al., 2019), and can be adapted to
learn long trajectories via multiple-shooting (Iakovlev et al.,
2023).

Conditional Flow Matching This is a training objective
for CFM where the goal is to regress a parametric model
to match conditional vector fields pre-defined per sample
(Lipman et al., 2023). Recent work extends CFM to learn-
ing an optimal mapping between arbitrary distributions via
Schrödinger bridges (Tong et al., 2024a;b).

Gaussian Processes Gaussian processes (GPs) (Ras-
mussen & Williams, 2006) have been used in many appli-
cations in machine learning and Bayesian statistics (Calder-
head et al., 2008; Hedge et al., 2022). New methods focus
on efficient mathematical formulations and advances in in-
ference methods (Wilson et al., 2020; 2021).

2. Methods
Consider a trajectory x1:n = (x1, . . . ,xn), observed at
arbitrary time points t1:n = (t1, . . . , tn) s.t. xi := x(ti) ∈
Rd. In practice, we observe noisy measurements of the state
xi: our data is D = {Yk}Kk=1 where each Yk is a time
series observed at the collection of time stamps {ti}Nk

i=1,
possibly different for each trajectory. We would like to
infer the dynamics of the system generating x1:n from the
collection of time-series observations in D. These dynamics
can be modelled as an ODE

d

dt
x(t) = ut(x(t)) (1)

where ut is the vector field describing the instantenous rate
of change of the state at time t. Learning the dynamics of
the system is equivalent to approximating the vector field ut.
This can be done by regressing a neural network vθ(x, t)
using the MSE loss (with pt the marginal distribution of
x(t) at time t)

L(θ) = Et,pt(x)∥vθ(x, t)− ut(x)∥2. (2)

Lipman et al. (2023) propose a similar regression objective,
dubbed Flow Matching, for training continuous normalizing
flows. In our time-series setting, much like in flow-based
generative modelling, we have no prior information about
suitable (and tractable) ut and pt. We can construct both
by combining flows and vector fields defined per trajectory.
A similar objective is called Conditional Flow Matching
in Lipman et al. (2023), where it is used for generative
modelling from p0 to pT .

2.1. Conditional flows for time series data

In the spirit of Lipman et al. (2023), we marginalize pt(x)
over the observed trajectories Y, setting

pt(x) =

∫
pt(x |Y)p(Y) dY, (3)

where p(Y) is an unknown data distribution. We set the
marginal vector field as

ut(x) =

∫
ut(x |Y)

pt(x |Y)p(Y)

pt(x)
dY, (4)

where each ut(x |Y) is a vector field corresponding to a
trajectory Y. We then define a conditional objective,

L(θ) = Et,p(Y),pt(x |Y)∥vθ(x, t)− ut(x |Y)∥2 (5)

≈
n∑

i=1

K∑
k=1

M∑
m=1

∥vθ(xm(ti), ti)− uti(xm(ti) |Yk)∥2.

(6)

For this framework to hold, we extend Theorems 1 and 2
from Lipman et al. (2023) from conditioning on individual
samples to conditioning on observed trajectories.

Theorem 1. If ut(x |Y) generates the conditional densities
pt(x |Y), then ut as in Eq. (4) generates the density pt as
in Eq. (3).

Theorem 2. For pt(x) > 0, the loss functions in Eq. (2)
and Eq. (5) are equal up to a constant independent of θ.

The proofs are given in App. A. With these results, we
only need to define the conditional probability density path
pt(x |Y) and the corresponding conditional vector field
ut(x |Y) to train our model.

2.2. Brownian-Bridge Flows with Kalman Smoothing
(BB-Flows)

One simple way to define the conditional flows is via a
linear interpolation between two consecutive Gaussian dis-
tributions (Lipman et al., 2023; Tong et al., 2024a). The
matching vector field is also obtained in closed form through
a direct application of Equation 15 in (Lipman et al., 2023).
We give both the flow and the vector field in Eq. (7) and
Eq. (8) respectively.

pt(x |Y0,1) = N (m0 + λ∆m1,0P0 + λ∆P1,0) (7)

ut(x |Y0,1) =
∆P1,0

∆t1,0

(x−m0)

P0
+

∆m1,0

∆t1,0
(8)

where λ = t−t0
t1−t0

, Y0,1 = {y0, y1} are the two observations
surrounding x(t), i.e. t ∈ [t0, t1], and ∆m1,0 = m1 −m0

(resp. for t and P). The variables m0, m1, P0, and P1

represent the means and covariances of the marginals at

2

Conditional Flow Matching for Time Series Modelling

times t0 and t1 respectively. We estimate these marginals
using a Kalman Smoother with zero drift, i.e. assuming the
differences between the values of xt is only due to Gaussian
noise. More details on Kalman Smoothing can be found in
App. B.

2.3. Gaussian Process Flows (GP-Flows)

Here we model the conditional probability path for a partic-
ular trajectory Y using a Gaussian Process (GP, Rasmussen
& Williams, 2006)

xt |Y ∼ GP(µ∗,Σ∗), (9)

with xt |Y the flow pushing samples from x(0) to x(t) on
trajectory Y, µ∗ is the posterior mean function and Σ∗ is
the posterior covariance matrix at arbitrary time t. Here, we
approximate the vector field ut(x |Y) with the derivative
of the flow w.r.t time. Our flow being a sample from a GP
means its derivative is also a GP (Calderhead et al., 2008).
Since we would like to stay in the domain of deterministic
dynamics, we use as an approximation for ut(x |Y) the
mean of the GP derivative conditional on a sampled state x,
ṁ|x , which has the following analytical form (Calderhead
et al., 2008)

ut(x |Y) ≈ ṁ|x = ΣẋxΣ
−1
xxx, (10)

where x is a state sampled from the posterior GP at a new
given time point t, Σẋ,x|Y is the covariance matrix between
the derivative and the state, and Σx,x|Y is the covariance
matrix of the state at the observed time points. We thus need
a GP model to capture the covariance between a state xt

and its derivative ẋt. We define this GP as a joint model of
the state and the derivative

xt, ẋt |Y ∼ GP
(
[µ∗, µ̇∗], Σ̇∗

)
(11)

where µ∗ and µ̇∗ are the mean of the state and the derivative

respectively, and Σ̇∗ =

(
Σxx,Σxẋ

Σẋx,Σẋẋ

)
is the covariance

of the joint state-derivative GP. We define an observation
model that only accounts for the state observations

y|t=ti = H(x, ẋ)|t=ti + ϵi (12)
= (1, 0) · (x, ẋ)|t=ti + ϵi (13)
= x(ti) + ϵi, (14)

where ϵi ∼ N (0, σ2). App. C includes more details on com-
puting the GP posterior mean and covariance, in addition to
the log-likelihood of the model and the formula for the RBF
kernel.

Our loss with the conditional GP flow becomes

L(θ) = Et,x,Y∥vθ(x, t)−ΣẋxΣ
−1
xxx∥2. (15)

Algorithm 1 Preprocess pt and ut using BB-Flows
Input: n, T , D = {Yk}Kk=1

t = (t1, t2, . . . , tn) where ti =
i−1
n−1T for i = 1, . . . , n

Initialize lists: Flows← [], VectorFields← []
for Yk ∈ D do

Get mt and Pt from Yk using Kalman Smoothing
Set m0 = mt and m1 = (mt[1], . . . ,mt[n− 1])
x(t) ∼ N (m0 + λ∆m1,0,P0 + λ∆P1,0)

ut(x |Yk) =
∆P1,0

∆t1,0

(x(t)−m0)
P0

+
∆m1,0

∆t1,0

Append x(t) to Flows
Append ut(x |Yk) to VectorFields

end for
Return Flows, VectorFields

Algorithm 2 Preprocess pt and ut using GP-Flows
Input: n, T , D = {Yk}Kk=1

t = (t1, t2, . . . , tn) where ti =
i−1
n−1T for i = 1, . . . , n

Initialize lists: Flows← [], VectorFields← []
for Yk ∈ D do

Fit the hyperparameters of GP to Yk

Get the posterior GP
(
[µ∗, µ̇∗], Σ̇∗

)
x(t), ẋ(t) |Yk ∼ GP

(
[µ∗, µ̇∗], Σ̇∗

)
ṁ|x = ΣẋxΣ

−1
xxx

Append x(t) to Flows
Append ṁ|x to VectorFields

end for
Return Flows, VectorFields

In practice, for both BB-Flows and GP-Flows, we prepro-
cess the target flows and vector fields for a set of linearly
spaced time points t = (t1, t2, . . . , tn) s.t. ti = i−1

n−1T for
i = 1, . . . , n, and minibatch over these flows and vector
fields during training. The preprocessing for both methods
is given in Algorithm 1 and Algorithm 2 respectively.

3. Experiments
We test our method on three simulated systems: 1D pendu-
lum ODE, 1D sine ODE, and a 2D Lotka-Volterra system.
The process of simulating each dataset and additional model
hyperparameters are described in App. D.

Experimental set-up We generate 300 trajectories for
the Lotka-Volterra system, 100 for the sine ODE, and only
1 trajectory for the pendulum. All models are trained for
400− 600 epochs with a learning rate of 0.01 and a batch
size of 258. For evaluation, we use an 80%/20% train/test
ratio on the number of trajectories when many are available,
and generate observations at new locations within the same
trajectory interval for the single pendulum trajectory. We
visualize the trajectories generated by the learned vector

3

Conditional Flow Matching for Time Series Modelling

2 4 6 8 10
0

1

2

3

4

5

6

7

8

2 4 6 8 10
0

1

2

3

4

5

6

7

8

2 4 6 8 10
0

1

2

3

4

5

6

7

8

2 4 6 8 10
0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

0.0 0.5 1.0 1.5 2.0
3

2

1

0

1

2

3

0 5 10 15

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 5 10 15

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 5 10 15

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 5 10 15

20000

15000

10000

5000

0

observations (different colors = different trajectories) trajectory

Ground truth CFM - GP CFM - BB NODE

2D
L

ot
ka

-V
ol

te
rr

a
1D

Si
ne

O
D

E
1D

Pe
nd

ul
um

MSE (↓)

MSE (↓)

MSE (↓)

0.09± 0.14 2.31± 1.68 -

0.005± 0.003 0.07± 0.05 0.04± 0.005

0.0086± 0.002 0.0080± 0.003 0.06± 0.061

observation (colors = from different trajectories) trajectory

Figure 2. Comparing the true and learned trajectories for all models across all three tasks. The colored markers represent the training
observations for each trajectory. NODE fails completely on 1D Pendulum and performs poorly on the Lotka-Volterra, while CFM-BB
struggles with 1D Pendulum and performs best on the Lotka-Volterra. CFM-GP performs well across all tasks.

Table 1. The MSE loss(↓) (mean and standard deviation over 5
runs) for all models. L-V is Lotka-Volterra. We do not report
the pendulum results for neural ODEs, as the loss did not change
during training.

L-V SINE PENDULUM

NODE 0.06±0.061 0.04±0.005 —
CFM-BB 0.0080±0.003 0.07±0.05 2.31±1.68
CFM-GP 0.0086 ± 0.002 0.005±0.003 0.09±0.14

field compared to the test trajectories in Fig. 2. In Table 1,
we report the mean and standard deviation of the MSE
between the true and predicted trajectories over 5 runs for
each model-dataset pair.

Results On the Lotka-Volterra system, both CFM-BB
and CFM-GP outperform NODE, with CFM-BB achieving
the lowest MSE. More elaborate experiments are required
to elucidate the extent of our model’s superiority and the
reason behind it. Fig. 2 also shows that the trajectories
reconstructed by CFM-BB look closest to the test trajec-
tories. CFM-GP outperforms CFM-BB on Pendulum and
Sine. We believe this is due to the GP kernel having more
flexibility for handling sine-like functions compared to the

linear-interpolation of CFM-BB. A basic NODE peforms
worst at all tasks, particularly on the Pendulum system,
where the loss does not change at all. Non-convergence of
NODE on the full pendulum trajectory was also reported
by Iakovlev et al. (2023) (Appendix A), and is due to the
complexity of the loss landscape increasing with the length
of the trajectory (see Figure 15 in (Iakovlev et al., 2023)).

4. Discussion and Conclusions
We present Conditional Flow Matching for Time Series
(CFM-TS), a general method for learning a neural ODE
by linearly combining the dynamics of multiple irregularly
sampled time series. We explore two approaches for fitting
the individual time series: BB-Flows and GP-Flows. We
show the superiority of boths methods over a simple neural
ODE, particularly on long trajectories, with GP-Flows ex-
celling in particular at sine-like data trajectories. In future
work, we plan to: 1) improve GP-Flows with a more suitable
and efficient sampling (Wilson et al., 2020), and 2) com-
bine our method with encoder-decoder architectures in order
to model latent dynamics and compare to more advanced
baselines (Iakovlev et al., 2023; Yildiz et al., 2019).

4

Conditional Flow Matching for Time Series Modelling

References
Calderhead, B., Girolami, M., and Lawrence, N. Accelerat-

ing bayesian inference over nonlinear differential equa-
tions with gaussian processes. In Advances in Neural
Information Processing Systems, volume 21. Curran As-
sociates, Inc., 2008.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems 31, pp. 6571–
6583. Curran Associates, Inc., 2018a.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018b.

Grathwohl, W., Chen, R. T. Q., Bettencourt, J., Sutskever,
I., and Duvenaud, D. FFJORD: free-form continuous
dynamics for scalable reversible generative models. In
International Conference on Learning Representations,
ICLR, 2019.

Hedge, P., Yildiz, C., Lähdesmäki, H., Kaski, S., and
Heinonen, M. Variational multiple shooting for bayesian
odes with gaussian processes. In Proceedings of the 38th
Conference on Uncertainty in Artificial Intelligence (UAI
2022), Proceedings of Machine Learning Research, pp.
790–799. JMLR, 2022.

Iakovlev, V., Yildiz, C., Heinonen, M., and Lähdesmäki,
H. Latent neural ODEs with sparse bayesian multiple
shooting. In The Eleventh International Conference on
Learning Representations, 2023.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Metz, L., Freeman, C. D., Schoenholz, S. S., and Kachman,
T. Gradients are not all you need, 2022.

Rasmussen, C. E. and Williams, C. K. I. Gaussian processes
for machine learning. Adaptive computation and machine
learning. MIT Press, 2006.

Ribeiro, A. H., Tiels, K., Umenberger, J., Schön, T. B., and
Aguirre, L. A. On the smoothness of nonlinear system
identification. Automatica, 121, 2020. doi: https://doi.
org/10.1016/j.automatica.2020.109158.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. Latent
ordinary differential equations for irregularly-sampled
time series. In Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019.

Särkkä, S. and Svensson, L. Bayesian Filtering and Smooth-
ing. Cambridge University Press, Cambridge, UK, second
edition, 2013. ISBN 978-1-107-02375-6.

Tong, A., FATRAS, K., Malkin, N., Huguet, G., Zhang,
Y., Rector-Brooks, J., Wolf, G., and Bengio, Y. Improv-
ing and generalizing flow-based generative models with
minibatch optimal transport. Transactions on Machine
Learning Research, 2024a.

Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang,
Y., Huguet, G., Wolf, G., and Bengio, Y. Simulation-free
schrödinger bridges via score and flow matching, 2024b.

Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. Efficiently sampling functions from
Gaussian process posteriors. In Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
10292–10302. PMLR, 2020.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P.,
and Deisenroth, M. P. Pathwise conditioning of gaussian
processes. 22(1), 2021.

Yildiz, C., Heinonen, M., and Lahdesmaki, H. Ode2vae:
Deep generative second order odes with bayesian neural
networks. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

5

Conditional Flow Matching for Time Series Modelling

A. Proofs of theoretical results
Here we extend the theoretical analysis presented in Lipman et al. (2023) in order to be able to marginalize over conditional
probability paths dependent on time-series data.

Theorem 1. If ut(x |Y) generates the conditional densities pt(x |Y), then ut as in Eq. (4) generates the density pt as in
Eq. (3).

For this result, it is sufficient to show that ut(x) and pt(x) satisfy the continuity equation,

d

dt
log pt(x) + div(ut(x)pt(x)) = 0. (16)

Following the derivation in (Lipman et al., 2023), we get

d

dt
pt(x) =

∫ (d

dt
pt(x |Y)

)
p(Y) dY

= −
∫

div
(
ut(x |Y) pt(x |Y)

)
p(Y) dY

= −div
(∫

ut(x |Y) pt(x |Y)p(Y) dY

)
= −div (ut(x) pt(x)) ,

where the first equality is a result of Eq. (3), the second equality comes from the fact that ut(x |Y) and pt(x |Y) satisfy the
continuity equation, and the last equality comes from the definition of the conditional vector field in Eq. (4).

Theorem 2. Assume that pt(x |Y) > 0, then the loss functions in Eq. (2) and Eq. (5) are equal up to a constant independent
of θ.

For this result, we again follow (Lipman et al., 2023) with minor modifications. Notice that we may decompose the square
losses within Eq. (2) and Eq. (5) respectively as

∥vθ(x, t)− ut(x)∥2 = ∥vθ(x, t)∥2 − 2⟨vθ(x, t),ut(x)⟩+ ∥ut(x)∥2,
∥vθ(x, t)− ut(x |Y)∥2 = ∥vθ(x, t)∥2 − 2⟨vθ(x, t),ut(x |Y)⟩+ ∥ut(x |Y)∥2.

As the terms ∥ut(x)∥2 and ∥ut(x |Y)∥ are independent of the neural network parameters θ, they are irrelevant for evaluating
∇θLCFM . For the first term, by the definition of pt in Eq. (3),

Ex∼pt(x)∥vθ(x, t)∥2 =

∫
∥vθ(x, t)∥2pt(x) dx

=

∫ ∫
∥vθ(x, t)∥2pt(x |Y)p(Y) dY dx

= Et,p(Y),p(x |Y)∥vθ(x, t)∥2.

For the inner product term, again applying definitions of ut and pt,

Ex∼pt(x)⟨vθ(x, t),ut(x)⟩ =
∫
⟨vθ(x, t),ut(x)⟩pt(x) dx

=

∫
⟨vθ(x, t),

∫
ut(x |Y)p(Y)pt(x |Y)

pt(x)
dY⟩pt(x) dx

=

∫
⟨vθ(x, t),

∫
ut(x |Y)p(Y)pt(x |Y)⟩dx

=

∫ ∫
⟨vθ(x, t),ut(x |Y)⟩p(Y)pt(x |Y) dx

= Et,p(Y),pt(x |Y)⟨vθ(x, t),ut(x |Y)⟩.

The two losses in Eq. (5) and Eq. (2) are thus equivalent to within a constant.

6

Conditional Flow Matching for Time Series Modelling

B. Kalman Smoothing
Kalman smoothing is an algorithm to estimate the states of a linear dynamic system under Gaussian noise (Särkkä &
Svensson, 2013). We consider a model with zero drift, which implies that the state of the system at any time point is
expected to be the same as the previous time point unless influenced by noise. There are two steps in the Kalman smoothing
algorithm: filtering and smoothing.

Filtering The state of the system is estimated at a new time point t+ 1 given the state at time point t. Filtering is divided
to two sub-steps: prediction and update. The prediction step estimates the state of the system at the next time point,

mt+1 = Amt, (17)

Pt+1 = APtA
⊤ +Q (18)

where A is the transition matrix (also known as the drift) and mt is the state of the system at time t. Zero drift in this
context implies that A = I , and Q is the covariance matrix of the process noise. If observations are available at time t, they
can be used to correct the prediction during the update step,

Kt = PtH
⊤(HPtH

⊤ +R)−1, (19)

mf
t+1 = mt +Kt(Yt+1 −Hmt), (20)

Pf
t+1 = (I−KtH)Pt, (21)

where H is the observation matrix, Yt+1 is the observation at time t+ 1, and R is the observation noise covariance matrix.

Smoothing The state of the system is estimated at each time point given all the observations. This is done by updating the
state estimates from the filtering step starting from the last time point, so in this case we update the state and covariance at
time t using the estimates at time t+ 1. The smoothing equation is given by

ms
t = mf

t +Gt(m
s
t+1 −mf

t+1), (22)

Ps
t = Pf

t +Gt(P
s
t+1 −Pf

t+1)K
⊤
t . (23)

where Gt = Pf
t APf

t+1 is the smoothing gain at time t. By applying this algorithm to the time series data, we can estimate
the marginal distribution of the state of the system at each time point t which is assumed to be Gaussian: N (mt,Pt).
Given these estimates, we can define our flow as a linear interpolation between consecutive time points (Eq. (7)) with a
corresponding vector field (Eq. (8)).

C. Gaussian Processes
Here we include general formulas for the basic concepts relevant to a Gaussian Process with an RBF kernel: 1) the posterior
of a Gaussian Process (GP) given a set of observations, 2) the likelihood used to optimize the hyperparameters of the kernel
through MLE, and 3) the RBF kernel. For simplicity we include the equations for a GP modelling the state function alone.
Equations for the GP modelling both the state and its derivative can be obtained by assuming xt = (xt, ẋt), m = (m, ṁ),

and K =

[
Kxx Kxẋ

Kẋx Kẋẋ

]
.

We start with a Gaussian Process prior
xt ∼ GP(m(t),K) (24)

where m is the mean function and K is the covariance matrix with hyperparameters ω. Assuming observations y at training
points t with noise ϵ ∼ N (0, σ2I), the posterior distribution of xt at new test points t∗ is given by:

xt∗ |t,y, t∗ ∼ N (µ∗,Σ∗) (25)

where the mean µ∗ and covariance Σ∗ are computed as follows:

µ∗ = m(t∗) +K⊤
∗ K

−1(y −m(t)) (26)

Σ∗ = Kt∗t∗ −K⊤
t∗tK

−1
tt Kt∗t (27)

7

Conditional Flow Matching for Time Series Modelling

Our covariance matrix K is defined using an RBF kernel, which is given below for completness

k(t, t′) = σ2 exp

(
− 1

2l2
(t− t′)2

)
, (28)

where σ2 is the variance and l is the lengthscale, which can also be written as θ = (σ2, l).

The likelihood function is given by

log p(y | θ) = −1

2
y⊤K−1y − 1

2
log |K| − n

2
log 2π. (29)

Using maximum-likelihood estimation, we can learn the parameters θ which best fit the data y.

D. Experimental details
We provide below details of the datasets generation procedure and the hyperparameters used by our models.

Lotka–Volterra The Lotka–Volterra system for two-dimensional inputs is defined by the following ODEs

x = (x1,x2), (30)
dx1 = 2x1 − x1x2, dx2 = −4x2 + x1x2. (31)

We sample initial values from the uniform distribution over the square [1, 7] × [1, 7], and evolve 400 trajectories. The
trajectories are run until T = 5, by solving the ODE at 500 random points within (0, 5). We collect observations from each
trajectory at 50 randomly sampled points (different for each trajectory).

1D Sine ODE We consider the ODE system initialized at the distribution p0 = N (0, 1), evolving according to

dxt = sin(xt)dt. (32)

We observe 400 trajectories from the system at 50 randomly sampled points in t ∈ (0, 2).

1D Pendulum ODE We model the position and velocity of a pendulum, where x ∈ R2 represents the angle and angular
velocity. The initial angle is set to 90 degrees with velocity 0.

d2x(t)

dt2
= −9.81 sin(x(t)) (33)

We only generate a single trajectory using this ODE. We observe the position every 0.1 seconds for t ∈ (0, 16) (i.e. we use
n = 160 observations).

NN hyperparameters For all experiments, we use a neural network with an input layer of 64 dimensions, and 3 hidden
layers each with 258 dimensions. We use LeakyRelu as the activation functions and Adam as the optimizer. We train
the CFM models for 400 to 600 epochs and the NODE model for 10 epochs. We did not notice improvements for longer
training of NODE.

Training resources All models are trained on a Mac M2 chip with a batch size of 256 and a learning rate of 0.01. The
Lotka-Volterra with the GP-Flows model takes approximately 30 minutes to train. The BB-Flows model takes at most 15
minutes for all datasets, while the NODE model takes at most 20 minutes.

Hyperparameters for the GP-Flows conditional model The GP we use for all datasets has an RBF kernel with
hyperparameters learned via MLE, after about 400 epochs of training per trajectory. It takes less than a minute to fit the
kernel for each trajectory, and this is done only once per dataset. We sample 10 functions from every trajectory GP and
compute the conditional derivative mean corresponding to every function.

Hyperparameters for the BB-Flows conditional model We set the process noise to 0.005 and the observation noise to
0.001 for the Kalman Smoother.

Hyperparamers for the basic neural ODE model We use the dopri5 solver for integrating the learned ODE. We
compare the obtained trajectories to the training trajectories using MSE.

8

