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a b s t r a c t

Due to the wide application of dynamic graph anomaly detection in cybersecurity, social networks,
e-commerce, etc., research in this area has received increasing attention. Graph generative adversarial
networks can be used in dynamic graph anomaly detection due to their ability to model complex data,
but the original graph generative adversarial networks do not have a method to learn reverse mapping
and require an expensive process in recovering the potential representation of a given input. Therefore,
this paper proposes a novel graph generative adversarial network by adding encoders to map real
data to latent space to improve the training efficiency and stability of graph generative adversarial
network models, which is named RegraphGAN in this paper. And this paper proposes a dynamic
network anomaly edge detection method by combining RegraphGAN with spatiotemporal coding to
solve the complex dynamic graph data and the problem of attribute-free node information coding
challenges. Meanwhile, anomaly detection experiments are conducted on six real dynamic network
datasets, and the results show that the dynamic network anomaly detection method proposed in this
paper outperforms other existing methods.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic graph technology has grown significantly in recent
ears due to the continued growth of dynamic graph applica-
ions in social network (Wang et al., 2019), human knowledge
etworks (Ji, Pan, Cambria, Marttinen, & Philip, 2021), business
etworks (Zheng et al., 2020), and cybersecurity (Gao, Xiaoyong,
ao, Fang, & Yu, 2020). Graph are widespread in the real world,
nd all kinds of connections within things and between things can
e represented by graph. Meanwhile, in the real world, various
elationships are constantly changing, such as human knowledge
etworks, business networks, e-commerce networks, and the In-
ernet of Things, etc. Therefore, the corresponding graphs are also
ynamic. Data from real-world networks tends to change over
ime (Jiao et al., 2021; Peng et al., 2021). Therefore, research on
eal-world networks needs to focus not only on the static graph
omain, but also on the dynamic graph domain.
Consider the example of an electronic shopping network: new

uying relationships are created every day, and the buyer–seller
elationship evolves over time, always changing dynamically. As
eople’s purchasing power grows, user-goods networks become
ore complex, making some fake purchase requests harder to be

∗ Corresponding author.
E-mail addresses: guodezhi@s.ytu.edu.cn (D. Guo), lzw@ytu.edu.cn (Z. Liu),

216848095@s.ytu.edu.cn (R. Li).
ttps://doi.org/10.1016/j.neunet.2023.07.026
893-6080/© 2023 Elsevier Ltd. All rights reserved.
detected, and attackers in user-goods networks in e-commerce
scenarios often place fake purchase orders to illegally increase the
influence of certain goods. Thus identifying anomalous behavior
in real-world networks helps protect the interests of ordinary
users and maintain the health of the system. Meanwhile, in
the field of dynamic graph technology, the detection of anoma-
lous edges in dynamic graphs is considered to be an important
category in the development of dynamic graph technology (Yu
et al., 2018; Zheng, Li, Li, Li, & Gao, 2019). However, due to the
particularity of dynamic graphs, the structure of dynamic graphs
will change over time, which leads to many existing works (Hooi
et al., 2016; McConville, Liu, & Miller, 2015; Zhao & Yu, 2013) that
only consider a specific one of the content, structure, or time of
dynamic graphs. Changes are happening in the dynamic graph
at all times, which makes anomaly detection on the dynamic
graph more difficult to achieve than on the static graph. Most
importantly, generating attribute data representing each node
and edge from the general raw dynamic graph data is considered
to be a challenging step, with difficulties arising mainly from the
requirements of the exploding volume of time-varying attribute
data, or from privacy concerns that render the attributes of the
data inaccessible. Furthermore, learning discriminative knowl-
edge from dynamic graph with coupled structure and temporal
information is equally difficult. Therefore, considering the fea-
tures of dynamic graph in an integrated manner is a challenge
in dynamic graph anomaly detection.
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Although some current work (Cai et al., 2021; Liu, Pan, et al.,
2021; Yang, Zhou, Wen, Zhou, & Wu, 2020; Zheng et al., 2019)
based on deep learning becomes a powerful solution for dynamic
graph learning. However, these models often require the use of
large amounts of already labeled data to train supervised models
for the purpose of performing dynamic graph anomaly detection.
In fact, in practice, exceptions are usually rare instances of data
that represent only a small fraction of the normal data. Therefore,
although possible, it is also very difficult to collect a large number
of marked exception instances. Actually, the majority of applica-
tions of dynamic graph anomaly detection do not allow for the
acquisition of large-scale labeled data. Since task-specific labels
can be extremely scarce for graph datasets, some work (Liu &
Song, 2022; You et al., 2020; Zhou, Song, Yu, & Zheng, 2023) have
similarly emphasized the importance of unsupervised training.
As a result, how to train a model in the absence of a sufficient
amount of anomalous data is a significant difficulty for dynamic
graph anomaly detection.

Here, a semi-supervised anomaly detection model for dy-
namic graphs is proposed in this paper. The model takes advan-
tage of the generative model in generative adversarial networks
(GAN) (Goodfellow et al., 2020) which has a good reconstruction
capability or learning data distribution capability. During training,
only normal data is needed to train the model, and a large amount
of abnormal data is no longer needed, so the resulting generative
model can only generate or reconstruct normal data. In testing,
the test sample is fed into the trained generative model. If the
output of the generative model is the same as or close to the
input after reconstruction, it indicates that the test is normal data,
otherwise it is abnormal data. Much of the existing work (Shri-
vastava et al., 2017; Zheng, Zheng, & Yang, 2017) also employs
generator reconstruction for anomaly detection. In contrast, this
paper also focuses on the mapping from real data to latent repre-
sentations. Specifically, in this paper, an efficient dynamic graph
node encoding method (Liu, Pan, et al., 2021) is used to extract
global spatial, local spatial and temporal information, and a graph
generation adversarial network is developed to learn spatial and
temporal knowledge of dynamic graphs. To address the problem
that currently existing graph generative adversarial networks
ignore the mapping from real data to potential representations
and are difficult to use them for complex dynamic graph datasets
because of the expensive optimization process required for their
use. This paper proposes that the training process of graph gener-
ation adversarial networks for dynamic graph anomaly detection
should not only learn to identify the differences between the
samples generated by the generator and the real data, but also
add an encoder to complete the mapping from the real data space
to the latent random variables. Ensure the recovery of latent
representation of real data in case of input and achieve more
stable and efficient detection goals. In this study, inspired by bidi-
rectional generative adversarial networks (Donahue, Krähenbühl,
& Darrell, 2016), encoders are added to the training of graph
generative adversarial networks to learn the mapping from the
real data space to the underlying representation. An encoder from
data space to feature space and a generation from feature space
to data space in the novel graph generative adversarial network
proposed in this paper form an reverse structure, and thus it is
named RegraphGAN in this paper.

In summary, the main contributions of this paper are:

• The graph generative adversarial network RegraphGAN pro-
posed in this paper considers not only the differences be-
tween generated and real data, but also the differences
between random variables and data encoding to provide
better potential representations for generators as input, sta-
bilize generators to generate samples, and avoid the ex-
pensive optimization process of traditional graph generative
adversarial networks.
274
• This paper adopts edge-based substructure sampling and
spatio-temporal node encoding method to cooperate with
RegraphGAN to create a complete dynamic graph anomaly
detection model, and proves the cutting-edge of this work
by testing on six real-world datasets.

The rest of this article is organized as follows. Section 2 re-
views the related work. In Section 3, the definition of the problem
and the specific implementation of what is presented in this
paper are outlined. Section 4 presents the results of the experi-
ments. Finally, Section 5 summarizes the results of the study and
suggestions for further research.

2. Related work

This section lists some existing works related to the research
work of this paper, in which some existing dynamic network
anomaly detection methods, generative adversarial network mod-
els in graph networks, and some attempts of adversarial genera-
tive networks in anomaly identification are shown.

2.1. Anomaly detection in dynamic graph

In recent years, as various dynamic relationships in the real
world are expressed as dynamic graph, the application of anomaly
detection on dynamic graph has been widely demanded, and
many excellent dynamic graph anomaly detection methods have
been proposed by scholars in the research community. Some
shallow mechanisms to detect anomalous edges, such as Gout-
lie (Aggarwal, Zhao, & Philip, 2011), detects outliers in net-
work streams using structural connectivity models and generates
dynamic graph partitions to maintain connectivity behavioral
models. To mine implicit information, HNRL (Wang, Liu, Xu, &
Yan, 2022) proposes a heterogeneous network representation
learning method, HNRL uses a heterogeneous network repre-
sentation learning method to map transaction networks to low-
dimensional spaces to mine node and edge types, improving the
accuracy of embedding results in node classification tasks. By
tracking metrics that include information about network topol-
ogy and changes in edge weights, CAD (Sricharan & Das, 2014)
finds node associations. To discern anomalous edge features,
CM-Sketch (Ranshous, Harenberg, Sharma, & Samatova, 2016)
takes into account both local structural information and history
behavior. StreamSpot (Manzoor, Milajerdi, & Akoglu, 2016) is a
clustering-based method that models the behavior of network
streams using an unique similarity function for attribute compar-
ison of heterogeneous networks and a centroid-based clustering
algorithm. To ensure a high mapping distance between abnormal
and normal occurrences in sketch space, Spotlight (Eswaran,
Faloutsos, Guha, & Mishra, 2018) employs a randomized sketch-
ing technique.

In addition, deep learning-based approaches collect anoma-
lous data in dynamic graph through the application of deep
learning techniques. To generate node embeddings with Clique
embedding targets, NetWalk (Yu et al., 2018) uses a dynamic
update pool approach based on a random wandering encoder to
simulate network evolution, and then uses a dynamic clustering-
based anomaly detection algorithm to rate the degree of anomaly
of each edge. The neural network model created by AddGraph
(Zheng et al., 2019) goes on to accurately represent the spa-
tial and temporal characteristics of dynamic graph. A GCN (Kipf
& Welling, 2016a) is used as a tool for extracting structural
elements, while GRU-Attention is created for the purpose of
combining short and long term dynamic progress. StrGNN (Cai
et al., 2021) extracts subgraphs of h-hop bounding edges and

captures spatial and temporal information using stacked GCNs
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nd GRUs. The learned model is trained from start to finish thanks
o the use of negative sampling from a ‘‘contextually relevant’’
oise distribution. HVGRAE (Yang et al., 2020) constructed a
ierarchical model where variogram autoencoders and recurrent
eural networks were combined by it. For the detection of aber-
ant edges, the likelihood of edge reconstruction is employed to
uantify the abnormal edges. TA-Struc2Vec (Li, Liu, Ma, Yang,
Sun, 2022) proposes a graph learning algorithm TA-Struc2Vec

or Internet financial fraud detection, which can learn topological
eatures and transaction amount features in financial transaction
etwork graphs, and represent them as low-dimensional dense
ectors, through training Classifier models enable intelligent and
fficient classification and prediction. A node code containing
patial and temporal information is constructed in the framework
f Taddy (Liu, Pan, et al., 2021), while Taddy models spatial and
hronological information using a transformation network.

.2. Generative adversarial networks in graph

The generative confrontation network has been widely used
n the image field. With the explosion of generative adversarial
etworks, it has also been applied to the graph domain. Through
dversarial training in very small and very large games, Graph-
AN (Wang, Wang, Wang, et al., 2023) integrates two graph
epresentation learning methodologies, namely generative and
iscriminative methodologies. In the GraphGAN framework, the
iscriminator and generator can cooperate to their mutual advan-
age: the generator improves its generative performance guided
y the discriminator’s signal, while the discriminator better dis-
inguishes between ground truth and generated samples driven
y the generator. In addition, GraphGAN proposes an imple-
entation of graph softmax as a generator that addresses the

nherent limitations of traditional softmax. The complexity of
eal-world networks can be accurately captured by the implicitly
enerative network data model known as NetGAN (Bojchevski,
hchur, Zügner, & Günnemann, 2018). Without having to man-
ally specify any of them, it can produce graphs that accurately
epresent crucial topological characteristics of complex networks,
uch as population structure and degree distribution. The model
lso exhibits strong generalization properties, and can even be
sed to generate graphs with continuously varying features us-
ng latent space interpolation.GraphSGAN (Ding, Tang, & Zhang,
018) is a new method for semi-supervised learning of graphs.
n GraphSGAN, the generator and classifier networks play a new
ind of competitive game. In equilibrium, the generator gener-
tes fake samples in low-density regions between subgraphs. To
istinguish the fake samples from the real samples, the classi-
ier implicitly considers the density properties of the subgraphs.
n order to improve the traditional normalized graph Laplace
egularization, an efficient adversarial learning algorithm is pro-
osed. GraphSGAN has the advantage of scalability and can be
rained using small batch processing. Graph representation learn-
ng and overlapping community discovery can both be addressed
y CommunityGAN (Jia, Zhang, Zhang, & Wang, 2019). Communi-
yGAN’s embedding reveals the vertices’ membership in commu-
ities, in contrast to conventional graph representation learning
echniques where vector entry values have no clear meaning
f embedding. Additionally, CommunityGAN optimizes such em-
eddings using a specifically created generative adversarial net-
ork. The parent topic-level generator and discriminator can
lternately iterate to enhance their respective performances and
ltimately output a better community structure thanks to the
ery slight rivalry between them.
275
2.3. Anomaly detection and generative adversarial networks

As mentioned above, GAN has long been used in various works
of image research, and anomaly detection is no exception. With
the general development of GAN applications, this concept is
more frequently applied to anomaly detection. AnoGAN (Schlegl,
Seeböck, Waldstein, Schmidt-Erfurth, & Langs, 2017), for example,
learns the distribution of normal data using a generative adver-
sarial network’s generator. During testing, the image uses the
learnt generator to determine what a normal image should look
like, and then compares it to determine whether it is abnormal.
GANomaly (Akcay, Atapour-Abarghouei, & Breckon, 2018) uses an
encoder–decoder–encoder sub-network in the generator network
to allow the model to map the input image to a low-dimensional
vector, reconstruct the generated output image using this low-
dimensional vector, then convert the created image using an extra
encoder network. Map to the representation that underpins it
During training, reducing the distance between these pictures and
latent vectors aids in learning the data distribution of normal
samples. A higher distance metric generated from this learned
data distribution during the testing phase shows the presence of
outliers in this distribution. ALAD (Zenati, Romain, Foo, Lecouat,
& Chandrasekhar, 2018) addresses the flaw that AnoGAN (Schlegl
et al., 2017) still requires parameter updates during the test-
ing phase. This approach presents a BiGAN-based method that
can be 100 times faster, as well as stable training attempts. It
learns to map the input sample x to the possible representation
z at the same time during training. Generator G, encoder E, and
discriminator D are all encoders.

Inspired by the many research works mentioned above, this
paper considers a novel method of applying graph generative
adversarial networks to anomaly detection in dynamic graph. In
this paper, the idea of graph generative adversarial network is
applied to anomaly detection in dynamic graphs, an encoder is
added to the traditional graph generative adversarial network,
and data samples are associated with latent variables through the
encoder network. This approach avoids the expensive inference
procedure required by typical graph generative adversarial net-
works, and the required latent variables are recovered through a
single feedforward loop of the encoder network at test time.

3. Method

In this section, the content of the graph generative adversarial
network RegraphGAN proposed in this paper is described specif-
ically, and how to detect anomalies in dynamic graphs using the
graph generative adversarial network proposed in this paper. In
Section 3.1, dynamic graphs and dynamic graph anomaly detec-
tion are defined, and in Sections 3.2–3.5, specific implementations
of the method proposed in this paper is provided. The meanings
of some characters are shown in Table 1.

3.1. Problem definition

The specification of a dynamic graph with a maximal sequence
number of T is Γ = {Gt

}
T
t=1, where the snapshot of the dynamic

graph at time t is denoted as Gt
= {υ t , εt

}, the set of nodes at
time t is denoted as υ t , and the set of edges at time t is denoted
as εt . Assuming vt

i , v
t
j ∈ υ t , if there is an edge between vt

i and vt
j

at time t , this edge is defined as eti,j ∈ εt .
The definition for dynamic graph anomaly detection can be

expressed as, given a dynamic graph Γ = {Gt
}
T
t=1, where Gt

=

{υ t , εt
} represents a snapshot of the dynamic graph at time t .

Determine the anomaly score S(eti,j) for each edge eti,j ∈ εt at
ime t , where S(∗) is the trained anomaly score function. The
robability that an edge is anomalous is represented by the
nomaly score, the higher the number, the greater the probability
hat the edge is anomalous.
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Table 1
The interpretation of characters.
Characters Interpretation

Γ = {Gt
}
T
t=1 Dynamic graph with maximum timestamp of T

Gt
= {υ t , εt

} Snapshot of the dynamic graph of t moments
υ t Set of nodes at time t
εt Set of edges at time t
vt
i ∈ υ t The ith node of the snapshot at time t

eti,j ∈ εt The edge of the ith node and the jth node of the
snapshot at time t

A Diffusion Matrix
aetgt = av1 + av2 The connectivity vector of etgt
B(ettgt ) Sub-structure node set
α Time window size
k Context nodes number
S(x) Abnormal score function
β Coefficient of exception score S(x)
G The generator
D The discriminator
E The encoder

3.2. Substructure sampling

As pointed out in previous work (Cai et al., 2021; Liu, Li, et al.,
021; Wang, Wang, et al., 2022), anomalies usually occur in local
ubstructures of the graph, so instead of carrying out anomaly
etection on the whole dynamic graph, this paper considers that
t is better to start from sampling the substructures to detect
he anomalous data in them. Since this paper focus on edge
nomaly detection, this paper employ edge-based substructure
ampling (Liu, Pan, et al., 2021). For each object edge in this study,
he network diffusion technique (Hassani & Khasahmadi, 2020;
licpera, Weißenberger, & Günnemann, 2019) is used by us to
bstract an importance-aware and size-specific contextual node
ets. For a given static network matrix M ∈ Rn×n, this paper gives
he definition of the diffusion matrix A ∈ Rn×n:

=

∞∑
i=0

θiTi. (1)

here the generalized transpose matrix is denoted by T ∈ Rn×n,
nd θ is the weighting factor that decides how much information
s global and how much is local. At the same time, in order to
nsure convergence,

∑
∞

i=0 θi = 1, θi ∈ [0, 1], and the eigenvalue
i ∈ [0, 1] of the matrix T is required.
The ith row of the diffusion matrix A is able to represent the

onnectivity of the ith node. Thus after creating a diffusion matrix
or a static graph with a single timestamp, for a given node, the
onnectivity of that node can be obtained using the diffusion
irector and a connectivity vector can be composed from it. For
n edge etgt = (v1, v2), its connection vector is calculated by
umming the connection vector of the two target nodes:

etgt = av1 + av2 . (2)

In the above equation, from a global perspective, the link
between the ith connection point and that each access point is
represented by ai. Then the set of contextual nodes C(etgt ) is
ormed by the way This paper sort the set of connectivity vectors
hen pick the top-k nodes for the largest values. Finally, the union
f the context node set and the target node, indicated as B(etgt =

1, v2, C(etgt )), can be used to represent the sampled node set of
he substructure.

Similarly, for dynamic networks, consider using multiple time-
tamps to capture dynamic evolution. Given a target edge with
imestamp, the connectivity vector of the ith timestamp node, the
276
ubstructure node set is sampled as ai
ettgt

, thereafter, the complete
ist of foundation system nodes is obtained:

(ettgt ) =

t⋃
i=t−α+1

C i(ettgt ). (3)

The received field on the time axis is determined by a hyper-
parameter of size alpha called the time window.

3.3. Space–time node encoding

One challenge of the dynamic graphs studied in this paper
over images with original features and attribute graphs is that
dynamic graphs are often attribute free. In order to construct
information encoding from attribute-free dynamic graphs as in-
put to graph generation adversarial networks, this paper adopts a
spatio-temporal node encoding method for dynamic graph trans-
formation. The coding method used in this paper is divided into
three parts: relative time coding, diffusion-based spatial coding,
and distance-based spatial coding. The global and local structural
roles of each node are represented by the two terms of spatial
encoding, respectively. Each component of the substructure node
set is given a time value by the time code item. The three encod-
ing methods are then combined to create an input node encoding
that includes extensive spatiotemporal data.

To start, this paper uses diffusion-based spatial encoding to
provide global view data for each node structure in the graph. In
order to sort all nodes in the node set vi

j ∈ C i(ettgt ), this paper
is based on the diffusion value pair single timestamp substruc-
ture, and also uses the sorting as the generated data source. A
learnable encoding function is created, as follows to calculate the
diffusion-based spatial encoding:

xdiff (vi
j) = linear(rank(aietgt [idx(v

i
j)])) ∈ Rdenc . (4)

Among these, idx(•) is the index query function, rank(•) is the
ranking function, denc is the node processing dimensionality, and
linear(•) is the learnable linear representation.

Meanwhile, to represent local connections near the edges of
objects, a distance-based spatial coding approach is applied in
this paper (see Figs. 1–8).

To be more precise, for each node vi
j ∈ C i(ettgt ) which in the

single set of timestamped substructure nodes, Its proximity from
the intended edge is encoded in order for the collected data to be
defined. This paper defines the form of spatial encoding based on
distance as follows:

xdist (vi
j) = linear(min(dist(vi

j, v
i
1), dist(v

i
j, v

i
2))) ∈ Rdenc . (5)

where dist(•) is the relative distance calculation function, min(•)
is the minimum function, linear(•) is the learnable linear map-
ping.

Each node is represented by time information called time code
in the set of substructure nodes. In the case of anomaly iden-
tification, the time interval of object edges is a more important
component, since the main work of this paper is to predict the
legitimacy of object edges. In Vaswani et al. (2017), This paper
take into account relative encoding of dynamic graph rather
than absolute encoding. The difference between the goal edge
occurrence time t and the present timestamp is defined as the
relative time-encoded data source for each node in the set of node
for the substructure. In a formal sense, relative time encoding is
expressed as:

x (vi) = linear(∥t − i∥) ∈ Rdenc . (6)
temp j
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Fig. 1. RegraphGAN model. The model consists of a generator G, an encoder E and a discriminator D.
Fig. 2. RegraphGAN’s overall structure. The framework is made up of three components: a reverse generative adversarial network anomaly detector, spatial–temporal
ode encoding, and edge-based substructure sampling.
3

w
a
s
t

here ∥ • ∥ is relative time calculation function, linear(•) is the
earnable linear mapping.

Finally, to improve operational efficiency, the encoding of the
usion nodes is defined not by concatenating them into a high-
imensional vector but as the sum of three encoding terms. Here
s the form of code fusion:

(vi
j) = xdiff (vi

j) + xdist (vi
j) + xtemp(vi

j) ∈ Rdenc . (7)

Therefore, for a given target edge, the encoding of each node
n the collection of its substructure nodes is calculated and su-
erimposed into an encoding matrix representing the properties
f ettgt . As shown in the encoding matrix:

ettgt
=

⨁
vij∈B(e

t
tgt )

[x(vi
j)]

T
∈ R(α(k+2))×denc . (8)

In the formula,
⨁

and [•]
T are the splicing operation and the

ransposing operation, respectively.
277
.4. RegraphGAN

This section presents a new graph generation adversarial net-
ork proposed in this paper. Unlike previous graph generation
dversarial networks, the RegraphGAN proposed in this paper
imultaneously learns an encoder E that maps input samples x
o potential representations z, as well as a generator G and a
discriminator D during the training process. thus avoiding the
challenging and time-consuming process of recovering poten-
tial representations at test time. In a normal graph generative
adversarial network, the discriminator only looks at the input
(whether it is real or generator-generated), but in RegraphGAN,
the discriminator D also needs to discriminate the underlying
representations (generator input or encoder output).

In the graph generation adversarial network proposed in this
paper:

• Generator G, which tries to approximate the true connec-
tivity distribution of the underlying layer and generates (or
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∥

selects, if more precise) the vertices most likely to be con-
nected to vi from the vertex set v. In this paper VGAE (Kipf
& Welling, 2016b) is used as the generator of the model.

• Discriminator D, which distinguishes between the connec-
tivity of the vertex pair (v, vi) and whether the potential
representation is considered as input from the generator or
from the encoder.

• Encoder E, which is a mapping of the input samples x of this
encoder into a potential representation z. In this paper, the
transformer network is used as the encoder of the model.

Suppose pX(x) is the data distribution for x ∈ ΩX. The gener-
ator model’s objective is to use a probabilistic model to simulate
this data distribution. However, this precise modeling of the
probability density function is computationally challenging, and
the existing graph generation adversarial network (Wang et al.,
2023) instead models a translation of the fixed potential distri-
bution into the data distribution pZ(z) for z ∈ ΩZ. A deterministic
feedforward network G is used to represent this transition, which
is known as a generator: ΩZ → ΩX where pG(x|z) = δ(x − G(z))
and pG(x) = Ez∼pZ [pG(x|z)]. The objective is to hone a generator
so that pG(x) ≈ pX(x).

The traditional graph generation adversarial network frame-
work trains a graph generator with the aim of making it difficult
for the discriminative model D to distinguish between samples
from the real data distribution and samples from the generated
distribution. Both the generator and the discriminator are learned
using the adversarial objective minGmaxDV (D, G), with V (D, G)
defined as:

V (D, G) = Ex∼px[logD(x)] + Ex∼pG[log(1 − D)] (9)

Unlike the traditional graph generation adversarial network
described above, in RegraphGAN we train not only the generator
but also the encoder E: ΩX → ΩZ additionally. The distribution
pE(z|x) = δ(z − E(x)) caused by the encoder PE converts the
data point x into the generative model’s latent feature space. The
discriminator is additionally changed so that it can take inputs
from the potential space and predict PD(Y|x, z), where Y = 1 if x
is true (chosen at random from the real data distribution pX) and
Y = 0 if x is generated by the generator (production of G(z)).

An effective semantic representation should be learned using a
model that is trained to predict a feature z given data x. Here, this
paper demonstrates how the RegraphGAN aim drives the encoder
E to do just that: the encoder must invert the generator at a given
z so that E(G(z)) = z in order to spoof the discriminator at that z.

In order to apply anomaly detection to dynamic graphs, the
RegraphGAN thinks about different ways to train the encoder E =

G−1, with a focus on how important it is to learn both E and G. In
the training phase, the generator G tries to generate as realistic
data samples as possible from the noise, the discriminator D is
used to distinguish the generated samples from the real samples,
and the input samples x are mapped to the potential repre-
sentation z by the encoder E. Consequently, this paper utilized
a similar approach, resolving the following optimization issue
during training: minG,EmaxDV (D,E,G), with V (D, E, G) defined as:

V (D, E, G) = Ex∼px[Ez∼pE(.|x)[logD(x, z)]]
+Ex∼pz[Ez∼pG(.|z)[1 − logD(x, z)]]

(10)

where px(x) and pz(z) represent the distribution of real data
and the distribution of latent features, respectively, and pE(z|x)
represents the distribution generated by the encoder and pG(x|z)
represents the distribution generated by the generator.
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3.5. Anomaly detection

Algorithm 1 The General Training Plan for RegraphGAN.

Input:Dynamic networks training set: Γ = {Gt
}
T
t=1, how many

training epochs there are: I , sampled number of contextual
nodes: k, Size of the time period: α

Set the settings for the RegraphGAN model, the scoring
function, and the encoding linear mappings.
for i ∈ [1, I] do

for timestamp Gt
= (vt , εt )in{Gt

}
T
t=α do

Generate edge εt
n samples by G

for e ∈ εn ∪ εt
n do

The objective edge should be e and sample
its substructure node set C(e) with α(k + 2)
nodes
Calculate node encoding matrix X(e) via
Eqs. (5)–(8)
Train the RegraphGAN model according to
Eq. (10)
Calculate anomaly score S(e) via Eq. (11)

end for
Calculate loss function L by LD and LG
Updating the parameters and back propagation

end for
end for

The training process of the graph generation adversarial net-
work proposed in this paper has been described in the previous
section. As a graph generation adversarial network that can be
used for dynamic graph anomaly detection, the calculation of
anomaly detection score is set as the last step of the whole work
in the testing phase, which can judge the quality of the frame-
work. The anomaly score of each edge is calculated by the score
function and compared with the set value, and when it is greater
than the set value, the edge is judged to be an anomaly, and
anomaly detection of dynamic graph is realized. Learn anomaly
scores for each edge and use them for dynamic networks anomaly
detection. Having trained a model on the normal data to yield G, D
and E, this paper then define a score function S(x) that measures
how anomalous an example x is, based on a convex combination
of a reconstruction loss LG and a discriminator-based loss LD:

S(x) = βLG(x) + (1 − β)LD(x) (11)

Where Z(x) represents the embedding of edge x, LG(x) =

Z(x) − G(E(x))∥ and LD(x) can be defined in two ways. In the
first place, using a real-world example of the cross-entropy loss
σ from the discriminator of x (class 1): LD(x) = σ (D(E(x)), 1),
this accurately reflects the discriminator’s level of assurance that
a sample was drawn from the actual data distribution. Using a
‘‘feature-matching loss’’ is a second technique to define the LD:
LD(x) = ∥fD(x, E(x)) − fD(G(E(x)), E(x))∥, fD(•) then returns the
discriminator’s layer, which is the layer that precedes the logits
for the supplied inputs. This determines whether the rebuilt data
shares characteristics with the true sample in the discriminator or
not. It is assumed that samples with higher S(x) values are more
likely to be abnormal.

4. Experiments

In this section, the effectiveness of the proposed approach
in this paper is experimentally demonstrated using real-world
datasets. In Table 1, this paper gives the specific number of nodes

and edges of the datasets.
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Table 2
The statistical information for the dataset.
Dataset #edge #node Avg.degree

Bitcoin-Alpha 24,173 3777 12.80
Bitcoin-OTC 35,588 5,001 12.10
UCI Message 13,838 1,899 14.57
Digg 85,155 30,360 5.61
AS-Topology 171,420 34,761 9.86
Email-DNC 1,866 39,264 42.08

4.1. Datasets

Primarily, this paper rely on six real-world datasets. In Ta-
le 2 shows the information of edge, node, and avg.degree of the
ataset.
UCI Messages (Opsahl & Panzarasa, 2009) is a collection of so-

ial network data from the University of California, Irvine online
tudent community. Each user is represented by each node in the
onstructed dynamic network, and information between users is
epresented by each edge.

The Bitcoin-Alpha (Kumar, Spezzano, Subrahmanian, & Falout-
os, 2016) dataset is the Bitcoin user trust network, and the
ata comes from transactions on the www.btc-alpha.com website
odes in the Bitcoin-Alpha dataset represent users of the site, and
dges are created when one user rates another.
Bitcoin-OTC (Kumar et al., 2018) is comparable to Bitcoin-

lpha, and the data originates from transaction information on
he platform atwww.bitcoidtc.com Nodes are also platform users,
nd edges appear when users rate one another.
Digg (De Choudhury, Sundaram, John, & Seligmann, 2009) is
web dataset that has been compiled from the news website
igg.com. In the Digg dataset, a user of the site corresponds to
node, and a user’s response to another user is represented by
ach edge.
AS-Topology (Zhang, Liu, Massey, & Zhang, 2005) is a dataset

f network connections collected from world wide web
utonomous systems. Each autonomous system corresponds to
node in the network, and the connection between two au-

onomous systems is represented by an edge in the network.
Email-DNC (Rossi & Ahmed, 2015) is the email network from

he 2016 Democratic National Committee email breach. Each
erson in the U.S. Democratic Party corresponds to a node in the
etwork, and an edge is created when a person sends an email to
nother person.

.2. Baselines

This paper compared the RegraphGAN framework to five
utting-edge baselines that fall into two categories: strategies
or detecting anomalies in deep dynamic networks and networks
mbedding methods.
Breadth-first traversal and depth-first traversal are considered

n node2vec (Grover & Leskovec, 2016) to generate random walks.
lso Skip-gram technique is employed in node2vec to learn node
mbedding.
A based on random walks approach for net embedding is

alled DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014) is considered
s a random walk based net embedding method. Similar to how
eepWalk learns embeddings of unattributed networks, it pro-
uces random walks starting at the target node that are a certain
ength long.

A typical anomaly detection technique for dynamic networks
s NetWalk (Yu et al., 2018). With the use of a random walk-
ased technique, it provides contextual data, and an auto-encoder
odel is used to learn node embedding. A reservoir-based ap-
roach is used to incrementally update the node embeddings
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over time. A dynamically updated the clustering based on the
mastered embedding is used to find the anomaly.

A dynamic net anomaly detection technique called AddGraph
(Zheng et al., 2019) is end-to-end. The spatial data is captured by
AddGraph using the GCN module, and the short-term and long-
term dynamic evolution of the network are extracted using the
GRU-attention module.

StrGNN (Manzoor et al., 2016) is a net neural network model
that is also end-to-end. In dynamic networks, strGNN is used to
find anomalous edges. H-hop enclosing subnets are used by it as
input to the network, and GCN and GRU are combined by StrGNN
to learn the structural time information of each edge.

TADDY (Liu, Pan, et al., 2021) constructs a comprehensive
node encoding strategy to better represent the structural and
temporal roles of each node in the evolution graph flow. Simulta-
neously, information representations are captured from dynamic
graphs with coupled spatiotemporal patterns via a dynamic graph
transformer model. Two core challenges of anomaly detection
in dynamic graphs are addressed: the lack of information en-
coding for non-attributed nodes, and the difficulty in learning
discriminative knowledge from coupled spatiotemporal dynamic
graphs.

4.3. Experimental design

Each data set was divided into two subsets in the experiments
of this paper: the training set is made up of the first 50% of the
timestamps, and the test set is made up of the remaining 50%.
Three different anomaly ratios are considered in this paper, while
adding the data anomalies in the test set at the rates of 1%, 5%,
and 10%. Our main statistic, ROC–AUC (AUC for short), is used
to assess the effectiveness of the suggested both the baselines
and the framework. The relationship between the true positive
rate and the false positive rate is shown by the ROC curve, where
‘‘positive’’ is used as a label to indicate abnormalities. AUC, or the
amount of space beneath the ROC curve shows the probability of
producing an abnormal edge with a higher score than a normal
edge. Higher AUC values indicate better performance in detecting
anomalies, while the range of AUC values is limited to 0 to 1.

Also give the parameter settings for this paper, in the prepro-
cessing stage, this paper sets the number of context nodes k to
5 and the time window α takes values from 1 to 4, using β =

0.9 in the score S(x), and the dimension of encoding denc to 512.
The model is trained by Adam optimizer with a learning rate of
0.0001. On the UCI Messages, Digg, and Email-DNC datasets, this
paper uses 0.01 as the abnormal value and judge the input edge
as abnormal when its abnormal value is greater than 0.01 and as
normal when it is less than 0.01. The discriminators are trained
once in every 5 training sessions of the generator and encoder.
Unlike the above datasets, on the Bitcoin-OTC, Bitcoin-Alpha and
AS-Topology datasets, a different training strategy is used in this
paper, where the generator and encoder are trained once for
each discriminator in one calendar time. The experiment trained
20 epcohs on all datasets and finally achieved the best training
model. The snapshot size is set to be 1000 for UCI Messages and
Email-DNC, 2000 for Bitcoin-Alpha and Bitcoin-OTC, and 4000 for
AS-Topology and Digg respectively.

4.4. Anomaly detection results

The performance of anomaly detection is reported in this
subsection, and our suggested RegraphGAN architecture is com-
pared to the industry standard approaches. Table 2 compares the
average AUC for all test timestamps to show the performance
of anomaly detection. For the findings, This paper condenses the
following observations:

http://www.btc-alpha.com
http://www.bitcoidtc.com
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Table 3
Auc measures report anomaly detection performance comparison.
Methods UCI Messages Bitcoin-Alpha Bitcoin-OTC

1% 5% 10% 1% 5% 10% 1% 5% 10%

node2vec 0.7371 0.7433 0.6960 0.6910 0.6820 0.6875 0.6951 0.6883 0.6745
DeepWalk 0.7514 0.7391 0.6979 0.6985 0.6874 0.6793 0.7423 0.7356 0.7287
NetWalk 0.7758 0.7647 0.7226 0.8385 0.8357 0.8350 0.7785 0.7694 0.7534
AddGraph 0.8083 0.8090 0.7688 0.8665 0.8403 0.8498 0.8352 0.8455 0.8592
StrGNN 0.8179 0.8252 0.7959 0.8574 0.8667 0.8627 0.9012 0.8775 0.8836
TADDY 0.8912 0.8398 0.8370 0.9451 0.9341 0.9423 0.9455 0.9341 0.9432

RegraphGAN 0.8319 0.8531 0.8665 0.9540 0.9600 0.9650 0.9195 0.9454 0.9664
Methods Digg AS-Topology Email-DNC

1% 5% 10% 1% 5% 10% 1% 5% 10%

node2vec 0.7364 0.7081 0.6508 0.6821 0.6752 0.6668 0.7391 0.7284 0.7103
DeepWalk 0.7080 0.6881 0.6396 0.6844 0.6793 0.6682 0.7481 0.7303 0.7197
NetWalk 0.7563 0.7176 0.6837 0.8018 0.8066 0.8058 0.8105 0.8371 0.8305
AddGraph 0.8341 0.8470 0.8369 0.8080 0.8004 0.7926 0.8393 0.8627 0.8773
StrGNN 0.8162 0.8254 0.8272 0.8553 0.8352 0.8271 0.8775 0.9103 0.9080
TADDY 0.8617 0.8545 0.8440 0.8953 0.8952 0.8934 0.9348 0.9257 0.9210

RegraphGAN 0.8831 0.8924 0.8952 0.9008 0.9052 0.9112 0.9382 0.9412 0.9465
Fig. 3. AUC results for outlier scores obtained from tests taken at different
snapshot on the UCI.

Fig. 4. AUC results for outlier scores obtained from tests taken at different
snapshot on the Bitcoin-Alpha.

• On six datasets of dynamic networks with different anomaly
proportions, the proposed RegraphGAN framework consis-
tently outperforms all baselines. RegraphGAN achieves a
significant performance improvement on the value of the
AUC when compared to the baseline approach that produced
the greatest results. The major reason is that RegraphGAN
captures both structural and temporal dynamics simultane-
ously with a reverse generation countermeasure network
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Fig. 5. AUC results for outlier scores obtained from tests taken at different
snapshot on the Bitcion-OTC.

Fig. 6. AUC results for outlier scores obtained from tests taken at different
snapshot on the Digg.

encoder and assembles an informative node encoding to
extract spatial–temporal information.

• The deep dynamic networks anomaly detection techniques
NetWalk, AddGraph, StrGNN, and RegraphGAN consistently
outperform three networks embedding-based methods. This
paper credits the use of temporal information for this per-
formance advantage. These algorithms learn the dynamic
development in networks by taking into account the inter-
action in prior timestamps.
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Fig. 7. AUC results for outlier scores obtained from tests taken at different
snapshot on the AS-Topology.

Fig. 8. AUC results for outlier scores obtained from tests taken at different times
on the Email-DNC.

Fig. 9. Performance comparison of different methods for different outliers in
UCI dataset.

• Table 3 shows the test results, and Figs. 9–14 show that
compared with other baselines, the RegraphGAN proposed
in this paper is more or less superior in AUC value on the
used data set, showing ideal performance. Since spatial–
temporal dynamics are more directly related to the irreg-
ularity of Bitcoin transactions, RegraphGAN can effectively
capture these dynamics through extensive node embed-
ding and attention techniques. This shows the significant
advantages of RegraphGAN in anomaly detection.
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Fig. 10. Performance comparison of different methods for different outliers in
Bitcion-Alpha dataset.

Fig. 11. Performance comparison of different methods for different outliers in
Bitcion-OTC dataset.

Fig. 12. Performance comparison of different methods for different outliers in
Digg dataset.

4.5. Ablation experiments

In this subsection, the sensitivity of some parameters and
the role of some components are experimentally illustrated. The
comparative experiments in this paper use three data sets of UCI
Message, Bitcoin-Alpha, and Bitcoin-OTC.
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Fig. 13. Performance comparison of different methods for different outliers in
AS-Topology dataset.

Fig. 14. Performance comparison of different methods for different outliers in
Email-DNC dataset.

Fig. 15. Results of AUC on UCI using various training ratios.

• First, for different training ratios, the results are shown in
Figs. 15 to 17. In this paper, we used 20% to 60% of the train-
ing set to train the anomaly detection model, respectively,
and the AUC values increased smoothly with increasing
training ratios. This is mainly because the model in this
paper is semi-supervised and only normal data is needed for
training, so a larger proportion of the training set tends to
give better results.
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Fig. 16. Results of AUC on Bitcion-Alpha using various training ratios.

Fig. 17. Results of AUC on Bitcion-OTC using various training ratios.

Fig. 18. Parameter sensitivity experiments on UCI.
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Fig. 19. Parameter sensitivity experiments on Bitcion-Alpha.

Fig. 20. Parameter sensitivity experiments on Bitcion-OTC.

Fig. 21. Comparison of detection results between RegraphGAN and variants on
UCI.

• Comparative experiments are also conducted in this paper
for different time windows α and number of contextual
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Fig. 22. Comparison of detection results between RegraphGAN and variants on
Bitcion-Alpha.

Fig. 23. Comparison of detection results between RegraphGAN and variants on
Bitcion-OTC.

nodes k. Specifically, the values of α range from 1 to 4 and
k from 1 to 10. For different datasets, the best detection
results correspond to different time windows. The detec-
tion results for different cases are shown in Figs. 18 to 20.
The performance increases as the number of context nodes
increases, mainly because the properties of an edge tend
to depend on its adjacent local structure. The most likely
reason is the different degree of time dependence of the
edges of different data sets.

• In order to verify the effectiveness of each component,
an ablation experiment for the component is designed in
this paper. As shown in Figs. 21–23, RegaphGAN-dif in-
dicates that only diffusion-based spatial encoding is used,
RegaphGAN-dis indicates that only distance-based spatial
encoding is used, RegaphGAN-T indicates that only the rel-
ative time encoding method is used, and RegaphGAN-noE
denotes the model with the encoder removed. It is not
difficult to see from the experimental comparison chart that
the complete model performs relatively better in anomaly
detection.

• Although RegraphGAN-noE shows a more desirable anomaly
detection, efficiency should also be considered. When the
number of edges to be tested is n, it needs to go through
n times of mapping from the encoder to the underlying
representation and then reconstructed by the generator, so
the time complexity of our model is about O(n) when tested.
When we remove the encoder E, the reconstruction of the
generator needs to be obtained from m representations, so
the time complexity is about O(mn). For example, we found
in our tests that the time consumed by the UCI message test
after removing the encoder changed from the 150–200 s to
7000–9000 s, and tests on both bitcoin datasets went from
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40–50 s to 1000–1700 s. As a result, the addition of encoders
has increased efficiency by a factor of 20 to 60.

5. Conclusion

In this paper, the generative adversarial network RegraphGAN
on graph is proposed for the first time, and an encoder is in-
troduced to improve the traditional graph generative adversarial
network, and the framework is applied to the dynamic graph
anomaly detection link. In addition, this paper adopts edge-based
substructure sampling, spatiotemporal node encoding, combined
with the RegraphGAN anomaly detection module, to success-
fully identify edge anomalies in complex dynamic networks, and
achieve good results on six real-world dynamic network datasets.
The dynamic graph anomaly detection framework proposed in
this paper has been shown to produce very good results in exper-
iments on anomalous edge detection in dynamic networks, and
the achieved results are significantly better than those obtained
using most existing methods.
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