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Abstract: Accurate and efficient simulation of modern robots remains challeng-
ing due to their high degrees of freedom and intricate mechanisms. Neural simu-
lators have emerged as a promising alternative to traditional analytical simulators,
capable of efficiently predicting complex dynamics and adapting to real-world
data; however, existing neural simulators typically require application-specific
training and fail to generalize to novel tasks and/or environments, primarily due
to inadequate representations of the global state. In this work, we address the
problem of learning generalizable neural simulators for robots that are structured
as articulated rigid bodies. We propose NeRD (Neural Robot Dynamics), learned
robot-specific dynamics models for predicting future states for articulated rigid
bodies under contact constraints. NeRD uniquely replaces the low-level dynam-
ics and contact solvers in an analytical simulator and employs a robot-centric and
spatially-invariant simulation state representation. We integrate the learned NeRD
models as an interchangeable backend solver within a state-of-the-art robotics
simulator. We conduct extensive experiments to show that the NeRD simulators
are stable and accurate over a thousand simulation steps; generalize across tasks
and environment configurations; enable policy learning exclusively in a neural en-
gine; and, unlike most classical simulators, can be fine-tuned from real-world data
to bridge the gap between simulation and reality.
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1 Introduction

Simulation plays a crucial role in various robotics applications, such as policy learning [1, 2, 3, 4,
5, 6, 7], safe and scalable robotic control evaluation [8, 9, 10, 11], and computational optimization
of robot designs [12, 13, 14]. Recently, neural robotics simulators have emerged as a promising
alternative to traditional analytical simulators, as neural simulators can efficiently predict robot dy-
namics and learn intricate physics from real-world data. For instance, neural simulators have been
leveraged to capture complex interactions challenging for analytical modeling [15, 16, 17, 18], or
have served as learned world models to facilitate sample-efficient policy learning [19, 20].

However, existing neural robotics simulators typically require application-specific training, often
assuming fixed environments [20, 21] or simultaneous training alongside control policies [22, 23].
These limitations primarily stem from their end-to-end frameworks with inadequate representations
of the global simulation state, i.e., neural models often substitute the entire classical simulator and
directly map robot state and control actions (e.g., target joint positions, target link orientations) to the
robot’s next state. Without encoding the environment in the state representation, the learned simula-
tors have to implicitly memorize the task and environment details. Additionally, utilizing controller
actions as input causes the simulators to overfit to particular low-level controllers used during train-
ing. Consequently, unlike classical simulators, these neural simulators often fail to generalize to
novel state distributions (induced by new tasks), unseen environment setups, and customized con-
trollers (e.g., novel control laws or controller gains).
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Figure 1: We propose NeRD, learned robot-specific dynamics models for generalizable articulated
rigid body simulation. We demonstrate our approach by training NeRD models on six diverse robotic
systems, from left: Cartpole, Double Pendulum, Ant, Franka, ANYmal, Cube Toss.

In this work, we address the problem of learning generalizable neural simulators for articulated
rigid-body robots. We envision a future where each robot is equipped with a neural simulator pre-
trained from analytical simulations. Such a simulator could conduct lifelong fine-tuning as the robot
interacts with the real environment to accommodate wear-and-tear and environmental changes, and
facilitate versatile skill learning in a digital twin powered by the continuously-updated simulator.

Toward this goal, we propose Neural Robot Dynamics (NeRD), a learned robot-specific dynamics
model for predicting the evolution of articulated rigid-body states under contact constraints. NeRD is
characterized by two key innovations: (1) a hybrid prediction framework, where NeRD uniquely re-
places only the application-agnostic simulation modules — i.e., the low-level forward dynamics and
contact solvers — and leverages a general and compact representation describing the world surround-
ing robots; (2) a robot-centric state representation, where NeRD further improves the simulation
state representation to explicitly enforce dynamics invariance under translation and rotation around
the gravity axis, thus further enhancing NeRD’s spatial generalizability and training efficiency. Once
trained, our NeRD models can (1) provide stable and accurate predictions over hundreds to thousands
of simulation steps; (2) generalize to different tasks, environments, and low-level controllers; and
(3) effectively fine-tune from real-world data to bridge sim-to-real gaps. Additionally, with our hy-
brid and modular design of NeRD, we integrate NeRD as an interchangeable backend solver within a
state-of-the-art robotics simulator [24], enabling users to effortlessly reuse existing policy-learning
environments and activate NeRD as a new physics backend through a single-line switch.

We train NeRD models on six different robotic systems (Fig. 1) to illustrate the broad applicability of
our proposed methodology. We evaluate the trained NeRD models on extensive experiments in both
simulation and real-world scenarios, including long-horizon dynamics prediction and policy learning
on a diverse set of tasks that are unseen during NeRD model training. Due to the long-horizon
stability and accuracy of NeRD, we demonstrate — for the first time, to the best of our knowledge
— that robotic policies learned exclusively within a pretrained neural simulator can successfully
achieve zero-shot deployment in the analytical simulator and even transfer directly to the real world.

2 Related Work

Neural physics simulations have been studied across diverse simulation domains, including
cloth [25, 26, 27], fluid [28, 29], and continuum dynamics [30, 31]. Our work focuses on the
subfield of neural simulation for articulated rigid-body dynamics in robotics.

Neural physics engines for single rigid bodies have modeled object-ground and inter-object interac-
tions [15, 32, 33, 34]. ContactNets [15] learns implicit signed distance functions to capture the dis-
continuous cube-ground dynamics, while a subsequent method [33] employs graph neural networks
(GNN5s) to improve the prediction accuracy of the same task. Allen et al. [34] further model inter-
object collisions with face interaction graph networks. Despite their advancements, these approaches
are not readily extendable to articulated rigid bodies, limiting practicality in robotics applications.

Neural models predicting dynamics of articulated rigid bodies have been explored in model-based
reinforcement learning and planning, known as world models. Most model-based RL meth-
ods [19, 20, 22, 23, 35, 36, 37, 38] predict future robot states directly from the current robot state and



control actions, without explicit environment modeling, and jointly train the neural world models
with control policies. Consequently, these world models lack generalizability to novel tasks, en-
vironments, and controllers. Some works in model-based planning decouple the simulation model
training from planning. For instance, GNNs [39] have been utilized to model generalizable physics
across articulated rigid bodies. But this approach still directly predicts state transition from robot
state and action, primarily targeting 2D systems or contact-free dynamics. A concurrent work [16]
pretrains a Bayesian network for modeling the dynamics of a loco-manipulation system but relies
on analytical modeling for this particular robot, restricting its applicability to broader robot systems.

A recent work, LARP [21], couples dynamics and contact networks for modeling humanoid-ball
interactions, but targets human motion reconstruction in computer vision, with the accuracy and
applicability to robotic policy learning unverified. Physics-informed neural networks [40, 41] incor-
porate physics laws into learning generalizable dynamics of simple articulations, but their reliance
on expert-modeled physics laws of each individual system limits their use in complex robot designs.

Hybrid neural simulation frameworks have also been proposed. NeuralSim [42] integrates neural
models in localized components of a rigid-body simulator to improve friction and passive force mod-
eling. But models’ generalizability is limited by robot-state-only representations. Neural contact
clustering [43] and neural collision detectors [44] accelerate contact algorithms. Residual physics
is also studied [17, 18] for bridging sim-to-real gaps. These techniques complement ours, as colli-
sion detection generates contact information consumed by NeRD, and the residual physics augments
outputs of an analytical simulator while we propose a generalizable input for a neural simulator.

3 NeRD: Neural Robot Dynamics

We now present NeRD, robot-specific neural dynamics models for articulated rigid-body simulation.
We start by presenting the typical workflow of a classical articulated rigid-body simulator in §3.1.
Next, in §3.2, we introduce the hybrid prediction framework of NeRD, which leverages a general
and compact simulation state representation describing the world to enable generalization across
applications. In §3.3, we further improve the representation by proposing a robot-centric simulation
state representation to enforce spatial generalizability and improve the training efficiency of NeRD.

3.1 Preliminary: A Typical Robotics Simulation Workflow

We illustrate a typical workflow of a classical robotics simulator in Fig. 2(a). The user first sets
up the simulator by importing a robot model with its initial state, and specifying an environment
configuration (e.g., ground, objects) and a low-level controller (e.g., joint position control, end-
effector control). At each time step ¢, the simulator takes as input the robot model, current robot
state s, the action command fed to the robot a;, and the scene configuration. It then performs
collision detection to identify contact information for interacting physical parts, and executes the
low-level controller to convert the action command into joint-space torques. Those, along with
the robot state, serve as intermediate quantities that are processed by the dynamics and contact
solvers, where physics equations are formulated and a numerical solver is employed to calculate the
acceleration. Finally, the simulator performs time integration to obtain the new state of the robot.

Previous neural robotics simulators [19, 20, 22, 37] often adopt an end-to-end framework that substi-
tutes the entire simulation engine with a neural model and directly maps the robot state s; and action
command a; to the next robot state s;; 1, without leveraging information regarding the scene and
the controller, i.e., E2E(s;,a;) — S¢+1. Such neural simulators are therefore forced to memorize
the scene and the controller used for training and lack generalizability to novel applications.

3.2 Hybrid Prediction Framework of Neural Robot Dynamics

To train a generalizable neural simulator, we need a comprehensive representation to encode the
scene and controller that generalizes across diverse applications. Inspired by the observation that
the low-level dynamics and contact solvers in a classical simulator are application-agnostic, NeRD
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Figure 2: Framework overview for Neural Robot Dynamics (NeRD). (a) Workflow of a classical
robotics simulator. The quantities shaded in green are application-agnostic. (b) Hybrid prediction
framework of the NeRD-integrated simulator. Inputs to NeRD are the robot-centric state representa-
tions (illustrated in (c)) within a history window.

employs a hybrid prediction framework that replaces only the core physics components in a conven-
tional simulator (Fig. 2(b)). This hybrid framework allows NeRD to leverage intermediate simulation
quantities (i.e., robot state, contact information, and joint-space torques) as a general and compact
representation describing the full simulation state, providing all necessary information to evolve the
robot dynamics regardless of the applications (e.g., tasks, scenes, and controllers).

Formally speaking, let s; = (x¢, Ry, g+, ¢+, G+) denote the robot state at time ¢, where ; and R; are
the position and orientation (represented as a quaternion) of the robot base, g; denotes articulated
joint angles, ¢ is the spatial twist of the base (i.e., 6D velocity), and g, are joint velocities. We
define T; as the joint-space torque and C; as contact-related quantities. We construct C; = {ci}
by reusing the collision detection module in the classical simulator. For each pre-specified contact
point p on the robot, we obtain its contact event quantities ci = (pj, pt, 7¢,d’). Here p} is the
contact point on a non-robot shape, i’ is the contact normal, and d’ is the contact distance.

Our neural robot dynamics model is a parametric function NeRDy ({sk., Cr, Tk }fc:F h +1) that maps
the robot states, contacts, and joint torques within a history window of length & to the state difference
Asiy1 £ St4+1©84; here, © is defined to be the rotation difference Ry 1R, ! for the base orientation
and the subtraction operator for other state dimensions. The model is trained blﬂinimizing the

mean squared error between the prediction and the ground-truth state difference As;,1:
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where NN is the batch size and S is the dimension of the robot state. The next state s, is then com-
puted by s;11 = s; P NeRDy ({sk, Cy, Tk}Z:t7h+1). This concise state representation {s;, Cy, 74 }
is a carefully designed outcome resulting from deeply integrating the neural models into the clas-
sical simulation framework and reusing the application-agnostic intermediate simulation quantities,
thereby fundamentally providing the generalizability across diverse applications.

3.3 Robot-Centric State Representation

The dynamics of a robot remain invariant under spatial translation, as well as rotation around the
gravity axis, provided that its interaction with the environment, such as contact forces, remains un-
changed in the robot’s body frame. Inspired by this, we enhance the simulation state representation
by introducing a robot-centric parameterization to explicitly enforce such spatial invariance.



Specifically, we transform the robot state s; and contact-related quantities C; into the robot’s base
frame B; = (x4, R;), as shown in Fig. 2(c). For the robot articulation, we use the reduced coordi-
nate state, which is spatially invariant; thus, we only need to transform the state of the robot base
(ie., xy, Ry, and ¢;) into the robot’s base frame. To properly account for gravity when the robot
rotates about axes other than the gravity axis, we treat gravity as an external force and augment the
simulation state with gravity expressed in the robot’s base frame. Additionally, the predicted state
difference As; 1 (i.e., network’s output) is also expressed in the robot’s base frame B;. Intuitively,
this robot-centric representation encodes the world from the robot’s local, myopic view — knowing
its joint state, how it contacts the environment locally, and how external forces (i.e., gravity) are
applied to it. NeRD then uses this information to evolve the robot’s dynamics within the local frame.
By using this robot-centric parameterization, we reformulate our loss function from Eq. 1 as:

) By By = ~ B,
Lo = NS XN: HNeRDe ({Sk €y k,TkagBk }Z:t—h+1) —As 2] )

where g is the unit gravity vector, and the superscript By, (or B;) means the corresponding quantity
is expressed in the robot base frame at timestep k& (or t). The robot state is then updated by

se1 = T8, (5 @ NeRDy ({8, CP* 7, 75 Yy i) ) (3)
where 75 () is the transformation from robot base frame at time step ¢ to the world frame.

The spatial invariance property of our robot-centric representation explicitly enforces the spatial
generalizability of the learned robot dynamics models. In addition, it reduces the state space, sub-
stantially enhancing the training and data efficiency of NeRD by eliminating the need to exhaustively
sample all spatial positions and orientations of the robot during model training.

4 Implementation

NeRD is compatible with most articulated rigid-body simulation frameworks, as it uses intermediate
quantities commonly computed in a standard simulator. We validate our approach by integrating
NeRD into a state-of-the-art robotics simulator, NVIDIA’s Warp simulator [24], since Warp’s mod-
ular design enables implementing NeRD as an interchangeable solver module in Python and keeps
it transparent to simulation users. We use a GPU-parallelized collision detection algorithm adapted
from the one in Warp.

Training Datasets We generate the training datasets for NeRD in a task-agnostic manner using
Warp with the Featherstone solver [45]. For each robot instance in our experiments, we collect
100K random trajectories, each consisting of 100 timesteps. These trajectories are generated using
randomized initial states of the robot, random joint torque sequences within the robot’s motor torque
limits, and optionally, randomized environment configurations.

Network and Training Details We model NeRD using a causal Transformer architecture, specif-
ically a lightweight implementation of the GPT-2 Transformer [46, 47]. We use a history window
size h = 10 for all tasks in our experiments. During training, we sample batches of sub-trajectories
of length h and train the model using a teacher-forcing approach [48]. To prevent the loss from being
dominated by high-variance velocity terms, we normalize the output prediction, using the mean and
standard deviation statistics computed from the dataset. Ablation experiments (see Appendix C.5)
show that output normalization is critical for improving the accuracy and long-horizon stability of
NeRD. We also apply normalizations to the model’s input to regularize the ranges of the inputs,
improving the stability of model training. We report training hyperparameters in the Appendix B.

S Experiments

We train NeRD models on six distinct robotic systems (Fig. 1) and conduct extensive experiments
to validate the capabilities of the trained NeRD models . We investigate the following questions:

"View the supplementary video to observe qualitative performance throughout the following examples.
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Figure 3: Evaluation of NeRD on long-horizon passive motions. Left: Full report of the measured
errors. Right: 1000-step cartpole state trajectories simulated by NeRD and ground-truth simulator.

Can NeRD reliably and accurately simulate long-horizon robotic trajectories (§5.1)? Does NeRD’s
hybrid prediction framework enable it to generalize across different contact configurations (§5.2)?
Can a single NeRD model generalize to diverse tasks, customized robotic controllers, and spatial
regions that are unseen during training? Can we train robotic policies for diverse tasks entirely in a
NeRD simulator and successfully deploy the learned policies in the ground-truth simulator and even
in the real world (§5.3, §5.4)? Finally, can we effectively fine-tune the pretrained NeRD models
from real-world data (§5.5)? We also provide a comprehensive ablation study in Appendix C.5,
highlighting critical design decisions essential for successfully training NeRD models.

5.1 Long-Horizon Stability and Accuracy: Cartpole and Ant with Passive Motion

We first evaluate NeRD’s long-horizon performance using open-loop passive motions of Cartpole
and Ant. While Cartpole is a contact-free system that serves as a tractable problem for analysis, Ant
assesses NeRD’s performance when a floating base, high DoFs (14), and contact are all involved.
The robots start from randomized initial states and apply zero joint torques, 7 = 0. We compute
the temporally averaged errors between the trajectories generated by NeRD and the ground-truth
simulators. We report the errors averaged from 2048 trajectories for each test in Fig. 3 (left).

For Cartpole, we evaluate trajectories of 100, 500, and 1000 steps. We measure the errors of the
prismatic base joint (reported as Base Position Err.) and the non-base revolute joint. As a reference
for the prismatic joint error, the pole length is 1 m. To visualize the simulation accuracy, Fig. 3
(right) compares the state trajectories generated by NeRD and the ground-truth simulator from the
same initial state. The results demonstrate high long-horizon accuracy of NeRD on Cartpole, with
accumulated error of 0.075 rad (smaller than 5°) for the revolute joint and 0.033 m for the prismatic
joint, even after 1000 steps (i.e., equivalent to 16.67 seconds of passive motion). For Ant, we evaluate
on 500-step trajectories, as the motion typically converges to a static state within this duration. We
measure the base’s position and orientation errors, and the mean error of non-base revolute joints.
NeRD achieves an average base angular error of 0.095 rad and positional error of 0.057 m after
500 steps of simulation (1.2m full body width). The minimal prediction errors indicate NeRD’s
capability to accurately predict the motion of robots with a floating base for extended horizons.

5.2 Contact Generalizability: Double Pendulum with Varying Contact Environments

We validate NeRD’s generalizability across varying contact configurations using a Double Pendulum
example, in which a randomized planar ground (random normal direction and position) is placed be-
neath the double pendulum. Different combinations of ground configurations and initial pendulum
states yield distinct modes of motion: contact-free chaotic motion [49] when the ground is distant;
sliding contact motion, occurring when the pendulum lightly touches and slides along the ground
surface; and collision-induced stopping motion when the ground is positioned closely enough that
the pendulum rapidly comes to rest after contact. Such varied contact configurations pose challenges
for prior methods, as typical state representation without encoding the environment provides insuffi-
cient clues to determine contact timing and mode. To test NeRD, we evaluate seven different ground
setups — one contact-free and six involving potential pendulum-ground contact. For each ground



Table 1: Quantitative evaluation of policies trained exclusively in NeRD simulators, when deployed
in both NeRD simulators and the ground-truth simulator.

Robot Cartpole Franka Ant ANYmal

Task Swing Up Reach Running Spinning Spin Tracking ~ Forward Walk  Sideways Walk
GT Reward 1212.5 £ 2104 89.3 £10.5 2541.5 £309.1 26247 = 641.0 1630.2 £203.1 1323.4 +60.5 1360.2 £ 81.2
NeRD Reward 1212.6 £210.2  91.1 +£9.9 2649.5 £ 2274 30762 +433.5 1670.5 £ 192.6 1323.1 624 1359.2 +70.4
Reward Err. (%) +0.01% +2.02% +4.25% +17.21% +2.47% -0.02% -0.07%

configuration, 2048 passive-motion trajectories of 100 steps are simulated with random initial states
of the pendulum and zero joint torques. Due to space constraints, visualizations of the seven ground
configurations and detailed error metrics for NeRD are provided in the Appendix C.2. Among all
seven ground configurations, the maximum mean joint error after 100-step simulation is 0.056 rad
(3.2°), with joint errors typically below 1° for most cases. The results demonstrate that a single
NeRD model effectively generalizes across diverse contact scenarios.

5.3 Task, Controller, and Spatial Generalizability: Robotic Policy Learning via RL

To evaluate the task, controller, and spatial generalizability of NeRD, we conduct extensive RL
policy-learning experiments across diverse tasks for four robotic systems: a swing-up task for Cart-
pole, an end-effector reach task for Franka, three different tasks (running, spinning, and spin track-
ing) for Ant, and forward and sideways velocity-tracking for ANYmal [50]. While detailed task
descriptions are provided in the Appendix C.1, we highlight key aspects here. First, each task ex-
plores specialized robot state distributions that is never covered in the NeRD training dataset for
that robot, which only includes randomly-generated motions. Conducting policy learning in those
tasks requires the trained NeRD models to make accurate predictions under unseen state distribu-
tions. Second, to verify trained NeRD models’ generalizability to low-level controllers, we use
Jjoint-torque control for Cartpole and Ant, and joint-position control for Franka and ANYmal. Third,
in the Ant running task and ANYmal velocity-tracking tasks, the robots reach a spatial region that
is exceptionally far from the range covered by the training datasets, thus examining NeRD’s spatial
generalizability. Fourth, the horizons of the tasks vary from several hundred steps to 1000 (ANYmal
tasks), assessing the stability and accuracy of the NeRD models over extremely long horizons.

For each task, we use PPO [51] to train three policies with different random seeds entirely within the
NeRD simulators. We then evaluate each learned policy over 2048 trajectories in both the NeRD and
the ground-truth simulators, and report the average rewards and the standard deviations in Table 1.
Despite training purely from random trajectories, the results show that the trained NeRD models
can support high-performing policy learning for diverse tasks (see supplementary video for policy
behaviors). Furthermore, the NeRD-trained policies have remarkably similar rewards when deployed
in the NeRD simulator and in the ground-truth simulator (without any fine-tuning or adaptation
phase), further confirming the long-horizon predictive accuracy of NeRD models.

5.4 Sim-to-Real Transfer of Franka Reach Policy

We further evaluate the accuracy of NeRD models via zero-shot sim-to-real transfer of a Franka
reach policy trained exclusively in the NeRD simulator in §5.3 (Fig. 4). The goal of this task is to
move the robot’s end-effector to a randomly-specified target position. The robot is controlled via a
Joint-position controller. See the Appendix for detailed task and reward settings. We command the
robot to move to 50 different target positions sampled within the robot’s workspace, and we evaluate
the policy’s performance by measuring the distance to the targets at steady-state. As a baseline, we
repeat the same experiment using a policy trained in the ground-truth simulator. Deployment results
show that policies trained with both NeRD and the ground-truth (GT) simulator achieve low steady-
state error, with mean and standard deviation: NeRD: 1.927 + 0.699 mm, GT: 4.647 £+ 2.667 mm.
We show the distance-to-goal plots of ten executions of NeRD-trained policies in Fig. 4. These
results validate that the NeRD model can effectively learn policies that transfer to the real world.
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Figure 4: Zero-shot sim-to-real transfer of a Franka reach policy. The real-world setup is shown
in the left figure. The plot on the middle visualizes the evolution of distance-to-goal measurements
when 10 NeRD-trained policies are executed, with a zoomed-in plot in the right.
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Figure 5: Fine-tuning of a pretrained NeRD model on real-world cube-tossing data. (a-b)
Cube-tossing trajectories simulated by the Warp simulator and by the fine-tuned NeRD simulator.
The light-green frames are ground-truth poses. (¢) Comparison of fine-tuning a pretrained NeRD
model (red) against training a NeRD model from scratch (blue) on the real dataset.

5.5 Fine-tunability on Real-World Data: Cube Tossing

We evaluate NeRD’s fine-tunability using a real-world cube-tossing dataset [15], where a cube is
tossed with a random initial state and collides with the ground. We first replicate this cube-tossing
environment in the Warp simulator and generate a synthetic dataset of cube-tossing trajectories for
pretraining a NeRD model. After pretraining, we fine-tune the NeRD model on the real-world
dataset. As a comparison, we also train a NeRD model from scratch using only the real-world
cube-tossing dataset (i.e., no simulation data). We provide more details in the Appendix C.4.

We evaluate trained models on 85 held-out real-world trajectories, and measure the average cube
COM position error and orientation error along the trajectory. Since the Warp simulator does not
fully capture real-world dynamics, it has a position and orientation error of 0.036 m and 0.383 rad,
respectively. Both the fine-tuned NeRD model and the NeRD model trained from scratch outperform
Warp. Specifically, the fine-tuned NeRD model has errors of 0.018 m and 0.266 rad, and the model
trained from scratch has errors of 0.023 m and 0.276 rad. Fig. 5(a) and (b) qualitatively compare
the trajectories generated by Warp and the fine-tuned NeRD model. In addition, Fig. 5(c) shows that
fine-tuning the pretrained NeRD converges in fewer than five training epochs, which is 10X faster
than training from scratch; thus, pretraining the NeRD model on a large-scale simulation dataset
enables efficient adaptation to real-world dynamics with a small amount of real-world data.

We further evaluate two baselines designed specifically for this dataset: (1) GNN-Rigid [33] and (2)
ContactNets [15]. For GNN-Rigid, we used the released model and inference code (training code
unavailable). The measured position error is 0.032 m; rotation error is not measured due to missing
code. For ContactNets, we used the released code to train the model. The evaluated position error is
0.017 m and rotation error is 0.242 rad. These comparisons show that NeRD achieves comparable
real-world fine-tuning results to specialized models while offering key advantages: (1) NeRD is
widely applicable to diverse systems, including articulated and single rigid bodies; (2) Fine-tuning
NeRD took < 10 min for the Cube Tossing dataset, compared to 12 h for ContactNets.



6 Limitations and Future Work

In this work, we present Neural Robot Dynamics (NeRD), learned robot-specific dynamics models
capable of stable and accurate simulation over thousands of time steps. Our neural dynamics models
can be fine-tuned from real-world data and generalize across different tasks, environments, and low-
level controller configurations.

Although our experiments clearly demonstrate the effectiveness of NeRD, several promising direc-
tions remain for future research. First, while we evaluate NeRD on a 14-DoF Ant robot and an
18-DoF ANYmal robot, we have yet to test it on some of the most complex robotic systems, such
as humanoid robots. These advanced robot designs typically have 20-50 degrees of freedom and
complex mechanical structures that are difficult to model analytically and simulate efficiently. Ap-
plying NeRD on these robots can further highlight the efficiency and accuracy benefits of a neural
simulation approach.

Another interesting direction to explore is the trajectory-sampling strategy for generating the syn-
thetic training dataset. Currently, we adopt a random sampling strategy to generate task-agnostic
datasets, ensuring the trained NeRD model is not limited to specific state distributions. However,
random sampling may become ineffective when the state dimensionality grows, particularly for
complex robots such as humanoids. Exploring more effective dataset construction strategies that
still preserve task-agnostic characteristics of the datasets and the generalizability of the resulting
NeRD models is a compelling direction for future research.

Furthermore, our current fine-tuning process assumes we have access to the same state space in the
real world as we do in simulation (i.e., full robot state, and environment setups for collision detec-
tion). However, real-world robot data is often only partially observable due to sensor limitations.
Investigating methods to fine-tune a pretrained NeRD model from partially observable real-world
data is another exciting direction for future research.
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A Additional NeRD Details

We provide additional details about NeRD that are not covered in the main paper due to space
constraints.

Contact-Related Quantities We use contact-related quantities C; as an application-agnostic rep-
resentation to capture how the surroundings impact the robot’s dynamics, without the need to pa-
rameterize the whole environment. This is inspired by the dynamics and contact solvers of analytical
simulators, as these solvers also use these contact-related quantities to formulate physics equations to
evolve the robot dynamics. We construct C; = {ct} by reusing the collision detection module in the
classical simulator. Specifically, in our implementation, we adopt a GPU-parallelized collision de-
tection algorithm adapted from the one in Warp. For each pre-specified contact point pj, on the robot,
we use the collision detection algorithm to compute its contact event quantities ¢; = (pj, p}, i, d*).
Here p?l is the contact point on a non-robot shape, i’ is the contact normal, and d’ is the contact
distance (zero or negative for collisions). We mask a ¢! to be zero if the associated contact distance
is larger than a positive threshold d* > &, allowing free-space motion while providing robustness
to cases where a collision occurs within the timestep. Quantity £ is a positive value greater than or
equal to the contact thickness of a geometry (i.e., a standard collision-detection parameter in clas-
sical simulators). Ideally, & should also exceed the allowed maximum displacement of the contact
point within a timestep, ensuring that all near-contact events are retained. However, in practice, the
choice of ¢ is very flexible, and we use a fixed setting of & = max(4 - contact_thickness, 0.1) across
all our experiments without task-specific tuning.

Robot-Centric State Representation Here we provide the detailed calculation for transforming
the robot state into robot’s base frame. For the robot state sy at time step k € [t — h + 1,¢], we
transform it into robot’s base frame, By, at time step k, where By, = (xx, Ry). For the robot
articulation, we use the reduced coordinate state, which is spatially invariant; thus, we only need to
transform the state of the robot base (i.e., i, Ry, and ¢y) into the robot’s base frame. Therefore,
we have skB’c = (sc,cB’“,R,CB’“,q;€7 d)kB’“,tjk), with

) )
RP* = Identity, (5)
V]fk = R;l(uk — X X W), (6)
wf’“ = R,;lwk, (7

where v and w are the linear and angular components of a spatial twist ¢, respectively.

Additionally, the predicted state difference As;y1 (i.e., the network’s output) is expressed in the

robot’s base frame at time step ¢ instead of ¢ + 1, i.e., Asfﬁl = sﬁtl o sft. This is because,

when expressed in its own base frame, the state of the robot base (x, R) is always the identity
Lo B B ; .

transformation (i.e., z7* = x,,{' = 0 and R?* = R,){" = I), which results in zero state

changes for these dimensions, so Aaf;fﬁ’l = 0 and ARﬁtf ' = 0. Therefore the learned model

cannot predict the motion of the robot base if using Asgj ! as the prediction target.

To compute 55';1 = (mﬂtl, Rgrtl, qit1, qﬁl, gi+1), we use the following calculations:
xf = Ry (@1 — @), ®)
RP = R 'Ry, ©)
fol =R, (Vi1 — y X wig1), (10)
wi = Ry 'wyy, (11)

Multi-Substep Prediction To improve the stability of the simulation, a classical simulator often
utilizes a smaller timestep (i.e., substep) and runs multiple substeps of solver-integration iterations
to obtain the actual state of the robot at the next time step, s;+1 (as shown in Fig. 2(a)). Unlike
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previous neural simulation works [39, 21, 33] that sequentially predict the robot state acceleration
at each substep and obtain the robot state at next time step by time integration over substeps, NeRD
directly predicts the state difference from the current robot state to the state at the next (macro)
time step, S¢+1, which might span multiple substeps in the analytical simulator. This design enables
us to learn NeRD from a finer-grained simulator with smaller substep sizes without sacrificing the
efficiency of the learned model at test time.

B Additional Training Details and Hyperparameters

We adopt a lightweight implementation of causal Transformer [46, 47], and repurpose it as a sequen-
tial model for robot dynamics. Past robot-centric simulation states are encoded into embeddings via
a learnable linear layer, processed through Transformer blocks with self-attention, and then mapped
to latent features from which the robot state difference is predicted as the output.

We use a fixed set of hyperparameters for training NeRD across all six robotic systems — including
training hyperparameters and Transformer hyperparameters — except for the embedding size of the
Transformer model. For robots with fewer degrees of freedom, we use a smaller embedding size
to enhance training and inference efficiency. The complete hyperparameter settings used in our
experiments are provided in Table 2.

Table 2: Training hyperparameters in the experiments.

Robot Cartpole \ Pendulum \ Cube Tossing \ Franka \ Ant \ ANYmal
history window size h 10
Training batch size 512
learning rate linear decay from le > to le 7
block size 32
num layers 6
Transformer | num heads 12
input embedding size 192 384
dropout 0
num layers 1
Output MLP layer size 64

C Additional Experiment Details

C.1 Details of Policy Learning Tasks

We train a NeRD model for each robotic system and use the trained NeRD model in all the down-
stream tasks for the corresponding robotic system. Here we provide details of the policy learning
tasks in §5.3.

C.1.1 Cartpole

Swing-Up Task In this task, a Cartpole (2-DoF) is controlled to swing up its pole from a ran-
domized initial angle to be upright and maintain the upright pose as long as possible. The Cartpole
is directly controlled by the commanded 1D joint-space torque of the base prismatic joint. The
observation of the policy is 4-dimensional, including:

* 2-dim joint positions: z, 0

* 2-dim joint velocities: i, 0

A trajectory is terminated if it exceeds the maximum number of steps 300, or the cart position of the
Cartpole moves outside the [—4 m, 4 m] range, or the joint velocity is above 10 rad/s.

15



The stepwise reward function is below:

Ry =5— 02 —0.052% — 0.16,” — 0.17,2.

C.1.2 Ant

Ant Running In this task, an Ant robot (14-DoF) is controlled to move forward as fast as pos-
sible. The action space is 8D joint-space torque of Ant’s non-base revolute joints, and the Anf is
directly controlled by the commanded joint-space torque. The observation space has 29 dimensions,
including:

* 1-dim height of the base h

* 4-dim orientation of the base represented by a quaternion

* 3-dim linear velocity of the base v

* 3-dim angular velocity of the base w

* 8-dim joint positions

 8-dim joint velocities

* 2-dim up and heading vector projections: pup, Pheading-

The episode is terminated if it exceeds the maximum number of steps 500, or the height of the base
h falls below 0.3 m (i.e., h < 0.3 m).

The stepwise reward function for the running task is defined below:

R = v, + 0~1pup + Dheading-

Ant Spinning An Ant is controlled to maximize its spinning speed around the gravity axis (Y-axis
in this environment) in this task. It uses the same observation space and the termination condition
as the running task. The stepwise reward function is defined as below:

Ri = wy + Pup-

Ant Spin Tracking This task requires an Ant to track a spinning speed of 5 rad/s. It uses the same
observation space and termination condition as the running task. The stepwise reward function is
defined below:

Ri =5 exp(—(wy — 5)? — 0.1w2 — 0.1w?) + 0.1pyp.

C.1.3 Franka

End-Effector Reach Task The goal of this task is to move the Franka robot’s end-effector to a
randomly-specified target position. The action space is defined as delta joint positions, which are
executed via a joint-position PD controller (Note: the NeRD model is still predicting using the
joint-space torques, which are converted from the target joint positions via the joint-position PD
controller). We also conducted another experiment with joint-torque control in §C.3. The 13-dim
observation space consists of the following:

* 7-dim joint positions
* 3-dim end-effector position
* 3-dim target goal position
The episode length of this task is 128. We adopt an exponential reward function from our existing
setups, with minimal tuning:
1 1
+ exp(50d) + exp(—50d) + € + exp(300d) + exp(—300d) + €’

Rt:—

where d = ||€]| is the end-effector’s distance to the goal position and e = 0.0001.
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C.14 ANYmal
Forward Walk Velocity-Tracking In this task, an ANYmal robot [50] (18-DoF) is controlled to

track a forward walking speed of 1 m/s. The action space is the target joint positions, and the ANYmal
is controlled by a joint-position PD controller. The observation space is similar to Ant tasks and has
37 dimensions, including the following:

* 1-dim height of the base h

* 4-dim orientation of the base represented by a quaternion

* 3-dim linear velocity of the base v

* 3-dim angular velocity of the base w

* 12-dim joint positions

* 12-dim joint velocities

* 2-dim up and heading vector projections: pup, Pheading-
The episode is terminated if it exceeds the maximum number of steps 1000, or the height of the base

h < 0.4 m, or the base or the knees hit the ground. We adopt a commonly used reward function [52]
with minimal tuning:

thexp(—((vx_1)2+v§))+o5exp( —(0.002%" 7)?

where T is the joint-space torque. Note that, in our ANYmal environments, Z is the forward direction,
Z is the sideways direction, and ¥/ is the upward direction.

Sideways Walk Velocity-Tracking This task requires an ANYmal robot to track a sideways walk-
ing speed of 1 m/s. It uses the same action space, observation space, and termination condition as
the Forward Walk Velocity-Tracking task. The reward function is below:

Ry = exp ( — (02 + (v, —1)?) ) +0.5exp(—w?) — (0.0023 " 7)?

C.2 Visualization and Full Results for Double Pendulum with Varying Contact
Environments

We provide visualizations of the seven ground configurations and the detailed measured errors in
this section. The seven contact setups include one contact-free scenario where we put the ground
far below the pendulum, and six different planar ground settings where the double pendulum is able
to make contact with the ground (as shown in Fig. 6). We use a single trained NeRD model for all
contact setups and generate 2048 passive-motion trajectories of the Double Pendulum over a duration
of 100 steps with random initial states and zero joint torques. We report the mean joint-angle errors
(in radians) over the trajectory in Table 3.

ground #1 | ground jkomsl IM\L— ground #4 m -7\

Figure 6: Seven Double Pendulum contact configurations used for testing NeRD’s generaliz-
ability across different contact environments.

C.3 Franka Reach Policy Learning with Joint-Torque Control

In §5.3, we conduct RL policy-learning experiments to show the NeRD model’s generalizability to
low-level controllers, where we apply different low-level controllers on different robots: joint-torque
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Table 3: Full passive-motion evaluation results on Double Pendulum. For each contact configu-
ration, we report the mean joint-angle error of each joint in radians.

Robot Double Pendulum

Contact Configuration no contact ground #1 ground #2 ground #3 ground #4 ground#5 ground #6

Joint #1 Error (rad) 0.004 0.012 0.008 0.005 0.011 0.029 0.008
Joint #2 Error (rad) 0.007 0.015 0.011 0.011 0.018 0.056 0.013

Table 4: Quantitative evaluation of Franka Reach policies trained exclusively in NeRD simulators,
when deployed in the NeRD simulator or the ground-truth simulator.

Robot Franka

Task - Reach  Reach
(joint-position control) (joint-torque)

GT Reward 89.3 £ 10.5 949 £ 7.8

NeRD Reward 91.1 £99 95.0+ 7.8

Reward Err. (%) +2.02% +0.11%

control for Cartpole and Ant, and joint-position control for Franka and ANYmal. To further verify
such generalizability, we conduct another experiment here for the Franka Reach task, but with joint-
torque control instead. We use the same task settings (e.g., reward, observation) as Franka Reach
with joint-position control, with the only change being the action space of the policy, and use the
same NeRD model trained for Franka. Similarly, we train three policies with different random
seeds entirely within the NeRD simulator for Franka, and then evaluate each learned policy over
2048 trajectories in the NeRD and in the ground-truth simulator and compare the obtained rewards
and the standard deviations. Similar to the previous experiments, the results show that the trained
NeRD model can support high-performing policy learning for different low-level controllers, and the
NeRD simulator and the ground-truth simulator obtain remarkably similar rewards when evaluating
the trained policies (i.e., 0.11% error), as reported in Table 4.

C.4 Details of Cube Tossing Experiment Setups

We evaluate the fine-tunability of the NeRD model using a real-world dataset of cube tossing [15],
where a cube is tossed with a random initial state and collides with the ground. We first replicate
this cube-tossing environment in the Warp simulator by manually tuning the contact and inertia
parameters to best replicate the observed dynamics in the dataset. We then generate a dataset com-
prising 10K randomly simulated cube-tossing trajectories of length 100, and pretrain a NeRD model
from this synthetic dataset. After pretraining, we fine-tune the NeRD model on the real-world cube-
tossing dataset. The real-world cube-tossing dataset contains 570 trajectories of varying lengths,
corresponding to a total of 60K dynamics transitions. We split the dataset into 400 trajectories for
training, 85 trajectories for validation, and 85 held-out trajectories for testing. To evaluate the fine-
tuned model’s prediction accuracy, we extract all sub-trajectories of length 80 (the minimum length
of the trajectories in the dataset) from the testing dataset and use the simulator integrated with the
fine-tuned NeRD model to generate predicted trajectories from the same initial states. We measure
the average cube COM position error and average orientation error (in radians) along the trajectory.
As a comparison, we also train a NeRD model from scratch using only the real-world cube-tossing
dataset (i.e., no simulation data).

C.5 Ablation Study

The success of NeRD relies on several critical design decisions made during development. In this
section, we analyze these design decisions through a series of ablation experiments. Specifically,
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Figure 7: Ablation Study. We evaluate ablation variants on two test cases: contact-free passive
motion of the Double Pendulum and policy evaluation on the Ant running task. We normalize the
errors by the error of NeRD (h = 10). (a) Ablations of different neural network architectures; (b)
Ablations of other critical design decisions in NeRD. (c¢) Ablations on the history window size h.

we conduct our study using two evaluation test cases: (1) contact-free passive motion of Double
Pendulum; and (2) policy evaluation on the Ant running task. All ablation models are trained on the
same datasets as the corresponding NeRD models.

For test case #1, we compute the temporally-averaged mean joint-angle error (average error of two
joints) of Double Pendulum for each ablation model, from 2048 passive motion trajectories of the
Double Pendulum over a duration of 100 steps with random initial states and zero joint torques.
Then we normalize the errors by the error of the NeRD model, and report the values in Fig. 7 (first
row).

For test case #2, we execute the three Anf running policies trained in our policy-learning experiments
(§5.3) and evaluate the average reward obtained using the simulator integrated with each ablation
neural dynamics model (2048 trajectories for each policy in each ablation neural dynamics model).
For each ablation model, we then compute the reward differences compared to the reward obtained
in the ground-truth simulator. The reward differences are then normalized by the reward difference
of the NeRD model and reported in Fig. 7 (second row).

C.5.1 Network Architecture

During development, we found the Transformer architecture to be the most effective for modeling
neural robot dynamics. We demonstrate this by comparing it against three other architectures in
Fig. 7(a): MLP: a baseline model that predicts state changes from the robot-centric simulation
state of the current step; GRU and LSTM: two RNN architectures that leverage historical state
information in their predictions. Although the ground-truth simulator computes the dynamics in
a stateless way (i.e., the next state only depends on the current state and torques), we found that
sequence modeling is important to achieve high accuracy of the neural robot dynamics model. We
hypothesize that the high variance of the velocity inputs is a challenge for the model; by including the
historical states as input, the neural model is able to infer a smoothed version of velocity and combine
it with the actual velocity input for a better prediction. Furthermore, based on the comparisons for
policy evaluation on the Ant running task, the causal Transformer model helps achieve a reward that
is much closer to the ground-truth simulator, compared to RNN architectures.

C.5.2 Hybrid Prediction Framework

To demonstrate the effectiveness of our Hybrid Prediction Framework, we compare NeRD against
an End-to-End prediction baseline (E2E), which directly maps robot state and action to the next
robot state. This end-fo-end framework is commonly adopted by prior neural simulators for rigid
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bodies [20, 22, 42]. We reimplemented it in the Warp simulator. Specifically, in our implementation,
the E2E baseline maps the robot state and the joint torques to the relative next robot state, and the
robot state is expressed in the world frame (as an End-to-End approach is not aware of contact infor-
mation and has to rely on world-frame state to track the possible collisions in a fixed environment).
We replace the action input commonly used in End-to-End approaches with joint-torque input so that
we can use the same training dataset as NeRD for a fair comparison. Fig. 7(b) shows that the E2E
baseline has large prediction errors in both test cases. This is because, in the Double Pendulum case,
the training dataset consists of varying scenarios of contact configurations. However, the E2E state
representation without encoding the environment provides insufficient clues to differentiate distinct
contact configurations during training, thus resulting in poor performance. In the Ant test case, the
E2E baseline fails because the world-frame robot state cannot make a reliable prediction when the
Ant moves far away from the origin and reaches regions outside the range of the training dataset.

C.5.3 Relative Robot State Prediction

The third key design decision is the use of relative robot state prediction, where the model predicts
the state difference between the current robot state and the robot state in the next time step, rather
than directly predicting the absolute next robot state. Predicting the relative state changes effectively
reduces the range of values of the model output, thus stabilizing model training. We compare NeRD
against its Abs Pred variant which predicts the absolute next state of the robot, in Fig. 7(b). The
results in the figure show that even for the low-dimensional system like Double Pendulum, predicting
the absolute state significantly increases training difficulty and results in a prediction error 26x
larger than the error of predicting with relative state changes.

C.5.4 Robot-Centric State Representation

Next, we design experiments to demonstrate the importance of the robot-centric and spatially-
invariant simulation state representation. For this ablation study, we train a model with the robot
state and contact quantities represented in world space (World Frame variant in Fig. 7(b)), i.e., the
loss formulation in Eq. 1. As shown in the results, using the world-frame representation does not de-
grade the model’s performance in the Double Pendulum case of contact-free motion. This is because
the pendulum has a revolute base joint that remains fixed in position, limiting the visited states to the
domain covered by the training dataset. In contrast, the world-frame representation fails entirely in
the Ant running task, as the Ant moves far away from the origin during running and quickly reaches
regions outside the training dataset’s distribution, causing the model to make unreliable predictions.

C.5.5 Model Input and Output Normalization

We then show the critical role of normalizing both the inputs and outputs of the neural robot dynam-
ics models. As shown by the No Inp. Norm and No Out. Norm variants in Fig. 7(b), removing
either input or output normalization degrades the performance of the NeRD model. This is be-
cause the input normalization effectively regularizes the ranges of the inputs to the model, making
model training stable and efficient. Meanwhile, output normalization mitigates the dominance of the
high-magnitude and high-variance velocity terms in the loss function, balancing prediction accuracy
across the different state dimensions.

C.5.6 History Window Size h

NeRD generally gains slight performance improvements when the history window size h increases.
We provide a comparison on history window sizes h = 1, h = 5, and h = 10 in Fig. 7(c). We
choose h = 10, as we find h = 10 consistently provides stable training and generally achieves the
best performance across all tasks in our experiments. Though quite rare, we also notice that further
increasing h (e.g., h = 20) will occasionally result in an exploded training loss.
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C.6 Computation Speed of NeRD

With 512 parallel Ant envs, Warp (with 16 substeps, which is the number of substeps we use in
Warp for generating training data for Ant) achieves 28K FPS, and NeRD achieves 46K FPS. We do
not view this comparison as definitive, as both Warp and NeRD can be further accelerated; how-
ever, as a neural model, NeRD benefits from continuous advances in Al hardware and community
efforts in ML software acceleration (e.g., TensorRT). Additionally, the policy-learning experiments
demonstrate that NeRD is fast enough for large-scale on-policy RL.
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