
DART-SQL: Enhancing Text-to-SQL Parsing through Question Rewriting
and Execution-Guided Refinement

Anonymous ACL submission

Abstract

Large Language Model (LLM)-based approach001
has become the mainstream for Text-to-SQL002
task and achieves remarkable performance. In003
this paper, we augment the existing prompt en-004
gineering methods by exploiting the database005
content and execution feedback. Specifically,006
we introduce DART-SQL, which comprises007
two key components: (1) Question Rewriting:008
DART-SQL rewrites natural language ques-009
tions by leveraging database content informa-010
tion to eliminate ambiguity. (2) Execution-011
Guided Refinement: DART-SQL incorporates012
database content information and utilizes the013
execution results of the generated SQL to itera-014
tively refine the SQL. We apply this framework015
to the two LLM-based approaches (DAIL-SQL016
and C3) and test it on four widely used bench-017
marks (Spider-dev, Spider-test, Realistic and018
DK). Experiments show that our framework019
for DAIL-SQL and C3 achieves an average im-020
provement of 12.41% and 5.38%, respectively,021
in terms of the execution accuracy (EX) metric.022

1 Introduction023

Text-to-SQL is crafted to convert natural language024

questions into executable SQL queries, creating a025

user-friendly interface for relational databases that026

enhances both usability and query efficiency (Wang027

et al., 2022). It advances multiple facets of data028

management, including database accessibility and029

web design flexibility.030

Recent researches (Rajkumar et al., 2022; Liu031

and Tan, 2023; Nan et al., 2023; ?; Chang and032

Fosler-Lussier, 2023; Sun et al., 2023) prominently033

focus on the utilization of emerging LLMs, em-034

ploying zero-shot and few-shot learning techniques035

to harness the knowledge and generalization ca-036

pabilities of the LLM. The DIN-SQL approach,037

introduced by Pourreza and Rafiei (2023), breaks038

down intricate Text-to-SQL task into smaller sub-039

tasks, enhancing the performance of the LLM in040

the reasoning process. When combined with GPT-041

4, DIN-SQL achieves an impressive score of 85.3 042

on the Spider-test dataset. Building upon the foun- 043

dations laid by DIN-SQL, Dong et al. (2023) de- 044

velop C3, facilitated by Clear Prompting (CP), 045

Calibration with Hints (CH), and Consistent Out- 046

put (CO). C3 achieves equivalent performance to 047

DIN-SQL through Zero-Shot Learning. Further 048

advancements in this domain are exemplified by 049

the DAIL-SQL approach proposed by Gao et al. 050

(2023). DAIL-SQL adopts a comprehensive ap- 051

proach, constructing prompts from three distinct 052

perspectives: problem description, sample selec- 053

tion, and sample description. Guided by clear mis- 054

sion interpretation, high relevance, and a strategic 055

SC (strategy and clarification) strategy, DAIL-SQL 056

achieves the noteworthy feat of securing the second- 057

highest score on the Spider Leaderboard. 058

However, most popular benchmarks like Spider 059

(Yu et al., 2019) and WikiSQL (Zhong et al., 2017) 060

focus on the database schema, with only a few rows 061

of data in the database (Li et al., 2023c). There ex- 062

ists a significant gap between academic research 063

and real-world applications, resulting in existing 064

approaches that place more emphasis on database 065

schema over database content information. The 066

inherent fuzziness in natural language also poses 067

a challenge when linking the entity names refer- 068

enced in the question and the corresponding data 069

in the database. For instance, when addressing spe- 070

cific conditions like the representation of gender, 071

database entries may employ diverse representa- 072

tion such as ‘0’,‘f’ and others, whereas natural lan- 073

guage questions often use the term ‘female’. This 074

inherent fuzziness introduces uncertainty that can 075

significantly impact the execution efficiency of the 076

generated SQL statements. Simultaneously, it is 077

noteworthy that existing methods often overlook 078

the valuable feedback generated after the execution 079

of SQL statements. There is a lot of scope to ex- 080

ploit the feedback to further fine-tune the generated 081

SQL statements. 082

1

In this work, we present a unified framework,083

called DART-SQL1, which is designed to mine084

database content information, eradicate ambigu-085

ity in natural language questions and iteratively086

enhance Text-to-SQL performance by incorporat-087

ing execution information. In detail, DART-SQL088

leverages the power of database content informa-089

tion through a multifaceted approach. Initially, it090

rewrites natural language questions by seamlessly091

integrating database content information, ensur-092

ing the revised questions align with the database093

and eliminate ambiguity. Additionally, DART-094

SQL introduces database content data into prompts,095

thereby enhancing Text-to-SQL performance. Fi-096

nally, DART-SQL employs an AI agent to evaluate097

and analyze the results of SQL execution, progres-098

sively refining the SQL statement with the feedback099

from the AI agent. Through this iterative correc-100

tion process, we achieve the self-training effect, en-101

hancing the overall efficacy of DART-SQL. Experi-102

ments show that our framework for DAIL-SQL and103

C3 achieves an average improvement of 12.41%104

and 5.38%, respectively, in terms of the EX met-105

ric. Besides, Our framework DART-SQL achieves106

an EX score of 82.5 when applied to DAIL-SQL,107

placing sixth on the Spider Leaderboard2.108

In summary, our main contributions are:109

• We observe that both existing research and110

benchmarks have very few database content111

information, which differ from real-world ap-112

plication significantly .113

• We introduce DART-SQL, a solution that not114

only tackles the three aforementioned short-115

comings but also effectively enhances Text-to-116

SQL performance.117

• Extensive experiments demonstrate that our118

method can be built on top of a range of exist-119

ing strong methods and improve their perfor-120

mance on Text-to-SQL task121

2 Related Work122

2.1 Template Matching123

In the early stages, Text-to-SQL is approached us-124

ing rule-based approach (Mahmud et al., 2015).125

1DART-SQL: Database-Aware Refinement and Transfor-
mation for Text-to-SQL with Large Language Models

2The top five methods on Spider Leaderboard are based on
GPT-4. Due to resource limitations, we apply GPT-3.5 in our
study, which hinders the performance of our framework.

Methods in this category utilize the strong rule- 126

based feature of the SQL to design different tem- 127

plates for different query problems, then select the 128

template according to the problem, and then derive 129

the corresponding template SQL statements. 130

2.2 Seq2Seq Models 131

Owing to the inherent alignment between Text-to- 132

SQL task and the N -> M machine translation task, 133

many researchers adopt Seq2Seq models to address 134

Text-to-SQL task. They first build an encoder to 135

understand the database table structure and the in- 136

put user query problem, such as the LSTM-based 137

method (Yu et al., 2018), and the Transformer- 138

based method (Kelkar et al., 2020), and then use a 139

decoder to predict the target SQL statement, like 140

the sketch-based method (Yu et al., 2018), and the 141

generation-based method (Huang et al., 2021). 142

2.3 Pre-trained Models 143

The utilization of pre-trained language models can 144

augment the parsing capability of Text-to-SQL. As 145

the textual data, tabular data and SQL queries are 146

heterogeneous, it is non-trivial but important to de- 147

velop a joint reasoning framework over the three 148

types of data (Qin et al., 2022). Qi et al. (2022) 149

incorporate various associations such as schema 150

encoding, schema linking, and syntactic dependen- 151

cies of a problem into a unified relational repre- 152

sentation by constructing ternary groups. Li et al. 153

(2023a) proposes a ranking-enhanced encoding and 154

skeleton-aware decoding framework to decouple 155

the schema linking and the skeleton parsing . The 156

MIGA framework, proposed by Fu et al. (2023), 157

introduces a two-stage unified multi-task genera- 158

tion approach that promotes compatibility between 159

dialogue-based Text-to-SQL methods and genera- 160

tive pre-trained language models. Li et al. (2023b) 161

introduce GRAPHIX-T5, which excels in capturing 162

relational structural information while preserving 163

the robust contextual encoding abilities inherited 164

from the pre-trained T5 model. 165

2.4 Large Language Models 166

LLMs have excellent performance and generaliza- 167

tion ability, and their outstanding performance in 168

zero-shot and few-shot learning has attracted the at- 169

tention of the industry. Liu et al. (2023) provide an 170

initial comprehensive analysis of ChatGPT’s Text- 171

to-SQL capabilities, revealing its powerful capa- 172

bilities in Text-to-SQL. Recent researches have fo- 173

cused on exploring the appropriate form of prompt 174

2

organization to maximize the performance of large175

models in Text-to-SQL.176

2.4.1 Table Representation177

The table and column name associated with the178

entered user query question is an important part179

of the prompt in Text-to-SQL. The key to table180

representation is to select only the database ta-181

bles and columns that will be used to generate182

the target SQL. The study by Pourreza and Rafiei183

(2023) focuses on identifying and extracting perti-184

nent columns and tables from the database schema185

based on a chain-of-thought template. Meanwhile,186

Dong et al. (2023) simplify the table representation187

by schema linking which recalls relevant tables and188

columns filters out irrelevant tables and columns,189

thereby reducing the number of tokens required for190

hinting and improving context clarity. Also, how191

database information is displayed in the prompt192

can affect the performance of the model. For ex-193

ample, Nan et al. (2023) find that describing table194

structure information as CREATE statements can195

yield improvements.196

2.4.2 Demonstration Selection197

The demonstration provided in the input prompt198

can improve the performance of the LLM in Text-199

to-SQL. Poesia et al. (2022) point out that presen-200

tation retrieval based on similarity is effective in a201

cross-domain environment, while Levy et al. (2023)202

demonstrate that diverse demonstrations benefit in-203

context compositional generalization. In terms of204

the basis for selecting demonstration, it is mainly205

divided into those based on the similarity of the206

input question (Guo et al., 2023), those based on207

the output SQL (Nan et al., 2023), and those that208

consider both the input question and the output209

SQL (Gao et al., 2023).210

3 Methodology211

In this section, we present our method that lever-212

ages database contents to enhance the natural lan-213

guage questions and to provide the LLM with feed-214

back using execution results. This enables the215

model to learn from its own mistakes and improve216

its SQL generation. Our framework can be applied217

on top of various existing prompt designs to im-218

prove the performance. These prompts usually con-219

sist of at least two components: the schema of the220

database and a few examples of natural language221

questions along with their corresponding SQL SE-222

LECT statements. We omit the details of these223

prompt designs as they are not the main focus of 224

our study. Readers can refer to the related works 225

on 2.4 for more information. 226

In a nutshell, our framework consists of the fol- 227

lowing steps: ①Question Rewriting: We choose 228

several rows from the table in the corresponding 229

database related to the question as relevant database 230

content information to rewrite the natural language 231

question. ②Context-Aware Prompt Generation: 232

For each table, we select a few rows relevant to 233

the question, and sample some rows from the re- 234

maining ones. Such content information is then 235

combined with an initial prompt generated by an ex- 236

isting prompt design to form a new context-aware 237

prompt. ③Execution-Guided Refinement: The 238

LLM takes the finalized context-aware prompt as 239

input, and generates an SQL query. Our framework 240

then executes it locally and offers feedback to assist 241

the LLM to refine the statement. 242

3.1 Question Rewriting 243

To eliminate ambiguity in natural language ques- 244

tions and gain deeper insights into the database, 245

we introduce an additional stage “Question Rewrit- 246

ing” to the conventional prompting method, which 247

optimizes the natural language questions by incor- 248

porating database information. 249

To clarify the “Question Rewriting” task for the 250

LLM and make effective use of the database con- 251

tent information, we design the following prompt: 252

Instruction. In this section, we give a clear defi- 253

nition of the "Question Rewriting" task. The details 254

are as follows: "Formulate natural language queries 255

for database data based on the provided informa- 256

tion. Ensure the questions you rewrite are clear, 257

concise, and aligned with the data specifications 258

within the database. If you think the sentence is 259

clear enough, you can return to the original without 260

rewriting it." 261

Examples. In this section, we summarize the 262

three specifications for the model to follow when 263

rewriting questions and illustrate them with con- 264

crete examples. Firstly, we instruct the model 265

on how to rewrite questions exhibiting fuzziness 266

through the specification 1. Secondly, Specification 267

2 serves as a reminder for the model not to omit 268

key information during the rewrite process. For 269

instance, database content information like "Note 270

that 1 stands for yes, and 0 stands for NO in the 271

tables" in the original question might be omitted 272

after rewriting. Finally, through Specification 3, we 273

3

LLM

Final
SQL

AI Agent

pass

analyze

③ Execution-Guided Refinement

Database
Content

① Question Rewriting

select

Related
Rows

Questions

Rewrite
Questions

LLM Similarity
Comparison

retrieve

Table Content
Information Prompt

Execution
Results

execution

fail
Analysis

Refine

Database
Schema

Examples

form

② Context-Aware Prompt Generation

Figure 1: Overview of DART-SQL.

ensure that the model avoids making meaningless274

or potentially harmful modifications to questions275

that are already sufficiently clear.276

Input. In this section, we take the initial natural277

language question and related database content in-278

formation as input. Previous methods focused on279

schema and structure but neglected effective use280

of database content. To address this, we add the281

first K (due to prompt length limitations, we set282

K = 5) data information for all tables correspond-283

ing to the question. Surprisingly, thanks to the284

LLMs’ summarization and generalization capabili-285

ties, the model mostly identified the relevant table286

and refined the problem based on specific database287

statements, ensuring consistency in entity names,288

cases, abbreviations, and filter criteria for attribute289

names.290

The Question Rewriting module greatly reduces291

problem ambiguity. Due to the limited context292

length of the LLM, the original Text-to-SQL task293

prompt includes only limited database information.294

By introducing the additional Question Rewriting295

task, we can effectively incorporate underutilized296

database content information into the natural lan-297

guage problems during rewriting. This allows for298

the utilization of more database information within299

the constraints of a limited context length.300

3.2 Context-Aware Prompt Generation301

After rewriting the question, the initial prompt can302

be generated using an existing prompt design. Our303

framework then refines the prompt to become the304

context-aware prompt by adding additional por-305

tions of the table content Intuitively, this refinement306

aims to reduce value errors by providing the LLM307

with examples of the data format in the database.308

Moreover, these data samples also complement the309

database schema, assisting the LLM to understand310

the database structure.311

At most N rows of each table are included in the312

prompt. If a table has more than N rows, half of 313

the rows are selected based on their relevance to the 314

question, and the other half are sampled from the 315

remaining rows. We set N = 15 for our method. 316

To calculate the relevance of a row inside a 317

table to a question Qi, we first convert the row 318

into a JSON dictionary Di, with column names 319

as keys and the cell contents as values. The 320

dictionary and the question are tokenized respec- 321

tively, resulting in Di = {Di1, ..., Di|Di|} and 322

Qi = {Qi1, ..., Qi|Qi|}. Next, we compute the 323

sentence embeddings of Di and Qi: 324

E(Di) =
1

|Di|

|Di|∑
k=1

GloVe(Dik) 325

326

E(Qi) =
1

|Qi|

|Qi|∑
k=1

GloVe(Qik) 327

where GloVe(x) refers to the GloVe embedding 328

(Pennington et al., 2014) of token x. Finally, the 329

relevance is calculated as the cosine similarity be- 330

tween E(Di) and E(Qi). 331

3.3 Execution-Guided Refinement 332

After receiving the processed prompt, the LLM 333

then outputs a single SELECT statement to answer 334

the question. We then start a self-refinement proce- 335

dure that executes the statement on the database and 336

ask the LLM to analyze the result, until it thinks 337

the results are correct or the procedure is repeated 338

3 times. The full process is shown in Algorithm 1. 339

In the refinement process, the SELECT state- 340

ment is executed. If the execution is successful, the 341

results (truncated at M = 15 rows) are analyzed 342

by the LLM. Otherwise, the LLM receives the ex- 343

ception information and outputs a new statement 344

addressing the issue. If the exception is related to 345

column names, including ambiguity and no-such- 346

4

Algorithm 1 Self-Refinement Algorithm
Input: initial SELECT statement SQL0

Output: refined statement SQL

SQL← SQL0

for i = 1 to 3 do
clear the interaction history, excluding the

prompt and the latest generated SQL
res← Execute(SQL0)
if res is a column-name error then

c← wrong column name in res
msg ← list of tables containing c
SQL← LLM-SQL(msg, res)

else if res is an exception then
SQL← LLM-SQL(res)

else ▷ res stores execution results
keep at most M rows in res
flag ← LLM-Judge(res)
if flag == True then

return SQL
else

SQL← LLM-SQL()
end if

end if
end for
return SQL

column errors, we additionally provide the LLM347

with a list of tables containing the column.348

Furthermore, the LLM is forbidden from us-349

ing certain keywords including LEFT JOIN and350

SELECT *. If the output SQL statement contains351

such keywords, the LLM is immediately asked to352

regenerate it. The rationale is that upon manually353

analyzing the final outputs, most statements with354

these keywords produce incorrect results. This sug-355

gests that the LLMs we test are not proficient at356

utilizing these SQL features.357

4 Experiments358

4.1 Experimental Setup359

Dataset. We evaluate DART-SQL on three datasets,360

Spider (Yu et al., 2019), Spider-DK (Gan et al.,361

2021), and Spider-Realistic (Deng et al., 2021).362

Spider is a large-scale cross-domain Text-to-SQL363

dataset. It comprises 10181 annotated ques-364

tions, corresponding to 5693 distinct complex SQL365

queries and 200 databases with multiple tables. The366

training, development, and test sets of Spider in-367

clude 8659, 1034, and 2147 examples and 146, 20,368

and 40 databases respectively. Our approach se-369

lects pertinent few-shot samples from the training 370

set. Spider-DK and and Spider-Realistic are more 371

challenging variants of the original Spider dataset. 372

Spider-DK features 535 instances and emphasizes 373

the importance of domain knowledge, while Spider- 374

Realistic consists of 508 instances from Spider with 375

explicit mentions of column names removed. 376

Metric. Following previous studies, we use 377

exact-set-match accuracy (EM) and execution ac- 378

curacy (EX) to evaluate our framework. EM breaks 379

down the predicted SQL statement and the ground- 380

truth into two sequences of SQL clauses, and 381

checks if they are identical after removing the val- 382

ues in the statements. EX compares the execution 383

results of the predicted statement and the ground- 384

truth on the corresponding database. The test suite 385

we use was introduced in (Zhong et al., 2020). 386

Model and hyper-parameter. We use the 0613 387

version of GPT-3.5-turbo-16k as our LLM via the 388

OpenAI API for all experiments, including the 389

baseline methods3. We set the number of chat com- 390

pletion choices n to 1 and the temperature T to 391

0.0. When self-consistency (Wang et al., 2023) is 392

enabled, we set n = 5 and T = 1.0 for SQL gener- 393

ation instead, and leave the parameters unchanged 394

for text generation. 395

Base prompt. We select DAIL-SQL and C3 to 396

generate the initial prompt. DAIL-SQL includes 397

the entire database schema in the prompt, and se- 398

lects few-shot examples based on both the ques- 399

tions and the pre-generated queries. C3 uses the 400

LLM to perform zero-shot schema linking, incorpo- 401

rates guidelines into the conversation history, and 402

features execution-based self-consistency. 403

4.2 Overall Performance 404

Table 1 and 2 display the results of our framework 405

as well as the baseline methods on the datasets. 406

According to the results, our framework brings no- 407

ticeable performance improvement to both prompt 408

designs in terms of execution accuracy. When 409

DAIL-SQL is used as the base prompt, DART- 410

SQL drastically outperforms the baseline method 411

by 15.2% in EM and 10.4% in EX on the Spider- 412

Realistic dataset, while also providing satisfying 413

performance boost on other datasets. When com- 414

bined with C3, DART-SQL achieves 73.8% in EX, 415

outperforming both the baseline and the separated 416

modules in DART-SQL. This indicates that DART- 417

3The baseline methods are rerun with the authors’ open-
source repositories on GPT-3.5, and the results might differ
from those reported in the original paper.

5

Dev Test Realistic DK
Base Prompt: DAIL-SQL EM EX EM EX EM EX EM EX
baseline 62.1 76.2 61.4 76.9 42.1 68.9 41.7 61.5

+SC 62.1 79.4 60.3 79.3 44.1 70.3 41.1 63.6
RW 63.9 79.9 60.3 79.3 47.8 71.5 44.7 66.5

+SC 61.7 80.9 61.2 79.6 42.3 71.7 39.4 64.1
CAP+ER 61.3 84.0 61.0 81.6 55.9 80.7 45.0 70.7

+SC 59.3 83.5 59.9 83.0 53.3 78.1 43.6 72.0
DART-SQL 62.1 83.1 62.0 81.8 57.3 79.3 44.7 71.4

+SC 59.3 83.1 59.9 82.5 53.3 79.3 41.1 70.7

Table 1: Results using DAIL-SQL as the base prompt. SC means self-consistency while RW, CAP, and ER refer to
question rewriting, context-aware prompt generation, and execution-guided refinement introduced in Section 3.1,
3.2, and 3.3 respectively. For each metric on a dataset, the highest result is both bold and underlined, while the
results that are at most 1 percentage lower than it are also marked bold.

Dev Test Realistic DK
Base Prompt: C3 EM EX EM EX EM EX EM EX
baseline 46.4 81.3 46.7 79.7 44.3 77.6 40.6 66.4
RW 47.3 80.9 47.2 79.5 47.4 78.5 39.6 69.0
CAP+ER 47.0 84.4 47.6 83.0 43.9 82.9 37.8 72.1
DART-SQL 46.4 83.0 46.3 82.1 45.7 81.7 38.1 73.8

Table 2: Results using C3 as the base prompt.

SQL has superior skills in utilizing domain knowl-418

edge to solve challenging problems in the datasets.419

On the other hand, self-consistency only boosts420

the performance in EX on the test set of Spider421

when using DAIL-SQL, and negatively affect the422

EM scores on all datasets, which means enabling423

self-consistency is unnecessary for our framework.424

4.3 Analysis of DART-SQL Components425

We conduct an ablation study on the development426

set of Spider with DAIL-SQL as our base prompt,427

and record the results in Table 3. In each experi-428

ment, one or more components of DART-SQL is429

disabled to validate their necessity. In addition, we430

perform a hyper-parameter analysis on our frame-431

work in Figure 2, regarding the modules of table432

content selection and execution-guided refinement.433

4.3.1 Example Selection434

We test the performance of DART-SQL under the435

zero-shot scenario, i.e. all examples of question-436

query pairs offered by DAIL-SQL are removed.437

Here, DART-SQL is used as a replacement of438

DAIL-SQL, providing a 2.4% increase in EX,439

which indicates that the LLM has the ability to440

learn from database patterns and refine the query441

statement based on the execution results. However,442

as the training and development sets both come 443

from the Spider dataset so they share the same de- 444

sign principles and distribution, the removal of few- 445

shot samples still degrade the overall performance, 446

not to mention the drastic decrease of 19.9% in EM 447

scores. 448

As the number of examples in the prompt in- 449

creases, according to Figure 2a, the performance 450

boost depends on S, the number of samples, being 451

insignificant when S > 3. This indicates that to 452

maintain a similar level of performance, we should 453

offer at least 3 examples, achieving 82.6% in EX. 454

4.3.2 Question Rewriting 455

In Table 3, it is evident that the EM score experi- 456

ences a decline of 0.8% when the Question Rewrit- 457

ing module is removed. Although ablation exper- 458

iments are exclusively conducted in the develop- 459

ment set of Spider, referencing Table 1 and 2, we 460

observe that, whether DAIL-SQL or C3 is used as 461

the base prompt, the majority of the four datasets 462

exhibit improvement when this module is utilized. 463

These results indicate that the module effectively 464

mitigates ambiguity in natural language problems 465

by incorporating database content information rele- 466

vant to the original question, aligning the generated 467

SQL statement format more closely with reality, 468

6

consequently leading to increased EM scores. Ad-469

ditionally, Table 1 and 2 reveal some improvement470

in the Question Rewriting module for EX. Through471

these experiments, we establish the efficacy and472

versatility of the Question Rewriting module.473

4.3.3 Context-Aware Prompt Generation474

As can be seen in Table 3, removing the module475

of context-aware prompt generation decreases the476

EX score by 2.7% while giving a similar EM score.477

Without the content samples in each table, the LLM478

is unaware of the data formats in the database un-479

til execution time, and its understanding of the480

database structure is also negatively affected.481

Furthermore, we design experiments to study the482

impact on EX scores of different N , the maximum483

number of rows offered to the LLM in each table484

in the database. According to Figure 2b, even the485

contents of a single row in each table makes a sig-486

nificant contribution of 2.0% to the EX score. As487

N gradually increases, the EX score also increases488

slowly. Since most tables in the Spider dataset489

contain no more than 15 rows, we can infer that490

adding more rows has rather limited impact on the491

performance.492

4.3.4 Execution-Guided Refinement493

In Table 3, when the refinement module is disabled,494

the EX score decreases by 2.5% while the EM495

score maintains a similar level. If we additionally496

switch off the content selection module, the EX497

score further decreases by 0.7%. In other words,498

when the two modules are combined, the overall499

performance boost is larger than those offered by500

them separately. We can conclude that the LLM501

can better utilize the execution results to refine the502

query with the help of database contents.503

We design two sets of experiment on M , the504

number of rows in the execution results and R, the505

maximum number of revisions by the LLM, respec-506

tively. As we can see in Figure 2c, 3 rows are barely507

enough for the self-refinement process, while the508

performance suffers greatly from diminishing re-509

turns when M > 7. As for the maximum number510

of revisions, in Figure 2d, the LLM is capable of511

correcting quite a few mistakes when R = 1, re-512

ceiving another increase of 0.6% if R is increased513

to 3.514

4.4 Result Analysis515

Here we compare the correctness of output results516

of C3 as the baseline method, and DART-SQL with517

Base Prompt: DAIL-SQL Dev (EM) Dev (EX)
DART-SQL 62.1 83.1
w/o RW 61.3 84.0
w/o CAP 62.2 80.4
w/o ER 62.4 80.6
w/o RW+CAP 61.3 80.2
w/o RW+ER 61.9 80.4
w/o CAP+ER 63.9 79.9
w/o DART-SQL (baseline) 62.1 76.2
w/o DAIL-SQL (0-shot) 42.2 78.6

Table 3: Ablation study on the dev split of the Spider
dataset.

C3 as the base prompt design, on the Spider-DK 518

dataset, where these methods achieve 66.4% and 519

73.8% execution accuracy respectively. Table 4 520

displays the results. 521

Overall, our framework addresses 66 errors but 522

introduces 25 new mistakes compared to the base- 523

line method. About half of the fixed errors are 524

wrong values, since C3 provides very limited infor- 525

mation on the database contents via schema linking, 526

while we directly include them in our prompt, in 527

addition to sending feedback to the LLM with exe- 528

cution results. 529

For other errors, condition errors include bugs 530

in the WHERE or HAVING clauses, while table/- 531

column errors refer to mistakes in table or column 532

names, or selecting extra columns. These bugs are 533

much more difficult to fix than value errors, re- 534

quiring deep understanding of the question and the 535

database schema. Thanks to the question rewriting 536

module, the clarity of the question is noticeably 537

improved for the LLM, while the other two mod- 538

ules are helpful in illustrating the structure of the 539

database. As a result, our framework also makes 540

progress in addressing these errors. 541

4.5 Case Study 542

To explore how each module in DART-SQL encour- 543

ages the LLM to generate SQL statements of higher 544

quality, we conduct a case study on the 254th ques- 545

tion in the Spider-Realistic dataset as shown in 546

Figure 3. 547

We first generate an SQL statement with the 548

baseline method, DAIL-SQL. The original ques- 549

tion is included in the prompt, and as a result of 550

the incorrect grammar in addition to the absence 551

of database contents, it presents difficulty for the 552

LLM to understand the question and the database 553

7

78.0

80.0

82.0

84.0

0 1 3 5 9

EX

(a) Number of few-shot sam-
ples (S)

80.2

81.2

82.2

83.2

0 1 3 7 15

EX

(b) Number of rows in the
content samples (N)

82.3

82.6

82.9

83.2

3 7 15

EX

(c) Number of rows in each
execution results (M)

80.5

81.4

82.3

83.2

0 1 3

EX

(d) Maximum number of it-
erations (R)

Figure 2: Hyper-parameter analysis of DART-SQL.

Question: List the name and date the battle that has lost Lettice and HMS Atalanta

Query by DAIL: SELECT T1.name, T1.date FROM battle AS T1
JOIN ship AS T2 ON T1.id = T2.lost_in_battle
WHERE T2.name = "Lettice" AND T2.ship_type = "HMS Atalanta"

Execution Result: None

Rewritten Question: List the name and date of the battle in which Lettice and HMS Atalanta were lost.

Content Samples

(Table: ship)

lost_in_battle id name tonnage ship_type location

8 1 Lettice t Brig English Channel

8 7 HMS Atalanta 225 8 gun Brig Mid-Atlantic

Initial Query by DART: SELECT T1.name, T1.date FROM battle AS T1
JOIN ship AS T2 ON T1.id = T2.lost_in_battle
WHERE T2.name = "Lettice" OR T2.name = "HMS Atalanta"

Execution Result:
('Siege of Constantinople', '1235')
('Siege of Constantinople', '1235')

Revised Query by DART: SELECT T1.name, T1.date FROM battle AS T1
JOIN ship AS T2 ON T1.id T2.lost_in_battle
WHERE T2.name = "Lettice"
INTERSECT SELECT T1.name, T1.date FROM battle AS T1
JOIN ship AS T2 ON T1.id = T2.lost_in_battle
WHERE T2.name = "HMS Atalanta"

Execution Result:
('Siege of Constantinople', '1235')

Figure 3: Case study of DART-SQL. The modified part in the question is marked in dark red. The differences in the
three SQL statements are underlined. For simplicity, we only list some relevant rows in the content samples.

structure. With the DAIL-SQL prompt, the LLM554

mistakenly considers "HMS Atalanta" as a ship555

type, and returns a wrong query.556

In the following step, we use DART-SQL to557

solve the problem. The question is rephrased to558

improve clarity, and parts of the relevant contents559

are integrated into the prompt. As shown in the560

Content Samples table in Figure 3, the two en-561

tity names are actually ship names, and the LLM562

generates an initial query, correctly addressing the563

issue in the baseline method. However, there ex-564

ists one more problem that the generated statement565

allows duplicated rows. Once the LLM receives566

the results, it detects the mistake and corrects it567

by utilizing the INTERSECT operator, as shown568

in the revised query. The final execution result is569

correct and identical to the ground-truth output.570

5 Conclusion571

In this paper, we propose a novel Text-to-SQL572

framework, DART-SQL, which addresses the is-573

sue of insufficient utilization of database contents,574

ambiguity in the natural language question, and575

lack of self-refinement based on execution results.576

Base Prompt: C3 Fixed Introduced
Total 66 25
Values 34 2
Conditions 6 5
Table/column 20 16
Others 6 2

Table 4: Number of errors fixed and introduced by our
framework compared to the baseline method C3, on the
Spider-DK dataset.

Our experiment on the Spider dataset and two of its 577

variants shows significant improvement over DAIL- 578

SQL and C3. Furthermore, we substantiated the 579

validity and generality of our framework through 580

a comprehensive series of experiments. Overall, 581

our study presents a practical solution to the task 582

of Text-to-SQL. It opens up a new research direc- 583

tion for those entering the field, and we anticipate 584

more in-depth exploration in this direction in future 585

research endeavors. 586

8

Limitations587

Due to resource limitations, we are unable to con-588

duct our research on other state-of-the-art LLMs,589

such as GPT-4-turbo, PaLM, and Llama, or on590

other base prompt designs like DIN-SQL. Our feed-591

back to the LLM also only checks a few common592

issues, which can be enhanced with SQL static593

tools. We expect future researches to provide more594

helpful insights on the generated query for the LLM595

to further increase Text-to-SQL performance.596

Ethics Statement597

Our experimentation leverages the OpenAI plat-598

form to assess the efficacy of our approach, uti-599

lizing their GPT-3.5-turbo-16k model. It’s worth600

noting that large models heavily depend on signifi-601

cant computing power, contributing to substantial602

power consumption and increased carbon dioxide603

emissions.604

References605

Shuaichen Chang and Eric Fosler-Lussier. 2023. How606
to prompt llms for text-to-sql: A study in zero-shot,607
single-domain, and cross-domain settings. arXiv608
preprint arXiv:2305.11853.609

Xiang Deng, Ahmed Hassan Awadallah, Christopher610
Meek, Oleksandr Polozov, Huan Sun, and Matthew611
Richardson. 2021. Structure-grounded pretraining612
for text-to-sql. In Proceedings of the 2021 Confer-613
ence of the North American Chapter of the Associ-614
ation for Computational Linguistics: Human Lan-615
guage Technologies. Association for Computational616
Linguistics.617

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,618
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.619
C3: Zero-shot text-to-sql with chatgpt. arXiv620
preprint arXiv:2307.07306.621

Yingwen Fu, Wenjie Ou, Zhou Yu, and Yue Lin. 2023.622
Miga: a unified multi-task generation framework623
for conversational text-to-sql. In Proceedings of624
the AAAI Conference on Artificial Intelligence, vol-625
ume 37, pages 12790–12798.626

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021.627
Exploring underexplored limitations of cross-domain628
text-to-sql generalization.629

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,630
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.631
Text-to-sql empowered by large language mod-632
els: A benchmark evaluation. arXiv preprint633
arXiv:2308.15363.634

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng635
Wang, Zhihua Wen, Kang Yang, and Ting Wang.636

2023. Prompting gpt-3.5 for text-to-sql with de- 637
semanticization and skeleton retrieval. 638

Junyang Huang, Yongbo Wang, Yongliang Wang, Yang 639
Dong, and Yanghua Xiao. 2021. Relation aware 640
semi-autoregressive semantic parsing for nl2sql. 641

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj, Saurabh 642
Vaichal, Chandra Khatri, and Peter Relan. 2020. 643
Bertrand-dr: Improving text-to-sql using a discrimi- 644
native re-ranker. 645

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di- 646
verse demonstrations improve in-context composi- 647
tional generalization. 648

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 649
2023a. Resdsql: Decoupling schema linking and 650
skeleton parsing for text-to-sql. In Proceedings of 651
the AAAI Conference on Artificial Intelligence, vol- 652
ume 37, pages 13067–13075. 653

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, 654
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo 655
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre- 656
trained transformers with graph-aware layers for text- 657
to-sql parsing. arXiv preprint arXiv:2301.07507. 658

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi 659
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu 660
Cao, Ruiying Geng, et al. 2023c. Can llm already 661
serve as a database interface? a big bench for large- 662
scale database grounded text-to-sqls. arXiv preprint 663
arXiv:2305.03111. 664

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu. 665
2023. A comprehensive evaluation of chatgpt’s zero- 666
shot text-to-sql capability. 667

Xiping Liu and Zhao Tan. 2023. Divide and prompt: 668
Chain of thought prompting for text-to-sql. arXiv 669
preprint arXiv:2304.11556. 670

Tanzim Mahmud, K. M. Azharul Hasan, Mahtab 671
Ahmed, and Thwoi Hla Ching Chak. 2015. A rule 672
based approach for nlp based query processing. In 673
2015 2nd International Conference on Electrical In- 674
formation and Communication Technologies (EICT), 675
pages 78–82. 676

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu 677
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and 678
Dragomir Radev. 2023. Enhancing few-shot text- 679
to-sql capabilities of large language models: A 680
study on prompt design strategies. arXiv preprint 681
arXiv:2305.12586. 682

Jeffrey Pennington, Richard Socher, and Christopher D. 683
Manning. 2014. Glove: Global vectors for word 684
representation. In Empirical Methods in Natural 685
Language Processing (EMNLP), pages 1532–1543. 686

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Ti- 687
wari, Gustavo Soares, Christopher Meek, and Sumit 688
Gulwani. 2022. Synchromesh: Reliable code genera- 689
tion from pre-trained language models. 690

9

https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
http://arxiv.org/abs/2109.05157
http://arxiv.org/abs/2109.05157
http://arxiv.org/abs/2109.05157
http://arxiv.org/abs/2304.13301
http://arxiv.org/abs/2304.13301
http://arxiv.org/abs/2304.13301
http://arxiv.org/abs/2108.00804
http://arxiv.org/abs/2108.00804
http://arxiv.org/abs/2108.00804
http://arxiv.org/abs/2002.00557
http://arxiv.org/abs/2002.00557
http://arxiv.org/abs/2002.00557
http://arxiv.org/abs/2212.06800
http://arxiv.org/abs/2212.06800
http://arxiv.org/abs/2212.06800
http://arxiv.org/abs/2212.06800
http://arxiv.org/abs/2212.06800
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
https://doi.org/10.1109/EICT.2015.7391926
https://doi.org/10.1109/EICT.2015.7391926
https://doi.org/10.1109/EICT.2015.7391926
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/2201.11227
http://arxiv.org/abs/2201.11227
http://arxiv.org/abs/2201.11227

Mohammadreza Pourreza and Davood Rafiei. 2023.691
Din-sql: Decomposed in-context learning of692
text-to-sql with self-correction. arXiv preprint693
arXiv:2304.11015.694

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,695
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi696
Zhang, and Zhouhan Lin. 2022. Rasat: Integrating697
relational structures into pretrained seq2seq model698
for text-to-sql. arXiv preprint arXiv:2205.06983.699

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,700
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,701
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.702
A survey on text-to-sql parsing: Concepts, methods,703
and future directions.704

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-705
danau. 2022. Evaluating the text-to-sql capabil-706
ities of large language models. arXiv preprint707
arXiv:2204.00498.708

Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun709
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas710
Pfister. 2023. Sql-palm: Improved large language711
modeladaptation for text-to-sql. arXiv preprint712
arXiv:2306.00739.713

Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min714
Yang, Bailin Wang, Binhua Li, Jian Sun, Fei Huang,715
Luo Si, et al. 2022. Proton: Probing schema linking716
information from pre-trained language models for717
text-to-sql parsing. In Proceedings of the 28th ACM718
SIGKDD Conference on Knowledge Discovery and719
Data Mining, pages 1889–1898.720

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,721
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and722
Denny Zhou. 2023. Self-consistency improves chain723
of thought reasoning in language models.724

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir725
Radev. 2018. Typesql: Knowledge-based type-726
aware neural text-to-sql generation. arXiv preprint727
arXiv:1804.09769.728

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,729
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-730
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir731
Radev. 2019. Spider: A large-scale human-labeled732
dataset for complex and cross-domain semantic pars-733
ing and text-to-sql task.734

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Seman-735
tic evaluation for text-to-sql with distilled test suite.736
In The 2020 Conference on Empirical Methods in737
Natural Language Processing. Association for Com-738
putational Linguistics.739

Victor Zhong, Caiming Xiong, and Richard Socher.740
2017. Seq2sql: Generating structured queries from741
natural language using reinforcement learning. arXiv742
preprint arXiv:1709.00103.743

10

http://arxiv.org/abs/2208.13629
http://arxiv.org/abs/2208.13629
http://arxiv.org/abs/2208.13629
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/2203.11171
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887
http://arxiv.org/abs/1809.08887

A Prompt Examples 744

In the appendix, we demonstrate an example of the prompt in each step used in our framework. 745

A.1 Question Rewriting 746

Listing 1: Example prompt for Question Rewriting.

/* Instructions: 747

Formulate natural language queries for database data based on the 748

provided information. Ensure the questions you rewrite are clear , 749

concise , and aligned with the data specifications within the 750

database. If you think the sentence is clear enough , you can 751

return to the original without rewriting it. 752

753

/*Here are some basic examples: */ 754

755

/* Example 1: Note that rewrite question aligned with the data 756

specifications within the database */ 757

758

/*Given the initial value from Table: 759

[’Table countries: ’, [(1, ’usa ’, 1), (2, ’germany ’, 2), (3, ’france 760

’, 2), (4, ’japan ’, 3), (5, ’italy ’, 2)]]*/ 761

/* Rewrite the following question:What is the total number of car 762

makers in Italy ?*/ 763

/* results:Can you provide information on the number of car 764

manufacturers in \"italy \"?*/ 765

766

... 767

768

/* Example 2: Note that you can not miss the information in original 769

question */ 770

/*Given the initial value from Table: 771

[’Table Dogs: ...]*/ 772

/* Rewrite the following question:What are the dog name , age and 773

weight of the dogs that were abandoned? Note that 1 stands for yes 774

, and 0 stands for no in the tables .*/ 775

/* results:What are the dog name , age and weight of the dogs in the 776

Table \"Dogs\" that were abandoned? Note that 1 stands for yes , 777

and 0 stands for no in the tables .*/ 778

779

... 780

781

/* Example 3: If you think the sentence is clear enough , you can 782

return to the original without rewriting it*/ 783

/*Given the initial value from Table:[’Table cars_data: ’, [(1, ’18’, 784

8, 307.0, ’130’, 3504, 12.0, 1970), (2, ’15’, 8, 350.0, ’165’, 785

3693, 11.5, 1970), (3, ’18’, 8, 318.0, ’150’, 3436, 11.0, 1970), 786

(4, ’16’, 8, 304.0, ’150’, 3433, 12.0, 1970), (5, ’17’, 8, 302.0, 787

’140’, 3449, 10.5, 1970)]] 788

*/ 789

Rewrite the following question: Among the cars that do not have the 790

minimum horsepower , what are the make ids and names of all those 791

11

with less than 4 cylinders ?*/792

/* results:Among the cars that do not have the minimum horsepower ,793

what are the make ids and names of all those with less than 4794

cylinders ?*/795

796

...797

798

/*Here is the input :*/799

/*Given the initial value from Table:[’Table singer: ’, [(1, ’Liliane800

Bettencourt ’, 1944.0 , 30.0, ’France ’), (2, ’Christy Walton ’,801

1948.0 , 28.8, ’United States ’), (3, ’Alice Walton ’, 1949.0 , 26.3,802

’United States ’), (4, ’Iris Fontbona ’, 1942.0 , 17.4, ’Chile ’), (5,803

’Jacqueline Mars ’, 1940.0 , 17.8, ’United States ’)]]804

[’Table song: ’, [(1, \"Do They Know It’s Christmas\", 1, 1094000.0 ,805

1.0), (2, \"F**k It (I Don ’t Want You Back)\", 1, 552407.0 , 1.0),806

(3, ’Cha Cha Slide ’, 2, 351421.0 , 1.0), (4, ’Call on Me’, 4,807

335000.0 , 1.0), (5, ’Yeah ’, 2, 300000.0 , 1.0)]]808

*/809

Rewrite the following question: What are the names of the singers who810

are not French citizens?811

results:812

A.2 Context-Aware Prompt Generation813

We only present examples with DAIL-SQL as the base prompt. For simplicity, only one examples as well814

as the schema and the content of a single table is listed.815

Listing 2: Example prompt with selected contents.

/* Some SQL examples are provided based on similar problems: */816

/* Answer the following: which us city has the highest population817

density */818

SELECT city_name FROM city WHERE population = (SELECT MAX (819

population) FROM city);820

821

-- ...822

823

/* Given the following database schema: */824

CREATE TABLE "countries" (825

"CountryId" INTEGER PRIMARY KEY ,826

"CountryName" TEXT ,827

"Continent" INTEGER ,828

FOREIGN KEY (Continent) REFERENCES continents(ContId)829

)830

831

-- ...832

833

/* With at most 15 example rows in each table: */834

INSERT INTO car_makers (Id, Maker , FullName , Country) VALUES /* 7835

rows omitted */836

(1, ’amc’, ’American␣Motor␣Company ’, ’1’),837

(5, ’ford’, ’Ford␣Motor␣Company ’, ’1’),838

(4, ’gm’, ’General␣Motors ’, ’1’),839

12

(15, ’peugeaut ’, ’Peugeaut ’, ’3’), 840

(20, ’triumph ’, ’Triumph ’, ’7’), 841

(19, ’toyota ’, ’Toyota ’, ’4’), 842

(8, ’nissan ’, ’Nissan␣Motors ’, ’4’), 843

(12, ’mazda’, ’Mazda’, ’4’), 844

(16, ’renault ’, ’Renault ’, ’3’), 845

(23, ’hyundai ’, ’Hyundai ’, ’8’), 846

(18, ’subaru ’, ’Subaru ’, ’4’), 847

(21, ’volvo’, ’Volvo’, ’6’), 848

(6, ’chrysler ’, ’Chrysler ’, ’1’), 849

(22, ’kia’, ’Kia␣Motors ’, ’8’), 850

(14, ’opel’, ’Opel’, ’2’); 851

852

-- ... 853

854

/* Answer the following: Which model has the highest miles per gallon 855

in terms of gasoline consumption? */ 856

SELECT 857

A.3 Execution-Guided Refinement 858

Listing 3: Example prompt for a column-name error.

/* Received the following exception: no such column: Model 859

In fact , the following 2 table(s) contain column "model": model_list , 860

car_names. 861

Please analyze the cause. */ 862

Listing 4: Example prompt for other exceptions.

/* Received the following exception: no such function: YEAR 863

Please analyze the cause. */ 864

Listing 5: Example prompt for a successful execution.

/* Here are the execution results (total 5 rows): 865

(’Balmoor ’, 1) 866

(’Glebe Park ’, 1) 867

(’Recreation Park ’, 1) 868

(’Somerset Park ’, 2) 869

("Stark ’s Park", 1) 870

871

Judge whether the results are correct , and you selected the exact 872

number of columns asked by the question. 873

Output Yes if you agree with both , or No otherwise. Follow the answer 874

with your analysis of the results , and the meanings of the 875

columns you selected and those requested by the question. */ 876

Listing 6: Prompt asking the LLM to refine the query.

/* Revise the SQL query to correct any mistakes: */ 877

SELECT 878

13

