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Abstract

Large Language Model (LLM)-based approach
has become the mainstream for Text-to-SQL
task and achieves remarkable performance. In
this paper, we augment the existing prompt en-
gineering methods by exploiting the database
content and execution feedback. Specifically,
we introduce DART-SQL, which comprises
two key components: (1) Question Rewriting:
DART-SQL rewrites natural language ques-
tions by leveraging database content informa-
tion to eliminate ambiguity. (2) Execution-
Guided Refinement: DART-SQL incorporates
database content information and utilizes the
execution results of the generated SQL to itera-
tively refine the SQL. We apply this framework
to the two LLM-based approaches (DAIL-SQL
and C3) and test it on four widely used bench-
marks (Spider-dev, Spider-test, Realistic and
DK). Experiments show that our framework
for DAIL-SQL and C3 achieves an average im-
provement of 12.41% and 5.38%, respectively,
in terms of the execution accuracy (EX) metric.

1 Introduction

Text-to-SQL is crafted to convert natural language
questions into executable SQL queries, creating a
user-friendly interface for relational databases that
enhances both usability and query efficiency (Wang
et al., 2022). It advances multiple facets of data
management, including database accessibility and
web design flexibility.

Recent researches (Rajkumar et al., 2022; Liu
and Tan, 2023; Nan et al., 2023; ?; Chang and
Fosler-Lussier, 2023; Sun et al., 2023) prominently
focus on the utilization of emerging LLMs, em-
ploying zero-shot and few-shot learning techniques
to harness the knowledge and generalization ca-
pabilities of the LLM. The DIN-SQL approach,
introduced by Pourreza and Rafiei (2023), breaks
down intricate Text-to-SQL task into smaller sub-
tasks, enhancing the performance of the LLM in
the reasoning process. When combined with GPT-

4, DIN-SQL achieves an impressive score of 85.3
on the Spider-test dataset. Building upon the foun-
dations laid by DIN-SQL, Dong et al. (2023) de-
velop C3, facilitated by Clear Prompting (CP),
Calibration with Hints (CH), and Consistent Out-
put (CO). C3 achieves equivalent performance to
DIN-SQL through Zero-Shot Learning. Further
advancements in this domain are exemplified by
the DAIL-SQL approach proposed by Gao et al.
(2023). DAIL-SQL adopts a comprehensive ap-
proach, constructing prompts from three distinct
perspectives: problem description, sample selec-
tion, and sample description. Guided by clear mis-
sion interpretation, high relevance, and a strategic
SC (strategy and clarification) strategy, DAIL-SQL
achieves the noteworthy feat of securing the second-
highest score on the Spider Leaderboard.

However, most popular benchmarks like Spider
(Yu et al., 2019) and WikiSQL (Zhong et al., 2017)
focus on the database schema, with only a few rows
of data in the database (Li et al., 2023c). There ex-
ists a significant gap between academic research
and real-world applications, resulting in existing
approaches that place more emphasis on database
schema over database content information. The
inherent fuzziness in natural language also poses
a challenge when linking the entity names refer-
enced in the question and the corresponding data
in the database. For instance, when addressing spe-
cific conditions like the representation of gender,
database entries may employ diverse representa-
tion such as ‘0’,‘f” and others, whereas natural lan-
guage questions often use the term ‘female’. This
inherent fuzziness introduces uncertainty that can
significantly impact the execution efficiency of the
generated SQL statements. Simultaneously, it is
noteworthy that existing methods often overlook
the valuable feedback generated after the execution
of SQL statements. There is a lot of scope to ex-
ploit the feedback to further fine-tune the generated
SQL statements.



In this work, we present a unified framework,
called DART-SQL!, which is designed to mine
database content information, eradicate ambigu-
ity in natural language questions and iteratively
enhance Text-to-SQL performance by incorporat-
ing execution information. In detail, DART-SQL
leverages the power of database content informa-
tion through a multifaceted approach. Initially, it
rewrites natural language questions by seamlessly
integrating database content information, ensur-
ing the revised questions align with the database
and eliminate ambiguity. Additionally, DART-
SQL introduces database content data into prompts,
thereby enhancing Text-to-SQL performance. Fi-
nally, DART-SQL employs an Al agent to evaluate
and analyze the results of SQL execution, progres-
sively refining the SQL statement with the feedback
from the Al agent. Through this iterative correc-
tion process, we achieve the self-training effect, en-
hancing the overall efficacy of DART-SQL. Experi-
ments show that our framework for DAIL-SQL and
C3 achieves an average improvement of 12.41%
and 5.38%, respectively, in terms of the EX met-
ric. Besides, Our framework DART-SQL achieves
an EX score of 82.5 when applied to DAIL-SQL,
placing sixth on the Spider Leaderboard?.

In summary, our main contributions are:

* We observe that both existing research and
benchmarks have very few database content
information, which differ from real-world ap-
plication significantly .

¢ We introduce DART-SQL, a solution that not
only tackles the three aforementioned short-
comings but also effectively enhances Text-to-
SQL performance.

» Extensive experiments demonstrate that our
method can be built on top of a range of exist-
ing strong methods and improve their perfor-
mance on Text-to-SQL task

2 Related Work

2.1 Template Matching

In the early stages, Text-to-SQL is approached us-
ing rule-based approach (Mahmud et al., 2015).

'DART-SQL: Database-Aware Refinement and Transfor-
mation for Text-to-SQL with Large Language Models

’The top five methods on Spider Leaderboard are based on
GPT-4. Due to resource limitations, we apply GPT-3.5 in our
study, which hinders the performance of our framework.

Methods in this category utilize the strong rule-
based feature of the SQL to design different tem-
plates for different query problems, then select the
template according to the problem, and then derive
the corresponding template SQL statements.

2.2 Seq2Seq Models

Owing to the inherent alignment between Text-to-
SQL task and the N -> M machine translation task,
many researchers adopt Seq2Seq models to address
Text-to-SQL task. They first build an encoder to
understand the database table structure and the in-
put user query problem, such as the LSTM-based
method (Yu et al., 2018), and the Transformer-
based method (Kelkar et al., 2020), and then use a
decoder to predict the target SQL statement, like
the sketch-based method (Yu et al., 2018), and the
generation-based method (Huang et al., 2021).

2.3 Pre-trained Models

The utilization of pre-trained language models can
augment the parsing capability of Text-to-SQL. As
the textual data, tabular data and SQL queries are
heterogeneous, it is non-trivial but important to de-
velop a joint reasoning framework over the three
types of data (Qin et al., 2022). Qi et al. (2022)
incorporate various associations such as schema
encoding, schema linking, and syntactic dependen-
cies of a problem into a unified relational repre-
sentation by constructing ternary groups. Li et al.
(2023a) proposes a ranking-enhanced encoding and
skeleton-aware decoding framework to decouple
the schema linking and the skeleton parsing . The
MIGA framework, proposed by Fu et al. (2023),
introduces a two-stage unified multi-task genera-
tion approach that promotes compatibility between
dialogue-based Text-to-SQL methods and genera-
tive pre-trained language models. Li et al. (2023b)
introduce GRAPHIX-TS, which excels in capturing
relational structural information while preserving
the robust contextual encoding abilities inherited
from the pre-trained T5 model.

2.4 Large Language Models

LLMs have excellent performance and generaliza-
tion ability, and their outstanding performance in
zero-shot and few-shot learning has attracted the at-
tention of the industry. Liu et al. (2023) provide an
initial comprehensive analysis of ChatGPT’s Text-
to-SQL capabilities, revealing its powerful capa-
bilities in Text-to-SQL. Recent researches have fo-
cused on exploring the appropriate form of prompt



organization to maximize the performance of large
models in Text-to-SQL.

2.4.1 Table Representation

The table and column name associated with the
entered user query question is an important part
of the prompt in Text-to-SQL. The key to table
representation is to select only the database ta-
bles and columns that will be used to generate
the target SQL. The study by Pourreza and Rafiei
(2023) focuses on identifying and extracting perti-
nent columns and tables from the database schema
based on a chain-of-thought template. Meanwhile,
Dong et al. (2023) simplify the table representation
by schema linking which recalls relevant tables and
columns filters out irrelevant tables and columns,
thereby reducing the number of tokens required for
hinting and improving context clarity. Also, how
database information is displayed in the prompt
can affect the performance of the model. For ex-
ample, Nan et al. (2023) find that describing table
structure information as CREATE statements can
yield improvements.

2.4.2 Demonstration Selection

The demonstration provided in the input prompt
can improve the performance of the LLM in Text-
to-SQL. Poesia et al. (2022) point out that presen-
tation retrieval based on similarity is effective in a
cross-domain environment, while Levy et al. (2023)
demonstrate that diverse demonstrations benefit in-
context compositional generalization. In terms of
the basis for selecting demonstration, it is mainly
divided into those based on the similarity of the
input question (Guo et al., 2023), those based on
the output SQL (Nan et al., 2023), and those that
consider both the input question and the output
SQL (Gao et al., 2023).

3 Methodology

In this section, we present our method that lever-
ages database contents to enhance the natural lan-
guage questions and to provide the LLM with feed-
back using execution results. This enables the
model to learn from its own mistakes and improve
its SQL generation. Our framework can be applied
on top of various existing prompt designs to im-
prove the performance. These prompts usually con-
sist of at least two components: the schema of the
database and a few examples of natural language
questions along with their corresponding SQL SE-
LECT statements. We omit the details of these

prompt designs as they are not the main focus of
our study. Readers can refer to the related works
on 2.4 for more information.

In a nutshell, our framework consists of the fol-
lowing steps: @Question Rewriting: We choose
several rows from the table in the corresponding
database related to the question as relevant database
content information to rewrite the natural language
question. @Context-Aware Prompt Generation:
For each table, we select a few rows relevant to
the question, and sample some rows from the re-
maining ones. Such content information is then
combined with an initial prompt generated by an ex-
isting prompt design to form a new context-aware
prompt. @Execution-Guided Refinement: The
LLM takes the finalized context-aware prompt as
input, and generates an SQL query. Our framework
then executes it locally and offers feedback to assist
the LLM to refine the statement.

3.1 Question Rewriting

To eliminate ambiguity in natural language ques-
tions and gain deeper insights into the database,
we introduce an additional stage “Question Rewrit-
ing” to the conventional prompting method, which
optimizes the natural language questions by incor-
porating database information.

To clarify the “Question Rewriting” task for the
LLM and make effective use of the database con-
tent information, we design the following prompt:

Instruction. In this section, we give a clear defi-
nition of the "Question Rewriting" task. The details
are as follows: "Formulate natural language queries
for database data based on the provided informa-
tion. Ensure the questions you rewrite are clear,
concise, and aligned with the data specifications
within the database. If you think the sentence is
clear enough, you can return to the original without
rewriting it."

Examples. In this section, we summarize the
three specifications for the model to follow when
rewriting questions and illustrate them with con-
crete examples. Firstly, we instruct the model
on how to rewrite questions exhibiting fuzziness
through the specification 1. Secondly, Specification
2 serves as a reminder for the model not to omit
key information during the rewrite process. For
instance, database content information like "Note
that 1 stands for yes, and O stands for NO in the
tables" in the original question might be omitted
after rewriting. Finally, through Specification 3, we
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Figure 1: Overview of DART-SQL.

ensure that the model avoids making meaningless
or potentially harmful modifications to questions
that are already sufficiently clear.

Input. In this section, we take the initial natural
language question and related database content in-
formation as input. Previous methods focused on
schema and structure but neglected effective use
of database content. To address this, we add the
first K (due to prompt length limitations, we set
K = 5) data information for all tables correspond-
ing to the question. Surprisingly, thanks to the
LLMs’ summarization and generalization capabili-
ties, the model mostly identified the relevant table
and refined the problem based on specific database
statements, ensuring consistency in entity names,
cases, abbreviations, and filter criteria for attribute
names.

The Question Rewriting module greatly reduces
problem ambiguity. Due to the limited context
length of the LLM, the original Text-to-SQL task
prompt includes only limited database information.
By introducing the additional Question Rewriting
task, we can effectively incorporate underutilized
database content information into the natural lan-
guage problems during rewriting. This allows for
the utilization of more database information within
the constraints of a limited context length.

3.2 Context-Aware Prompt Generation

After rewriting the question, the initial prompt can
be generated using an existing prompt design. Our
framework then refines the prompt to become the
context-aware prompt by adding additional por-
tions of the table content Intuitively, this refinement
aims to reduce value errors by providing the LLM
with examples of the data format in the database.
Moreover, these data samples also complement the
database schema, assisting the LLM to understand
the database structure.

At most N rows of each table are included in the

prompt. If a table has more than N rows, half of
the rows are selected based on their relevance to the
question, and the other half are sampled from the
remaining rows. We set N = 15 for our method.
To calculate the relevance of a row inside a
table to a question ();, we first convert the row
into a JSON dictionary D;, with column names
as keys and the cell contents as values. The
dictionary and the question are tokenized respec-
tively, resulting in D; = {Dj1,..., D;p, } and

Qi = {Qi1, ., Qj,|}. Next, we compute the
sentence embeddings of D; and @);:
|Ds]
E(D; Gl Ve (
1 Qi
B(Qi) = P ZGIoVe Qir)

1Qil

where GloVe(z) refers to the GloVe embedding
(Pennington et al., 2014) of token x. Finally, the
relevance is calculated as the cosine similarity be-
tween E(D;) and E(Q;).

3.3 Execution-Guided Refinement

After receiving the processed prompt, the LLM
then outputs a single SELECT statement to answer
the question. We then start a self-refinement proce-
dure that executes the statement on the database and
ask the LLM to analyze the result, until it thinks
the results are correct or the procedure is repeated
3 times. The full process is shown in Algorithm 1.

In the refinement process, the SELECT state-
ment is executed. If the execution is successful, the
results (truncated at M = 15 rows) are analyzed
by the LLM. Otherwise, the LLM receives the ex-
ception information and outputs a new statement
addressing the issue. If the exception is related to
column names, including ambiguity and no-such-



Algorithm 1 Self-Refinement Algorithm
Input: initial SELECT statement SQ) Lg
Output: refined statement SQ L
SQL + SQLyg
fori=1to3do
clear the interaction history, excluding the
prompt and the latest generated SQL
res < Execute(SQLy)
if res is a column-name error then
¢ < wrong column name in res
msg < list of tables containing c
SQL < LLM-SQL(msg,res)
else if res is an exception then
SQL < LLM-SQL(res)
else > res stores execution results
keep at most M rows in res
flag < LLM-Judge(res)
if flag == True then
return SQL
else
SQL <+ LLM-SQL()
end if
end if
end for
return SQL

column errors, we additionally provide the LLM
with a list of tables containing the column.

Furthermore, the LLLM is forbidden from us-
ing certain keywords including LEFT JOIN and
SELECT =. If the output SQL statement contains
such keywords, the LLM is immediately asked to
regenerate it. The rationale is that upon manually
analyzing the final outputs, most statements with
these keywords produce incorrect results. This sug-
gests that the LLMs we test are not proficient at
utilizing these SQL features.

4 Experiments

4.1 Experimental Setup

Dataset. We evaluate DART-SQL on three datasets,
Spider (Yu et al., 2019), Spider-DK (Gan et al.,
2021), and Spider-Realistic (Deng et al., 2021).
Spider is a large-scale cross-domain Text-to-SQL
dataset. It comprises 10181 annotated ques-
tions, corresponding to 5693 distinct complex SQL
queries and 200 databases with multiple tables. The
training, development, and test sets of Spider in-
clude 8659, 1034, and 2147 examples and 146, 20,
and 40 databases respectively. Our approach se-

lects pertinent few-shot samples from the training
set. Spider-DK and and Spider-Realistic are more
challenging variants of the original Spider dataset.
Spider-DK features 535 instances and emphasizes
the importance of domain knowledge, while Spider-
Realistic consists of 508 instances from Spider with
explicit mentions of column names removed.

Metric. Following previous studies, we use
exact-set-match accuracy (EM) and execution ac-
curacy (EX) to evaluate our framework. EM breaks
down the predicted SQL statement and the ground-
truth into two sequences of SQL clauses, and
checks if they are identical after removing the val-
ues in the statements. EX compares the execution
results of the predicted statement and the ground-
truth on the corresponding database. The test suite
we use was introduced in (Zhong et al., 2020).

Model and hyper-parameter. We use the 0613
version of GPT-3.5-turbo-16k as our LLM via the
OpenAl API for all experiments, including the
baseline methods®. We set the number of chat com-
pletion choices n to 1 and the temperature 7' to
0.0. When self-consistency (Wang et al., 2023) is
enabled, we setn = 5 and T' = 1.0 for SQL gener-
ation instead, and leave the parameters unchanged
for text generation.

Base prompt. We select DAIL-SQL and C3 to
generate the initial prompt. DAIL-SQL includes
the entire database schema in the prompt, and se-
lects few-shot examples based on both the ques-
tions and the pre-generated queries. C3 uses the
LLM to perform zero-shot schema linking, incorpo-
rates guidelines into the conversation history, and
features execution-based self-consistency.

4.2 Overall Performance

Table 1 and 2 display the results of our framework
as well as the baseline methods on the datasets.
According to the results, our framework brings no-
ticeable performance improvement to both prompt
designs in terms of execution accuracy. When
DAIL-SQL is used as the base prompt, DART-
SQL drastically outperforms the baseline method
by 15.2% in EM and 10.4% in EX on the Spider-
Realistic dataset, while also providing satisfying
performance boost on other datasets. When com-
bined with C3, DART-SQL achieves 73.8% in EX,
outperforming both the baseline and the separated
modules in DART-SQL. This indicates that DART-

3The baseline methods are rerun with the authors’ open-
source repositories on GPT-3.5, and the results might differ
from those reported in the original paper.



Dev Test Realistic DK
Base Prompt: DAIL-SQL | EM EX | EM EX | EM EX | EM EX
baseline 62.1 762 | 614 769|421 689 |41.7 615
+SC | 62.1 794 | 60.3 793|441 703 |41.1 63.6
RW 639 799|603 793|478 715|447 66.5
+SC | 61.7 809 | 61.2 79.6 | 423 71.7 | 394 64.1
CAP+ER 613 84.0 | 61.0 816|559 80.7 | 45.0 70.7
+SC | 59.3 835|599 83.0 | 533 781|436 72.0
DART-SQL 62.1 83.1|62.0 818|573 793|447 714
+SC | 59.3 83.1|599 825|533 793 |41.1 707

Table 1: Results using DAIL-SQL as the base prompt. SC means self-consistency while RW, CAP, and ER refer to
question rewriting, context-aware prompt generation, and execution-guided refinement introduced in Section 3.1,
3.2, and 3.3 respectively. For each metric on a dataset, the highest result is both bold and underlined, while the
results that are at most 1 percentage lower than it are also marked bold.

Dev Test Realistic DK
Base Prompt: C3 | EM EX | EM EX | EM EX | EM EX
baseline 464 813|467 79.7 | 443 77.6| 40.6 664
RW 473 809 | 472 795|474 785 | 39.6 69.0
CAP+ER 47.0 844 | 47.6 83.0 | 439 829|378 72.1
DART-SQL 464 830|463 821|457 81.7|38.1 738

Table 2: Results using C3 as the base prompt.

SQL has superior skills in utilizing domain knowl-
edge to solve challenging problems in the datasets.
On the other hand, self-consistency only boosts
the performance in EX on the test set of Spider
when using DAIL-SQL, and negatively affect the
EM scores on all datasets, which means enabling
self-consistency is unnecessary for our framework.

4.3 Analysis of DART-SQL Components

We conduct an ablation study on the development
set of Spider with DAIL-SQL as our base prompt,
and record the results in Table 3. In each experi-
ment, one or more components of DART-SQL is
disabled to validate their necessity. In addition, we
perform a hyper-parameter analysis on our frame-
work in Figure 2, regarding the modules of table
content selection and execution-guided refinement.

4.3.1 Example Selection

We test the performance of DART-SQL under the
zero-shot scenario, i.e. all examples of question-
query pairs offered by DAIL-SQL are removed.
Here, DART-SQL is used as a replacement of
DAIL-SQL, providing a 2.4% increase in EX,
which indicates that the LLM has the ability to
learn from database patterns and refine the query
statement based on the execution results. However,

as the training and development sets both come
from the Spider dataset so they share the same de-
sign principles and distribution, the removal of few-
shot samples still degrade the overall performance,
not to mention the drastic decrease of 19.9% in EM
scores.

As the number of examples in the prompt in-
creases, according to Figure 2a, the performance
boost depends on .S, the number of samples, being
insignificant when S > 3. This indicates that to
maintain a similar level of performance, we should
offer at least 3 examples, achieving 82.6% in EX.

4.3.2 Question Rewriting

In Table 3, it is evident that the EM score experi-
ences a decline of 0.8% when the Question Rewrit-
ing module is removed. Although ablation exper-
iments are exclusively conducted in the develop-
ment set of Spider, referencing Table 1 and 2, we
observe that, whether DAIL-SQL or C3 is used as
the base prompt, the majority of the four datasets
exhibit improvement when this module is utilized.
These results indicate that the module effectively
mitigates ambiguity in natural language problems
by incorporating database content information rele-
vant to the original question, aligning the generated
SQL statement format more closely with reality,



consequently leading to increased EM scores. Ad-
ditionally, Table 1 and 2 reveal some improvement
in the Question Rewriting module for EX. Through
these experiments, we establish the efficacy and
versatility of the Question Rewriting module.

4.3.3 Context-Aware Prompt Generation

As can be seen in Table 3, removing the module
of context-aware prompt generation decreases the
EX score by 2.7% while giving a similar EM score.
Without the content samples in each table, the LLM
is unaware of the data formats in the database un-
til execution time, and its understanding of the
database structure is also negatively affected.

Furthermore, we design experiments to study the
impact on EX scores of different NV, the maximum
number of rows offered to the LLM in each table
in the database. According to Figure 2b, even the
contents of a single row in each table makes a sig-
nificant contribution of 2.0% to the EX score. As
N gradually increases, the EX score also increases
slowly. Since most tables in the Spider dataset
contain no more than 15 rows, we can infer that
adding more rows has rather limited impact on the
performance.

4.3.4 Execution-Guided Refinement

In Table 3, when the refinement module is disabled,
the EX score decreases by 2.5% while the EM
score maintains a similar level. If we additionally
switch off the content selection module, the EX
score further decreases by 0.7%. In other words,
when the two modules are combined, the overall
performance boost is larger than those offered by
them separately. We can conclude that the LLM
can better utilize the execution results to refine the
query with the help of database contents.

We design two sets of experiment on M, the
number of rows in the execution results and R, the
maximum number of revisions by the LLM, respec-
tively. As we can see in Figure 2c, 3 rows are barely
enough for the self-refinement process, while the
performance suffers greatly from diminishing re-
turns when M > 7. As for the maximum number
of revisions, in Figure 2d, the LLM is capable of
correcting quite a few mistakes when R = 1, re-
ceiving another increase of 0.6% if R is increased
to 3.

4.4 Result Analysis

Here we compare the correctness of output results
of C3 as the baseline method, and DART-SQL with

Base Prompt: DAIL-SQL | Dev (EM) Dev (EX)
DART-SQL 62.1 83.1
w/o RW 61.3 84.0
w/o CAP 62.2 80.4
w/o ER 62.4 80.6
w/o RW+CAP 61.3 80.2
w/o RW+ER 61.9 80.4
w/o CAP+ER 63.9 79.9
w/o DART-SQL (baseline) 62.1 76.2
w/o DAIL-SQL (0-shot) 42.2 78.6

Table 3: Ablation study on the dev split of the Spider
dataset.

C3 as the base prompt design, on the Spider-DK
dataset, where these methods achieve 66.4% and
73.8% execution accuracy respectively. Table 4
displays the results.

Overall, our framework addresses 66 errors but
introduces 25 new mistakes compared to the base-
line method. About half of the fixed errors are
wrong values, since C3 provides very limited infor-
mation on the database contents via schema linking,
while we directly include them in our prompt, in
addition to sending feedback to the LLM with exe-
cution results.

For other errors, condition errors include bugs
in the WHERE or HAVING clauses, while table/-
column errors refer to mistakes in table or column
names, or selecting extra columns. These bugs are
much more difficult to fix than value errors, re-
quiring deep understanding of the question and the
database schema. Thanks to the question rewriting
module, the clarity of the question is noticeably
improved for the LLM, while the other two mod-
ules are helpful in illustrating the structure of the
database. As a result, our framework also makes
progress in addressing these errors.

4.5 Case Study

To explore how each module in DART-SQL encour-
ages the LLM to generate SQL statements of higher
quality, we conduct a case study on the 254th ques-
tion in the Spider-Realistic dataset as shown in
Figure 3.

We first generate an SQL statement with the
baseline method, DAIL-SQL. The original ques-
tion is included in the prompt, and as a result of
the incorrect grammar in addition to the absence
of database contents, it presents difficulty for the
LLM to understand the question and the database
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Question: List the name and date the battle that has lost Lettice and HMS Atalanta

Query by DAIL: SELECT Tl.name, Tl.date FROM battle AS T1 X Execution Result: None
JOIN ship AS T2 ON T1.id = T2.lost_in_battle

WHERE T2.name = "Lettice" AND T2.ship type = "HMS Atalanta"

Rewritten Question: List the name and date of the battle in which Lettice and HMS Atalanta were lost.

lost_in_battle id name tonnage ship_type location
Content Samples s 1 Lettice t Brig English Channel
(Table: ship)
8 7 HMS Atalanta 225 8 gun Brig Mid-Atlantic

JOIN ship AS T2 ON T1.id = T2.lost_in_battle
WHERE T2.name = "Lettice" OR T2.name = "HMS Atalanta"

JOIN ship AS T2 ON T1.id T2.lost_in_battle

WHERE T2.name = "Lettice"

INTERSECT SELECT Tl.name, Tl.date FROM battle AS T1
JOIN ship AS T2 ON T1.id = T2.lost_in_battle

WHERE T2.name = "HMS Atalanta"

Initial Query by DART: SELECT Til.name, Tl.date FROM battle AS T1

Revised Query by DART: SELECT Tl.name, Tl.date FROM battle AS T1

X Execution Result:
('Siege of Constantinople',
('Siege of Constantinople',

'1235"')
'1235"')

/ Execution Result:

('Siege of Constantinople', '1235')

Figure 3: Case study of DART-SQL. The modified part in the question is marked in dark red. The differences in the
three SQL statements are underlined. For simplicity, we only list some relevant rows in the content samples.

structure. With the DAIL-SQL prompt, the LLM
mistakenly considers "HMS Atalanta" as a ship
type, and returns a wrong query.

In the following step, we use DART-SQL to
solve the problem. The question is rephrased to
improve clarity, and parts of the relevant contents
are integrated into the prompt. As shown in the
Content Samples table in Figure 3, the two en-
tity names are actually ship names, and the LLM
generates an initial query, correctly addressing the
issue in the baseline method. However, there ex-
ists one more problem that the generated statement
allows duplicated rows. Once the LLM receives
the results, it detects the mistake and corrects it
by utilizing the INTERSECT operator, as shown
in the revised query. The final execution result is
correct and identical to the ground-truth output.

5 Conclusion

In this paper, we propose a novel Text-to-SQL
framework, DART-SQL, which addresses the is-
sue of insufficient utilization of database contents,
ambiguity in the natural language question, and
lack of self-refinement based on execution results.

Base Prompt: C3 | Fixed Introduced
Total 66 25
Values 34 2
Conditions 6 5
Table/column 20 16
Others 6 2

Table 4: Number of errors fixed and introduced by our
framework compared to the baseline method C3, on the
Spider-DK dataset.

Our experiment on the Spider dataset and two of its
variants shows significant improvement over DAIL-
SQL and C3. Furthermore, we substantiated the
validity and generality of our framework through
a comprehensive series of experiments. Overall,
our study presents a practical solution to the task
of Text-to-SQL. It opens up a new research direc-
tion for those entering the field, and we anticipate
more in-depth exploration in this direction in future
research endeavors.



Limitations

Due to resource limitations, we are unable to con-
duct our research on other state-of-the-art LLLMs,
such as GPT-4-turbo, PalLM, and Llama, or on
other base prompt designs like DIN-SQL. Our feed-
back to the LLLM also only checks a few common
issues, which can be enhanced with SQL static
tools. We expect future researches to provide more
helpful insights on the generated query for the LLM
to further increase Text-to-SQL performance.

Ethics Statement

Our experimentation leverages the OpenAl plat-
form to assess the efficacy of our approach, uti-
lizing their GPT-3.5-turbo-16k model. It’s worth
noting that large models heavily depend on signifi-
cant computing power, contributing to substantial
power consumption and increased carbon dioxide
emissions.
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A Prompt Examples
In the appendix, we demonstrate an example of the prompt in each step used in our framework.

A.1 Question Rewriting

Listing 1: Example prompt for Question Rewriting.

/*Instructions:

Formulate natural language queries for database data based on the
provided information. Ensure the questions you rewrite are clear,
concise, and aligned with the data specifications within the
database. If you think the sentence is clear enough, you can
return to the original without rewriting it.

/*Here are some basic examples: =*/

/*Example 1: Note that rewrite question aligned with the data
specifications within the databasex/

/*Given the initial value from Table:

[’Table countries: ’, [(1, ’usa’, 1), (2, ’germany’, 2), (3, ’france
', 2), (4, ’japan’, 3), (5, ’italy’, 2)11x/

/*Rewrite the following question:What is the total number of car
makers in Italy?*/

/*results:Can you provide information on the number of car
manufacturers in \"italy\"?x/

/*Example 2: Note that you can not miss the information in original
questionx*/

/*Given the initial value from Table:

[’Table Dogs: ...1x/

/*Rewrite the following question:What are the dog name, age and
weight of the dogs that were abandoned? Note that 1 stands for yes
, and @ stands for no in the tables.*/

/*results:What are the dog name, age and weight of the dogs in the
Table \"Dogs\"” that were abandoned? Note that 1 stands for yes,
and @ stands for no in the tables.x*/

/*Example 3: If you think the sentence is clear enough, you can
return to the original without rewriting it=*/

/*Given the initial value from Table:[’Table cars_data: ’, [(1, ’187,
8, 307.0, ’130’, 3504, 12.0, 1970), (2, ’15’, 8, 350.0, ’165’,
3693, 11.5, 1970), (3, ’18’, 8, 318.0, ’150’, 3436, 11.0, 1970),

(4, ’16’, 8, 304.0, ’150’, 3433, 12.0, 1970), (5, ’17’, 8, 302.0,
140, 3449, 10.5, 1970)1]

*/

Rewrite the following question: Among the cars that do not have the
minimum horsepower , what are the make ids and names of all those
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with less than 4 cylinders ?x/

/*results:Among the cars that do not have the minimum horsepower ,
what are the make ids and names of all those with less than 4
cylinders ?x/

/*Here is the input:*/
/*Given the initial value from Table:[’Table singer: ’, [(1, ’Liliane
Bettencourt’, 1944.0, 30.0, ’France’), (2, ’Christy Walton’,
1948.0, 28.8, ’United States’), (3, ’'Alice Walton’, 1949.0, 26.3,
’United States’), (4, ’Iris Fontbona’, 1942.0, 17.4, ’Chile’), (5,
’Jacqueline Mars’, 1940.0, 17.8, ’United States’)]]

[’Table song: ’, [(1, \"Do They Know It’s Christmas\”, 1, 1094000.0,
1.0), (2, \"F*xk It (I Don’t Want You Back)\"”, 1, 552407.0, 1.0),
(3, ’Cha Cha Slide’, 2, 351421.0, 1.0), (4, ’'Call on Me’, 4,
335000.0, 1.0), (5, ’Yeah’, 2, 300000.0, 1.0)1]

*/

Rewrite the following question: What are the names of the singers who

are not French citizens?

results:

A.2 Context-Aware Prompt Generation

We only present examples with DAIL-SQL as the base prompt. For simplicity, only one examples as well
as the schema and the content of a single table is listed.

Listing 2: Example prompt with selected contents.

/* Some SQL examples are provided based on similar problems: *x/

/* Answer the following: which us city has the highest population
density =*/

SELECT city_name FROM city WHERE population = ( SELECT MAX (
population ) FROM city );

/* Given the following database schema: =*/
CREATE TABLE "countries" (
"CountryId” INTEGER PRIMARY KEY,
"CountryName" TEXT,
"Continent"” INTEGER,
FOREIGN KEY (Continent) REFERENCES continents(ContId)

/* With at most 15 example rows in each table: =*/
INSERT INTO car_makers (Id, Maker, FullName, Country) VALUES /% 7
rows omitted =/

(1, ’amc’, ’American_Motor_Company’, ’'17),
(5, ’ford’, ’Ford_Motor_Company’, ’1’),
(4, ’gm’, ’General_Motors’, ’17),
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(15, ’peugeaut’, ’Peugeaut’, ’3’),
(20, ’triumph’, ’Triumph’, ’7’),

(19, ’toyota’, ’'Toyota’, ’'4’),

(8, ’nissan’, ’Nissan_Motors’, ’4’),
(12, ’mazda’, ’'Mazda’, ’'4’),

(16, ’renault’, ’Renault’, ’3’),
(23, ’hyundai’, ’Hyundai’, ’8’),
(18, ’subaru’, ’Subaru’, ’4’),

(21, ’volvo’, ’'Volvo’, ’6’),

(6, ’'chrysler’, ’Chrysler’, 1),
(22, ’kia’, ’Kia_Motors’, ’8’),

(14, ’opel’, ’Opel’, ’2’);

/* Answer the following: Which model has the highest miles per gallon
in terms of gasoline consumption? =*/
SELECT

A.3 Execution-Guided Refinement

Listing 3: Example prompt for a column-name error.

/* Received the following exception: no such column: Model

In fact, the following 2 table(s) contain column "model”: model_list,
car_names.

Please analyze the cause. */

Listing 4: Example prompt for other exceptions.

/* Received the following exception: no such function: YEAR
Please analyze the cause. */

Listing 5: Example prompt for a successful execution.

/* Here are the execution results (total 5 rows):
(’Balmoor’, 1)

(’Glebe Park’, 1)

(’Recreation Park’, 1)

(’Somerset Park’, 2)

("Stark’s Park"”, 1)

Judge whether the results are correct, and you selected the exact
number of columns asked by the question.

Output Yes if you agree with both, or No otherwise. Follow the answer
with your analysis of the results, and the meanings of the
columns you selected and those requested by the question. */

Listing 6: Prompt asking the LLM to refine the query.

/* Revise the SQL query to correct any mistakes: =*/
SELECT
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