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Figure 1. VideoHandles edits 3D object composition in videos of static scenes. Solid axes represent the original 3D position and dotted
axes the user-provided target position. The edit plausibly updates effects like the reflection of the wine glass and handles disocclusions like
the lamp behind the book pile that is exposed by the edit. In addition to generated videos, we can also edit real (non-generated) videos by
inverting the video into its corresponding latent, as shown on the right.

Abstract

Generative methods for image and video editing use gener-001
ative models as priors to perform edits despite incomplete002
information, such as changing the composition of 3D ob-003
jects shown in a single image. Recent methods have shown004
promising composition editing results in the image setting,005
but in the video setting, editing methods have focused on006
editing object’s appearance and motion, or camera motion,007
and as a result, methods to edit object composition in videos008
are still missing. We propose VideoHandles as a method for009
editing 3D object compositions in videos of static scenes010
with camera motion. Our approach allows editing the 3D011
position of a 3D object across all frames of a video in a tem-012
porally consistent manner. This is achieved by lifting inter-013
mediate features of a generative model to a 3D reconstruc-014
tion that is shared between all frames, editing the recon-015
struction, and projecting the features on the edited recon-016

struction back to each frame. To the best of our knowledge, 017
this is the first generative approach to edit object composi- 018
tions in videos. Our approach is simple and training-free, 019
while outperforming state-of-the-art image editing base- 020
lines. 021

1. Introduction 022

Diffusion models and flow-based models are currently the 023
standard for high-quality text-to-image generation. Text- 024
to-video diffusion/flow-based models lag behind in quality, 025
but have recently seen big improvements. The prevalent 026
text-based control is easy to use, but impractical for some 027
types of edits, such as edits of the object composition in a 028
scene: specifying the position of an object with text is in- 029
accurate and iterative editing workflows are not supported. 030
Several recent methods address this issue in the image do- 031
main by proposing different types of iterative image editing 032
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methods. These either focus on editing the appearance of033
objects [4, 13, 46], or their spatial composition [1, 3, 28].034
In the video domain, current methods support editing only035
the appearance [6, 22] while lacking methods to edit spa-036
tial object compositions, for example, editing the 3D po-037
sition of objects in generated videos, as shown in Figure 1.038
Editing the object composition in a video introduces several039
challenges: a plausible editing output requires generating040
details such as shadows and lighting that may have changed041
due to the edited composition; furthermore, the edited video042
needs to preserve the identity of the original objects and043
should adhere to an edit control manipulated by the user.044
Finally, the edit needs to be applied to all video frames in a045
temporally consistent manner.046

We propose VideoHandles as a generative approach to047
edit the object composition in a video of a static scene. Our048
approach allows editing the 3D position of a 3D object in049
a video, resulting in a plausible, temporally consistent edit050
that preserves the identity of the original object. To the best051
of our knowledge, ours is the first generative approach that052
allows editing the object composition in a video. Given a053
pretrained flow-based video generative model, we present a054
novel method to edit the intermediate features from the gen-055
erative model’s network in a temporally consistent manner.056
Specifically, we lift the intermediate features of each frame057
to a common 3D reconstruction, effectively treating them058
as latent textures. We then edit the 3D location of an object059
using 3D translations or rotations, and project the features060
back to their corresponding frames. We use such projected061
features as guidance during the generative process to cre-062
ate a plausible edited video. Editing of real (non-generated)063
videos is supported by first inverting them into the random064
noise. Our approach is simple and does not require any065
training or finetuning that risks biasing the distribution of066
the generative model.067

We evaluate our method on several generated and cap-068
tured videos. As there are no existing methods that are069
specialized to editing the 3D object composition in videos,070
we compare to several image editing baselines that can be071
applied in a per-frame manner. We evaluate the results in072
terms of plausibility, temporal consistency, identity preser-073
vation, and adherence to the target edit. In addition to a074
large number of qualitative comparisons, we also conduct a075
user study. The users have a clear preference for our method076
in terms of plausibility and temporal consistency, while our077
method is at least on par or slightly better than image editing078
baselines in terms of identity preservation and edit adher-079
ence. Finally, we perform a quantitative evaluation which080
confirms these findings.081

We summarize our contributions as follows:082

• We introduce a zero-shot method for editing object com-083
position in videos using video generative priors, for the084
first time to our knowledge.085

• For the feature-based generative editing process, we de- 086
scribe the optimal approach for feature extraction from 087
the video generative model network (Section 4.2). 088

• We also demonstrate that self-attention-map-based 089
weighting (Section 4.4) and null-text prediction in the 090
foreground region (Section 4.5) further improve the edit- 091
ing quality. 092

• We demonstrate the effectiveness of our method with 093
both generated and real videos. 094

2. Related Work 095

In the context of diffusion/flow-based generative models, 096
several methods have been proposed for image and video 097
editing that can be roughly grouped by the type of edits they 098
perform. 099

Image Appearance Editing. There has been a series of 100
work that focus on manipulating intermediate features or at- 101
tention maps of pre-trained image diffusion models to edit 102
the appearance of objects within an image [4, 5, 10, 13, 41, 103
46] in a zero-shot setting. While effective, such methods 104
often do not focus on editing the composition of objects, 105
which requires control over object positions and strict iden- 106
tity preservation. To tackle identity preservation, various 107
customization approaches have been proposed that enable 108
the generation of images of a particular object or subject 109
in different compositions. However, such methods do not 110
provide edit controls and typically require finetuning of the 111
base model [18, 32]. The prior of image diffusion mod- 112
els has been further utilized to enable editing of 3D static 113
scenes represented as 3D neural assets via iterative opti- 114
mization approaches [16, 17, 29]. These methods, however, 115
also focus on changing the appearance of objects, rather 116
than our goal of composition editing. 117

Image Composition Editing. Several recent methods 118
aim at editing the composition of objects in an image [1– 119
3, 7–9, 25, 28, 47, 49]. Another line of work aims at in- 120
serting an object from a source image into a new target im- 121
age [38, 39, 45], which can be repurposed as image editing 122
tools by using the same image as source and target. An- 123
other popular editing workflow provides control points that 124
can be dragged by a user to deform objects or edit 2D object 125
positions [21, 27, 34–36]. Additionally, a few more general 126
image editing methods have been proposed that can be used 127
for either image appearance editing or image composition 128
editing [24, 48]. All of these methods can be applied to 129
videos by separately editing each frame, but this loses tem- 130
poral consistency, as we show in our experiments in Sec- 131
tion 5. Most related to our work is Diffusion Handles [28] 132
which inspired our approach of editing intermediate fea- 133
tures using a 3D reconstruction. We show how to modify 134
this approach so it can be applied to non-depth-conditioned 135
video priors, including which features to pick, which 3D 136
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reconstruction method to use, how to avoid artifacts from137
hard object masks, and how to effectively remove the origi-138
nal object from the edited video.139

Video Appearance Editing. With the increasing quality140
of video generators, various works have focused on editing141
the appearance of objects within videos. A key issue these142
works aim to tackle is to maintain temporal consistency be-143
tween frames while changing the appearance. To address144
this, some works [6, 7, 31] have proposed techniques to145
maintain consistency using only image diffusion models,146
while others [14, 15] have leveraged priors from video dif-147
fusion models to tackle this challenge. While successful in148
preserving temporal consistency, these approaches are lim-149
ited to appearance changes, and no prior work addresses150
changing object compositions in videos.151

Video Motion Control. Recently, another line of work in152
the video domain focuses on controlling the motion of ob-153
jects or cameras during generation [19, 33, 42, 44]. Al-154
though these methods allow specifying how a particular ob-155
ject should move in a video, they are designed for gen-156
eration rather than editing tasks, thus they do not allow157
modifying the compositions of static object arrangements158
in videos. Moreover, unlike these approaches that require159
training on task-specific datasets to learn motion control,160
VideoHandles is training-free.161

3. Preliminary: Flow-Based Latent Video162

Model163

In this section, we briefly discuss the video prior we use164
in our experiments, which is the flow-based latent video165
model, OpenSora [51].166

Flow-Based Generative Model. Similar to diffusion167
models [12, 37], flow-based generative models [20,168
23] model high-dimensional data distributions through a169
learned iterative process. Given a data sample Z1 ∼ pdata170
and random noise Z0 ∼ N (0, I), a linear trajectory is de-171
fined as Zt = tZ1 + (1− t)Z0. Based on the linear trajec-172
tory, a veloicty prediction network vθ is trained to estimate173
the derivative dZt/dt:174

vθ(Zt, t, y) ≈
d

dt
Zt = Z1 −Z0, (1)175

where y encodes the text prompt corresponding to Z1.176
Given a trained velocity prediction network vθ, a new data177
sample can be generated through the generative process,178
starting from Z0:179

Zt+∆t = Zt +∆t · vωθ (Zt, t, y), (2)180

where vωθ (Zt, t, y) = vθ(Zt, t,∅) + ω(vθ(Zt, t, y) −181
vθ(Zt, t,∅)) denotes a prediction using classifier-free182

guidance [11] with null-text embedding ∅ and guidance 183
scale ω. The step size ∆t can be chosen at inference time 184
to balance quality with speed. 185

DiT-Based Architecture for Latent Video Model. A 186
video X ∈ Rn×h×w×3 with n frames is encoded into a 187
latent representation Z1 ∈ RM×H×W×D by a pre-trained 188
encoder, where all dimensions except the feature dimension 189
D are reduced. Each pixel of the latent representation en- 190
codes a spatio-temporal patch of X . The velocity prediction 191
network vθ is implemented as a DiT [30] that operates on 192
this latent representation, with alternating blocks of spatial 193
self-attention, temporal self-attention, and cross-attention to 194
the text prompt. A total of 24 blocks of each type are used. 195
A latent sampled from the generative process is decoded by 196
a pre-trained decoder to produce a video sample. 197

4. VideoHandles: A 3D-Aware Video Editing 198

Method 199

Consider a static input video Xsrc ∈ Rn×h×w×3, where 200
objects remain stationary and only the camera moves. Our 201
goal is to apply a 3D transformation to an object selected 202
by the user in the first frame while preserving the identity 203
of the input video, realism, and temporal consistency. See 204
Figure 2 for an architecture overview. 205

To ensure that transformations in each frame of a video 206
align with those in other frames, we define a 3D space in 207
which a point cloud P src = {p(j)}Jj=1 represents the 3D 208
scene in the video with a shared coordinate system across 209
all frames. A transformation is performed in this shared 210
3D space, denoted by T : R3 → R3, with each input 211

frame x
(i)
src modeled as a 2D rendering of P src from the i-th 212

view. Specifically, we reconstruct P src and estimate a cam- 213
era pose for each frame from Xsrc using DUST3R [43]. By 214
leveraging the reconstructed 3D scene from Xsrc, we define 215
a 3D-aware warping function in the 2D space of each frame. 216

However, due to inaccuracies in warping caused by er- 217
rors in reconstructing the 3D scene, directly warping pixel 218
colors often leads to unrealistic videos. Moreover, this ap- 219
proach fails to appropriately adjust the video according to 220
the 3D scene and the transformed object, such as new shad- 221
ows, reflections, and relighting effects. Therefore, inspired 222
by Diffusion Handles [28], we perform warping in the fea- 223
ture space of a pre-trained video generative model and use 224
the warped features as guidance during the generative pro- 225
cess. This ensures that the generative prior of the video 226
model adapts the scene with appropriate context changes 227
according to the new object composition while maintaining 228
temporal consistency. 229

In the following sections, we first introduce how to com- 230
pute the warping function for each 2D frame based on the 231
transformation of an object in the 3D scene (Section 4.1). 232
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Figure 2. VideoHandles Architecture. We use the intermediate features Ψsrc of a video generative model to represent the identity of
objects in a source video. Given a 3D transformation of an object, we can use a 3D reconstruction of the scene to warp the intermediate
features consistently across frames. Guiding the video generator with these warped features Ψtgt gives us a an edited video where the
object is transformed, while also maintaining the plausibility of effects like shadows and reflections.

Next, we describe the features of the pretrained flow-based233
latent video model and how these features are warped (Sec-234
tion 4.2). Lastly, we explain how the warped video model235
features serve as guidance in the energy-based guided gen-236
erative process (Section 4.3).237

4.1. 3D-Aware Warping Function238

We first describe how to obtain a 3D-aware warping func-239
tion in the 2D space of each frame. Given a set of 2D co-240
ordinates ΩH,W = {(v, u) | v ∈ [0, H), u ∈ [0,W )}, the241
connection between the 3D space and the i-th 2D frame is242
established through the projection function f (i) : R3 →243
ΩH,W , which is defined by the i-th camera pose. Let244

B(1)
src : ΩH,W → {0, 1} denote the 2D binary mask of an245

object selected by users in the first frame. Based on the 2D246

object mask in the first frame B(1)
src , we first partition P src,247

the point cloud reconstructed from the input video Xsrc, as248
follows:249

P f = {p ∈ P src | B(1)
src (f

(1)(p)) = 1}, (3)250

P b = P src \ P f , (4)251

where P f consists of points whose projections lie within252

the 2D masked region defined by B(1)
src , and P b denotes the253

remaining points representing the background. By applying254
a 3D transformation T to P f alone, we construct a rough255
target 3D scene represented as a point cloud:256

P tgt = T P f ∪ P b. (5)257

The lifting function g(i)src : ΩH,W → R3 takes a 2D coordi-258
nate u = (v, u) as input and returns the 3D point in P src259
closest to the i-th camera from among the points projected260
close to u:261

g(i)src (u) = argmin
p∈P

(i)
src,u

z(i)(p), (6)262

where P (i)
src,u = {p ∈ P src | ∥f (i)(p) − u∥1 < ϵ} repre- 263

sents the set of 3D points that are projected close to u and 264
z(i)(p) denotes the distance of point p from the i-th cam- 265

era. Similarly, g(i)tgt (u) returns the 3D point in P tgt closest to 266
the i-th camera from among the points projected close to u. 267

Using the functions g(i)src and g(i)tgt , we define an occlusion- 268

aware foreground point cloud P
(i)
f ⊆ P f for each frame as 269

follows: 270

P
(i)
f = {g(i)src (u)} ∩ {T −1g

(i)
tgt (u)} ∩ P f , (7) 271

where u ∈ ΩH×W . It consists of foreground points that are 272
not occluded by the background either before or after the 273
transformation. Using this 3D information, we compute a 274
2D warping function W(i) : ΩH,W → ΩH,W as follows: 275

W(i)(u) =

{
f (i)

(
T −1g

(i)
tgt (u)

)
, if g(i)tgt (u) ∈ P

(i)
f

u, otherwise.
(8) 276

This warping function gives us the corresponding coordi- 277
nate in the source image for any coordinate in the target im- 278
age. All coordinates that do not project to the edited fore- 279
ground point cloud remain unchanged. We denote warp- 280
ing a 2D signal X : ΩH,W → RC as (W(i) ∗ X )(u) := 281
X (W(i)(u)). Similarly, we denote its application to a ten- 282
sor X ∈ R···×H×W×... as W(i)∗X . HereH andW are the 283
two spatial tensor dimensions that the warping is applied to 284
and the ellipses denote arbitrary additional dimensions. The 285
tensor is sampled at non-integer coordinates using linear in- 286
terpolation. 287

As we will show in our evaluation, directly warping RGB 288
frames results in a noisy video, due to inaccuracies in cam- 289
era predictions and 3D reconstructions, and since this direct 290
warping does not update effects like reflections and shad- 291
ows that may have changed due to the edit. Therefore, we 292
propose warping the features instead of the frames in the 293
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video and synthesizing the edited video through a gener-294
ative process that guides the features of the edited video to295
match the warped features. In the next section, we introduce296
our choice of features for the guided generative process.297

4.2. Warping Video Features298

In this section, we describe our choice of features ex-299
tracted from OpenSora [51] and explain how these features300
are warped using the warping function introduced in Sec-301
tion 4.1. The DiT architecture [30] of OpenSora alternates302
layers that perform spatial self-attention, temporal self-303
attention, cross-attention to the prompt, and feed-forward304
computations. Spatial attention operates within each frame,305
while temporal attention is performed among pixels at the306
same spatial position across frames. We empirically found307
that the features from the temporal self-attention layers tend308
to produce global changes; since each temporal attention309
layer follows a spatial one, its features tend to affect all pix-310
els in each frame globally. This global spatial context is un-311
suitable for our local editing tasks, where only the selected312
object needs to be transformed. Therefore, we use only ex-313
tract features from the spatial layers for guidance, as these314
retain more localized information.315

Let Ql(Zt),Kl(Zt),V l(Zt) ∈ RM×H×W×d be the316
query, key, and value features of the l-th self-attention layer317
extracted from vωθ (Zt, t, y), where M denotes the number318
of frames and d is the feature dimension. We use their con-319
catenation from all layers as our extracted feature Ψ:320

Ψ(Zt) = [Ql(Zt) ∥ Kl(Zt) ∥ V l(Zt)]
L
l=1. (9)321

Let Ψ(i)(Zt) ∈ RH×W×D denote the feature for frame i,322
whereD is the total dimensionality of the feature. Applying323
the previosuly defined warping function, given the latent of324

the input video Zsrc
t , its warped feature is defined as Ψ(i)

tgt :=325

W(i) ∗Ψ(i)(Zsrc
t ).326

4.3. Warping-Based Guided Generative Process327

To guide the generation process of Zt with Ψ
(i)
tgt (Zt), we328

use an energy-guided generative process [8], similar to329
classifier-free guidance. Given an energy function G(Zt),330
the gradient of G is injected at each step of the generative331
process, steering it towards minimizing the energy function:332

Zt+∆t = Zt +∆t · vωθ (Zt, t, y) + ρ∇Zt
G(Zt), (10)333

where ρ is a hyperparameter to control the step size of334
∇ZtG. Below, we describe our specific design of G to edit335
object compositions in videos.336

Object transformation energy. Let M (i)
src ,M

(i)
tgt ∈337

RH×W denote the occlusion-aware 2D masks of the se-338

lected object before and after the transformation: 339

M (i)
src (u) :=

{
1, if u ∈ {f (i)(p) | p ∈ P

(i)
f },

0, otherwise.
, (11) 340

M
(i)
tgt := W(i) ∗M (i)

src , (12) 341

where u ∈ ΩH×W . Note that M (i)
src , which marks the region 342

where the occlusion-aware foreground point cloud P
(i)
f is 343

projected, is a subset of the object selection mask B(i)
src since 344

M (i)
src only includes the object region visible before and af- 345

ter the transformation. 346
To transform the selected object in the video, we define 347

the object transformation energy Go(Zt) as follows: 348

M∑
i=1

∥∥∥M (i)
tgt ⊙

(
Ψ

(i)
tgt −Ψ(i)(Zt)

)∥∥∥2
2
, (13) 349

where ⊙ is the element-wise product (broadcasting to addi- 350
tional dimensions where needed). This function measures 351
the discrepancy between the current features Ψ(i) and the 352

target features Ψ
(i)
tgt within the region of the edited object 353

M
(i)
tgt . 354

Background preservation energy. To further preserve 355
background details, we define an additional energy func- 356
tion called the background preservation energy Gb(Zt) as 357
follows: 358

∥ψMHW (M b ⊙Ψtgt)− ψMHW (M b ⊙Ψ(Zt))∥22 , (14) 359

where ψMHW denotes the average over time and spatial di- 360

mensions, and M
(i)
b = max((1 − M (i)

src − M
(i)
tgt , 0) is the 361

background mask. This function measures the discrepancy 362
between the sums of the features in the background region. 363
Unlike Go, Gb compares only the averages of the features, 364
allowing the guidance of Gb to facilitate appropriate context 365
changes according to the new object position, such as new 366
shadows or reflections. 367

4.4. Weighted Guidance with Self-Attention Maps 368

When applying the gradients of the energy function above, 369
the inaccurate 3D reconstruction and camera paths result 370
in guidance sometimes being applied inaccurately to back- 371
ground regions, for example at incorrect spatial positions. 372
This sometimes results in hallucinated objects in the back- 373
ground regions or other artifacts. To address this, we weight 374
the gradients of the guidance energy using an attention map 375
based on self-attention from the foreground object to other 376
image regions. Intuitively, this includes regions that an edit 377
of the foreground object should affect, including regions 378
that receive updated shadows or reflections, but not regions 379
of the background that should remain unaffected by the edit. 380
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Input Video Edited Video Self-Attn. Map

Figure 3. Visualization of our self-attention-based masks. The
masks do not only include the the edited object, but also regions
requiring semantic adjustments, such as a new reflection under the
wine glass and newly disoccluded lamp.

We denote the query and key features of the i-the frame,381
stacked across all spatial self-attention layers and flattened382
as Q(i)(Zt) ∈ RHW×1×D and K(i)(Zt) ∈ R1×HW×D,383
both with H and W are flattened into a single spatial di-384
mension. Then, we define the spatial self-attention map385
A(i)(Zt) ∈ RHW×HW for the i-the frame as:386

A(i)(Zt) := Q(i)(Zt)K
(i)(Zt), (15)387

We then find regions that the transformed object pays at-388
tention to by multiplying with the transformed object mask389

M
(i)
tgt and normalizing:390

Λ(i) := norm[0,1]

(
M

(i)
tgt A

(i)(Zt)
)
, (16)391

where norm[0,1] denotes normalization of the value range392

to [0, 1], M (i)
tgt is flattened to R1×HW and the resulting self-393

attention-based mask Λ(i) is unflattened to RH×W .394

The final masked and aggregated self-attention map Λ ∈395
RM×H×W is obtained by stacking Λ(i) along the tempo-396
ral dimension. Figure 3 shows that the target self-attention397
map locally highlights not only the target position of the398
selected object but also regions requiring adjustments for399
context changes, such as areas for a new reflection or the400
disoccluded lamp.401

With this mask, a guided step of our generative process402
is defined as:403

Zt+∆t = Zt +∆t · vωθ + Λ⊙∇Zt

(
ρoGo + ρbGb

)
, (17)404

where ρo and ρb are the step sizes for the gradients of Go405
and Gb, respectively.406

4.5. Null-Text Prediction on Original Object Region 407

When transforming an object, it is undesirable for the ob- 408
ject to remain in its original position while being duplicated 409
in the target position. To avoid this object issue, we employ 410
two techniques. First, at the beginning of the generative 411
process of the target, we randomly initialize the original ob- 412
ject area of Zsrc

0 , as highlighted by the source masks M src, 413
and start the generative process from this partially random- 414
ized noise. Then, during the generative process, to reduce 415
the influence of text guidance in the original object area and 416
prevent the introduction of a new object in that region, we 417
apply the null-text prediction vθ(Zt, t,∅) within the origi- 418
nal object area M src instead of a prediction with classifier- 419
free guidance [11]. 420

5. Experiments 421

Dataset. For quantitative and qualitative comparisons, we 422
generate 27 input videos to be edited, each with a resolu- 423
tion of 320 × 320 and 51 frames. To enhance the realism 424
of the generated videos, we lightly finetune OpenSora [51] 425
on 71,556 indoor scene videos from the RealEstate10K 426
dataset [52] for 14,000 iterations. 427

Baselines. In the absence of prior work on modifying 428
3D object composition in videos, we compare our method 429
to Diffusion Handles [28], the state-of-the-art method for 430
composition editing in 2D images, applying the editing pro- 431
cess frame by frame. To further demonstrate the effective- 432
ness of our feature-guided generative process, we also com- 433
pare it to direct frame warping. Specifically, we first re- 434
move the selected object from all frames using an existing 435
inpainting technique [40] and then render the transformed 436
foreground point cloud, T P f , onto the frames where the 437
selected object is removed. Additionally, we introduce an 438
improved version of the direct frame warping, where the 439
video is further refined using SDEdit [24]. SDEdit is per- 440
formed for 15 out of the total 30 steps with OpenSora [51]. 441

Qualitative Results. Please refer to the supplementary 442
material for the edited video results. We also present snap- 443
shots of the edited videos in Figure 1 and Figure 4. Qual- 444
itatively, our method successfully edits object composition 445
in videos while making appropriate contextual adjustments, 446
such as the new reflection beneath the wine glass in Fig- 447
ure 1 and the new shadows beneath the transformed car, 448
apple, and vase in rows 2, 3, and 5 of Figure 4, respec- 449
tively. In comparison, Diffusion Handles [28] (the fourth 450
column in Figure 4) alters the identity of objects or the back- 451
ground across different frames, as seen in the second row, 452
and frequently duplicates objects, as shown in the first row. 453
These failures are more evident in the videos shown in 454
the supplementary material. Direct frame warping (the 455
second column) and its refined one by SDEdit [24] (the third 456
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Input Direct Warping Direct Warp. + SDEdit DiffusionHandles Ours
Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N

Figure 4. A qualitative comparison with other baselines. The examples show that ours best demonstrates plausibility by avoiding object
duplication, adjusting shadows properly, and maintaining consistent outputs across frames, desipte warping errors, as illustrated in the
direct frame warping outputs (column 2).

column) also typically produce visual seams (second row)457
and implausible objects (fourth row) due to inaccuracies in458
warping.459

User Study Results. Proper quantitative evaluation for460
video editing results is very challenging, as there are no es-461
tablished metrics for this task. Therefore, we conducted462
a user study that included questions about the plausibil-463
ity, identity preservation, and edit coherence of the edited464
videos. More details about the user study including the465
queries and setup are provided in the supplementary ma-466
terial. Figure 5 shows human preferences when partici-467
pants were presented with two videos–one generated by our468
method and the other by a competing method–along with469
the input video, and were asked to choose the better one470
based on each criterion. The results show that our method471
is preferred over all baselines across all criteria by signifi-472
cant margins. Notably, our method achieved a preference of473
100% for plausibility compared to Diffusion Handles [28],474
and 75% and 57% for identity preservation and edit coher-475
ence compared to the SDEdit [24] output of the direct frame476
warping.477

Temporal Consistency Evaluation. The biggest advan-478
tage of our method compared to per-frame-based editing479
baselines is its ability to achieve temporal consistency. To480

Table 1. A quantitative evaluation of Frame LPIPS. Frame
LPIPS is scaled by 102, with the best result highlighted in bold.

Per-Frame-Based Editing Ablation Cases Ours

Direct
Warp.

Direct
Warp.

+SDEdit

Diffusion
Handles

w/ Temp.
Feature

w/o
Self-Attn

w/o
Null-Text

Video
Handles

5.19 5.03 18.63 3.81 3.77 3.79 3.71

further evaluate this, we introduce a metric called Frame 481
LPIPS, which is the average LPIPS [50] score measured be- 482
tween pairs of adjacent frames in the edited video. Frame 483
LPIPS scores for all methods are presented in Table 1. 484
Our method significantly outperforms the baselines, with a 485
score of 3.71 compared to 18.6 for Diffusion Handles [28], 486
demonstrating the superior temporal consistency achieved 487
by leveraging a video prior. 488

Ablation Study Results. We demonstrate the effective- 489
ness of each key aspect of our method through an abla- 490
tion study involving three cases: using both spatial and 491
temporal self-attention layer features (w/ Temporal Feature, 492
Section 4.2), omitting self-attention-based weighting in the 493
guided generative process (w/o Self-Attn, Section 4.4), and 494
not using null-text prediction in the original object area (w/o 495
Null-Text, Section 4.5). The user study results in the sec- 496
ond row of Figure 5 show that our full method outperforms 497
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w/o Self-AttnInput Direct Warp. 
+SDEdit

DiffusionHandles VideoHandles (Ours)w/ Temp. Feat.Direct Warp. w/o Null-Text

Plausibility Identity Preservation Edit Coherence

Figure 5. User study results on the plausibility, identity preservation, and edit coherence of the edited videos. Each bar pair shows
user preferences, with the green bar for our method and the other for the baseline, along with 95% confidence intervals. We also include a
comparison with the input video to represent the upper bound of plausibility.

Input w/ Temporal Feature Ours
Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N Frame 1 Frame N

w/o Null-Textw/o Self-Attn 

Figure 6. A qualitative comparison of the ablation study. We show the effect of each component in our method. As demonstrated, our
full method avoids object duplication and unnecessary drastic changes in the background, while effectively preserving the identity of the
selected object.

all three cases across all metrics by large margins. More-498
over, the best temporal consistency is achieved with our full499
method, as indicated by the lowest Frame LPIPS score com-500
pared to the ablation cases, as shown at the bottom of Ta-501
ble 1. Qualitative comparisons are shown in Figure 6.502

Please refer to the supplementary material for the edited503
video results. In the first row, the results without null-text504
(third column) exhibit object duplication, showing the arm-505
chair in both the original and target positions. In the second506
row, the results without self-attention-based weighting (sec-507
ond column) drastically alter the background colors, and508
the results without null-text (third column) introduce a new509
knob on the kettle. In contrast, our full method (last col-510
umn) best preserves the identity of the kettle. In the third511
row, the results without self-attention-based weighting (sec-512
ond column) and with temporal layer features (fourth col-513
umn) generate a new lamp next to the armchair and thus514
fail to preserve the background. Our method successfully515
moves the selected armchair without changing the back-516
ground.517

Editing Real Videos with Object Composition. We518
also showcase the results of editing real videos using our519

method, as seen in the rightmost image in Figure 1 and the 520
third row of Figure 6. In these examples, the apple in the 521
former and the armchair in the latter are moved to new posi- 522
tions, with shading and shadows generated according to the 523
new composition while successfully preserving the back- 524
ground. To edit the real videos, we mapped the videos to 525
their corresponding random latent noises using the null-text 526
inversion technique introduced by Mokady et al. [26]. 527

6. Conclusion 528

We have presented VideoHandles, the first method to our 529
knowledge that leverages the prior of video generative mod- 530
els for editing object composition in video. Given the warp- 531
ing function for each frame obtained from a 3D reconstruc- 532
tion and transformation of an object in 3D space, Video- 533
Handles applies temporally consistent warping to features 534
extracted from a pre-trained video generative model, rather 535
than to the frames themselves, using these features as guid- 536
ance in the generative process. Experimental results, in- 537
cluding a user study, demonstrate that VideoHandles out- 538
performs per-frame editing methods in terms of plausibility, 539
identity preservation, and edit coherence. 540
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