
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TACKLING CONTINUAL OFFLINE RL THROUGH SE-
LECTIVE WEIGHTS ACTIVATION ON ALIGNED SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual offline reinforcement learning (CORL) has shown impressive ability in
diffusion-based continual learning systems by modeling the joint distributions of
trajectories. However, most research only focuses on limited continual task set-
tings where the tasks have the same observation and action space, which deviates
from the realistic demands of training agents in various environments. In view of
this, we propose Vector-Quantized Continual Diffuser, named VQ-CD, to break
the barrier of different spaces between various tasks. Specifically, our method con-
tains two complementary sections, where the quantization spaces alignment pro-
vides a unified basis for the selective weights activation. In the quantized spaces
alignment, we leverage vector quantization to align the different state and action
spaces of various tasks, facilitating continual training in the same space. Then,
we propose to leverage a unified diffusion model attached by the inverse dynamic
model to master all tasks by selectively activating different weights according to
the task-related sparse masks. Finally, we conduct extensive experiments on 15
continual learning (CL) tasks, including conventional CL task settings (identi-
cal state and action spaces) and general CL task settings (various state and action
spaces). Compared with 17 baselines, our method reaches the SOTA performance.

1 INTRODUCTION

The endeavor of recovering high-performance policies from abundant offline samples gathered by
various sources and continually mastering future tasks learning and previous knowledge maintaining
gives birth to the issue of continual offline reinforcement learning (CORL) (Levine et al., 2020; Ada
et al., 2024; Huang et al., 2024). Ever-growing scenarios or offline datasets pose challenges for most
continual RL methods that are trained on static data and are prone to showing catastrophic forgetting
of previous knowledge and ineffective learning of new tasks (Liu et al., 2024; Zhang et al., 2023c;
Korycki & Krawczyk, 2021). Facing these challenges, three categories of methods, rehearsal-
based (Huang et al., 2024; Peng et al., 2023; Chaudhry et al., 2018), regularization-based (Smith
et al., 2023; Zhang et al., 2023b; 2022), and structure-based methods (Zhang et al., 2023a; Marouf
et al., 2023; Borsos et al., 2020), are proposed to reduce forgetting and facilitate continual training.

However, most previous studies only focus on the continual learning (CL) setting with identical
state and action spaces (Liu et al., 2024; Smith et al., 2023). It deviates from the fact that the
ever-growing scenarios or offline datasets are likely to possess different state and action spaces with
previous tasks for many reasons, such as the variation of demands and the number of sensors (Yang
et al., 2023; Zhang et al., 2023a). Moreover, these datasets often come from multiple behavior
policies, which pose the additional challenge of modeling the multimodal distribution of various
tasks (Ada et al., 2024; Lee et al., 2024). Benefiting from diffusion models’ powerful expressive ca-
pabilities and highly competitive performance, an increasing number of researchers are considering
incorporating them to address the CORL problems (Ajay et al., 2022; Yue et al., 2024; Elsayed &
Mahmood, 2024) from the perspective of sequential modeling. There have been several attempts to
combine diffusion-based models with rehearsal-based and regularization-based techniques, which
usually apply constraints to the continual model learning process with previous tasks’ data or well-
trained weights (Smith et al., 2023; Yue et al., 2024; Liu et al., 2024). However, constrained weight
updating will limit the learning capability of new tasks and can not preserve the previously acquired
knowledge perfectly (Yang et al., 2023). Although structure-based methods can eliminate forgetting
and strengthen the learning capability by preserving well-trained weights of previous tasks and re-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

serving disengaged weights for ongoing tasks, they are still limited in simple architecture and CL
settings with identical state and action spaces (Zhang et al., 2023a; Wang et al., 2022b; Mallya &
Lazebnik, 2018). Thus, in this paper, we seek to answer the question:

Can we merge the merits of diffusion models’ powerful expression and structure-based parameters
isolation to master CORL problems with any task sequence?

We answer this in the affirmative through the key insight of allocating harmonious weights for each
continual learning task. Specifically, we propose Vector-Quantized Continual Diffuser called VQ-
CD, which contains two complementary sections: the quantized spaces alignment (QSA) module
and the selective weights activation diffuser (SWA) module. To expand our method to any task
sequences under the continual learning setting, we adopt the QSA module to align the different state
and action spaces. Concretely, we adopt vector quantization to map the task spaces to a unified space
for training based on the contained codebook and recover it to the original task spaces for evaluation.
In the SWA module, we first perform task mask generation for each task, where the task masks are
applied to the one-dimensional convolution kernel of the U-net structure diffusion model. Then, we
use the masked kernels to block the influence of unrelated weights during the training and inference.
Finally, after the training process, we propose the weights assembling to aggregate the task-related
weights together for simplicity and efficiency. In summary, our main contributions are fourfold:

• We propose the Vector-Quantized Continual Diffuser (VQ-CD) framework, which can not only be
applied to conventional continual tasks but also be suitable for any continual tasks setting, which
makes it observably different from the previous CL method.

• In the quantized spaces alignment (QSA) module of VQ-CD, we adopt ensemble vector quantized
encoders based on the constrained codebook because it can be expanded expediently. During the
inference, we apply task-related decoders to recover the various observation and action spaces.

• In the selective weights activation (SWA) diffuser module of VQ-CD, we first perform task-related
task masks, which will then be used to the kernel weights of the diffuser. After training, we
propose assembling weights to merge all learned knowledge.

• Finally, we conduct extensive experiments on 15 CL tasks, including conventional CL settings and
any CL task sequence settings. The results show that our method surpasses or matches the SOTA
performance compared with 17 representative baselines.

2 RELATED WORK

Offline RL. Offline reinforcement learning is becoming an important direction in RL because it
supports learning on large pre-collected datasets and avoids massive demand for expensive, risky
interactions with the environments (Mnih et al., 2015; Nair et al., 2020; Cheng et al., 2022; Ball
et al., 2023). Directly applying conventional RL methods in offline RL faces the challenge of dis-
tributional shift (Schaul et al., 2015; Levine et al., 2020; Xie et al., 2021; Yue et al., 2022) caused
by the mismatch between the learned and data-collected policies, which will usually make the agent
improperly estimate expectation return on out-of-distribution actions (Schaul et al., 2015; Kostrikov
et al., 2021; Ada et al., 2024). To tackle this challenge, previous studies try to avoid the influences of
out-of-distribution actions by adopting constrained policy optimization (Peng et al., 2019; Fujimoto
et al., 2019; Nair et al., 2020; Kostrikov et al., 2021), behavior regularization (Nachum et al., 2019;
Kumar et al., 2020; Ghosh et al., 2022), importance sampling (Jiang & Li, 2016; Hallak & Mannor,
2017; Zhang et al., 2020), uncertainty estimation (Agarwal et al., 2020; Wang et al., 2020a; Lee
et al., 2022), and imitation learning (Wang et al., 2020b; Siegel et al., 2020; Chen et al., 2020).

Continual RL. Continual learning (CL) aims to solve the plasticity and stability trade-off un-
der the task setting, where the agent can only learn to solve each task successively (Zhang et al.,
2023c; Wang et al., 2023). CL can be classified into task-aware CL and task-free CL according to
whether there are explicit task boundaries (Aljundi et al., 2019; Wang et al., 2023). In this paper, we
mainly focus on task-aware CL. There are three main technical routes to facilitate forward transfer
(plasticity) and mitigate catastrophic forgetting (stability). Rehearsal-based approaches (Shin et al.,
2017; Mallya & Lazebnik, 2018; Wang et al., 2022b; Zhang et al., 2023a; Smith et al., 2023) store
a portion of samples from previous tasks and use interleaving updates between new tasks’ sam-
ples and previous tasks’ samples. Simply storing samples increases the memory burden in many
scenarios; thus, generative models such as diffusion models are introduced to mimic previous data
distribution and generate synthetic replay for knowledge maintenance (Zhai et al., 2019; Qi et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2023; Gao & Liu, 2023). Regularization-based approaches (Kaplanis et al., 2019; Kessler et al.,
2020; Zhang et al., 2022; 2023b) seek to find a proficiency compromise between previous and new
tasks by leveraging constraint terms on the total loss function. Usually, additional terms of learning
objectives will be adopted to penalize significant changes in the behaviors of models’ outputs or the
updating of models’ parameters (Kirkpatrick et al., 2017; Kaplanis et al., 2019). In the structure-
based approaches (Wang et al., 2022b; Kessler et al., 2022; Wang et al., 2022b; Zhang et al., 2023a;
Smith et al., 2023; Konishi et al., 2023), researchers usually consider parameter isolation by using
sub-networks or task-related neurons to prevent forgetting.

Diffusion RL. Recently, diffusion-based models have shown huge potential in RL under the per-
spective of sequential modeling (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022;
Janner et al., 2022; Ajay et al., 2022; Beeson & Montana, 2023). A typical use of diffusion models is
to mimic the joint distribution of states and actions, and we usually use state-action value functions
as the classifier or class-free guidance when generating decisions (Nichol & Dhariwal, 2021; Ho &
Salimans, 2022; Pearce et al., 2023; Liu et al., 2023). Diffusion models, as representative genera-
tive models, can also be used as environmental dynamics to model and generate synthetic samples
to improve sample efficiency or maintain previous knowledge in CL (Yamaguchi & Fukuda, 2023;
Hepburn & Montana, 2024; Lu et al., 2024; Ding et al., 2024; Liu et al., 2024). It is noted that the
diffusion model’s powerful expression ability on multimodal distribution also makes it suitable for
being used as policies to model the distribution of actions and as planners to perform long-horizon
planning (Wang et al., 2022a; Kang et al., 2024; Chen et al., 2024). Besides, diffusion models can
also be used as multi-task learning models to master several tasks simultaneously (He et al., 2024)
or as multi-agent models to solve more complex RL scenarios (Zhu et al., 2023).

3 PRELIMINARY

3.1 CONTINUAL OFFLINE RL

We focus on the task-aware CL in the continual offline RL in this paper (Zhang et al., 2023c; Abel
et al., 2023; Wang et al., 2023; Smith et al., 2023; Qing et al., 2024; Wang et al., 2024). Suppose
that we have I successive tasks, and task j arises behind task i for any i < j. Each task i, i ∈ [1 : I]
is represented by a Markov Decision Process (MDP) Mi = ⟨Si,Ai,Pi,Ri, γ⟩, where we use
supscript i to differentiate different tasks, I is the number of total tasks, S is the state space, A is the
action space, respectively, P : S ×A → ∆(S) denotes the transition function, R : S ×A×S → R
is the reward function, and γ ∈ [0, 1) is the discount factor. Conventional CL tasks have the same
state and action spaces for all tasks, i.e., |Si| = |Sj |, |Ai| = |Aj |,∀ i, j ∈ [1 : I]. While for any
tasks sequences, we have |Si| ̸= |Sj |, |Ai| ̸= |Aj |. In the offline RL setting, we can only access
pre-collected datasets {Di}i∈[1:I] from each task Mi. The goal of continual offline RL is to find an
optimal policy that can maximize the discounted return

∑I
i Eπ[

∑∞
t=0 γ

tr(sit, a
i
t)] (Fujimoto & Gu,

2021; Yang et al., 2023; Sun et al., 2023) on all tasks.

3.2 CONDITIONAL GENERATIVE BEHAVIOR MODELING

In this paper, we adopt the diffusion-based model with the U-net backbone as the generative model
to fit the joint distribution q(τs) =

∫
q(τ0:Ks)dτ1:Ks of state sequences τs and an inverse dynamics

model finv,ψ(st, st+1) to produce actions at, where k ∈ [1 : K] is the diffusion step, t is the RL
time step, ψ is the parameters of inverse dynamics model, and we omit the identification of tasks for
the sake of simplicity because the training is same for all tasks. Through specifying the pre-defined
forward diffusion process q(τks |τk−1

s) = N (τks ;
√
αkτ

k−1
s , βkI) and the trainable reverse process

pθ(τ
k−1
s |τks) = N (τk−1

s ;µθ(τ
k
s , k),Σ

k) (Ho et al., 2020), we can train the diffusion model with the
simplified loss function

L(θ) = Ek∼U(1,2,...,K),ϵ∼N (0,I),τ0
s∼D,b∼B(λ)[||ϵ− ϵθ(τ

k
s , k, b ∗ C)||22], (1)

where τks =
√
ᾱkτ

0
s +

√
1− ᾱkϵ, µθ(τks) = 1√

αk
(τks − βk√

1−ᾱk
ϵθ(τ

k
s , k)), Σ

k = 1−ᾱk−1

1−ᾱk
βkI ,

αk is the approximate discretization pre-defined parameters (Chen et al., 2022; Lu et al., 2023),
βk = 1 − αk, ᾱk =

∏k
ι=1 αι , U is the uniform distribution, ϵ is standard Gaussian noise, I is

the identity matrix, τ0s ∼ D is the state sequences stored in the task replay buffer D, B is binomial

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: The framework of VQ-CD. It contains two sections: The Quantized Space Alignment
(QSA) module and the Selective Weights Activation (SWA) module, where QSA enables our method
to adapt for any continual learning task setting by transferring the different state and action spaces
to the same spaces. SWA uses selective neural network weight activation to maintain the knowledge
of previous tasks through task-related weight masks. After the training, we perform weights assem-
bling to integrate the total weights and save the memory budget.

distribution, λ = 0.25 is the parameter of B, C is condition, which is usually selected as discounted
returns or value function in RL, and θ is the total parameters of model ϵθ. The following is

τ̂k−1
s =

1
√
αk

(τ̂ks − βk√
1− ᾱk

ϵ̂) +

√
1− ᾱk−1

1− ᾱk
βkϵ. (2)

generation function, where we use τ̂ks to denote the generated state sequences, ϵ̂ = ϵθ(τ̂
k
s , k, ∅) +

ω(ϵθ(τ̂
k
s , k, C) − ϵθ(τ̂

k
s , k, ∅)), ω is the guidance scale, ∅ means b = 0. We use inverse dynamics

model finv,ψ(·) to produce actions, where the training loss is

L(ψ) = E(st,at,st+1)∼D[||at − finv,ψ(st, st+1)||22]. (3)

4 METHOD

Algorithm 1: Evaluation Process
for For each environmental step t in task i do

Receive the environmental state sit
Set the return condition R = 0.8
st,zq = f is,θq (f

i
V QEs

(sit; θe))

Construct τ̂Kszq = [st,zq , ŝ
K
t+1,zq , ŝ

K
t+2,zq , ...],

where ŝKt′,zq ∼ N (0, I) for t′ > t.
for For k from K to 1 do

Calculate ϵ̂ with ϵθ
Obtain τ̂k−1

szq
with Equation 2

Replace the first state of τ̂k−1
szq

with st
end for
Extract [st,zq , ŝt+1,zq] from τ̂0s
Obtain at,zq = finv(st,zq , ŝt+1,zq)

Interact with ait = f iV QDa
(at,zq ; θd)

end for

Our method enables training on any CL task
sequences through two sections (as shown in
Figure 1): the selective weights activation dif-
fuser (SWA) module and the quantized spaces
alignment (QSA) module. Algorithm 1 shows
how to generate the actions during inference.
The detailed training process is shown in Al-
gorithm 2 of Appendix A.1. In the following
parts, we introduce these two modules in detail.

4.1 QUANTIZED SPACES ALIGNMENT

To make our method suitable for solving any
CL task sequence setting, we propose aligning
the different state and action spaces with the
quantization technique. Specifically, we pro-
pose to solve the following quantized represen-
tation learning problem

min
θe,θd,θq

LQSA(x; θe, θd, θq),

s.t. ||zq||22 < ρ,
(4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where LQSA(x) = E
[
||x− fV QD(zq; θd)||22

]
+ E

[
||sg(zq)− ze||22

]
+ E

[
||sg(ze)− zq||22

]
is the

total quantized loss, sg(·) represents the stop gradient operation, θe and θd are the parameters of the
vector quantized encoder (VQE) and vector quantized decoder (VQD), θq is the parameters of the
codebook, ρ limits the range of codebook embeddings, x can represent the states or actions for each
specific CL task, zq = fθq (ze) is the quantized representation which is consisted of fixed number
of fixed-length quantized vectors, and ze = fV QE(x; θe) is the output of the encoder. Here, we
propose searching the constrained optimal solution of the above problem for the consideration of
the diffusion model training within a limited value range, just like the limit normalization in CV (Ho
et al., 2020; Dhariwal & Nichol, 2021) and RL (Ajay et al., 2022; Lu et al., 2023). There are many
methods to force optimization under restricted constraints, such as converting the constraints to
a penalty term (Boyd & Vandenberghe, 2004). In our method, for simplicity and convenience, we
propose to directly clip the quantized vector zq to meet the constraints after every codebook updating
step. Moreover, to meet the potential demand for extra tasks beyond the predefined CL tasks, we
design the codebook as easy to equip, where the quantized spaces of different tasks are separated so
that we can expediently train new task-related encoders, decoders, and quantized vectors.

For tasks where the state and action spaces are different, we can use the well-trained QSA mod-
ule to obtain the aligned state feature sizq = f is,θq (f

i
V QEs

(si; θe)) and the action feature aizq =

f ia,θq (f
i
V QEa

(ai; θe)) for each task i. Thus, we can use τ iszq and τ iazq to represent the state and ac-
tion feature sequences. Now, the action is produced through ait = f iV QDa

(finv(szq,t, szq,t+1); θd).

4.2 SELECTIVE WEIGHTS ACTIVATION

In this section, we introduce how to selectively activate different parameters of the diffusion model
to reduce catastrophic forgetting and reserve disengaged weights for ongoing tasks.

Task Mask Generation. Suppose that the diffusion model contains L blocks, and the weights
(i.e., parameters) of block l are denoted by Wl, l ∈ {1, ..., L}. There are two ways to disable the
influence of the weights on the model outputs. One is masking the output neurons Ol = fl(·;Wl)
of each block, where fl(·) is the neural network function of block l. This strategy is friendly to
MLP-based neural networks for two reasons: 1) the matrix calculation, such as Wl ∗ x, is relatively
simple so that we can easily recognize the disabled weights; 2) we do not need to apply any special
operation on the optimizer because the output masking will cut off gradient flow naturally. However,
we can not arbitrarily apply the above masking strategy to more expressive network structures,
such as convolution-based networks, because we can not easily distinguish the dependency between
parameters and outputs. Thus, we search for another masking strategy: masking the parameters Wl

with Ml, which permits us to control each parameter accurately.

Specifically, suppose that the total available mask positions of block l are Ml. In this paper, Ml is
a ones matrix, and the entries with 0 mean that we will perform masking. Before training on task
i, we first pre-define the specific mask Mi,l of task i on block l by randomly sampling unmasked
positions from the remaining available mask positions. Then, with the increase of the tasks, the
remaining available mask positions decrease until Ml =

∑I
i=1Mi,l.

Selective Weights Forward and Backward Propagation. After obtaining the mask Mi,l, we can
perform forward propagation with masked weights

ϵθ(τ
k
· , k, C) = fL(fL−1(...(f1(·))))

Ol+1 = fl+1(Ol, k;Mi,l+1 ◦Wl+1), O0 = τ i,kszq /τ
i,k
azq
,

(5)

where ϵθ is the noise prediction model introduced in Equation 1, and Mi,l+1 ◦Wl+1 represents the
pairwise product. τ i,kszq and τ i,kazq denote the perturbed state or action sequences of task i at diffu-
sion step k. Through forward designing, we can selectively activate different weights for different
tasks through the mask Mi,l+1, thus preserving previously acquired knowledge and reserving disen-
gaged weights for other tasks. Though we can expediently calculate the masked output Ol+1 during
forward propagation with weights or neurons masking, it poses a challenge to distinguishing the de-
pendency from weights to loss and updating the corresponding weights during the backward propa-
gation. In order to update the corresponding weights, we realize two methods. 1) Intuitively, we pro-
pose to update the neural network with the sparse optimizer rather than the dense optimizer Diederik
(2014), where the position and values of the parameters are recorded to update the corresponding

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

weights. However, in the implementation, we find that the physical time consumption of the sparse
optimizer is intractable (Refer to Table 6 of Appendix B.5 for more details.), which encourages us to
find a more straightforward and convenient method. 2) Thus, we propose extracting and assembling
the corresponding weights at the end of the training rather than updating the corresponding weights
during training. This choice brings two benefits: (1) It can significantly reduce the time consumption
spent on training. (2) It is friendly to implementation on complex network structures.

Weights Assembling. Assembling weights after training permits us to save the total acquired
knowledge and do not need extra memory budgets. Concretely, after training on task i, we will
obtain the weights Wi, which can be extracted with the mask Mi from the total weights W [i ∗ Ω],
including all the diffusion model weights. We useWi to denote the weights related to task i, Ω is the
training step on each CL task, and W [i ∗ Ω] represents the total weight checkpoint at training step
i ∗Ω. Then, at the end of the training, we can assemble weights {Wi|i ∈ I} by simply adding these
weights together because of the exclusiveness property, i.e.,W =

∑I
i=1Wi =

∑I
i=1Mi◦W [i∗Ω].

5 EXPERIMENTS

In this section, we will introduce environmental settings, evaluation metrics, and baselines in the
following sections. Then, we will report and analyze the comparison results, ablation study, and
parameter sensitivity analysis. Other implementation details are shown in Appendix A.2 and A.3.

5.1 ENVIRONMENTAL SETTINGS

Following previous studies (Zhang et al., 2023c; Yang et al., 2023), we select MuJoCo Ant-dir and
Continual World (CW) to formulate traditional CL settings with the same state and action spaces.
In Ant-dir, we select several tasks, such as 10-15-19-25 and 4-18-26-34-42-49, for training and
evaluation. In CW, we adopt the task setting of CW10, which contains 10 robotic manipulation
tasks for CL performance comparison. Additionally, we propose to leverage D4RL tasks (Fu et al.,
2020) to construct the CL settings with diverse state and action spaces. We select the Hopper,
Walker2d, and HalfCheetah as elements to construct CL tasks, where each environment among
Hopper, Walker2d, and HalfCheetah contains 6 qualities (random, medium, expert, medium-expert,
medium-replay, and full-replay) datasets.

5.2 EVALUATION METRICS

Considering the various reward structures of different environments, we should adopt different per-
formance comparison metrics. For Ant-dir, we adopt the average episodic return over all tasks as the
performance comparison, i.e., the final performance P = mean(

∑
iRi) is calculated based on the

task i’s return Ri. In the CW environment, previous works (Wołczyk et al., 2021; Anand & Precup,
2023) usually adopt the success rate Ψ as the performance metric. Thus, we adopt the average suc-
cess rate on all tasks as the final performance, i.e., P = mean(

∑
iΨi). For the D4RL environments,

we use the normalized score Φ (Wang et al., 2022a; Huang et al., 2024) as the metric to calculate
the performance P = mean(

∑
iΦi), where Φi =

Ri−Rrandom

Rexpert−Rrandom
∗ 100. Usually, we can use the

interface of these environments to obtain the score expediently.

5.3 BASELINES

We select various representative CL baselines, which can be classified into diffusion-based and non-
diffusion-based methods. For example, the diffusion-based methods consist of CRIL (Gao et al.,
2021), DGR (Shin et al., 2017), t-DGR (Yue et al., 2024), MTDIFF (He et al., 2023), CuGRO (Liu
et al., 2024), CoD (Hu et al., 2024), and CoD variants. The non-diffusion-based methods include
L2M (Schmied et al., 2024), EWC (Kirkpatrick et al., 2017), PackNet (Mallya & Lazebnik, 2018),
Finetune, IL-rehearsal (Wan et al., 2024), and Multitask. From the perspective of mainstream CL
classification standards, these baselines can also be sorted as rehearsal-based methods (CRIL, DGR,
t-DGR, CoD, and IL-rehearsal), regularization-based methods (L2M, EWC, CuGRO, and Finetune),
and structure-based methods (PackNet, Multitask, and MTDIFF).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 2: The comparison of VQ-CD and several baselines on the continual tasks setting (Ant-dir
task 4-18-26-34-42-49). We train on each task for 500k steps. We report the normalized evaluation
performance of VQ-CD in the top left corner, where the coordinates, e.g., task 4, represent evaluation
on task 4 at different training tasks. To show the overall performance on all tasks, we show the
normalized evaluation performance on the six tasks after finishing the training at the right part.

Table 1: The comparison of VQ-CD, diffusion-based baselines, and LoRA methods on Ant-dir tasks,
where the continual task sequence is 10-15-19-25. The results are average on 30 evaluation rollouts
with 30 random seeds.

Method VQ-CD
(ours) CoD Multitask

CoD
IL-

rehearsal
CoD-

LoRA
Diffuser-w/o

rehearsal
CoD-
RCR MTDIFF DD-w/o

rehearsal

Mean
return 558.22±1.14 478.19±15.84 485.15±5.86 402.53±17.67 296.03±11.95 270.44±5.54 140.44±32.11 84.01±41.10 -11.15±45.27

5.4 EXPERIMENTAL RESULTS

In this section, we mainly separate the experimental settings into two categories, the traditional CL
settings with the same state and action spaces and the arbitrary CL settings with different state and
action spaces, to show the effectiveness of our method. Besides, we also investigate the influence
of the alignment techniques, such as auto-encoder, variational auto-encoder, vector-quantized varia-
tional auto-encoder (we adopt this in our method). More deeply, we investigate how to deal with the
potential demand for additional tasks beyond the pre-defined task length by releasing nonsignificant
masks or expanding more available weights (Refer to Appendix B.4 for more details.).

The traditional CL settings correspond to the first question we want to answer: Can VQ-CD achieve
superior performance compared with previous methods in the traditional CL tasks?

We use Ant-dir and Continual World (Zhang et al., 2023c; Yang et al., 2023) to formulate the con-
tinual task sequence, where we select two types of task sequence in Ant-dir and “hammer-v2, push-
wall-v2, faucet-close-v2, push-back-v2, stick-pull-v2, handle-press-side-v2, push-v2, shelf-place-
v2, window-close-v2, peg-unplug-side-v2” to construct CW10 CL setting. For simplicity, we do
not align the state and action spaces with quantized alignment techniques because the traditional
CL setting naturally has the same spaces. The comparison results between our method and several
diffusion-based baselines are shown in Table 1, where these baselines include rehearsal-based (CoD
and IL-rehearsal), parameter-sharing (CoD-LoRA), multitask training (Multitask CoD and MTD-
IFF), and representative diffusion RL methods (Diffuser-w/o rehearsal, CoD-RCR, and DD-w/o
rehearsal). Our method surpasses all baselines in the Ant-dir setting by a large margin in Figure 2,
which directly shows the effectiveness of our method. As another experiment of CL setting with
the same state and action spaces, we report the results in Figure 7. Compared with the upper bound
performance of Multitask, our method reaches the same performance after the CL training. With
the increasing of new tasks, our method continually masters new tasks and sustains the performance
while the baselines show varying degrees of performance attenuation, which can be found in the
fluctuation of the curves. Moreover, the final performance difference between one method and the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: The comparison on the arbitrary CL settings. We select the D4RL tasks to formulate the
CL task sequence. We leverage state and action padding to align the spaces. The experiments are
conducted on various dataset qualities, where the results show that our method surpasses the base-
lines not only at the expert datasets but also at the non-expert datasets. The datasets characteristic
“fr”, “mr”, “m”, and “me” represent “full-replay”, “medium-replay”, “medium”, and “medium-
expert”, respectively. “Hopper”, “Walker2d”, and “Halfcheetah” are the different environments.

Table 2: The feature difference between the aligned features produced by the space alignment mod-
ule. We randomly sample thousands of aligned state and action features to calculate the difference.

Method VQ-CD AE-CD

feature difference state difference action difference state difference action difference

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 8.83±1.98 4.54±0.74 51.31±26.91 14.06±2.09

[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 9.03±1.97 4.45±0.74 48.12±21.94 15.39±3.71

[Hopper-m,Walker2d-m,Halfcheetah-m] 8.53±1.56 4.22±0.79 42.27±24.29 13.59±2.63

[Hopper-me,Walker2d-me,Halfcheetah-me] 8.93±2.00 4.05±0.56 57.91±36.94 13.93±3.20

Multitask method indicates the forgetting character, which can be reflected by the overall upward
trend of these curves. More experiments of shuffling task orders can be found in Appendix B.2.

The arbitrary CL settings correspond to the second question we want to answer: Can we use the
proposed space alignment method to enable VQ-CD to adapt to incoming tasks with various spaces?

To answer the above question, we select D4RL to formulate the CL task sequence because of the
various state and action spaces, and the results are shown in Figure 3. Considering the dataset
qualities of D4RL (Fu et al., 2020), we choose different dataset quality settings and report the
mean episode score that is calculated with Ri−Rrandom

Rexpert−Rrandom
∗ 100. Generally, from the four

sub-experiments (a, b, c, and d), we can see that our method (VQ-CD) surpasses these base-
lines in all CL settings. Especially in the CL settings (Figure 3 a and b), where the datasets
contain low-quality trajectories, our method achieves a large performance margin even compared
with the Multitask method. We can attribute the reason to the return-based action generation that
helps our method distinguish different quality trajectories and generate high-reward actions during

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: The effects of different codebook sizes about the states.

Figure 6: The effects of the number of latent vectors about the actions.

Figure 4: The ablation study of space alignment
module and diffusion network structure. For each
type of ablation study, we fix the other same and
retrain the model on four D4RL CL settings.

evaluation, as well as the selective weights acti-
vation that can reserve the previous knowledge
and reduce forgetting. While other methods just
possess the ability to continue learning and lack
the ability to separate different qualities and ac-
tions, thus leading to poor performance. For
trajectory qualities that are similar across the
datasets (Figure 3 c and d), we can see lower
improvement gains between our method and
baselines. However, it should be noted that
our method can still reach better performance
than other baselines. Apart from the padding
alignment, we also conduct experiments (Fig-
ure 11) on baselines that adopt our pre-trained
QSA module to align state and action spaces in
Appendix B.3.

5.5 ABLATION STUDY

In this section, we want to investigate the influence of different modules of VQ-CD. Thus, the ex-
periments contain two investigation directions: space alignment module ablation study and diffuser
network structure ablation study. To show the importance of vector quantization, we change the
space alignment module with auto-encoder (AE) and variational auto-encoder (VAE). Based on this
modification, we retrain our method and report the results in Figure 4. The results show signifi-
cant improvements in the D4RL CL settings, illustrating the importance and effectiveness of vector
quantization in our method. Compared with AE-CD, VAE-CD performs poorer on all D4RL CL
settings. The reason lies in that the implicit Gaussian constraint on each dimension may hurt the
space alignment. Compared with the codebook in VQ-CD, AE-CD may cause a bigger difference

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

between aligned features produced by AE (shown in Table 2), posing challenges for the diffusion
model to model the distribution of the aligned features and leading to low performance. As for
the diffuser network structure, we conduct the selective weights activation on the mlp-based and
unet-based diffusion models. The latter structure is beneficial to making decisions with temporal
information inside the trajectories, leading to higher performance evaluation.

5.6 PARAMETER SENSITIVITY ANALYSIS

When performing on the aligned feature with diffusion models, the hyperparameters of state and
action of the quantized spaces alignment module matter. Usually, the complexity of states is more
significant than the actions, so the codebook size controls the performance of reconstruction. Thus,
we investigate the effect of different codebook sizes and report the results in Figure 5. Obviously, a
small codebook size limits performance, and a negative effect arises when it exceeds a certain value,
such as 512. As for the actions, we believe the actions can be decomposed into several small latent
vectors, and the number of latent vectors is crucial for reconstructing actions. Similarly, we also see
the same trend in Figure 6, which inspires us that more latent vectors are not always better.

6 DISCUSSION

The Interplay of VQ and CD. In this paper, we investigate broadening the application scenarios
of the same state and action spaces to tasks of arbitrary state and action spaces by space alignment.
Vector quantization is verified as one effective way to achieve space alignment compared with AE,
VAE, and padding. Furthermore, we adopt the diffusion model to perform continual learning based
on VQ due to its strong model expressiveness and competitive performance. The ablation study
illustrates that integrating VQ and CD induces the proposed powerful method VQ-CD.

The Intuition of Constraint in QSA Module. In Equation 4, We add a constraint to encourage
a more concentrated distribution of the quantized representation vectors as shown in Table 2, which
benefits the diffusion model in learning the data distribution in a limited range (Ho et al., 2020; Ajay
et al., 2022). However, this may not necessarily benefit other methods that do not focus on modeling
distributions (Refer to Figure 11 in Appendix B.3.) because concentrated representations can make
originally dissimilar state and action vectors from different tasks appear more similar, making them
harder to distinguish and learn. We use the clip operation rather than convert the constraint to a
penalty because our goal is to ensure that the magnitude of the quantized representation vectors
does not exceed a certain value rather than minimize the norm of constraint.

Further Discussion of Experiments. In Figure 3 (a) and (b), we can see that VQ-CD surpasses
Multitask. The reason is that the datasets contain trajectories collected from the entire training
process, i.e., from a random policy to a well-trained policy. Our method leverages accumulated
discounted returns to guide the generation of state sequences, encouraging the generation of higher-
return state sequences. Consequently, the actions generated by the inverse dynamics model also
yield higher returns. In contrast, Multitask does not currently incorporate returns, resulting in lower
performance. In Figures 3 (c) and (d), the variance of trajectory returns in the dataset is smaller,
allowing Multitask to achieve better learning outcomes.

7 CONCLUSION

In this paper, we propose Vector-Quantized Continual Diffuser, called VQ-CD, which opens the
door to training on any CL task sequences. The advantage of this general ability to adapt to any
CL task sequences stems from the two sections of our framework: the selective weights activation
diffuser (SWA) module and the quantized spaces alignment (QSA) module. SWA preserves the
previous knowledge by separating task-related parameters with task-related masking. QSA aligns
the different state and action spaces so that we can perform training in the same aligned space.
Finally, we show the superiority of our method by conducting extensive experiments, including
conventional CL task settings (identical state and action spaces) and general CL task settings (various
state and action spaces). The results illustrate that our method achieves the SOTA performance by
comparing with 17 baselines on 15 continual learning task settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Abel, André Barreto, Benjamin Van Roy, Doina Precup, Hado van Hasselt, and Satinder
Singh. A definition of continual reinforcement learning. arXiv preprint arXiv:2307.11046, 2023.

Suzan Ece Ada, Erhan Oztop, and Emre Ugur. Diffusion policies for out-of-distribution generaliza-
tion in offline reinforcement learning. IEEE Robotics and Automation Letters, 2024.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International conference on machine learning, pp. 104–114. PMLR,
2020.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11254–11263,
2019.

Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.
arXiv preprint arXiv:2312.11669, 2023.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in uncertainty-
based offline reinforcement learning. arXiv preprint arXiv:2303.14716, 2023.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in neural information processing systems, 33:14879–14890,
2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. arXiv preprint arXiv:2401.02644, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Ching-An Cheng, Tengyang Xie, Nan Jiang, and Alekh Agarwal. Adversarially trained actor critic
for offline reinforcement learning. In International Conference on Machine Learning, pp. 3852–
3878. PMLR, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model. arXiv
preprint arXiv:2402.03570, 2024.

Mohamed Elsayed and A Rupam Mahmood. Addressing loss of plasticity and catastrophic forget-
ting in continual learning. arXiv preprint arXiv:2404.00781, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. Cril: Continual
robot imitation learning via generative and prediction model. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6747–5754. IEEE, 2021.

Rui Gao and Weiwei Liu. Ddgr: Continual learning with deep diffusion-based generative replay. In
International Conference on Machine Learning, pp. 10744–10763. PMLR, 2023.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive. In International Conference on Machine Learning, pp. 7513–7530. PMLR, 2022.

Assaf Hallak and Shie Mannor. Consistent on-line off-policy evaluation. In International Confer-
ence on Machine Learning, pp. 1372–1383. PMLR, 2017.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. arXiv preprint arXiv:2305.18459, 2023.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36, 2024.

Charles A Hepburn and Giovanni Montana. Model-based trajectory stitching for improved be-
havioural cloning and its applications. Machine Learning, 113(2):647–674, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jifeng Hu, Li Shen, Sili Huang, Zhejian Yang, Hechang Chen, Lichao Sun, Yi Chang, and Dacheng
Tao. Continual diffuser (cod): Mastering continual offline reinforcement learning with experience
rehearsal. arXiv preprint arXiv:2409.02512, 2024.

Kaixin Huang, Li Shen, Chen Zhao, Chun Yuan, and Dacheng Tao. Solving continual offline rein-
forcement learning with decision transformer. arXiv preprint arXiv:2401.08478, 2024.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
International conference on machine learning, pp. 652–661. PMLR, 2016.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Christos Kaplanis, Murray Shanahan, and Claudia Clopath. Policy consolidation for continual rein-
forcement learning. arXiv preprint arXiv:1902.00255, 2019.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Unclear: A
straightforward method for continual reinforcement learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 2020.

Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same state,
different task: Continual reinforcement learning without interference. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 7143–7151, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Tatsuya Konishi, Mori Kurokawa, Chihiro Ono, Zixuan Ke, Gyuhak Kim, and Bing Liu. Parameter-
level soft-masking for continual learning. In International Conference on Machine Learning, pp.
17492–17505. PMLR, 2023.

Lukasz Korycki and Bartosz Krawczyk. Class-incremental experience replay for continual learning
under concept drift. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3649–3658, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Dongsu Lee, Chanin Eom, and Minhae Kwon. Ad4rl: Autonomous driving benchmarks for offline
reinforcement learning with value-based dataset. arXiv preprint arXiv:2404.02429, 2024.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review. and Perspectives on Open Problems, 5, 2020.

Jinm ei Liu, Wenbin Li, Xiangyu Yue, Shilin Zhang, Chunlin Chen, and Zhi Wang. Contin-
ual offline reinforcement learning via diffusion-based dual generative replay. arXiv preprint
arXiv:2404.10662, 2024.

Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang, Arman Chopikyan, Yuxiao Hu,
Humphrey Shi, Anna Rohrbach, and Trevor Darrell. More control for free! image synthesis
with semantic diffusion guidance. In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 289–299, 2023.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Imad Eddine Marouf, Subhankar Roy, Enzo Tartaglione, and Stéphane Lathuilière. Weighted en-
semble models are strong continual learners. arXiv preprint arXiv:2312.08977, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Liangzu Peng, Paris Giampouras, and René Vidal. The ideal continual learner: An agent that never
forgets. In International Conference on Machine Learning, pp. 27585–27610. PMLR, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated learning.
arXiv preprint arXiv:2302.13001, 2023.

Yunpeng Qing, Jingyuan Cong, Kaixuan Chen, Yihe Zhou, Mingli Song, et al. Advantage-aware
policy optimization for offline reinforcement learning. arXiv preprint arXiv:2403.07262, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter.
Learning to modulate pre-trained models in rl. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint
arXiv:2002.08396, 2020.

James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. arXiv
preprint arXiv:2304.06027, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yanchao Sun, Shuang Ma, Ratnesh Madaan, Rogerio Bonatti, Furong Huang, and Ashish
Kapoor. Smart: Self-supervised multi-task pretraining with control transformers. arXiv preprint
arXiv:2301.09816, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. Lotus: Continual imitation learning for
robot manipulation through unsupervised skill discovery. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 537–544. IEEE, 2024.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, and Yu Qiao. Critic-guided decision transformer for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15706–15714, 2024.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022a.

Zhenyi Wang, Li Shen, Tiehang Duan, Qiuling Suo, Le Fang, Wei Liu, and Mingchen Gao. Dis-
tributionally robust memory evolution with generalized divergence for continual learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Zhi Wang, Chunlin Chen, and Daoyi Dong. A dirichlet process mixture of robust task models for
scalable lifelong reinforcement learning. IEEE Transactions on Cybernetics, 2022b.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020b.

Maciej Wołczyk, Michał Zajac, Razvan Pascanu, Łukasz Kucinski, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496–28510, 2021.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Shin’ya Yamaguchi and Takuma Fukuda. On the limitation of diffusion models for synthesizing
training datasets. arXiv preprint arXiv:2311.13090, 2023.

Yijun Yang, Tianyi Zhou, Jing Jiang, Guodong Long, and Yuhui Shi. Continual task allocation in
meta-policy network via sparse prompting. In International Conference on Machine Learning,
pp. 39623–39638. PMLR, 2023.

William Yue, Bo Liu, and Peter Stone. t-dgr: A trajectory-based deep generative replay method for
continual learning in decision making. arXiv preprint arXiv:2401.02576, 2024.

Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Boosting offline
reinforcement learning via data rebalancing. arXiv preprint arXiv:2210.09241, 2022.

Mengyao Zhai, Lei Chen, Frederick Tung, Jiawei He, Megha Nawhal, and Greg Mori. Lifelong gan:
Continual learning for conditional image generation. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 2759–2768, 2019.

Qizhe Zhang, Bocheng Zou, Ruichuan An, Jiaming Liu, and Shanghang Zhang. Split & merge:
Unlocking the potential of visual adapters via sparse training. arXiv preprint arXiv:2312.02923,
2023a.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. arXiv preprint arXiv:2002.09072, 2020.

Tiantian Zhang, Xueqian Wang, Bin Liang, and Bo Yuan. Catastrophic interference in reinforcement
learning: A solution based on context division and knowledge distillation. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

Tiantian Zhang, Zichuan Lin, Yuxing Wang, Deheng Ye, Qiang Fu, Wei Yang, Xueqian Wang, Bin
Liang, Bo Yuan, and Xiu Li. Dynamics-adaptive continual reinforcement learning via progressive
contextualization. IEEE Transactions on Neural Networks and Learning Systems, 2023b.

Tiantian Zhang, Kevin Zehua Shen, Zichuan Lin, Bo Yuan, Xueqian Wang, Xiu Li, and Deheng Ye.
Replay-enhanced continual reinforcement learning. arXiv preprint arXiv:2311.11557, 2023c.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. arXiv preprint
arXiv:2305.17330, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix of “Tackling Continual Offline RL through Selective Weights Activation
on Aligned Spaces”

A ALGORITHM

A.1 PSEUDOCODE OF VQ-CD

Algorithm 2: Vector-Quantized Continual Diffuser (VQ-CD)
Input: Noise prediction model ϵθ, inverse dynamic model finv,ψ, state and action quantized

model fq(θe, θd, θq), tasks set Mi, i ∈ {1, ..., I}, each task training step Ω, max
diffusion step K, sequence length Te, state dimension ds, action dimension da, reply
buffer Di, i ∈ {1, ..., I}, noise schedule α0:K and β0:K

Output: ϵθ, finv,ψ , θe, θd, θq
1 Initialization: θ, ψ, θe, θd, and θq
2 Separate the state-action trajectories of Di, i ∈ {1, ..., I} into state-action sequences with

length Te and calculate the discounted returns Rit =
∑∞
t′=t γ

t′−trt′ for each step t
3 for each task i do
4 // Quantized Spaces Alignment (QSA) Pretraining
5 for each train epoch do
6 for each train step do
7 Sample states and actions from task i’s buffer Di

8 Calculate the quantization loss and reconstruction loss
9 Updating the parameters θe of f iV QE(·; θe), θd of f iV QD(·; θd), and θq of f iθq (·) by

solving the problem of Equation 4
10 end
11 end
12 Save the task i’s well-trained f iV QE(·; θe), f iV QD(·; θd), and f iθq (·)
13 // Selective Weights Activation (SWA) Diffuser Training
14 Generate the task-related mask Mi for task i
15 for each train epoch do
16 for each train step m do
17 Sample b sequences τ0i = {sit:t+Te

, ait:t+Te
, Rit:t+Te

} ∈ RTe×(ds+da+1) from task
i’s buffer Di

18 Obtain the quantized state and action feature sizq = f is,θq (f
i
V QEs

(si; θe)) and
aizq = f ia,θq (f

i
V QEa

(ai; θe)) with the QSA module
19 Train the inverse dynamic model finv according to Equation 3
20 Formulate sizq , a

i
zq as sequences τ i,0zq = {sizq,t:t+Te

, aizq,t:t+Te
}

21 Sample the corresponding discounted returns Rit:t+Te
from task i’s buffer Di

22 Sample diffusion time step k ∼ Uniform(K) and return coefficient b ∼ B(λ)
23 Sample Gaussian noise ϵ ∼ N (0, I), ϵ ∈ Rb×Te×(dszq +dazq

)

24 Obtain τ i,ks,zq =
√
ᾱkτ

i,0
s,zq +

√
1− ᾱkϵ

25 Perform the forward propagation with Equation 5
26 Train ϵθ according to Equation 1
27 end
28 end
29 Save task i’s related models as ϵi∗Ω,θ
30 end
31 // Weights Assembling
32 Construct new models ϵ̃θ with the same structure as ϵθ
33 for each task i do
34 Extract the task-related parameters Wi with mask information Mi from ϵi∗Ω,θ
35 Fill the corresponding task-related parameters Wi =Mi ◦Wi into ϵ̃θ
36 end

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: The hyperparameters of VQ-CD.

Hyperparameter Value

QSA section

network backbone MLP
hidden dimension of QSA module 256
commitment cost coefficient 0.25
codebook embedding limit ρ 3.0
state codebook size per task 512
number of state latent 10
state latent dimension 2
action codebook size per task 512
number of action latent 5
action latent dimension 2
alignment type VQ/AE/VAE
VQ learning rate [1e-4,1e-3]

SWA section

network backbone Unet/MLP
hidden dimension 256
sequence length Te 8
diffusion learning rate 3e-4
guidance value 0.95
mask rate 1/I
condition dropout λ 0.25
max diffusion step K 200
sampling speed-up stride 20
condition guidance ω 1.2
sampling type of diffusion DDIM

Training

loss function MSE
batch size 32
optimizer Adam
discount factor γ 0.99

The training of VQ-CD (Pseudocode is shown in Algorithm 2) contains three stages. 1) We first
pre-train the QSA module for space alignment, as shown in lines 4-12, where we mainly want to
solve the constrained problem of Equation 4. 2) Then, in lines 13-29, for each task i, we generate the
task-related mask Mi followed by a standard diffusion model training process (Refer to Equation 1
and Equation 5 for the training loss) on the aligned state and action spaces. 3) Finally, we assemble
the task-related weights Wi together with the mask information {Mi|i ∈ [1 : I]} according to
W =

∑
Mi ◦W [i ∗Ω], where Ω is the training steps for each CL task, and W [i ∗Ω] is the weights

checkpoints of ϵi∗Ω,θ. It is noted that the pre-training of the QSA module and the training of the
SWA module can be merged together, i.e., for each task i, we can first train the QSA module related
to task i and then train the SWA module. The source code is available at here.

A.2 HYPERPARAMETERS

We classify the hyperparameters into three categories: QSA module-related, SWA module-related,
and training-related hyperparameters. We use the learning rate schedule when pre-training the QSA
module, so the VQ learning rate decreases from 1e-3 to 1e-4. In our experiments, the maximum
diffusion steps are set as 200, and the default structure is Unet. Usually, it is time-consuming for
the diffusion-based model to generate actions in RL. Thus, we consider the speed-up technique
DDIM (Song et al., 2020) and realize it in our method to improve the generation efficiency during
evaluation. For all models, we use the Adam (Kingma & Ba, 2014) optimizer to perform parameter
updating.

17

https://anonymous.4open.science/r/Vector_Quantized_Continual_Diffuser-031F

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: The experiments on the CW10 tasks, which contain various robotics control tasks. We
train each method on each task for 5e5 steps and use the mean success rate on all tasks as the
performance metric. Generally, we can see the superiority of our method from the above figure.

Table 4: The comparison of generation speed with different generation steps under the CL setting of
Ant-dir task-4-18-26-34-42-49. In the main body of our manuscript, we use the 10 diffusion steps
setting for all experiments.

Diffusion steps 200 (original) 100 50 25 20 10

sampling speed-up stride 1 (original) 2 4 8 10 20

Time consumption of
per generation (s) 5.73±0.29 2.88±0.21 1.41±0.16 0.71±0.18 0.58±0.17 0.29±0.15

Speed-up ratio 1× 1.99× 4.06× 8.07× 9.88× 19.76×

Table 5: The GPU memory consumption.

domain CL task setting GPU memory consumption (GB)

D4RL

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 4.583
[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 4.583
[Hopper-m,Walker2d-m,Halfcheetah-m] 4.583
[Hopper-me,Walker2d-me,Halfcheetah-me] 4.583

Ant-dir task-10-15-19-25 4.711
task-4-18-26-34-42-49 5.955

CW CW10 5.897

A.3 COMPUTATION

We conduct the experiments on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10 GPUs, and
the CPU type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each run of the experiments spanned
about 24-72 hours, depending on the algorithm and the length of task sequences.

A.4 GENERATION SPEED-UP TECHNIQUE

The time and memory consumption of diffusion models is attributed to the mechanism of diffu-
sion generation process that requires multiple computation rounds to generate data Ho et al. (2020).
Fortunately, previous studies provide useful speed-up strategies to accelerate the generation pro-
cess (Nichol & Dhariwal, 2021; Song et al., 2020). In this paper, we adopt DDIM as the default

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 8: The QSA module loss under different codebook sizes about states. We explore five code-
book size settings: 128, 256, 512, 768, and 1024. The red line represents the experimental codebook
size setting for states.

Figure 9: The QSA module loss under different latent numbers about actions. The setting includes
3, 5, 7, 9, and 11, which correspond to the aligned action space sizes 6, 10, 14, 18, and 22. The red
line represents the experimental latent numbers setting for actions.

generation speed-up technique and reduce the reverse diffusion generation step to 10 compared to
the original 200 generation steps. In Table 4, we use the CL setting of Ant-dir task-4-18-26-34-42-
49 as an example to compare the time consumption of different generation steps. Compared with
the original 200 diffusion steps, we can see that incorporating DDIM will significantly (19.76×)
improve the efficiency of generation. In the experiments, we find that 10 diffusion steps setting per-
forms well on performance and generation efficiency. Thus, we set the default sampling speed-up
stride to 20, and the diffusion step is 200/20=10 steps.

A.5 MEMORY CONSUMPTION

In Table 5, we report the GPU memory consumption during the training process. We mainly consider
the experiments on the D4RL, Ant-dir, and CW CL tasks. We can change the first block of the
diffusion model to make our model suitable for a longer CL task sequence. For example, we expand
the dimension length from 512 to 1024 when switching the CL training task from ‘task-10-15-19-25’
to ‘task-4-18-26-34-42-49’.

A.6 BASELINES IMPLEMENTATION

All the comparison methods used in this paper utilize their official codebases. Specifically,

• For L2M, we use the official source code: https://github.com/ml-jku/L2M

19

https://github.com/ml-jku/L2M

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: The experiments of Ant-dir with shuffled task order. We investigate the influence of
shuffled task order in the Ant-dir environment, where the experiments include inserting new tasks
into the predefined task order ‘4-18-26-34-42-49’ and disrupting the tasks order.

• For CuGRO, we use the official source code: https://github.com/NJU-RL/CuGRO

• For CoD, we use the official source code: https://github.com/JF-Hu/Continual Diffuser

• For MTDIFF, we use the official source code: https://openreview.net/forum?id=
fAdMly4ki5

A.7 NETWORK DETAILS

In the diffusion model (SWA module), we utilize a UNet network structure, incorporating resid-
ual connections at both the input and output of each block. Additionally, residual connections are
applied between the down-sampling and up-sampling blocks, meaning that the output of the down-
sampling block serves as the input to the up-sampling block. The convolution kernels in the UNet
are one-dimensional, with their shapes corresponding to the shape of the mask matrix.

In the QSA module, there are no shared parameters. The primary purpose of the QSA module is
to align the state and action spaces across different environments. Consequently, for different tasks,
the internal components of the QSA module, vector quantized encoder (VQE), vector quantized
decoder (VQD), and codebook are task-specific, and none of their parameters are shared. Thanks to
the alignment provided by the QSA module, the inverse dynamics model in the SWA module can
be shared. This is because the state and action spaces of different environments are mapped into an
alignment space with the same value range.

20

https://github.com/NJU-RL/CuGRO
https://github.com/JF-Hu/Continual_Diffuser
https://openreview.net/forum?id=fAdMly4ki5
https://openreview.net/forum?id=fAdMly4ki5

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: The comparison on the arbitrary CL settings. We select the D4RL tasks to formulate
the CL task sequence. In order to align the state and action spaces, we use the pre-trained QSA
module (the same as our method) to provide aligned spaces during training. The experiments are
conducted on various dataset qualities, where the results show that our method surpasses the base-
lines not only at the expert datasets but also at the non-expert datasets, which illustrates the wide task
applicability of our method. The datasets characteristic “fr”, “mr”, “m”, and “me” represent “full-
replay”, “medium-replay”, “medium”, and “medium-expert”, respectively. “Hopper”, “Walker2d”,
and “Halfcheetah” are the different environments.

B ADDITIONAL EXPERIMENTS

B.1 QSA MODULE LOSS ANALYSIS

Under the same hyperparameter settings in Section 5.6, we report the loss of the QSA Module to
investigate the effects of codebook size and latent number. For the states, we investigate the influence
of codebook size, where we set codebook size as 128, 256, 512, 768, 1024, and select D4RL CL
setting [Hopper-fr, Walker2d-fr, Halfcheetah-fr] and [Hopper-mr, Walker2d-mr, Halfcheetah-mr] as
the example. The results are shown in Figure 8, where we train the QSA module on each task for 5e5
steps. We can see that for states, a codebook size of 512 is good enough for aligning the different
tasks’ state spaces. A larger codebook size, such as 768 and 1024 in Figure 8 a and b, will not bring
significant loss improvements. Smaller codebook sizes can not provide sufficient latent vectors to
map the state spaces to a uniform space.

For the action, we select the latent number to explore the QSA action loss and report the results in
Figure 9. We can see the same trend that has been seen in QSA state loss (Figure 8). Though the
lower loss value of the more latent number indicates that we should use more action latent vectors,
we find that the gap between action latent number settings 5 and 7 is small when we increase com-
putation resources. Besides, we also see inconspicuous performance gains in the final performance
in Figure 6, which urges us to use 5 as the default action latent number setting. For the action latent
vector dimension, we directly use 2 as the default setting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: The comparison of time consumption per update between sparse and dense (normal) opti-
mizers. We compare these two types of optimizers on the CL settings and find that when we first use
the normal optimizer, such as Adam, to train the model and then use weights assembling to obtain
the final model, the total physical time consumption is significantly smaller than sparse optimizer
(e.g., sparse Adam).

domain CL task setting time consumption per update (s)
dense optimizer sparse optimizer

D4RL

[Hopper-fr,Walker2d-fr,Halfcheetah-fr] 0.089±0.219 0.198±0.224

[Hopper-mr,Walker2d-mr,Halfcheetah-mr] 0.096±0.223 0.197±0.223

[Hopper-m,Walker2d-m,Halfcheetah-m] 0.089±0.211 0.195±0.224

[Hopper-me,Walker2d-me,Halfcheetah-me] 0.090±0.223 0.206±0.225

Ant-dir task-10-15-19-25 0.062±0.064 0.239±0.282

task-4-18-26-34-42-49 0.064±0.061 0.214±0.270

CW CW10 0.061±0.065 0.218±0.286

B.2 EXPERIMENTS OF TASK ORDER SHUFFLING

To investigate the influence of task order in CORL, we choose Ant-dir as the testbed and change the
task order for new CL training. We change the task order by inserting new tasks into the predefined
task order ‘4-18-26-34-42-49’ and disrupting the task order. We can see from the results shown in
Figure 10 that our method achieves the best performance in almost all CL task orders. The task order
will affect the final performance of other baselines. For example, CRIL performs better in the task
orders ‘task 18-4-26-34-42-49’ and ‘task 49-42-34-26-18-4’ than in other task order experiments.
Another example is PackNet, which achieves the best performance only in the task order ‘task 34-
18-4-26-42-49’. Different from the baselines, whose performance fluctuates with the changing of
task orders, our method (VQ-CD) shows stable training performance no matter what task orders are
defined.

B.3 EXPERIMENTS OF BASELINES EQUIPPED QSA

In Section 5.4, we report the comparison of our method and baselines in the arbitrary CL settings,
where in the D4RL CL settings, we adopt state and action padding to align the state and action
spaces. Apart from the state and action padding, we can also use the pre-trained QSA module to
align the different state and action spaces. In Figure 11, we report the results of baselines equipped
with QSA. When introducing the QSA, the model is actually trained on the feature space rather than
the original state and action spaces, which makes it hard to learn for these baselines proposed from
the traditional CL setting. From the results, we can also see that our method still achieves the best
performance compared with these baselines. Considering the results of Figure 4 (VQ-MLPCD) and
Figure 11 (VQ baselines), we can see the importance of complementary sections: QSA and SWA.

B.4 SUPPORTING TASKS TRAINING BEYOND THE PRE-DEFINED TASK SEQUENCE

After training on pre-defined task sequences, we may hope the model has the capacity to support
training on potential tasks, which means that we need more weights or weight masks. Releasing
weight masks that are used to learn previous tasks is a straightforward choice when the total weights
are fixed. We conduct the experiments of mask pruning on Ant-dir ‘task 4-18-26-34-42-49’ and
report the performance and weight mask prune rate when pruning weight masks according to certain
absolute value thresholds in Figure 12. The results illustrate that we can indeed release some weight
masks under the constraint of preserving 90% or more performance compared with the unpruned
model. On the other hand, we can also see that this mask pruning method can only provide finite
capacity for tasks beyond the pre-defined task sequence. We postpone the systematic investigation
of mask pruning to future works.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: The mask pruning experiments of Ant-dir ‘task 4-18-26-34-42-49’. We investigate the
task pruning according to the absolute weight values, i.e., we release the weights to train on potential
new tasks according to the mask prune threshold.

B.5 TIME CONSUMPTION OF DIFFERENT OPTIMIZERS

In the CL settings of our experiments, we compare two types of optimizers and find that when we
first use the normal optimizer, such as Adam, to train the model and then use weights assembling
to obtain the final model, the total physical time consumption is significantly smaller than sparse
optimizer (e.g., sparse Adam). Thus, we propose the weights assembling to obtain the final well-
trained model after the training rather than suffering huge time burden of sparse optimizer during
the training.

B.6 MASK VISUALIZATION

We select [Hopper-m, Walker2d-m, Halfcheetah-m] to visualize the weights mask of our method in
Figure 13. To make it easy to show the mapping relation between masks and the weights, we draw
the network structure and mask matrices, where we only report the first 100 channels of the mask
matrices.

B.7 ALIGNMENT SPACE VISUALIZATION

In order to further demonstrate the effectiveness of our method. We conduct the visualization experi-
ments of aligned state feature and report the visualization results in Figure 14. From the experimental
results, we can see that the state features learned by the AE method are not well mapped to separate
regions but are instead mapped to multiple areas. In contrast, the features obtained by our method

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: Mask matrices visualization. we select [Hopper-m, Walker2d-m, Halfcheetah-m] as an
example to report the mask results. For each mask matrix, we only draw the first 100 channels of
the weights mask matrix if the mask matrix is too large.

are better partitioned into individual regions, which is more conducive for the model to capture the
data distribution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: Visualization of aligned state feature. We use the QSA module to process the different
state spaces and align them in the same space. Then we use t-SNE (Van der Maaten & Hinton, 2008)
to visualize aligned state features.

Figure 15: A graphical depiction of QSA training. From the figure, it is intuitively clear that the
training of the QSA module can fully adhere to the CL training setup.

25

	Introduction
	Related Work
	Preliminary
	Continual Offline RL
	Conditional Generative Behavior Modeling

	Method
	Quantized Spaces Alignment
	Selective Weights Activation

	Experiments
	Environmental Settings
	Evaluation Metrics
	Baselines
	Experimental Results
	Ablation Study
	Parameter Sensitivity Analysis

	Discussion
	Conclusion
	Algorithm
	Pseudocode of VQ-CD
	Hyperparameters
	Computation
	Generation Speed-up Technique
	Memory Consumption
	Baselines Implementation
	Network Details

	Additional Experiments
	QSA Module Loss Analysis
	Experiments of Task Order Shuffling
	Experiments of Baselines Equipped QSA
	Supporting Tasks Training Beyond the Pre-defined Task Sequence
	Time Consumption of Different Optimizers
	Mask Visualization
	Alignment Space Visualization

