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Abstract:

Egocentric human experience data presents a vast resource for scaling up end-
to-end imitation learning for robotic manipulation. However, significant domain
gaps in visual appearance, sensor modalities, and kinematics between human and
robot impede knowledge transfer. This paper presents EgoBridge, a unified co-
training framework that explicitly aligns the policy latent spaces between human
and robot data using domain adaptation. Through a measure of discrepancy on
the joint policy latent features and actions based on Optimal Transport (OT), we
learn observation representations that not only align between the human and robot
domain but also preserve the action-relevant information critical for policy learning.
EgoBridge achieves a significant absolute policy success rate improvement by 44%
over human-augmented cross-embodiment baselines in three real-world single-arm
and bimanual manipulation tasks. EgoBridge also generalizes to new objects,
scenes, and tasks seen only in human data, where baselines fail entirely. Videos
and additional information can be found at https://ego-bridge.github.io/
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Figure 1: EgoBridge enables rich knowledge transfer from human to robot, based on our key
hypothesis: aligned latent representations yield stronger transfer. Our algorithm, which adapts
optimal transport, aligns behaviors which are similar across embodiments. This enables EgoBridge
to generalize to objects, scenes and even motions demonstrated only in human data.

1 Introduction

Supervised imitation learning methods such as behavior cloning have emerged as a promising path to
scaling robot performance across diverse objects, tasks, and environments. However, while large-scale
models in vision and language have achieved remarkable generalization through Internet-sourced
data, replicating this success in robotics remains challenging due to the labor-intensive nature of
collecting teleoperated demonstrations. Deploying physical robots to many new environments to
collect data with enough coverage and diversity is economically and practically intractable.

In this work, we aim to enable robots to learn from egocentric recordings of natural human behavior,
collected by increasingly ubiquitous wearable devices (e.g., XR devices and smart glasses). Without
a robot in the loop, such data is cheap and scalable to collect and captures natural human interactions
with the world. More importantly, it reflects the embodied human experience, as it contains both
observations (e.g., egocentric RGB images) and actions (e.g., hand motions). Unlike unstructured
data sources such as Internet videos, the rich embodied information allows us to treat human data and
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robot data as equal parts in a continuous spectrum of demonstration data and potentially learn from
both with a unified learning framework.

However, the multitudes of domain gaps between human and robot pose significant challenges in
designing such a framework. Human bodies and robots have different visual appearances. Even
within a shared action space, kinematic differences can lead to behavior distribution shifts. Robots
also have additional sensing modalities such as wrist cameras that are often missing from embodied
human data. While recent works such as EgoMimic [1] have attempted to bridge the embodiment
gaps with techniques such as visual masking, data normalization, and motion retargeting, such
domain gaps still largely remain. More broadly, simply co-training from cross-domain data does not
automatically yield effective knowledge transfer, as suggested by recent studies [2]. Such challenges
prevent policies from scaling their performance primarily with human data.

We formalize the human-robot cross-embodiment learning problem as a domain adaptation problem,
where human and robot data represent two labeled distributions with significant covariate shifts in
observations due to embodiment gaps. Standard domain adaptation approaches often rely on global
distribution alignment techniques such as adversarial training [3] and maximum mean discrepancy
minimization [4]. However, they primarily address high-level tasks such as image classification and
fail to preserve detailed action-relevant information—a critical requirement for robot learning where
actions and observations are temporally correlated under compounding covariate shift.

To address these challenges, we propose EgoBridge, a novel domain adaptation approach that uses
Optimal Transport (OT) to align latent representations from human and robot domains as part of the
policy co-training objective. Unlike conventional domain alignment methods, our OT formulation
explicitly exploits the inherent relationship between motion similarities in human and robot domains
to form pseudo-pairs as supervision for the adaptation process. Concretely, we use the dynamic time
warping (DTW) distance among human and robot motion trajectories to shape the OT ground cost.
This encourages the transport map to find a minimal-cost coupling between human and robot data
exhibiting similar behaviors. As such, EgoBridge aligns policy representations across domains via a
differentiable OT loss (Sinkhorn distance), while preserving action-relevant information for policy
learning. Importantly, we show that EgoBridge learns a shared latent representation that generalizes
beyond the paired data. This enables the policy to learn behaviors observed only within the human
dataset, effectively enabling the policy to scale primarily with human data.

We evaluate EgoBridge on both a reproducible simulation benchmark task and three challenging
real-world manipulation tasks. Our results show that EgoBridge consistently improves policy success
rates compared to human-augmented cross-embodiment baselines, for up to 44% absolute success
rate improvement, and effectively transfers behaviors from diverse human demonstrations to robotic
execution in tasks requiring spatial, visual, and task generalization.

2 Related Work

Supervised Imitation Learning. Supervised imitation learning (SIL), especially behavior cloning,
learns policies from expert demonstrations and achieves strong results when trained on large
datasets. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Vision-Language-Action (VLA) models which inte-
grate broad vision-language pretraining with action decoders, improve generalization but still require
large labeled robot datasets for robust real-world performance [10, 8, 12, 11]. Consequently, our
work leverages scalable human demonstrations alongside in-domain robot data to improve learning
outcomes.

Learning from Human Data. Human data presents two main opportunities for robot learning:
abundant unlabeled online videos and curated, labeled demonstrations [15, 16, 1]. Unlabeled web
videos, though plentiful, require pseudo-labeling of actions via inverse dynamics models [17] or
point tracking [18, 19, 20] for policy training, forming a basis for some foundation models [12],
yet often still necessitating in-domain robot data. Alternatively, labeled human demonstrations can
be co-trained with robot data as distinct embodiments [1, 21, 22], enhancing robustness and scene
understanding. However, generalizing to novel behaviors observed only in human data remains



challenging. To address this limitation, we propose a novel learning framework for jointly aligning
observation-action spaces across human and robot embodiments to improve generalization.

Domain Adaptation and Optimal Transport. Domain Adaptation (DA) aims to reduce reliance
on target-specific data by leveraging labeled source domain data to bridge distribution gaps and
improve performance on unlabeled target domains. In cross-embodiment learning, DA has been
applied for shared dynamics modeling [23], unsupervised reward modeling [24], and high-level
planning [25]. However, many DA methods primarily focus on global distribution alignment, which
can neglect fine-grained action information crucial for transfer across robot embodiments. To address
this, computer vision research introduced Optimal Transport (OT) as a loss function for DA to
align both local and global distributions [26, 27, 28]. Building on these insights, we propose an
action-aware DA approach using OT to learn shared representations across embodiments, thereby
improving observation and behavior generalization.

3 Preliminaries and Problem Statement

3.1 Optimal Transport

Optimal Transport for Domain Adaptation. Optimal Transport (OT) offers a principled framework
for comparing probability distributions by considering the geometry of their sample spaces. Given
two distributions, pg (source) and pr (target), over a common metric space X', and a cost function
C(x%,2T) measuring the effort to move mass from z° € X to 7 € X, OT finds a probabilistic
coupling v € P(X x X) that minimizes the expected transport cost:
*=ar min E e, 2T,
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where II(ug, ur) is the set of all joint distributions whose marginals are g and pp. For discrete
empirical distributions from Ng source samples {x7 } and N7 target samples {27}, the cost matrix
is Ciyj = C(xf, ] ), and the total cost is (v, C)r = =, ;7i;Cij-
Differentiable Optimal Transport as a Loss Function. When used as a cost function to align
representations, the standard OT problem is often regularized. The Sinkhorn algorithm [29] introduces
an entropic regularization term to the OT objective, yielding a differentiable approximation 77" to the
optimal transport plan:
T =a i E rlC@®, ™)) — eH(T),
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where € > 0 is the regularization strength and H (7') is the entropy of the coupling. This regularization
makes the problem strictly convex and efficiently solvable. The resulting regularized optimal transport
cost, El j(T:)ij C};, is differentiable with respect to the cost matrix C'. This allows OT to serve as a
loss function within deep learning frameworks, enabling the learning of feature encoders that map
inputs to a space X where their distributions are aligned by minimizing this transport cost.

3.2 Human and Robot Data Sources

We conside egocentric human data (D) and teleoperated robot data (Dg). Dy = { (o, a) iV:Hl
consists of Ny egocentric human demonstrations, where ofl € OH gre observations from wearable
sensors (e.g., head-mounted cameras) and a!? € A are human actions in a common action space
(e.g., robot end-effector and human hand poses). This data is abundant and captures natural, diverse
behaviors. Conversely, Dr = {(of,al")} % comprises N robot experiences, typically from
teleoperation, with of* € O being robot sensor observations (e.g., ego-centric/wrist cameras, joint
states) and af* € A the robot actions. This data is often scarce. We describe how each data source is
captured and processed in more detail in Sec. 4.3. We assume actions are in trajectory chunks, which
is shown to improve prediction temporal consistency of the trained policies [5, 6].

3.3 Cross-Embodiment Imitation Learning: Challenges and Objectives

Our primary goal is to effectively learn from both limited robot demonstrations (Dg) and more
abundant, diverse egocentric human demonstrations (D). We train a feature encoder fy : OH Uy



O — Z to project observations from both human (O*) and robot (O%) into the shared latent space
Z. We jointly train a policy 7y that maps these learned latent representations z € Z to actions a € A.

Cross-Embodiment Co-Training. A popular approach [1, 21] involves training the policy end-to-end
using a standard Behavior Cloning (BC) loss on the aggregated dataset:

'CBC-cotrain(¢a 9) = E(o,a)NDH UDg [/:BC (779(f¢(0))7 a)],
To effectively learn from both data sources, a critical assumption is that a shared latent space Z would
naturally emerge where the mapping from latent states to actions is domain-invariant, resulting in
Pr(alfs(or)) = Pr(alfe(om)) for observations or and oy from aligned underlying states.

Observation Covariate Shift. However, we argue that, without explicit mitigation, the induced
marginal distributions over these latents, uy = P(fs(Of)) and pup = P(f,(OF)), will exhibit a
significant covariate shift (g # ptr). This shift arises from inherent domain gaps in observations
(e.g., differing visual appearances, viewpoints, sensor modalities like robot wrist cameras absent
in human setups) and embodiment kinematics. We also empirically show that such co-trained
representations often form disjoint latent clusters (Sec. 5.3). This covariate shift in the marginal latent
distributions undermines the foundational assumption of consistent conditional action distributions
across domains, thereby limiting effective knowledge transfer from human to robot.

Generalizable Cross-Embodiment Transfer. This motivates our method that aims at joint domain
adaptation (Sec. 4.1), where we explicitly seek to align the latent representations from human
and robot data while preserving action-relevant information. Successfully addressing this latent
misalignment should enable two crucial levels of generalization: First, for tasks present in both Dy
and Dp, the system must achieve observation generalization. This involves effectively bridging
visual and sensor gaps, which include appearance changes that do not affect behaviour. Second,
and more ambitiously, the system should enable behavior generalization (Beh. Gen.) allowing the
robot to perform tasks or handle novel situations (e.g. task variations) observed only in Dp. This
requires the learned encoder fy4 to generalize beyond scenarios with paired human and robot data
which require motion information to be transferred, such as spatial variations in goal pose.

4 EgoBridge

EgoBridge is a co-training framework designed to effectively imitate embodied human demonstra-
tions and robot demonstrations. It explicitly addresses the domain gap between human and robot
experiences through an Optimal Transport (OT)-based domain adaptation mechanism integrated
into the policy learning process. The core of EgoBridge lies in aligning the joint distributions of
latent policy features and corresponding actions across the human and robot domains. The following
sections detail this joint domain adaptation formulation (Sec. 4.1), the design of its OT cost function
(Sec. 4.2), and the overall training process and system details (Sec. 4.3).

4.1 Joint Domain Adaptation via Optimal Transport

To address the latent covariate shift (Sec. 3.3) and generalizable cross-embodiment transfer, EgoBridge
builds on Optimal Transport (OT, Sec. 3.1) to directly shape the shared feature encoder f4. Unlike
standard domain adaptation techniques [30] that often aligns only the marginals P(f4(O)), which
can discard action-relevant information, EgoBridge optimizes f, to align the joint distributions of its
output latent features and their corresponding actions, i.e., P(fs(O), A).

Given mini-batches of human data { (0, ')} X" and robot data { (0%, alt)} V7

i a; 5 a5") tj21, where a represents
a temporally-extended action trajectory, we define an OT-based loss to guide the learning of f4. The
differentiable Sinkhorn OT formulation [29] allows us to compute a loss based on the alignment of

the empirical distributions of (f(0"),a’") and (f4(0'?), a™):

Lorjoim(9) = Y _(T7)i; - C ((folof"). af"). (fs(0]), a)) -
(2%
Here, (T));; is the optimal transport plan coupling the i-th human and robot (latent, action) pairs.
The cost function C(+, -) measures the dissimilarity between these joint entities. Its design is crucial
for capturing meaningful behavioral similarities across domains, which we detail in Sec. 4.2.



Minimizing EOT_joim(qS) directly influences the parameters ¢ of the encoder f,. The gradients from
this loss encourage fy to produce latent features f, (o) and f,(of) that minimize the transport cost
required to align them, especially when their associated actions a!! and af are behaviorally similar
(as determined by C). At each step a transport plan is computed which influences the feature encoder
to couple the action pairs This iterative process shapes the latent space Z to be domain-invariant with
respect to the joint observation-action manifold.

4.2 Designing OT Cost Function for Action-Aware Joint Adaptation

Our joint OT formulation (Section 4.1) relies on a cost function C((z¥, af), (2%, a*)) to measure
the dissimilarity between joint human and robot latent feature-action pairs. A critical challenge is
designing this cost to be robust to inherent domain differences. Specifically, we aim to account for
temporal misalignments, where human and robot often execute the same task at of different speed,
e.g., humans might be 2-3 times faster than teleoperated robots, and kinematic variations, where
even within a shared SE(3) end-effector action space and hand-eye alignment through an egocentric
coordinate frame (Sec. 4.3), minor kinematic differences exist.

Dynamic Time Warping. To identify behaviorally similar action sequences while accounting for
these differences, we propose to leverage Dynamic Time Warping (DTW) to guide the OT alignment.
DTW [31] has been effective in prior work to compare time series data and trajectories. Formally,
given two action sequences a’? = (afl,... afl) from human data and a’* = (af, ..., aft) from
robot data of identical length 7', DTW finds an alignment path # C {1,...,T} x {1,...,T} that

minimizes the cumulative distance:

DTW(a” af') = min Z ||aH—a§%||2

where A(T) is the set of admissible monotonic alignments constrained to start at (1, 1) and end at
(T, T), while allowing small local shifts to account for temporal variations.

Soft Supervision. With DTW, we can identify highly correlated samples from both domains.
However, directly utilizing the DTW cost is noisy and instead is a much stronger measure of relative
pairing between human and robot samples. As such the DTW cost can be used to pseudo-pair D and
Dp. On a mini-batch of size B of sampled ground-truth state-action pairs from Dg and D, we form
a DTW cost matrix A € RP*5. Here, A; j = DTW(a;,a] ). The row-wise minimum cost gives us
the most behaviorally similar human pseudo-pair for each robot sample : i*(j) = argmin; A;;.

Given the standard OT Euclidean distance cost Dy; = || f4(0f") — f4(0f)||?, we define the joint cost
C((fo(of"),af"), (fs(0f), af))) for Lo as:

O — D;; - X ifi=1i*(j)
b D;; otherwise

where 0 < A < 1 is a small scalar. This cost function strongly incentivizes OT to match robot
samples with their behaviorally closest human pseudo-pair (identified by DTW) by significantly
reducing the cost for these pairs. For all other pairs, the cost is simply the distance in the latent feature
space. This soft supervision from DTW guides the latent space alignment towards behaviorally
relevant correspondences across embodiments.

4.3 Putting it all together: EgoBridge

With all the ingredients for joint distribution adaptation using OT with joint policy co-training, we
present EgoBridge as a unified cross-embodiment imitation learning algorithm and describe its
corresponding robot learning system and policy architecture.

Policy Co-Training with Joint Adaptation. EgoBridge jointly optimizes the feature encoder fq
and 7y, with the joint OT loss applied on the feature encoder and the BC co-training loss applied
end-to-end through both components: Ly = LBC-cotrain (P 0) + @LoTjoint, With tunable weight a.
Detail of the algorithm and hyperparameter choices are described in Appendix.



Egocentric Human Data. We largely follow

EgoMimic [1] and leverage a wearable smart Lo f Decoder Head —Lpc o
glass platform Meta Project Aria [32] as our [

main data collection platform. The platform al- ?ﬁ oo acton token

lows us to collect exteroceptive, egocentric first ] "
person POV RGB images (I ), and proprio- ( Encoder Trunk J
ceptive data (¢'), cartesian pose for both arms fo

€ SE(3) x SE(3). We take inspiration from LIILL] .mlge p,jp,io e
EgoMimic to construct stable reference frames s — s

to form action sequences of cartesian pose (a) Fobot u =‘ \@a )_] ‘

in the egocentric camera frame. ) R i i o o
Figure 2: EgoBridge policy co-training with joint
Teleoperated Robot Data. We base our robot 4, ptation. The encoder f, consists of modality-
platform on the open-source Eve robot [1]. In gpecific input stems and the encoder trunk, while
particular, we leverage Aria glasses as the main  the policy 7y consists of a shared multi-block trans-
egocentric perception sensor for the robot and former decoder. Lor.jeint Optimizes the encoder
mount it in a way that emulates the hand-eye While Lpc.cotrain Optimizes the entire network.
configuration of a human adult (J, go). This ef-
fectively mitigates the human-robot camera device gap, allowing us to specifically study the appear-
ance, kinematic and behaviour gaps. The robot additionally provides RGB streams from its two
RealSense D405 wrist cameras, I, .. The actions consist of a sequence of corresponding future
end-effector poses, a® € SE(3) x SE(3).
Shared Policy Architecture. Inspired by recent cross-embodiment policy learning [33] and DETR-
style architectures [34], our policy employs a shared transformer encoder “trunk” (f,) and a shared
transformer policy decoder “head” (my) (Fig. 2). We perform embodiment-specific gaussian normal-
ization to the proprioception and actions. The encoder fy4 begins with stems—shallow networks that
tokenize raw observations; notably, a shared vision stem processes main egocentric RGB images
({ego) from both human and robot to enforce visual alignment, while separate stems handle robot
wrist camera inputs (I,,,;s¢). The subsequent multi-layer encoder trunk processes these concatenated
tokens, along with M prepended learnable context tokens upon which the OT loss is applied. The
multi-block decoder head then generates actions by attending to this encoded context, utilizing T’
learnable action tokens and injecting context through alternating self and cross-attention blocks.

Learned context tokens

5 Experiments

In this section, we aim to validate three core hypotheses. H1: EgoBridge improves co-training perfor-
mance for scenarios present in both human and robot data. H2: EgoBridge enables generalization
to scenarios only seen in human data. H3: EgoBridge learns a shared latent space where human
and robot data are aligned in task-relevant manners. We validate the hypotheses through a standard
simulation benchmark task (Sec. 5.1) and three complex real-world manipulation tasks (Sec. 5.2).

5.1 Simulation Evaluation

To facilitate reproducible study and eliminate the confounding factors in real robot systems, we study
a well-explored planar pushing task [6], where the goal is to push a T-shaped object to a desired goal
location. We emulate “human” (source) data through a blue circle pusher and “robot” (target) data
through a salmon triangle pusher (Fig. 3), with lower floor friction. The differences aim to analogize
the appearance and agent-environment dynamics gaps between human and robot data.

Source and Target Domain Data. In our "robot" target domain, we collect demos in the standard
push-T setting, but in our "human" source domain, we alter the background color to purple and
change the T configuration to be mirrored, requiring a new motion to slot into place 3. The change in
background color is analogous to the human data containing new visual scenery, and the change in
starting configuration is analogous to the human demonstrating new motions in their demonstrations.

Training and Evaluation. To eliminate factor from model design (Sec. 4.3), we choose a standard
ResNet-UNet Diffusion Policy [6] and apply the OT-joint loss on the feature outputs of the ResNet
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Figure 3: In the simulated Push-T experiments, we probe a toy version of visual and motion level
generalization from human to robot. We have narrow target "robot" data represented by the triangle
pusher on a white background, and diverse source "human" data represented by the circle pusher
with changes in background color and T configuration. We test our "robot" on the diverse human
scenarios, and find that EgoBridge outperforms traditional Domain Adaptation baselines.

Table 1: Real World Evaluation Results: In-Distribution and Generalization

Method Scoop Coffee (SR) Drawer (SR) Laundry

In-Dist. Obj. Gen. Scene+Obj Gen.|Total (Pts | SR) Place Toy Beh. Gen.|(Pts | SR)
Robot-only BC | 33% 40% 7% 3819% 28% 0% 38128%
Co-train 53% 46% 0% 55122% 2% 0% 41133%
EgoMimic [1] 60% 53% 0% 491 14% 39% 0% 38133%
MimicPlay [25]| 33% 27% 0% 33114% 22% 0% 32128%
ATM [19] 47% 33% 0% 561 6% 17% 8% 35128%
EgoBridge 67 % 60% 27 % 77147 % 72% 33% |48172%

encoder. We perform standard action normalization and co-train the policy on both the triangle and
circle pusher data. We evaluate the policy on 3 cases: Triangle in the standard setting, Triangle
with purple background, Triangle with purple background and Triangle with purple background and
flipped T. We evaluate a total of 100 fixed seeds across all the models and report the mean reward
(max IoU with goal) and the success rate (reward > 0.9).

Baselines. In the more controlled simulation settings, we choose to compare EgoBridge against
conventional domain adaptation baselines. We choose Maximum Mean Discrepancy (MMD) [30]
as an alternative domain adaptation loss to joint-OT on the feature encoder. We also test Standard
OT, which performs marginal alignment instead of joint alignment. The Co-train baseline trains on
evenly-sampled data from both domains without an alignment loss. Finally, Target-only is a control
study which trains the policy only on the target (triangle) data.

5.2 Real World Evaluation

We evaluate EgoBridge on three challenging real-world manipulation tasks, as illustrated in Fig. 4.

Drawer: The robot interacts with a 6x4 drawer array, tasked to pick a toy, place it into a pre-opened
drawer, and close it. Robot data (144 demonstrations) covers three of the four array quadrants,
each quadrant being a 3x2 arrangement. Human data (1 hour) covers all four quadrants, providing
demonstrations for motions into the fourth, robot-unseen quadrant. This setup specifically tests
behavior generalization to drawer locations only seen in human data. Points (Pts) are awarded for
successful completion of each stage and a trial is considered a success only if the robot completes all
actions. Evaluation uses 48 trials (2 rollouts for each of the 24 drawers).

Scoop Coffee: The robot uses its left arm to scoop coffee beans with a spoon and empty them into
a target. Robot data (50 demonstrations) involves a specific target (can) in one scene. Human data
(2 hours) includes demonstrations with both the can and a new target (grinder), across two distinct
scenes, one of which is novel to the robot. Target object positions are randomized (30x23 cm area).
We evaluated observation generalization for: (1) the new grinder target, and (2) the new scene with
the new target, that is, scooping to the grinder in the new scene, seen in human data only. Performance
is measured by success rate over 15 rollouts across 5 distinct target locations.

Laundry: This is a bimanual task where the robot needs to fold the shirt in 50 x 22 cm range with a
rotation range + 30 degrees. The robot uses both arms to fold the right sleeve, the left sleeve, and
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Figure 4: Training Data and Evaluation Settings. We show the distribution of human and robot
training data (top) and evaluation setting, where in-distribution scenarios are in both human and robot
data, while out-of-distribution (OOD) scenarios is seen only in human data.

then the final stage to fold the shirt in half. We award Pts for each successful stage and consider it
success if all the individual stages are successful. We collect 2 hours of robot data which include
300 demonstrations across 3 shirts, and 2 hours of human data comprising approximately 700
demonstrations. We conduct 18 evaluations with diverse shirt initial placement and colors.

Baselines. We adopt the following baselines for real-world tasks. Co-train: Direct co-training of
the robot and human data using BC loss, without any latent alignment. EgoMimic: [1] Co-training
with explicit vision and action-space alignment using masking, shared end-effector pose head (human
and robot) and a separate joint-space head for robot. Mimicplay: [25] A hierarchial policy with a
latent high-level planner co-trained on human and robot data, and an action decoder fine-tuned on
robot data. Any-Point Trajectory Modeling (ATM): [19] A hierarchical policy where the high-level
planner is initially co-trained on 2D point tracks derived from both robot and human video data.
These point tracksare obtained via Co-tracker [35]. Following this, high-level planner is frozen and
an action decoder is fine-tuned specifically on robot data. Target-only BC: Trained only on robot data.

5.3 Results

EgoBridge improves in-domain task performance (H1). EgoBridge improves in-domain perfor-
mance (H1), achieving 7-44% higher success rates than both human-augmented and robot-only
baselines. While co-training, EgoMimic, and ATM also yield gains, EgoBridge consistently out-
performs them, likely due to better-aligned latent representations that enhance cross-embodiment
transfer.

EgoBridge enables generalization to objects and scenes only seen in human data (H2). While it
is difficult to collect robot data across diverse scenes and objects, it is trivial to do for human data,
so it’s critical that we can transfer this knowledge from human to robot, inspiring our experimental
setup. Specifically, in the Scoop Coffee task, our human data introduces a new coffee grinder, table,
lighting and height variations, completely unseen to the robot. We find EgoBridge outperforms all
baselines when tested on the new coffee grinder (7-33%). Further, most methods fail entirely when
tested on the new grinder + scene, but EgoBridge retains a performance of 27%. We observe similar
robustness trends in our simulated benchmark Fig. 3, where EgoBridge enables generalization in the
push-T task to a new background and starting configuration, outperforming all baselines.

EgoBridge enables generalization to new behaviors only seen in human data (H2). In our most
challenging setting, we seek to show that we can learn entirely new motions from human data alone.
In the drawer task, the robot data covers 3/4 drawer quadrants, whereas the human data covers all 4
quadrants. We evaluate our policy’s performance on these new drawers, and find that EgoBridge is
able to generalize to these locations with a success rate of 33%, whereas most methods fail entirely
(Tab. 1). While all the methods were exposed to the same human data, only EgoBridge was able
to effectively transfer the human motion to a novel robot action. We attribute this success to the
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Figure 5: Visualization of TSNE plots on encoded features for EgoBridge and baselines, with the
mean Wasserstein-2 distance and KNN pairs of aligned human-robot data visualized.

well aligned latent representations, which enables human to robot knowledge interpolation. We also
observed a similar trend in the simulated benchmark where EgoBridge faces the lowest performance
drop of 14% compared to all baselines in the mirrored-T + background colour reflected in Fig. 3.

EgoBridge learns a shared latent space that aligns human and robot data in a task relevant
manner (H3). We hypothesize that an ideal latent space for transfer would jointly embed human
and robot data into a space with high overlap and semantic interoperability. To probe this, we create
a TSNE visualization of the action tokens from our transformer backbone. EgoBridge not only
exhibits the highest latent overlap between human and robot as measured by Wasserstein distance as
seen in Fig. 5, but also upon inspecting K-nearest neighbor pairs in latent space, exhibits the most
semantically similar neighbors. For instance, we see the human and robot performing the same phase
of a given task, whereas in baselines like MimicPlay that aligns marginals with KL-div, the semantic
similarity is lacking. This result is highly correlated with the task success rates for in-distribution and
generalization where baselines with poor alignment perform lower consistently across all evaluations.

Ablation. We ablate three key components of our method
1) replacing our DTW-based pairing metric to instead use Table 2: Ablation Results (Drawer)

simple MSE, 2) replacing the joint OT objective Lorjoint

with standard marginal alignment, and 3) removing any Method Drawer (SR) Beh. Gen. (SR)

auxiliary alignment objectives (direct co-training). We EgoBridge 47% 33%
find that replacing the cost function with MSE leads to MSE 14% 17%

e e . . Standard-OT 33% 17%
the largest performance drop for in-distribution policy g _irain 22% 0%

success rate from 47% to 17%, seen in Tab. 2, which em-
phasizes the importance of creating semantically similar
pseudo-pairs. Ablating Joint-OT also shows a large performance drop in both in-distribution and
generalization cases which emphasizes how naive marginal alignment cannot transfer knowledge from
human data effectively. Ablating an auxiliary alignment loss also shows a significant performance
drop for in-distribution success rate and leads to failure in generalization cases, emphasizing the need
for joint distribution alignment.

6 Conclusion

We presented EgoBridge, a novel co-training framework designed to enable robots to learn effectively
from egocentric human data by explicitly addressing domain gaps. By leveraging Optimal Transport
on joint policy latent feature-action distributions, guided by Dynamic Time Warping cost on action
trajectories, EgoBridge successfully aligns human and robot representations while preserving critical
action-relevant information. Our experiments demonstrated significant improvements in real-world
task success rates (up to 44% absolute gain) and, importantly, showed robust generalization to novel
objects, scenes, and even tasks observed only in human demonstrations, where baselines often failed.
Future work includes extending to multi-task settings, exploring alignment costs from language or
foundation model features, and scaling to Internet-sourced human data without action labels.
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