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Abstract
This paper introduces a novel inference scheme
for a class of hurdle priors that exploits sparsity
to scale inference in potentially high-dimensional
models with convolution-closed non-negative like-
lihoods, such as the Poisson. We apply an instance
of the class of hurdle priors, the hurdle gamma
prior, to a probabilistic non-negative Tucker de-
composition and derive an inference scheme that
scales with only the nonzero latent parameters in
the core tensor. This scheme avoids the typical
exponential blowup in computational cost present
in Tucker decomposition, efficiently mapping the
data to a high-dimensional latent space. We de-
rive and implement a closed-form Gibbs sampler
for full posterior inference and fit our model to
longitudinal microbiome data. Using our infer-
ence motif to quickly fit our model, we reveal
interpretable qualitative structure and encourag-
ing classification results.

1. Introduction
Sparse and high-dimensional data are ubiquitous in scien-
tific applications. Practitioners often seek to build complex
models for such data, whose parameters and latent vari-
ables are themselves high-dimensional. To tailor complex
models to sparse data, modelers routinely employ regular-
ization or sparsity-inducing (e.g., “spike-and-slab”) priors,
which encourage many parameters to be (near) zero, and
thus promote parsimony even in high-dimensional models.

Techniques that promote model sparsity are typically mo-
tivated either to avoid overfitting (i.e., as regularizers) or
to improve model interpretability. Although often effective
for both, such techniques often introduce increased com-
putational cost to inference. In probabilistic or Bayesian
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settings,“spike-and-slab” priors promote sparsity by intro-
ducing many additional binary parameters, which must
themselves be fit, and which may take combinatorically
many values (Bai et al., 2021). As a result, these priors are
typically not employed directly, and replaced instead with
continuous relaxations, or other approximations.

In some cases, model sparsity can improve rather than exac-
erbate the computational cost of inference. One such setting
is that of trained neural networks, whose weight matrices are
high-dimensional but often found to be sparse (Molchanov
et al., 2017). Louizos et al. (2017) exploit this sparsity ex-
plicitly to improve the computational cost of both training
and inference. Inspired by this and other examples, we
aim to develop complex probabilistic models that similarly
benefit computationally from model sparsity.

This paper builds on classical statistical motifs for modeling
sparse data, specifically conditionally conjugate models and
hurdle models (Cragg, 1971). We first review the hurdle
model as a classical way to model sparsity in probabilistic
modeling and refer to a subset of these hurdle models as
hurdle conjugate priors. We apply hurdle conjugate priors
to impose sparsity in the latent parameter space.

We couple our class of priors with a class of closed-
convolution likelihoods and present a data augmentation
technique that avoids the computational costs that often
come with imposing sparsity in high-dimensional, prob-
abilistic settings. Our scheme yields efficient complete
conditional updates critical for Bayesian inference such as
Gibbs sampling and variational methods.

To demonstrate this scheme, we build a model for sparse
count tensors with a closed-convolution likelihood (Pois-
son) and a hurdle conjugate prior. Building on work that
leverages the Poisson likelihood’s scalability, we show how
the closed-convolution hurdle motif reduces computation by
orders of magnitude relative to previous approaches. More
specifically, we show how the hurdle conjugate prior allows
us to fit a non-negative Tucker decomposition model without
suffering the “exponential blowup” in computational cost
that Tucker decomposition typically suffers. We implement
a fast Gibbs sampler to demonstrating the computational
advantage of our method for efficient posterior inference.
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2. A Family of Hurdle Conjugate Priors
The hurdle model is defined by its sampling scheme. For
k ∈ [K],

bk
i.i.d.∼ Bernoulli(ρ), (1)

λk | bk
ind.∼

{
δ0 if bk = 0

gθ(λk) otherwise
(2)

where 0 ̸∈ supp(gθ) and ρ ∈ (0, 1) is the hurdle parameter.
We consider the setting in which yk | λk ∼ Fckλk

for some
likelihood distribution Fλ and constant ck, parameterized by
λ (i.e. Fλ(y) = Poisson(y;λ)). (yk)Kk=1 may be observed
or latent. We use Y throughout to denote the observed data.

Hurdle models, like spike-and-slab priors (which allow for
0 ∈ supp(gθ)), are useful for probabilistically modeling
sparsity in high-dimensional spaces, as they provide hard
sparsity (exact zeros) in a clear and interpretable manner.
However, inference in hurdle and spike-and-slab models
involves learning bk, a prohibitively expensive procedure
for large enough K (Bai et al., 2021). We show that for a
class of likelihoods, we may streamline this procedure.

2.1. Convolution-Closed Likelihoods

Suppose we have a conditionally-conjugate pair, as in (3-5),
where (3) specifies the conditionally conjugate prior, (4)
specifies the likelihood, and (5) specifies the conditional pos-
terior (where (ck)

K
k=1 are scaling constants). For k ∈ [K],

λk
iid∼ gθ(λk), (3)

yk | λk
ind.∼ Fck·λk

(·), (4)

(λk | yk, ck)
ind.∼ gθ′(λk), (5)

for some θ′ that depends on ck and yk.

We consider the setting where Fλ is convolution-closed, as
defined in Definition 2.1.

Definition 2.1. A distribution Fλ is convolution-closed in
λ if for independently sampled X1 ∼ Fλ1

, X2 ∼ Fλ2
, the

sum X1 +X2 ∼ Fλ1+λ2 .

Examples of convolution-closed distributions include the
Gaussian, Poisson, binomial, negative binomial, gamma,
multivariate Gaussian, inverse Gaussian, generalized Pois-
son, Tweedie, and multinomial, many of which have conju-
gate priors. This paper focuses on non-negative data: Table 1
lists commonly used non-negative convolution-closed likeli-
hoods and their accompanying closed-form conjugate priors.

2.2. Data Augmentation

We would like to approximate the exact posterior
P((λk, bk)

K
k=1 | Y) using methods that leverage conditional

Closed-Convolution Likelihood Conjugate Prior
y ∼ Poisson(λ) λ ∼ Gamma(·, ·)

y ∼ Binomial(n, p) p ∼ Beta(·, ·)
y ∼ NegativeBinomial(r, p) p ∼ Beta(·, ·)
y ∼ Multinomial(n,p) p ∼ Dirichlet(·)
y ∼ Exponential(λ) λ ∼ Gamma(·, ·)
y ∼ Gamma(α, β) β ∼ Gamma(·, ·)
y ∼ Weibull(θ, β) θ ∼ InvGamma(·, ·)

Table 1. Some convolution-closed likelihoods and their correspond-
ing conjugate priors for modeling non-negative data.

conjugacy, such as Gibbs sampling and mean field
variational inference (Casella & George, 1992; Wainwright
et al., 2008; Blei et al., 2017). These algorithms iteratively
update (bk | −), (λk | −), and (yk | −), conditional on
all other parameters fixed. To perform the updates to each
(bk | −) efficiently, we propose a data augmentation scheme
derived from Proposition 2.2.

Proposition 2.2. Let yk
ind.∼ Fck·λk

(·), c̄ = maxk ck, and

Fλ be convolution-closed. Then for ỹk
ind.∼ F(c̄−ck)λk

, ȳk ≡
yk + ỹk ∼ Fc̄λk

independent of ck.

Proposition 2.2 follows directly from fact that Fλ is
convolution-closed. For each yk ∼ Fckλk

, we sample an
auxiliary ỹk, such that ȳk ≡ yk + ỹk ∼ Fc̄λk

(·) which does
not depend on ck. If Fλ is convolution-closed, then for

yk ∼ Fckλk
, ỹk ∼ F(c̄−ck)λk

independently, (6)
ȳk ≡ yk + ỹk ∼ Fc̄λk

. (7)

Under the convolution-closed augmentation scheme,
inference can be simplified to performing inference under
the generating process given by (8-10).

bk ∼ Bernoulli(p), (8)

λk | bk ∼

{
δ0 if bk = 0

g(λk) otherwise
(9)

ȳk | λk ∼ Fc̄λk
(ȳk) (10)

In this framework, posterior inference requires iteratively
updating (bk | λk, ȳk, c̄), (λk | bk, ȳk, c̄), (yk | bk, λk, ck),
and the auxiliary (ỹk | bk, ck, c̄, λk).

Note that F0 is not defined for some distributions, such as
the Poisson. For these distributions, we define F0 to be a
delta spike at 0, F0(·) = δ0(·). That is,

yk ∼ F0 =⇒ yk = 0. (11)

Updating λk | bk, c̄, ȳk. If bk = 0, then λk = 0. Condi-
tional on bk = 1, ȳk, c̄, (λk | bk = 1, ȳk, c̄) has a closed-
form conjugate update, as given by (5).
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Auxiliary Updates. Auxiliary sampling scales with ||b||0,
the number of nonzero bk. When bk = 0, then λk = 0 and
so c̄λk = ckλk = 0. We avoid sampling auxiliary ỹk, as
yk is already distributed as Fc̄λk

= F0. Otherwise, sample
ỹk ∼ Fc̄λk

and set ȳk = ỹk + yk.

Updating bk | λk, c̄, ȳk. It is evident that

(bk | λk ̸= 0, c̄, ȳk) = 1, (12)
(bk | λk = 0, c̄, ȳk) = 0, (13)

since λk = 0 =⇒ bk = 0 and λk ̸= 0 =⇒ bk = 1.
Updates to bk are immediate, but a Markov chain based
on these updates violates detailed balance (i.e. the Markov
chain will get stuck in this state and not explore the full
posterior). As such, we collapse out λk to derive an update

P(bk = 1 | c̄, ȳk) ∝ P(bk = 1)P(ȳk | bk = 1, c̄) (14)

∝ p ·
∫

P(ȳk | λ, c̄)︸ ︷︷ ︸
Fc̄λ(ȳk)

P(λ | bk = 1)︸ ︷︷ ︸
g(λ)

dλ

︸ ︷︷ ︸
f(c̄,ȳk)

(15)

which is a function of ȳk and c̄ independent of ck. Then
for k ̸= k′, ȳk = ȳk′ , bk and bk′ are i.i.d. in their complete
conditional:

P(bk = 1 | ȳk, c̄) = P(bk′ = 1 | ȳk′ , c̄). (16)

In particular, this implies that for ȳk = ȳk′ = 0,

P(bk = 1 | ȳk = 0, c̄) =
p · f(c̄, 0)

p · f(c̄, 0) + (1− p)
(17)

= P(bk′ = 1 | ȳk′ = 0, c̄) (18)

for k ̸= k′. That is, for all k such that ȳk = 0, these bk
are i.i.d in their complete conditional. We can sample these
Bernoulli random variables by sampling a single binomial
random variable and thinning it. Letting

p̃ = P(bk = 1 | ȳk = 0, c̄), (19)

we update the {bk : ȳk = 0} jointly by sampling

n ∼ Binomial(
∑
k

1{ȳk = 0}, p̃) (20)

and then sample n of the classes {k : ȳk = 0} uniformly
without replacement.

Computational benefit in sparse regimes. The greater
the difference between n and K, the greater the reduction
in computational cost. We see the most reduction when λ
is high-dimensional but sparse. Our method only requires
sampling the auxiliary ỹk for those k such that λk > 0, a
step that scales as O(||λ||0) instead of O(K). Similarly, we

must only re-sample the λk for which bk = 1, a significant
reduction in cost when ||b||0 << K.

Computing the evidence. Note that collapsing out λk relies
on the ability to compute the evidence term

P(ȳk | bk = 1) =

∫
Fc̄λk

(ȳk)g(λk)dλk. (21)

Generally, computing the evidence term is intractable.
Since ȳk > 0 implies bk > 0, we only need to resample
bk (and thus compute the evidence term) when ȳk = 0. In
many cases, the likelihood Fc̄λ(0) simplifies when y = 0,
and so P(0) is tractable and cheap to compute. This yields
cheap updates to (bk | c̄, ȳk = 0).

Extending to continuous data. The closed-convolution hur-
dle motif relies on ȳk = ȳk′ for k ̸= k′. When the support
of F is finite or discrete, our scheme takes exploits repetition
for computational advantage. For discrete Fλ(y) with sup-
port at 0, for example, our motif presents realizable benefits.
However, for continuous data, true zeros are not observed
in practice (and more generally, ȳk ̸= ȳk′). We provide an
approximate method to the continuous likelihood case in Ap-
pendix B. Our proposal introduces a tradeoff between com-
putational cost and approximation error and we argue that
in many cases the approximation error will be quite small.

3. Sparse Non-Negative Tucker Decomposition
We couple a hurdle gamma prior with the Poisson likelihood
to model sparse count tensor data using the hurdle motif.
The gamma hurdle (Hilbe, 2014) is an established tool for
statistical modeling and sparsity in Tucker is an established
idea. Sparse alternatives have been applied to the Tucker
decomposition, including spike-and-slab priors on the
individual core elements (Fang et al., 2021; Park et al.,
2021; Zhang & Ng, 2022). However, these methods do not
exploit sparsity for computational benefit, but instead for
interpretability and generalization. As such, these methods
scale poorly with the size of the core tensor. We attempt to
alleviate the typical computational costs, exploiting sparsity
for computation and interpretability.

3.1. Tucker Decomposition

The Tucker decomposition of a tensor Y ∈ RI1×···×IM

decomposes Y into a core tensor Λ ∈ RJ1×···×JM and M
factor matrices θ(m) ∈ RIm×Jm . Tucker reconstructs Y as
a sum of |Λ| =

∏M
m=1 Jm weighted outer products:

Ŷ ≡
J1∑

j1=1

· · ·
JM∑

jM=1

λj1,...,jM θ
(1)
j1

◦ · · · ◦ θ(M)
jM

, (22)

where each element of the core tensor λj1,...,jM corresponds
to a weight assigned to each outer product. We use
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i = (i1, . . . , iM ) to index the observed tensor Y and
j = (j1, . . . , jM ) to index the core tensor.

Recent work advocates for modeling complex network data
using the non-negative Tucker decomposition (Schein et al.,
2016; De Bacco et al., 2017; Aguiar et al., 2022). Tucker
yields expressive, rich latent structure. In the case of com-
plex network data, Tucker embeds individuals into clusters,
with distinct modalities to capture latent structure (i.e. tem-
poral and spatial) and how these entities interact. However,
its usefulness is limited: computation generically scales
linearly with the size of the core tensor, which makes fitting
a large-core Tucker decomposition difficult in practice.

For high-dimensional, sparse count data, it is natural
to adopt a conditionally Poisson likelihood, so that
Y ∼ Poisson(Ŷ) and constrain the parameters of θ(m) and
Λ to be non-negative. We refer to this adaptation of Tucker
as the Poisson Tucker decomposition (Schein et al., 2016).

Previous work argues for using the Poisson likelihood
to model sparse data for its interpretable appeal near
zero and computational tractability (Chi & Kolda, 2012).
Evaluating the log-likelihood of a matrix or tensor Y
scales computationally with the number of non-zeros
in the data structure. Moreover, the closed-convolution
characteristic of the Poisson permits a latent parts-based
representation (Lee & Seung, 1999) of the observed data.

Inference involves allocating observed counts yi across K
latent classes through multinomial thinning. Expectation-
maximization, Gibbs sampling, and variational in-
ference methods built around this scheme scale as
O(K · ||Y||0) (Gopalan et al., 2013; 2014; Schein et al.,
2015). In Tucker decomposition, K = |Λ| =

∏M
m=1 Jm,

the size of the core.

Bayesian Poisson Tucker decomposition. We assume pri-
ors on the parameters λj , θ(m)

imjm
and infer them through

posterior estimation. For instance, λj = P(λj | ϕ), where
ϕ parameterizes the prior distribution over λj . Under this
formulation, computation generally scales with the size of
the core tensor, which experiences an exponential blowup
in parameters (exponential, since size of the core tensor is
exponential in M ). Workarounds such as the ALℓ0CORE
tensor decomposition (Hood & Schein, 2024) have been
proposed, which places an ℓ0 constraint on Λ and infers the
nonzero locations and values in the core tensor. The authors
derive an inference scheme that scales computationally as
O(||Λ||0 · ||Y||0) and enforce a strict upper bound on ||Λ||0.
Inspired by the explicit l0-constraint on the core tensor, this
work places a hurdle prior on each element of the core ten-
sor to implicitly provide ℓ0 regularization. We apply the
hurdle prior to the factor matrices in addition to the core
tensor, incorporating sparsity across all of Tucker’s latent
components.

The hurdle gamma prior. The conjugate prior to the Pois-
son distribution is the gamma distribution, defined as

Gamma(λ;α, β) =
βα

Γ(α)
λα−1e−βλ (23)

for λ, α, β > 0. In Bayesian Poisson matrix and tensor
factorization models (including Poisson Tucker) the
gamma prior yields easy-to-compute complete conditionals,
P(λ | −), conducive to efficient posterior estimation via
Markov chain Monte Carlo and variational inference
methods. Since the gamma distribution places zero density
at λ = 0, gamma priors constrain parameters to be positive
and dense. We model the elements of the factor matrices
and core tensor with hurdle gamma priors and couple them
with the (convolution-closed) Poisson likelihood. We apply
the convolution-closed hurdle motif to speed up inference.

We refer the reader to Appendix C for the complete gener-
ative model and inference scheme. At a high level, infer-
ence involves alternating between allocating counts to latent
sub-counts, as described above, and updating parameters
conditional on these latent sub-counts. Upon allocating,
inference simplifies to computing the complete conditionals
under the following generative model:

b ∼ Bernoulli(ρ), (24)

λ | b ∼

{
δ0 if b = 0

Gamma(α, β) otherwise
(25)

y | λ ∼ Poisson(cλ), c ∈ R≥0 (26)

which yields closed-form complete conditional updates for
each of the parameters b and λ.
Updating b. As in (12) and (13), conditioning on λ deter-
mines b so we marginalize out λ, which yields the following
update rule.

Proposition 3.1. When y > 0, then b = 1. Otherwise,
b | c, y = 0 ∼ Bernoulli(p̃), where

p̃ =
ρβα

(1− ρ)(β + c)α + ρβα
. (27)

Updating λ. By the hurdle and conditional conjugacy,

(λ | b, y) ∼

{
0 if b = 0

Gamma(α+ y, β + c) otherwise.
(28)

Convolution-closed Poisson augmentation. We introduce
auxiliary Poisson random variables to sample bj jointly.
Updates to λj condition on the latent sub-counts yj . The
update to bj | yj , cj yields different Bernoulli success pa-
rameters p̃j for each bj . Naively, each Gibbs update iterates
over all bj , scaling computationally with the size of the
core. We apply the convolution-closed hurdle motif to work
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Figure 1. Our method’s learned subject modality factor matrix,
where subjects (one subject per row) are grouped by phenotype.
After training, each latent component so that it’s values lie in the
unit interval, and the factor elements at zero are plotted white,
while those at 1 are dark blue.

around this problem, as the Poisson is a convolution-closed
likelihood and the gamma is its conjugate prior.

Letting c̄ = maxj(cj), we sample auxiliary counts
ỹj ∼ Poisson((c̄− cj)λj), such that

ȳj ≡ yj + ỹj ∼ Poisson(c̄λj), (29)

since the Poisson is convolution-closed.

Computation. Let YΛ denote the tensor of size |Λ| contain-
ing the latent sub-counts (yj). Conditional on ȳj , p̃ = p̃j =
p̃j′ for all j ̸= j′, ȳj = ȳj′ = 0. As such, we sample the
bj jointly, sampling n ∼ Binomial(|Λ| − ||YΛ||0, p̃) and
then sampling n new multi-indices in the core at random
without replacement. The greater the difference between
n and |Λ|, the greater the reduction in computational cost.

Our method only requires sampling ỹj for those λj > 0,
which scales as O(||Λ||0), the l0 norm of Λ, instead of
O(|Λ|), the size of the core tensor. As in (28), b = 0 implies
that λ = 0. Otherwise,

(λ | b = 1, ȳ, c̄) ∼ Gamma(α+ ȳ, β + c̄) (30)

by conditional conjugacy. Iterating between these updates
(on the factor matrices and core tensor) and allocating
observed counts to latent sub-counts, which scales
O(||Λ||0 · ||Y||0), forms a Gibbs sampler, which generates
samples from a Markov chain with stationary distribution
equal to the exact posterior distribution, the target of interest.

4. Experimental Results
Data. We demonstrate the closed-convolution hurdle
motif’s effectiveness by fitting Tucker to data from a
microbiome longitudinal study, where Yijt denotes the
gene count of gene i of subject j at time t. We qualitative

Figure 2. Time series for each latent time component, normalized
to lie in the unit interval. In days 6-8, highlighted in blue, subjects
receive antibiotic treatment. Factor 1, in blue, is active from day
11 through the end of the study. Factor 2, in red, is active in days
2-9. Factor 3, in green, is most active in days 9-11.

and quantitatively evaluate our method on the FARMM
cohort (Tanes et al., 2021), where the observed tensor
Y ∈ N343×30×16

0 . A description of the FARMM dataset
may be found at (Tanes et al., 2021). We consider 343 genes,
30 subjects, each with phenotype of {vegan, omnivore, or
EEN}, and 16 days. Subjects receive antibiotic treatment on
days 6-8 of the study. We omit day 1 observations to be con-
sistent with previous methods (none of the vegan subjects
record observations on the first day). The observed tensor is
76% sparse and contains approximately 11% missing values.
Our approach treats each missing data point naturally as
its own latent variable that is imputed during inference.

Hyperparameter selection. For simplicity, we place inde-
pendent hurdle gamma priors with hurdle parameter ρ = 0.9
and Gamma(1, 1) priors on each element of the core ten-
sor λj . For each of the factor matrix elements, we specify
hurdle Gamma(1, 10) priors. To let sparsity levels differ
across factors, we use Beta priors (conjugate to the bino-
mial) ρ(m)

jm
∼ Beta(1, 1), where

Beta(x;α, β) =
xα−1(1− x)β−1Γ(α+ β)

Γ(α)Γ(β)
(31)

The sparse factor matrices distinguish subjects by phenotype
in the posterior even though our model does not have access
to labels while training, as shown in Figure 1.

Qualitative evaluation. Our method identifies latent
temporal structure in the time-specific factor matrix and
latent structure corresponding to known phenotypes in the
subject-specific factor matrix. The core tensor allows for all
possible multi-linear latent gene-subject-time interactions.
We examine the inferred values in the core tensor to evaluate
inferred latent interactions, plot each subject’s loading onto
each latent factor, and plot the time series for each temporal
latent factor. Figures 1-3 show interpretable inferred latent
structure. The qualitative and quantitative results are taken
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Figure 3. The core tensor. White element indicate core elements
that are exactly zero. Each subfigure corresponds to a slice of a
different latent component specific to the gene mode of the core
tensor, where each slice shows different interactions between time
and subject latent factors, organized by gene factor. Of the 15 latent
factors, 12 are active (non-zero). We depict heterogenous structure
and repetitive structure to demonstrate the complex structure in the
core.

from observing one sample from the posterior at random
(we simply use the last saved sample). We discard the first
500 samples and keep the remaining 1,000.

Quantitative evaluation. Our model outputs a set of poste-
rior samples, each which contains a sample core tensor and
factor matrices. We train a logistic regression classifier on
the subject factor matrix to classify subjects by phenotype
(EEN, or not EEN) and predict each subject’s phenotype us-
ing a leave-one-out procedure. We report the area under the
precision-recall curve error (1 - AUCPR) for a variety of dif-
ferent core tensor sizes, ranging from (3, 3, 3) to (25, 3, 3),
as depicted in Figure 4. We repeat this procedure for 20, 30,
40, and 50% missing data points, holding out samples from
different time points at random.

We also compare our method’s ability to classify subjects
by phenotype to baselines (Martino et al., 2021; Ma & Li,
2023). Each method outputs a 30 × 3 subject by latent
component factor matrix. We normalize each component to
have zero mean and unit variance using the scale function
in R and perform spectral clustering (Ng et al., 2001) using
the specc package from the kernlab library in R. We
compare each method’s classification accuracy using the
metric of mutual information between the ground-truth
empirical distribution over phenotypes and the empirical
distribution derived from each method’s clusters.

Our method quantifies uncertainty around parameter
estimates via Gibbs sampling, which samples parameters
from the exact posterior distribution. One drawback of
Gibbs sampling is its runtime, as sampling 1, 000 samples

Figure 4. 1 - AUCPR (median over 10 masks) as a function of the
gene-specific latent dimension, keeping the subject-specific latent
dimension fixed at K = 3, for missing data proportions ranging
from 11-50%. Missing proportions are 11% (dark blue), 20%
(red), 30% (green), 40% (teal), and 50% (light blue).

takes longer than a typical optimization procedure such as
EM or VI. However, we note that on the FARMM dataset,
for a (15, 3, 3) core tensor with approximately 100 nonzero
elements, one Gibbs iteration takes about 0.1 seconds on
a laptop. We suspect that as the size of the observed tensor
and size of the core increases, the gap between our method
and a naive implementation grows, since |Λ| >> ||Λ||0.
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Figure 5. Mutual information between the ground-truth labels and
each method’s predicted labels after spectral clustering. Each point
is the mean mutual information across 10 masks, with error bars
representing standard errors.

4.1. Qualitative Results

We fit a model with core tensor Λ ∈ R15×3×3. Our method
yields a 71.1% sparse core tensor, with 96 out of 135 core
elements exactly zero. The estimated 343 × 15 gene fac-
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tor matrix is 45.4% sparse, while the 30 × 3 subject and
15 × 3 time factor matrices are 12.2% and 31.1% sparse,
respectively.

Factor matrices. Figure 1 shows each subject’s loading
onto the normalized latent components. Our method
demonstrates that the subject-specific latent factors
delineate between phenotypes. The EEN phenotype cor-
responds mostly to factor 1, while the omnivore phenotype
corresponds mostly to factor 2 and vegan to factor 3. We
consider the identification of 3 distinct and informative
latent factors that match the ground-truth phenotypes an
advantage of our model.

Figure 2 shows distinct normalized latent factors corre-
sponding to different temporal patterns associated around
the study’s treatment period, highlighted in blue. Factor 2
(red) captures temporal structure before antibiotic treatment,
while factors 1 (blue) and 3 (green) capture relatively
chronic and acute responses to treatment, respectively.

Core slices. The Tucker decomposition allows for all pos-
sible multi-linear interactions between latent gene, subject,
and time factors. We identify heterogeneous responses
to antibiotic treatment by latent subject component that
corresponds to known phenotype groupings. Darker colors
represent higher values in the core, while white indicates
exact zeros.

4.2. Quantitative Results

We find an interesting relationship between classification
accuracy and core size that motivates the use of a large
core tensor in practice. As the number of gene specific
latent components grows, our classifier achieves lower
error, even though the subject factor matrix is fixed in size.
Increasing the core tensor size along one dimension yields
more precise latent structure in other modalities, despite
fixing the latent dimension specific to that modality.

We leverage the large core size to classify subjects in an
unsupervised learning task. After fitting a (25, 3, 3) instance
of our model, we spectral cluster to classify subjects, as
outlined above, and compare our results to existing methods.
Our method’s mutual information score (median across 10
random masks) is higher than that of existing methods, as
shown in Figure 5, across all proportions of missing data,
and we see this as a promising sign.

5. Conclusion
We present the closed-convolution hurdle motif, an
inference scheme for a class of models that exploits
sparsity for computational savings. We demonstrate the
interpretable and computational benefits of our motif by
imposing a sparse, high-dimensional latent space on a

probabilistic non-negative Tucker decomposition. More
generally, we view the idea of exploiting sparsity for
computational benefit in high-dimensional probabilistic
models as a promising future direction.
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A. Implementation
A.1. Code

The source code for this paper may be found at https://github.com/jhood3/HCPCCL. Our Gibbs sampler is
implemented in Julia.

A.2. Implementation Details

All experiments were performed on a 2020 M1 Macbook Air. We ran each Gibbs chain for 500 samples of burn-in, which
we discard, and an additional 1000 samples from the target (exact posterior) distribution.

Initialization. We initialize dense instances of the core and factor matrices, such that b(m)
imjm

= bj = 1 for all combinations
of im, jm. During the burn-in phase, we threshold the core elements λj such that if λj < τ for some threshold τ , we set
λj = 0. We find that this burn-in procedure yields quicker convergence of the chains than initializing values from the prior.
For the FARMM study, we set τ = 0.003. We only use this thresholding procedure during the burn-in phase.

B. Continuous Extension
Consider the following generative model:

bk ∼ Bern(p), (32)

λk | bk ∼

{
δ0 if bk = 0

g(·) otherwise
(33)

yk | bk, λk, ck ∼

{
Unif(a0, b0) if bk = 0

Fckλk
(·) otherwise

(34)

ỹk | bk, λk, ck, c̄ = max
k

ck ∼

{
0 if bk = 0

F(c̄−ck)λk
(ỹk) otherwise

(35)

ȳk = yk + ỹk (36)

where (35) arises from the convolution-closed augmentation scheme. Letting A = (a0, b0), we relax the delta spike
assumption in the main paper and can derive complete conditional updates. We turn our attention to updates for bk and
propose a method to sample them jointly.

Approximate updates for bk. If ȳk ̸∈ A, then bk = 1. If ȳk ∈ A, then

P (bk = 1 | ȳk, c̄) =
P (bk = 1)P (ȳk | c̄, bk = 1)

P (bk = 1)P (ȳk | c̄, bk = 1) + P (bk = 0)Unif(ȳk; a0, b0)
(37)

=
p
∫
Fc̄λk

(ȳk)g(λk)dλk

p
∫
Fc̄λk

(ȳk)g(λk)dλk + (1− p) 1
b−a

(38)

=
pf(c̄, ȳk)

pf(c̄, ȳk) + (1− p) 1
b−a

(39)

=
f(c̄, ȳk)

f(c̄, ȳk) +
1−p

p(b−a)

(40)

where f(c̄, ȳk) =
∫
Fc̄λk

(ȳk)g(λk)dλk is the marginal density of ȳk. We note that (40) is p(b−a)
1−p - Lipschitz in f

on [0, 1], suggesting that if f(c̄, ȳk) ≈ f(c̄, ȳk′) for ȳk, ȳk′ ∈ A, then P (bk = 1 | ȳk, c̄) ≈ P (bk′ = 1 | ȳk′ , c̄),
particularly when b− a is small. Assuming equality, we can sample from the complete conditionals jointly by sampling
n ∼ Binomial(

∑K
k=1 1{ȳk ∈ 0}, p̃), and then sampling the n classes uniformly at random without replacement from the

set {k : ȳk ∈ A}.
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C. Mathematical Details
Area under the precision-recall curve. Consider predictions made by a logistic regression model that lie in the interval
[0, 1]. For a specific binary threshold t ∈ (0, 1), let TPt, TNt, FPt, FNt denote the number of true positives, true negatives,
false positives, and false negatives. Then define

precisiont =
TPt

TPt + FPt
, recallt =

TPt

TPt + FNt
. (41)

Each classification threshold t yields a point on the 2-dimensional precision-recall plane. The area under the precision-recall
curve (AUCPR) obtained by integrating over classification thresholds t ∈ [0, 1] is a value between 0 and 1, and we define
the AUCPR error as 1 - AUCPR.

Mutual Information. The mutual information I(X;Y ) for two discrete random variables X and Y is defined as the KL
divergence between the joint distribution of X and Y and the product of their marginals, i.e.

I(X;Y ) = DKL(P(X,Y )||P(X)P(Y )) (42)

=
∑

x∈X ,y∈Y
P(x, y) log

(
P(x, y)

P(x)P(y)

)
(43)

=
∑

x∈X ,y∈Y
P(x, y) log

(
P(x)P(y | x)

P(x)P(y)

)
(44)

=
∑

x∈X ,y∈Y
P(x)P(y | x) log

(
P(y | x)

P(y)

)
(45)

= EX [DKL (p(Y | X)||p(Y ))]. (46)

I(X;Y ) is a measure of dependence between X and Y , where I(X;Y ) = 0 implies independence between X and Y . For
a classification task with n subjects and K classes, we compute the mutual information between the ground-truth labels and
predicted labels using the empirical joint and marginal distributions over labels. The higher the mutual information between
predicted labels and true labels, the better the quality of the predictions.

C.1. The Poisson Likelihood and Sparsity

Evaluating the log-likelihood of a matrix or tensor Y requires evaluating the log-likelihood at the nonzero values of Y only

log(P(Y | Ŷ(Θ))) =
∑
i

log(Poisson(yi; ŷi)) (47)

∝Ŷ

∑
i

yi log(ŷi)− ŷi, (48)

a significant reduction in computational complexity when Y is sparse (i.e. ||Y||0 << |Y|). The parts-based representation
of the observed data enables computationally efficient inference. Each observed count yi is the sum of K latent Poisson
random variables {yik}Kk=1, such that

yik ∼ Poisson(µik), yi =
∑
k

yik. (49)

EM, Gibbs sampling, and variational inference methods built around this scheme scale as O(K · ||Y||0). Inference involves
conditioning on the observed counts yi and allocating them across K latent classes through multinomial thinning,

(yik)
K
k=1 | yi ∼ Multinomial

yi,

(
λik∑K
k=1 λik

)K

k=1

 (50)

and updating parameters conditional on these latent sub-counts.
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C.2. Generative Model

Our specified generative model for the probabilistic Tucker follows from the sequence of (24), (25) and (26).

Factor matrices. For each factor matrix element θ(m)
imjm

, m ∈ [M ], im ∈ [Im], jm ∈ [Jm],

b
(m)
imjm

ind.∼ Bernoulli(ρ(m)
jm

), (51)

θ
(m)
imjm

| b(m)
imjm

ind.∼

{
δ0 if b(m)

imjm
= 0

Gamma(1, 1) otherwise.
(52)

We also place a Beta prior on each ρ
(m)
jm

, such that for each jm ∈ [Jm],m ∈ [M ], ρ(m)
jm

i.i.d.∼ Beta(1, 1).

Core elements. Similar to the factor elements, we specify the prior for each core element λj1,...,jM = λj as the following
hurdle gamma prior.

bj
i.i.d.∼ Bernoulli(0.9), (53)

λj | bj
ind.∼

{
δ0 if bj = 0

Gamma(α, β) otherwise
(54)

where α = 1 and β = 10.

Likelihood. We assume a conditionally independent Poisson likelihood for each observed count yi, where

yi
ind.∼ Poisson(ŷi), (55)

ŷi ≡
J1∑

j1=1

· · ·
JM∑

jM=1

λj

M∏
m=1

θ
(m)
imjm

, (56)

which describes the Poisson Tucker decomposition. Since the sum in (56) decomposes, we use the Poisson’s parts-based
representation to define unobserved latent subcounts yij

ind.∼ Poisson(λj

∏M
m=1 θ

(m)
imjm

) for each yi, such that yi =
∑

j yij .
We infer the latent subcounts as latent variables during inference, along with the remaining latent variables.

C.3. Complete Conditionals.

The complete conditionals for the core tensor elements and factor matrix elements follow from the relations given by (24)
through (26). Therefore, we begin by justifying them. While most justifications are relatively elementary, the results are
crucial for inference, so we include derivations here.

Proof of Proposition 3.1. By Bayes’ theorem,

P (b = 1 | y > 0, c) =
P (y > 0 | b = 1, c)P (b = 1 | c)

P (y > 0 | b = 1, c)P (b = 1 | c) + P (b = 0 | c)P (y > 0 | b = 0, c)
(57)

=
P (y > 0 | b = 1, c)P (b = 1 | c)

P (y > 0 | b = 1, c)P (b = 1 | c) + 0
= 1. (58)

Othrerwise, when y = 0, for constant c,

P (b = 1 | c, y = 0) =
P (b = 1 | c)P (y = 0 | b = 1, c)

P (b = 1 | c)P (y = 0 | b = 1, c) + P (b = 0 | c)P (y = 0 | b = 0, c)
(59)

=
P (b = 1)P (y = 0 | b = 1, c)

P (b = 1)P (y = 0 | b = 1, c) + P (b = 0)P (y = 0 | b = 0, c)
(60)

=
ρP (y = 0 | b = 1, c)

ρP (y = 0 | b = 1, c) + (1− ρ) · 1
=

ρP (y = 0 | b = 1, c)

ρP (y = 0 | b = 1, c) + (1− ρ)
, (61)
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which depends on P (y = 0 | b = 1, c). We can solve for P (y = 0 | b = 1, c) analytically, as

P (y = 0 | b = 1, c) =

∫ ∞

0

P (y = 0, λ | b = 1, c)dλ =

∫ ∞

0

P (y = 0 | λ, b = 1, c)P (λ | b = 1, c)dλ (62)

=

∫
Poisson(0; cλ)Gamma(λ;α, β)dλ (63)

=

∫ ∞

0

e−cλ βα

Γ(α)
λα−1e−βλdλ (64)

=
βα

Γ(α)

∫ ∞

0

e−(β+c)λλα−1dλ (65)

=
βα

Γ(α)

Γ(α)

(β + c)α
=

βα

(β + c)α
(66)

by u-substitution. Plugging in βα

(β+c)α = P (y = 0 | b = 1, c), we have that

P (b = 1 | y > 0, c) =
ρ βα

(β+c)α

(1− ρ) + ρ βα

(β+c)α

=
ρ βα

(β+c)α

(1− ρ) (β+c)α

(β+c)α + ρ βα

(β+c)α

(67)

=
ρβα

(1− ρ)(β + c)α + ρβα
. (68)

Justification of Equation (28). When b = 0, then by the definition of the hurdle model, λ = 0 almost surely.

When b = 1,

P (λ | b = 1, y, c) ∝λ P (λ | b = 1, c)P (y | λ, b = 1, c) (69)
∝λ Gamma(λ;α, β)Poisson(y; cλ) (70)

∝λ e−βλλα−1e−cλλy (71)

∝λ e−(β+c)λλ(α+y)−1. (72)

That is, the full conditional is proportional to the kernel of the Gamma distribution with shape parameter α+ y and rate
parameter β + c. As such, P (λ | b = 1, y, c) = Gamma(λ;α+ y, β + c).

Equipped with the two justifications above, we derive the the complete conditionals for the factor matrix and core tensor
elements that are critical for Gibbs sampling.

Factor matrix elements θ(m)
imjm

. If b(m)
imjm

= 0, then θ
(m)
imjm

= 0. Otherwise, we apply (28), with

P (θ
(m)
imjm

| −) = Gamma(θ(m)
imjm

; 1 + yimjm , 1 + cimjm), (73)

where the yimjm and cimjm are defined as:

yimjm =
∑
i′,j′

1{i′m = im, j′m = jm} · yi′j′ , cimjm =
∑
i′,j′

1{i′m = im, j′m = jm} · λj′

∏
m′ ̸=m

θ
(m′)
im′ jm′ . (74)

Auxilliary latent subcounts ỹj . Define yj =
∑

i yij . Then marginally, by Poisson additivity,
yj ∼ Poisson(λj

∑
i

∏M
m=1 θimjm). Define cj =

∑
i

∏M
m=1 θimjm , such that yj ∼ Poisson(λjcj) and c̄ = maxj cj . Then

P (ỹj | −) = Poisson(λj(c̄− cj)). (75)

Core elements λj . If bj = 0, then λj = 0. Otherwise, by conditional conjugacy, we apply (28) again, such that

P (λj | −) = Gamma(1 + ȳj , 10 + c̄) (76)

where c̄ = maxj
∑

i

∏M
m=1 θ

(m)
imjm

and ȳj = yj + ỹj .
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Latent subcounts yij . Marginally, yi ∼ Poisson(
∑

j λj

∏M
m=1 θ

(m)
imjm

). As such, by multinomial thinning,

P ((yij)j | −) = Multinomial

yi,

(
λj

∏M
m=1 θ

(m)
imjm∑

j λj

∏M
m=1 θ

(m)
imjm

)
j

 . (77)

Hurdle parameters ρ(m)
jm

. Let n(m)
jm

=
∑Im

im=1 b
(m)
imjm

. By Beta-binomial conjugacy,

P (ρ
(m)
jm

| −) = Beta(ρ(m)
jm

; 1 + n
(m)
jm

, 1 + Im − n
(m)
jm

). (78)
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