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Abstract

This paper introduces a novel inference scheme
for a class of hurdle priors that exploits spar-
sity to scale large machine learning models with
convolution-closed likelihood distributions, such
as the Gaussian and Poisson. We call this the
convolution-closed hurdle motif, and focus on
the non-negative Tucker decomposition, a tool
popular in the literature for modeling multi-way
relational data. We apply an instance of the class
of hurdle priors, the hurdle gamma prior, to a
probabilistic non-negative Tucker method and de-
rive an inference scheme that scales with only
the non-zero latent parameters in the core ten-
sor. This scheme avoids the typical exponential
blowup in computational cost present in Tucker
decomposition, efficiently fitting the data to a
high-dimensional latent space. We derive and
implement a closed-form Gibbs sampler for full
posterior inference and fit our model to longitudi-
nal microbiome data. Using this hurdle motif to
quickly train our model, we reveal interpretable
qualitative structure and encouraging classifica-
tion results.

1. Introduction
Sparse data, often relational, are frequently stored as ma-
trices or tensors. Practitioners often require methods that
scale appropriately to model high-dimensional latent struc-
ture, such as regularization approaches (Ishwaran & Rao,
2005; Zou, 2006) and gradient-based methods (Hoffman
et al., 2013; Kingma & Ba, 2014; Ranganath et al., 2014).
This high-dimensional latent structure can be computation-
ally expensive to model, as generally, computation scales
with the number of latent parameters. However, much high-
dimensional latent structure is sparse. A canonical setting
with this phenomena is that of training neural networks, as
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the weight matrices of trained neural networks are often
high-dimensional and sparse, and with careful manipula-
tion, we may exploit that sparsity for computational bene-
fit (Louizos et al., 2017).

This kind of latent structure is ubiquitous, and we turn our
attention to scientifically interesting settings such as longitu-
dinal microbiome data (Ma & Li, 2023; Shi et al., 2023) and
dynamic networks (Aguiar et al., 2023). Tensor decompo-
sition methods are natural ways to model such highly struc-
tured data without compromising the data structure (Tucker,
1966; Kolda & Bader, 2009). Much of the literature assumes
low-rank structure in these sparse, high-dimensional data.
However, recent work calls for also modeling the latent
structure as sparse and high-dimensional (Hood & Schein,
2024). Guided by established schemes for modeling sparsity,
we aim to develop computationally scalable probabilistic
generative models for large-scale scientific applications.

This paper builds on classical statistical motifs, specifically
hurdle (Cragg, 1971) and conditionally conjugate models,
for modeling sparse data to estimate sparse latent spaces.
We first review the hurdle model as a tool for modeling
sparsity and define hurdle conjugate priors. Tailoring
our method to sparse count data by building on previous
work that leverages the Poisson likelihood’s scalability,
we propose a convolution-closed data augmentation
scheme that significantly reduces the computational
cost typically present multi-linear tensor decomposition
methods. We apply a specific instance, the hurdle gamma
prior, to fit a large-core probabilistic Tucker decomposition,
demonstrating the advantage of our method using a fast
Gibbs sampler for efficient posterior inference.

Contributions. Our contributions are as follows:

• We define a class of hurdle priors to impose sparsity in
a latent parameter space.

• We combine these hurdle priors with a convolution-
closed likelihood to develop a novel data augmentation
scheme for efficient complete conditional updates.

• We incorporate a hurdle conjugate prior into a proba-
bilistic Tucker decomposition model which allows the
size of its core tensor to increase without suffering the
typical exponential blowup in computational cost.

1
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• We derive and implement a closed-form Gibbs sampler
for efficient posterior inference under the tailored prob-
abilistic Tucker model and fit models to longitudinal
microbiome data, revealing interpretable qualitative
structure and encouraging quantitative results.

2. A Family of Hurdle Conjugate Priors
The hurdle model is defined by its sampling scheme,

b ∼ Bernoulli(ρ), (1)

λ | b ∼

{
δ0 if b = 0

gθ(λ) otherwise
(2)

where 0 ̸∈ supp(gθ) and ρ ∈ (0, 1) is the hurdle pa-
rameter. We use Fλ(·) to define the likelihood func-
tion parameterized by λ (i.e. Fλ(y) = Poisson(y;λ) or
F(λ,σ2)(y) = N(y;λ, σ2), for known σ2). Suppose we
have a conditionally-conjugate pair, as in (3-5), where (3)
specifies the conditionally conjugate prior, (4) specifies the
likelihood, and (5) specifies the conditional posterior (where
{ck}Kk=1 are scaling constants). For k = 1, . . . ,K,

λk
iid∼ gθ(λk), (3)

yk | λk
ind.∼ Fck·λk

(·), (4)

(λk | yk, ck)
ind.∼ gθ′(λk), (5)

for some θ′ that depends on ck and yk. We consider the
setting where Fλ is convolution-closed.

Definition 2.1. A distribution Fλ is convolution-closed if
for independently sampled X1 ∼ Fλ1

, X2 ∼ Fλ2
, the sum

X1 +X2 ∼ Fλ1+λ2
.

Examples of convolution-closed distributions include the
Gaussian, Poisson, binomial, negative binomial, gamma,
multivariate Gaussian, inverse Gaussian, generalized Pois-
son, Tweedie, and multinomial, many of which have con-
jugate priors. We propose the following data augmentation
scheme. Let c̄ = maxk ck. For each yk ∼ Fckλk

, we wish
to sample an auxiliary ỹk, such that ȳk ≡ yk+ ỹk ∼ Fc̄λk

(·)
which does not depend on ck. If Fλ is convolution-closed,
it follows that

yk ∼ Fckλk
, ỹk ∼ F(c̄−ck)λk

independently, (6)
ȳk ≡ yk + ỹk ∼ Fc̄λk

. (7)

Under the conditionally-conjugate prior, we consider

bk ∼ Bernoulli(p), (8)

λk | bk ∼

{
δ0 if bk = 0

g(λk) otherwise
(9)

ȳk | λk ∼ Fc̄λk
(ȳk). (10)

Given the stated model, we are interested in posterior in-
ference, and would like to approximate the true posterior
using methods that leverage conditional-conjugacy, such as
Gibbs sampling or variational inference (Casella & George,
1992; Wainwright et al., 2008; Blei et al., 2016). Inference
requires iteratively updating (bk | λk, yk), (λk | yk, bk),
and (yk | bk, λk), conditional on all other parameters. Note
that auxiliary sampling scales with the number of nonzero
bk. When bk = 0, then λk = 0 and c̄λk = ckλk = 0. We
avoid sampling auxiliary ỹk, as yk is already distributed as
Fc̄λk

= F0. Conditional on ȳk, c̄, b, we have a closed-form
conjugate update for λk. It is evident that

(bk | λk > 0, c̄, ȳk) = 1, (11)
(bk | λk = 0, c̄, ȳk) = 0. (12)

Updates to bk are immediate and violate detailed balance
(i.e. the Markov chain will get stuck in this state and not
explore the full posterior). As such, we collapse out λk to
derive an update

P(bk = 1 | c̄, ȳk) ∝ P(ȳk | bk = 1, c̄)P(bk = 1) (13)

∝ p ·
∫

P(ȳk | λ, c̄)︸ ︷︷ ︸
Fc̄λ(ȳk)

P(λ | bk = 1)︸ ︷︷ ︸
g(λ)

dλ

︸ ︷︷ ︸
f(c̄,ȳk)

(14)

which is a function of ȳk and c̄ independent of ck. Then for
ȳk = ȳk′ ,

P(bk = 1 | ȳk, c̄) = P(bk′ = 1 | ȳk′ , c̄). (15)

In particular, this implies that

P(bk = 1 | ȳk = 0, c̄) =
p · f(c̄, 0)

p · f(c̄, 0) + (1− p)
(16)

= P(bk′ = 1 | ȳk′ = 0, c̄) (17)

for k ̸= k′. Let p̃ = P(bk = 1 | ȳk = 0, c̄). Then we may
update bk by sampling

n0 ∼ Binomial(
∑
k

1{ȳk = 0}, p̃), (18)

and then sampling n0 of the k classes such that ȳk = 0
(without replacement). We use this convolution-closed
augmentation scheme to sample {(bk | ȳk = 0, c̄)} jointly.

Leveraging sparsity to compute the evidence. Note
that collapsing out λk relies on the ability to compute the
evidence term P(ȳk | bk = 1) =

∫
Fc̄λk

(ȳk)g(λk)dλk.
Generally, computing the evidence term is intractable.
Since ȳk > 0 implies bk > 0, we only need to resample
bk (and thus compute the evidence term) when ȳk = 0. In
many cases, the likelihood Fc̄λ(0) simplifies when y = 0,
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and so P(0) is tractable and cheap to compute. This yields
cheap updates for bk | c̄, ȳk = 0.

Computational benefit in sparse regimes. Consider the
setting where λk = 0 =⇒ ȳk = 0, then when ȳk > 0,
bk = 1 almost surely. When bk = 0, then λk = 0 and so we
avoid computation for λk. In the dense setting, however, we
must re-sample λk for all K latent classes, a significantly
more expensive procedure compared to the case when most
bk = 0.

3. Sparse Non-Negative Tucker Decomposition
We pair a hurdle gamma prior with the Poisson likelihood
to model sparse count tensor data using the hurdle motif.
The gamma hurdle (Jacobs, 2022) is an established tool for
statistical modeling and sparsity in Tucker is an established
idea. Sparse alternatives have been applied to the Tucker
decomposition, including spike-and-slab priors on the
individual core elements (Fang et al., 2021; Park et al.,
2021; Zhang & Ng, 2022). However, these methods do not
exploit sparsity for computational benefit, but instead for
interpretability and generalization. As such, these methods
scale poorly with the size of the core tensor. We exploit
sparsity for computation and interpretability.

3.1. Tucker Decomposition

The Tucker decomposition of a tensor Y ∈ RI1×···×IM

decomposes Y into a core tensor Λ ∈ RJ1×···×JM and M
factor matrices θ(m) ∈ RIm×Jm . Tucker reconstructs Y as
a sum of |Λ| =

∏M
m=1 Jm weighted outer products:

Ŷ ≡
J1∑

j1=1

· · ·
JM∑

jM=1

λj1,...,jM θ
(1)
j1

⊗ · · · ⊗ θ
(M)
jM

, (19)

where each element of the core tensor λj1,...jM corre-
sponds to a weight assigned to each outer product. We
use i = (i1, . . . iM ) to index the observed tensor Y and
j = (j1, . . . , jM ) to index the core tensor.

Recent work advocates for modeling complex network
data using the non-negative Tucker decomposition (Schein
et al., 2016; De Bacco et al., 2017; Aguiar et al., 2023).
Tucker yields expressive, rich latent structure, embedding
individuals into clusters, with distinct modalities to capture
latent structure (i.e. temporal and spatial). However, its
usefulness is limited: computation generically scales
linearly with the size of the core tensor, which makes fitting
Tucker difficult in practice.

For high-dimensional, sparse count data, it is natu-
ral to adopt a conditionally Poisson likelihood, so that
Y ∼ Poisson(Ŷ) and constrain the parameters of θ(m)

and Λ to be non-negative. We refer to this adaptation as the
Poisson Tucker decomposition (Schein et al., 2016). Previ-

ous work argues for using the Poisson likelihood to model
sparse data for its interpretable appeal near zero and com-
putational tractability (Chi & Kolda, 2012). Evaluating the
log-likelihood of a matrix or tensor Y requires evaluating
the log-likelihood at the non-zero values of Y only:

log(P(Y | Ŷ(Θ))) =
∑
i

log(Poisson(yi; ŷi)) (20)

∝Ŷ

∑
i

yi log(ŷi)− ŷi, (21)

a significant reduction in computational complexity when
Y is sparse (i.e. ||Y||0 << |Y|). The Poisson additivity
property gives a latent parts-based representation (Lee &
Seung, 1999) of the observed data,

yik ∼ Poisson(µik), yi =
∑
k

yik, (22)

where each observed count yi is the sum of K latent Pois-
son random variables {yik}Kk=1. EM, Gibbs sampling, and
variational inference methods built around this scheme scale
as O (K||Y||0)(Gopalan et al., 2013; 2014; Schein et al.,
2015). Inference involves allocating observed counts yi
across K latent classes through multinomial thinning,

yi =

K∑
k=1

yik, (23)

{yik}k | y• ∼ Multinomial(y•,
λik∑K
k=1 λik

)), (24)

and updating parameters conditional on these latent
sub-counts. In Tucker decomposition, K = |Λ|.

Bayesian Poisson Tucker decomposition. We as-
sume priors on the parameters λj1,...,jM , θ

(m)
imjm

and in-
fer them through posterior estimation. For instance,
λj ∼ P(λj | ϕ), where ϕ parameterizes the prior distribu-
tion over λj . Under this formulation, computation generally
scales with the size of the core tensor, which experiences
an exponential blowup in parameters (exponential, since
size of the core tensor is exponential in M ). Workarounds
such as ALℓ0CORE (Hood & Schein, 2024) have been pro-
posed, which places an ℓ0 constraint on Λ and infers the
nonzero locations and values in the core tensor. The authors
derive an inference scheme that scales computationally as
O(||Λ||0 · ||Y||0) and enforce a strict upper bound on ||Λ||0.
Inspired by the explicit l0-constraint on the core tensor, this
work places a hurdle prior on each element of the core ten-
sor to implicitly provide ℓ0 regularization. We apply the
hurdle prior to the factor matrices in addition to the core
tensor, incorporating sparsity across all of Tucker’s latent
components.

The hurdle gamma prior. A natural choice of prior for
the Poisson likelihood is its conjugate prior, the gamma

3
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distribution, defined as

Gamma(λ;α, β) =
βα

Γ(α)
λαe−βλ. (25)

In Bayesian Poisson matrix and tensor factorization models
(including Poisson Tucker) the gamma prior yields easy-
to-compute complete conditionals, P(λ | −), conducive to
efficient posterior estimation via MCMC and variational
inference methods. Since the gamma distribution places
zero density at λ = 0, gamma priors restrict parameters to
be positive dense solutions. We model the elements of the
factor matrices and core tensor with hurdle gamma priors,
and under the Poisson (a convolution-closed likelihood),
apply the hurdle motif to speed up inference.

We alternate between allocating counts to latent sub-counts,
as described above, and updating parameters conditional
on these latent sub-counts. Upon allocating, inference sim-
plifies to computing the complete conditionals under the
following model:

b ∼ Bernoulli(ρ), (26)

λ | b ∼

{
δ0 if b = 0

Gamma(α, β) otherwise
(27)

y | λ ∼ Poisson(cλ), c ∈ R≥0 (28)

which yields closed-form complete conditional updates for
each of the parameters b and λ.
Updating b. As in (11) and (12), conditioning on λ deter-
mines b so we marginalize out λ. When y > 0, then b = 1.
Otherwise, b | c, y = 0 ∼ Bernoulli(p̃), where

p̃ =
ρβα

(1− ρ)(β + c)α + ρβα
. (29)

Updating λ. By the hurdle and conditional conjugacy,

(λ | b, y) ∼

{
0 if b = 0

Gamma(α+ y, β + c) otherwise.
(30)

Convolution-closed Poisson augmentation. We introduce
auxiliary Poisson random variables to sample bj jointly.
Updates to λj condition on the latent sub-counts yj . The
update to bj | yj , cj yields different Bernoulli success pa-
rameters p̃j for each bj . Naively, each Gibbs update iterates
over all bj , scaling computationally with the size of the
core. We apply the convolution-closed hurdle motif to work
around this problem, as the Poisson is a convolution-closed
likelihood and the gamma is its conjugate prior.

Letting c̄ = maxj(cj), we sample auxiliary counts
ỹj ∼ Poisson((c̄− cj)λj), such that

ȳj ≡ yj + ỹj ∼ Poisson(c̄λj). (31)

Conditional on ȳj , p̃ = p̃j = p̃j′ for all j ̸= j′.
As such, we sample the bj jointly, sampling
n ∼ Binomial(|Λ| − ||YΛ||0, p̃) and then sampling n new
multi-indices in the core at random without replacement.
YΛ is the tensor of size |Λ| containing the latent sub-counts
yj . The greater the difference between n and |Λ|, the
greater the reduction in computational cost. Our method
only requires sampling ỹj for those λj > 0, which scales as
O(||Λ||0) instead of O(|Λ|). As above, if b = 0 then λ = 0.
Otherwise, (λ | b = 1, ȳ, c̄) ∼ Gamma(α + ȳ, β + c̄) by
conditional conjugacy. Iterating between these updates (on
the factor matrices and core tensor) and allocating observed
counts to latent sub-counts, which scales O(||Λ||0||Y ||0),
forms a Gibbs sampler with stationary distribution equal
to the exact posterior distribution, the target of interest.

4. Experimental Results
Data. We demonstrate our method’s effectiveness by
fitting Tucker to data from a microbiome longitudinal
study, where Yijt denotes the gene count of gene i of
subject j at time t. We qualitative and quantitatively
evaluate our method on the FARMM cohort (Tanes et al.,
2021), where Y ∈ N343×30×16

0 . A description of the
FARMM dataset may be found at (Tanes et al., 2021). We
consider 343 genes, 30 subjects, each with phenotype of
(vegan, omnivore, or EEN), and 16 days. Subjects receive
antibiotic treatment on days 6-8 of the study. We omit
day 1 observations to be consistent with previous methods
(none of the vegan subjects record observations on the first
day).The tensor is 76% sparse and contains ≈ 11% missing
values. Our approach handles missing data naturally as
latent variables, imputing them during inference.

Hyperparameter selection. For simplicity, we use hurdle
parameter ρ = 0.9 and Gamma(1, 1) priors for each element
of the core tensor and hurdle Gamma(1, 10) priors on the
elements of the factor matrices. To let sparsity levels differ
across latent factors, we use Beta priors (conjugate to the
binomial) ρjm ∼ Beta(1, 1), where

Beta(x;α, β) =
xα−1(1− x)β−1Γ(α+ β)

Γ(α)Γ(β)
(32)

The sparse factor matrices distinguish subjects by phe-
notype in the posterior even though our model does not
have access to labels while training. We fit our model for
a variety of core sizes, ranging from (3, 3, 3) to (25, 3, 3).

Qualitative evaluation. We identify temporal structure in
the time-specific factor matrix and groups of genes through
the gene-specific factor matrix. The core tensor allows for
all possible multi-linear latent gene-subject-time interac-
tions. We examine the inferred values in the core tensor
to evaluate inferred latent interactions, plot each subject’s
loading onto each latent factor, and plot the time series for
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each temporal latent factor. Figures 1-3 show interpretable
inferred latent structure. The qualitative and quantitative
results are taken from observing one sample from the
posterior at random (we simply use the last saved sample).
We discard the first 500 samples and save the last 1,000.

Quantitative evaluation. Our model outputs a set of poste-
rior samples, each which contains a sample core tensor and
factor matrices. We train a logistic regression classifier on
the subject factor matrix to classify subjects by phenotype
(EEN, or not EEN) and predict each subject’s phenotype
using a leave-one-out procedure. We report the area un-
der the precision-recall curve (AUC-PR) error and compare
our method to baselines from (Shi et al., 2023). We repeat
this procedure for 20, 30, 40, and 50% missing data points,
holding out samples from different time points at random.

Our method quantifies uncertainty around parameter
estimates via Gibbs sampling, which samples parameters
from the exact posterior distribution Θ ∼ P(Θ | Y). One
drawback of Gibbs sampling is its runtime, as sampling
1, 000 samples takes longer than a typical optimization
procedure such as EM or VI. However, we note that on
the FARMM dataset, for a (15, 3, 3) core tensor with
approximately 100 nonzero elements, one Gibbs iteration
takes about 0.1 seconds on a laptop. We suspect that as the
size of the observed tensor and size of the core increases,
our relative computational advantage grows.

4.1. Qualitative Results

We fit a model with core tensor Λ ∈ R15×3×3. Our method
yields a 5.9% sparse core tensor, with 8 out of 135 core
elements exactly zero. The estimated 343× 15 gene factor
matrix is 42% sparse, while the 30× 3 subject and 15× 3
time factor matrices are 11% sparse.
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Figure 1. Time series for each latent time factor. Factor 1, in red,
is most active in days 8-10. Fact 2, in blue, is active in days 1-7.
Factor 3, in green, is active day 10 through the end of the study.

Factor matrices. Figure 1 shows distinct latent factors cor-
responding to different temporal pattern. Factor 1 (red) cap-
tures temporal structure before antibiotic treatment, while
factors 2 (green) and 3 (blue) capture relatively acute and

chronic responses to treatment, respectively. Figure 2 shows
each subject’s loading onto the latent factors. Each subject is
colored by phenotype and the subject-specific latent factors
delineate between phenotypes. The vegan phenotype (green)
corresponds mostly to factor 1, while the EEN (black) cor-
responds mostly to factor 2 and omnivore (red) to factor 3.
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Figure 2. Tucker’s learned latent factors separate subjects by phe-
notype. Subjects are colored by phenotype, according to EEN
(black), omnivore (red), and vegan (green).

Core slices. The Tucker decomposition allows for all pos-
sible multi-linear interactions between latent gene, subject,
and time factors. We explore the core to find the strongest
interactions, determined by core value. We identify hetero-
geneous responses to antibiotic treatment by latent subject
component that corresponds to known phenotype groupings.
Darker colors represent higher values in the core.
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Figure 3. The core tensor. Each subfigure corresponds to a dif-
ferent gene-specific latent factor of the core tensor, where each
slice shows different interactions between time and subject latent
factors, organized by gene factor. We show all 15 latent factors to
demonstrate that all 15 latent gene factors interact with the latent
subject and time components differently.

4.2. Quantitative Results

We find an interesting relationship between classification
accuracy and core size. As the number of gene specific
latent components grows, our classifier achieves lower error,
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Figure 4. AUC-PR error (median over 10 masks) as a function of
the gene-specific latent dimension, keeping the subject-specific
latent dimension fixed at K = 3, for missing data proportions
ranging from 11-50%. Missing proportions are 11% (dark blue),
20% (red), 30% (green), 40% (teal), and 50% (light blue).

even though the subject factor matrix is fixed. Increasing
the core tensor size along one dimension yields more
precise latent structure in other modalities, despite fixing
the latent dimension specific to that modality.

After fitting a (25, 3, 3) instance of our model, we run
leave-one-out logistic regression to classify subjects by
phenotype, as outlined above. Since our method does not
rank principle components, like that of existing methods,
we use all 3 components for logistic regression instead of 2,
as done in previous studies. While the extra parameter likely
inflates our model’s relative performance, we consider the
identification of 3 distinct, informative latent factors an
advantage of our model. Our AUC-PR error (median across
10 random masks) is lower than that of existing methods,
as shown Table 1, and we see this as a promising sign.

Table 1. AUC-PR error for subject-phenotype classification task.
% missing data 20% 30% 40% 50%

our method 0.029 0.12 0.06 0.11
TEMPTED > 0.1 > 0.12 > 0.14 > 0.15

MicroTensor > 0.25 > 0.3 > 0.3 > 0.3
CTF > 0.4 > 0.4 > 0.4 > 0.4

5. Conclusion
We demonstrate the interpretable and computational bene-
fits of imposing a sparse, high-dimensional latent space on
non-negative Tucker decomposition. We provide a class of
hurdle priors and corresponding inference scheme with this
capability and see the general motif of exploiting sparsity
for computational savings as a promising future direction.
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